Atmospheric Dispersion Modeling

Professor Tim Larson CEE 357

Types of Models

- Source Receptor
 - Dispersion Calculations
 - Wind Tunnel
 - Empirical Scaling
 - Linear Rollback
 - Non-linear (chemistry/deposition)
- Receptor → Source
 - Deduce "source fingerprints" (statistical)
 - Microscopy (particle shape & composition)
- Receptor Receptor
 - Forecasting and interpolation
 - Spatial and temporal

Dilution vs Dispersion: The Importance of Averaging Time

The instantaneous concentrations are not described by steady-state plume models. The time averaged values are.

Dispersion models describe time-average plumes

instantaneous

time-averaged

Source: Slade et al "Meteorology and

Atomic Energy, 1968"

Instantaneous Plume Shape

Time-averaged Plume Shape

Unstable Daytime Conditions

Heating of the surface

Stable Nighttime Conditions

Clear skies

warmer, lighter air

Infrared radiation to space

Vertical motions suppressed by density gradient

colder, denser air

Cooling of the surface

Neutral Conditions (day or night)

relatively high wind speeds

Minimal heating or cooling of the surface

Pasquill-Gifford-Turner Stability Classifications

Atmospheric Stability Classifications

Surface wind speeda (m/s)	Day solar insolation			Night cloudiness ^e	
	Strong ^b	Moderate ^c	Slight ^d	Cloudy $(\geq 4/8)$	Clear $(\leq 3/8)$
< 2	A	$A–B^f$	В	E	F
2–3	A-B	В	С	E	F
3–5	В	В-С	С	D	Ē
5–6	C	C-D	D	D	D
> 6	С	D	D	D	D

^aSurface wind speed is measured at 10 m above the ground.

Note: A, Very unstable; B, moderately unstable; C, slightly unstable; D, neutral; E, slightly stable; F, stable. Regardless of windspeed, class D should be assumed for overcast conditions, day or night.

Source: Turner (1970).

^bCorresponds to clear summer day with sun higher than 60° above the horizon.

^cCorresponds to a summer day with a few broken clouds, of a clear day with sun 35–60° above the horizon.

^dCorresponds ot a fall afternoon, or a cloudy summer day, or clear summer day with the sun 15–35° above the horizon.

^eCloudiness is defined as the fraction of sky covered my clouds.

For A-B, B-C, or C-D conditions, average the values obtained for each.

Strongly Unstable

(view from side)

Stable

(view from side)

Surface Level Impacts Vary with Meteorology and Release Height

Stability	Release Height	Surface Impacts
unstable	elevated	high
	surface	high/moderate
stable	elevated	not significant
	surface	very high
neutral	elevated	moderate/low
	surface	high/moderate

Describing Plume Concentrations

Fig 4-3, p.44 in Martin et al

Factors Affecting Atmospheric Dilution (Mixing)

Wind Speed

Concentration is inversely proportional to wind speed

Tim's Simple Plume Model

Simplified Steady-State Plume Model

*Pollutant is well mixed and confined within the cone

$$C_1 > C_2 > C_3$$

Concentration vs. distance downwind depends upon cone shape

Simple Model #1:

Conc. of air at
$$2 = \frac{\text{Mass emission rate}}{\text{(wind speed)(area of disk 2)}}$$

$$\frac{\mu g}{m^3} = \frac{\mu g/sec}{(m/sec)(m^2)}$$

Disk shape depends upon stability category

More unstable and thus more pronounced vertical spreading

More Detailed Plume Model

Simple Model #2:

Conc at
$$2 = \frac{\text{Mass emission rate}}{(\text{wind speed})(\text{area of disk 2})} [\text{Gaussian distribution function}]$$

$$\frac{\mu g}{m^3} = \frac{\mu g/sec}{(m/sec)(m^2)} \begin{bmatrix} -1 \\ y \end{bmatrix}$$

$$X \text{ is the time-averaged wind direction,}$$

$$Y \text{ is the cross-wind direction,}$$

$$Z \text{ is the vertical dimension}$$

Gaussian Plume

$$h = h_s + \Delta h$$

Plume "Reflection" off of the Ground

(pollutant cannot penetrate the ground)

Reflection is modeled by adding a "virtual" source contribution to the "real" one

Gaussian "Point" Source Plume Model:

Gaussian Plume

Concentration distribution in a Gaussian plume

 $(\sigma_v = 20 \text{ m}; \sigma_z = 10 \text{m}; \text{ centerline concentration} = 1.0)$

Note: theoretical plume has infinite extent in all directions!

Cross-wind distance from plume centerline (m)

Source: Hanna et al, 1981

Calculation Procedure

- Determine stability class from meteorology
- 2. Compute wind speed at "effective" stack height, h
- 3. Compute σ_y and σ_z at a given downwind distance, x
- 4. Choose appropriate receptor height, z
- 5. Compute C(x,y,z) using Gaussian plume equation

Pasquill-Gifford-Turner Stability Classifications

Atmospheric Stability Classifications

Surface wind speeda (m/s)	Day solar insolation			Night cloudiness ^e	
	Strong ^b	Moderate ^c	Slight ^d	Cloudy $(\geq 4/8)$	Clear $(\leq 3/8)$
< 2	A	$A–B^f$	В	E	F
2–3	A-B	В	С	E	F
3–5	В	В-С	С	D	Ē
5–6	C	C-D	D	D	D
> 6	С	D	D	D	D

^aSurface wind speed is measured at 10 m above the ground.

Note: A, Very unstable; B, moderately unstable; C, slightly unstable; D, neutral; E, slightly stable; F, stable. Regardless of windspeed, class D should be assumed for overcast conditions, day or night.

Source: Turner (1970).

^bCorresponds to clear summer day with sun higher than 60° above the horizon.

^cCorresponds to a summer day with a few broken clouds, of a clear day with sun 35–60° above the horizon.

^dCorresponds ot a fall afternoon, or a cloudy summer day, or clear summer day with the sun 15–35° above the horizon.

^eCloudiness is defined as the fraction of sky covered my clouds.

For A-B, B-C, or C-D conditions, average the values obtained for each.

Calculation Procedure

- Determine stability class from meteorology
- 2. Compute wind speed at "effective" stack height, h
- 3. Compute σ_y and σ_z at a given downwind distance, x
- 4. Choose appropriate receptor height, z
- 5. Compute C(x,y,z) using Gaussian plume equation

Calculating Wind Speed as a Function of Height

"Power Law" Method

This approach is used with the EPA models and employs a simple "power law" function. The wind speed at any elevation is estimated as a function of the height of the actual wind speed measurement, the stability category, and the "wind profile exponent", as follows:

$$U_z = U_{zref} \left\{ \frac{Z}{Z_{ref}} \right\}^p$$

```
Where
```

 u_z = wind speed at some arbitrary elevation z [meters]

u_{zref} = wind speed at the "reference" (actual measurement) height [m/sec]

z_{ref} = the elevation of the actual wind speed measurement [m]

p = wind profile exponent, a function of stability category.

Values of p as a function of stability category are summarized in the following table. These are the "default" p values recommended by EPA for use when $z_{ref} = 10$ m.

A0.150.07B0.150.07C0.200.10D0.250.15E0.300.35F0.300.55	Stability Category	Urban	Rural
C 0.20 0.10 D 0.25 0.15 E 0.30 0.35	A	0.15	0.07
D 0.25 0.15 E 0.30 0.35	В	0.15	0.07
E 0.30 0.35	C	0.20	0.10
	D	0.25	0.15
F 0.30 0.55	E	0.30	0.35
	F	0.30	0.55

The "urban" and "rural" classifications attempt to capture the effect of surface roughness. The largest effect is seen under very stable conditions ("F").

Example Calculation:

For the "rural' case, if the wind speed is 3 m/sec measured at an elevation of 10 meters and the stability category is "D", then p = 0.15 and the wind speed at z=100 m is:

$$U_{100} = {3.5 \text{ m/s}} \left(\frac{100 \text{ m}}{10 \text{ m}} \right)^{0.15} = 4.94 \text{ m/s}$$

There are other ways to estimate the wind speeds as a function of height, but the "power law" approach is probably the simplest and most straightforward method.

Calculation Procedure

- Determine stability class from meteorology
- 2. Compute wind speed at "effective" stack height, h
- 3. Compute σ_y and σ_z at a given downwind distance, x
- 4. Choose appropriate receptor height, z
- 5. Compute C(x,y,z) using Gaussian plume equation

Plume sigma formulas from EPA's ISC Model

Vertical distribution:

$$\sigma_z = ax^b$$

x is in *kilometers* σ_z is in *meters* a, b depend on x

Cross-wind distribution:

$$\sigma_{v} = 465.11628x(\tan\Theta)$$

$$\Theta = 0.017453293(c - d \ln(x))$$

x is in *kilometers* σ_y is in *meters* Θ is in *radians*

Pasquill	$\sigma_z = ax^b$		
Stability Category	x (km)	a	b
A^*	<.10	122.800	0.94470
	0.10 - 0.15	158.080	1.05420
	0.16 - 0.20	170.220	1.09320
	0.21 - 0.25	179.520	1.12620
	0.26 - 0.30	217.410	1.26440
	0.31 - 0.40	258.890	1.40940
	0.41 - 0.50	346.750	1.72830
	0.51 - 3.11	453.850	2.11660
	>3.11	**	**

^{*} If the calculated value of σ_7 exceed 5000 m, σ_7 is set to 5000 m.

Pasquill Stability	$\sigma_z = ax^b$		
Category	x (km)	a	b
B^*	<.20	90.673	0.93198
	0.21 - 0.40	98.483	0.98332
	>0.40	109.300	1.09710
\mathbf{C}^*	All	61.141	0.91465
D	<.30	34.459	0.86974
	0.31 - 1.00	32.093	0.81066
	1.01 - 3.00	32.093	0.64403
	3.01 - 10.00	33.504	0.60486
	10.01 - 30.00	36.650	0.56589
	>30.00	44.053	0.51179

 $^{^*}$ If the calculated value of σ_z exceed 5000 m, σ_z is set to 5000 m.

^{**} σ_z is equal to 5000 m.

 $\sigma_z = ax^b$

Pasquill	$O_z - ux$		
Stability Category	x (km)	a	b
E	<.10	24.260	0.83660
	0.10 - 0.30	23.331	0.81956
	0.31 - 1.00	21.628	0.75660
	1.01 - 2.00	21.628	0.63077
	2.01 - 4.00	22.534	0.57154
	4.01 - 10.00	24.703	0.50527
	10.01 - 20.00	26.970	0.46713
	20.01 - 40.00	35.420	0.37615
	>40.00	47.618	0.29592
F	<.20	15.209	0.81558
	0.21 - 0.70	14.457	0.78407
	0.71 - 1.00	13.953	0.68465
	1.01 - 2.00	13.953	0.63227
	2.01 - 3.00	14.823	0.54503
	3.01 - 7.00	16.187	0.46490
	7.01 - 15.00	17.836	0.41507
	15.01 - 30.00	22.651	0.32681
	30.01 - 60.00	27.074	0.27436
	>60.00	34.219	0.21716

$\Theta = 0.017453293(c - d \ln(x))$

Pasquill Stability Category	c	d
A	24.1670	2.5334
В	18.3330	1.8096
С	12.5000	1.0857
D	8.3330	0.72382
Е	6.2500	0.54287
F	4.1667	0.36191

Calculation Procedure

- Determine stability class from meteorology
- 2. Compute wind speed at "effective" stack height, h
- 3. Compute σ_y and σ_z at a given downwind distance, x
- 4. Choose appropriate receptor height, z
- 5. Compute C(x,y,z) using Gaussian plume equation

Steady State Gaussian "Point" Source Plume Model:

Example Calculation

Given:

Q = 10 grams/sec; $h (=h_{eff}) = 50 \text{m}$; x = 500 m = 0.5 km; $u_{50} = 6 \text{ m/s}$; Stability Class "D"

Compute:

C(500, 0, 0), i.e., the ground level concentration (z = 0) at plume centerline, 500 meters downwind.

$$\sigma_z = ax^b = 32.093(0.5)^{0.81066} = 18.3m$$

$$\Theta = 0.017453293(8.3330 - 0.72382 \ln[0.5]) = 0.1542 \text{ radians}$$

$$\sigma_y = 465.11628x(\tan\Theta) = 465.11628(0.5)[\tan(0.1542)] = 36.1$$
m

$$C(x, y, z) = \frac{Q}{2\pi \operatorname{u} \sigma_{y} \sigma_{z}} \left\{ \exp \left(\frac{-(z-h)^{2}}{2\sigma_{z}^{2}} \right) + \exp \left(\frac{-(z+h)^{2}}{2\sigma_{z}^{2}} \right) \right\} \left\{ \exp \left(\frac{-(y)^{2}}{2\sigma_{y}^{2}} \right) \right\}$$

$$C(500,0,0) = \frac{10}{2\pi (6)(36.1)(18.3)} \left\{ exp \left(\frac{-(0-50)^2}{2(18.3)^2} \right) + exp \left(\frac{-(0+50)^2}{2(18.3)^2} \right) \right\} \left\{ exp \left(\frac{-(0)^2}{2(36.1)^2} \right) \right\}$$

$$C(500,0,0) = \frac{10}{2\pi (6)(36.1)(18.3)} \{0.0479\} \{1\} = 1.92 \times 10^{-5} \text{ g/m}^3 = 19.2 \mu \text{g/m}^3$$

Simplified Plume Equation for z = 0

$$C(x, y, z) = \frac{Q}{2\pi \operatorname{u} \sigma_{y} \sigma_{z}} \left\{ \exp \left(\frac{-(z-h)^{2}}{2\sigma_{z}^{2}} \right) + \exp \left(\frac{-(z+h)^{2}}{2\sigma_{z}^{2}} \right) \right\} \left\{ \exp \left(\frac{-(y)^{2}}{2\sigma_{y}^{2}} \right) \right\}$$

$$C(x, y, z) = \frac{Q}{2\pi \operatorname{u} \sigma_{y} \sigma_{z}} \left\{ \exp \left(\frac{-(-h)^{2}}{2\sigma_{z}^{2}} \right) + \exp \left(\frac{-(+h)^{2}}{2\sigma_{z}^{2}} \right) \right\} \left\{ \exp \left(\frac{-(y)^{2}}{2\sigma_{y}^{2}} \right) \right\}$$

$$C(x, y, z) = \frac{Q}{2\pi u \sigma_y \sigma_z} \left\{ 2 \exp\left(\frac{-(h)^2}{2\sigma_z^2}\right) \right\} \left\{ \exp\left(\frac{-(y)^2}{2\sigma_y^2}\right) \right\}$$

Another classic computation involves finding the location and value of the maximum ground level concentration downwind of a tall stack.

Non-Gaussian Plumes

Non- Gaussian Plume "Trapped" in Building Wake

Non-Gaussian Plume "Looping" During Unstable Conditions (large-scale vertical motions)

Large-Scale Vertical Motions

The newest EPA plume model is called 'Aermod' and incorporates this downdraft effect.

Aermod uses two superimposed Gaussian models, one for downdrafts and one for updrafts

Plume Fumigation During On-shore Flow

