Atomic Structure- 2

Q1.

The diagram shows a carbon atom.

(a) (i) A proton is labelled.

Use the correct answer from the box to label each of the other sub-atomic particles.

electron	ion	molecule	neutron

(ii) The atom of carbon is represented as:

What is the mass number of this carbon atom?
Draw a ring around the correct answer.

$$
\begin{array}{lll}
6 & 13 & 19
\end{array}
$$

(iii) Complete the sentence.

Atoms of carbon have no overall electrical charge because the number of protons is the same as the number of \qquad .
(b) Butane is represented as:

(i) Use the correct answer from the box to complete each sentence.

bond compound helium hydrogen mixture oxygen

Butane is a \qquad .

Butane contains atoms of carbon and \qquad .

Each line between the atoms in butane represents a chemical
\qquad .
(ii) Which is the correct formula for butane?

Tick (\boldsymbol{V}) one box.

Q2.
Sulfur is a non-metal.
Sulfur burns in the air to produce sulfur dioxide, SO_{2}
(a) Why is it important that sulfur dioxide is not released into the atmosphere?

Tick (\boldsymbol{V}) one box.
Sulfur dioxide causes acid rain. \square

Sulfur dioxide causes global dimming. \square

Sulfur dioxide causes global warming. \square
(b) Sulfur dioxide dissolves in water.

What colour is universal indicator in a solution of sulfur dioxide?
Give a reason for your answer.
\qquad
\qquad
(c) Sulfur dioxide is a gas at room temperature.

The bonding in sulfur dioxide is covalent.
Explain, in terms of its structure and bonding, why sulfur dioxide has a low boiling point.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Sulfur dioxide is produced when fossil fuels are burned.
It is important that sulfur dioxide is not released into the atmosphere.
Three of the methods used to remove sulfur dioxide from gases produced when fossil fuels are burned are:

- wet gas desulfurisation (W)
- dry gas desulfurisation (D)
- \quad seawater gas desulfurisation (S).

Information about the three methods is given in the bar chart and in Table 1 and Table 2.

Table 1

Method	Material used	How material is obtained
w	Calcium carbonate, CaCO_{3}	Quarrying
\mathbf{D}	Calcium oxide, CaO	Thermal decomposition of calcium carbonate: $\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
\mathbf{S}	Seawater	From the sea

Table 2

Method	What is done with waste material
W	Solid waste is sold for use in buildings. Carbon dioxide is released into the atmosphere.
D	Solid waste is sent to landfill.
S	Liquid waste is returned to the sea.

Evaluate the three methods of removing sulfur dioxide from waste gases.
Compare the three methods and give a justified conclusion.
\qquad

Q3.
(a) Figure 1 shows an atom of element \mathbf{G}.

Figure 1

Draw a ring around the correct answer to complete each sentence.
(i) Label \mathbf{A} shows
an electron
an ion
a nucleus
(ii) The particle labelled \mathbf{B} is
an isotope a molecule a neutron
(iii) The mass number of element \mathbf{G} is
5
6
11
(iv) Use the periodic table to identify element \mathbf{G}.

Element \mathbf{G} is
boron carbon sodium
(b) Figure 2 shows a compound of \mathbf{G} and hydrogen.

Figure 2

Draw a ring around the correct answer to complete each sentence.
(i) The formula of the compound in Figure 2 is
GH_{3}
$\mathrm{G}_{3} \mathrm{H}$
3HG
(ii) The type of bonding shown in Figure 2 is
metallic

Q4.
(a) The symbols for seven different elements are shown in Figure 1.

Figure 1

Choose the correct symbol from Figure 1 to answer each question.
You may use each symbol once, more than once or not at all.
Write the symbol that represents:
(i) a Group 1 element
\qquad
(ii) a transition metal
(iii) an element with electrons in the same number of energy levels as an atom of argon (Ar)
(iv) an element which forms an oxide that dissolves in water to form an acidic solution
(v) an element that forms a chloride with the formula XCl
(b) A teacher put a cube of sodium metal into water containing universal indicator, as shown in Figure 2.

Figure 2

The equation for the reaction is:

2 Na (s)	+	$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$2 \mathrm{NaOH}(\mathrm{aq})$	+	$\mathrm{H}_{2}(\mathrm{~g})$
sodium	+	water	sodium hydroxide	+	hydrogen

(i) The sodium floated on the surface of the water. The universal indicator turned purple.

Give three other observations that would be seen during the reaction.

1. \qquad
\qquad
2. \qquad
3. \qquad
\qquad
(ii) Name the ion that made the universal indicator turn purple.
\qquad
(c) Figure 3 represents the electronic structure of a sodium atom.

Figure 3

In the space below, draw the electronic structure of a sodium ion. Include the charge on the ion.

Q5.
A student investigated the conductivity of different concentrations of sodium chloride solution.
The student set the apparatus up as shown in Figure 1.
Figure 1

The student measured the conductivity of the pure water with a conductivity meter.
The reading on the conductivity meter was zero.
(a) The student:

- added sodium chloride solution one drop at a time
- stirred the solution
- recorded the reading on the conductivity meter.

The student's results are shown in the table below.

Number of drops of sodium chloride solution added	Relative conductivity of solution
0	0
1	100
2	120
3	310
4	400
5	510
6	590
7	710
8	800

(i) The student plotted the results on the grid shown in Figure 2.

Plot the four remaining results.
Draw a line of best fit, ignoring the anomalous result.
Figure 2

(ii) One of the points is anomalous.

Suggest one error that the student may have made to cause the anomalous result.
\qquad
\qquad
(iii) The student wanted to compare the conductivity of sodium chloride solution with the conductivity of potassium chloride solution.

State one variable he should keep constant when measuring the conductivity of the two solutions.
\qquad
(b) (i) Explain, in terms of bonding, why pure water does not conduct electricity.
(ii) Explain why sodium chloride solution conducts electricity.
\qquad
\qquad
\qquad
\qquad
(iii) After he had added sodium chloride solution, the student noticed bubbles of gas at the negative electrode.

Complete the sentence.
The gas produced at the negative electrode is \qquad

Q6.
Use the periodic table and the information in the table below to help you to answer the questions.

The table shows part of an early version of the periodic table.

Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
H						
Li	Be	B	C	N	O	F
Na	Mg	Al	Si	P	S	Cl

(a) Hydrogen was placed at the top of Group 1 in the early version of the periodic table.

The modern periodic table does not show hydrogen in Group 1.
(i) State one similarity between hydrogen and the elements in Group 1.
\qquad
\qquad
(ii) State one difference between hydrogen and the elements in Group 1.
\qquad
\qquad
(b) Fluorine, chlorine, bromine and iodine are in Group 7, the halogens.

The reactivity of the halogens decreases down the group.

Bromine reacts with a solution of potassium iodide to produce iodine.

$$
\mathrm{Br}_{2}+2 \mathrm{KI} \longrightarrow 2 \mathrm{KBr}+\mathrm{I}_{2}
$$

(i) In the reaction between bromine and potassium iodide, there is a reduction of bromine to bromide ions.

In terms of electrons, what is meant by reduction?
\qquad
\qquad
(ii) Complete the half equation for the oxidation of iodide ions to iodine molecules.

(iii) Explain, in terms of electronic structure, why fluorine is the most reactive element in Group 7.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q7.

A student was trying to produce hydrogen gas.
Figure 1 shows the apparatus she used.
Figure 1

(a) No gas was produced.

The student's teacher said that this was because the substances in the flask did not react.
(i) Suggest why the substances in the flask did not react.
\qquad
\qquad
\qquad
(ii) Which two substances could the student have put in the flask to produce hydrogen safely?

Tick (\checkmark) one box.
Gold and dilute hydrochloric acid

Potassium and dilute hydrochloric acid \square

Zinc and dilute hydrochloric acid

(b) Another student did produce hydrogen from two substances.

Figure 2 shows the apparatus the student used to collect and measure the volume of the hydrogen gas.

Figure 2

Give the name of the apparatus labelled \mathbf{X}.
\qquad
(c) The student did the experiment four times. Her results are shown in the table below.

Experiment	Volume of hydrogen collected in one minute in cm^{3}

1	49
2	50
3	35
4	48

(i) One of the results is anomalous.

Which result is anomalous? Write your answer in the box. \square
Give a reason for your choice.
\qquad
(ii) Calculate the mean volume of hydrogen collected in one minute.
\qquad
\qquad
Mean volume $=\square \mathrm{cm}^{3}$
(iii) Give a reason why the experiment should be repeated several times.
\qquad
\qquad
\qquad
(d) A teacher collected two tubes full of hydrogen gas, as shown in Figure 3.

Figure 3

She tested tube A with a lighted splint as soon as she took the bung out.
She tested tube B with a lighted splint a few seconds after taking the bung out.
(i) Suggest why tube \mathbf{B} gave a much louder pop than tube \mathbf{A}.
\qquad
\qquad
\qquad
\qquad
(ii) Complete and balance the chemical equation for the reaction that takes place when the hydrogen reacts in this test.

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow
$$

Q8.
Fossil fuels contain carbon.
(a) The figure below represents a carbon atom.

Draw a ring around the correct answer to complete each sentence.
(i) The name of the particle with a positive charge is $\begin{aligned} & \text { an electron. } \\ & \text { a neutron. } \\ & \text { a proton. }\end{aligned}$.
(ii) The centre of the atom is called the

energy level.
molecule.
nucleus.

(iii) Use the Chemistry Data Sheet to help you to answer this question.

Use the correct number from the box to complete each sentence.

4	6	8	10	12

The mass number of this carbon atom is \square

In the periodic table, carbon is in Group \square
(b) Coal is a fossil fuel.

A piece of coal contains:

- 80% carbon
- 9% oxygen
- 1% sulfur
- 5% hydrogen.

The rest of the coal is other elements.
(i) What is the percentage of other elements in this piece of coal?
\qquad
(ii) Coal burns in air to produce carbon dioxide, sulfur dioxide and water.

Draw one line from each product to the type of pollution caused by each product.

Q9.
Fertilisers contain elements that plants need.

AQAGROW

Plant Fertiliser
Contains:

- Nitrogen
- Phosphorus
- Potassium
(a) Figure 1 represents a nitrogen atom.

Figure 1

Complete each sentence.
(i) The mass number of this nitrogen atom is \qquad .
(ii) Atoms of nitrogen with different numbers of neutrons are called
\qquad .
(iii) Compared with a proton, the mass of an electron is
\qquad .
(b) Fertilisers can be made from ammonia.
(i) Which diagram, A, B, or C, represents the electronic structure of an ammonia molecule?

The electronic structure of an ammonia molecule is shown in diagram \square
(ii) What is the correct formula of ammonia?

Draw a ring around the correct answer.
$\mathrm{N}_{3} \mathrm{H}$
NH_{3}
NH^{3}
(c) A student made ammonium nitrate by reacting ammonia solution with an acid.
(i) Name the acid used to make ammonium nitrate.
\qquad
(ii) Complete the sentence.

The student added a few drops of \qquad which changed colour
when the ammonia solution had neutralised the acid.
(iii) The student added charcoal and filtered the mixture.

This produced a colourless solution of ammonium nitrate.
How is solid ammonium nitrate obtained from the solution?
\qquad
(iv) A farmer put ammonium nitrate fertiliser onto a field of grass.

Suggest what would happen to the grass.
\qquad
\qquad
(d) Some fertilisers contain potassium chloride.

Potassium reacts with chlorine to produce potassium chloride.
Figure 2 shows how this happens.
The dots (•) and crosses (x) represent electrons.
Only the outer shell is shown.
Figure 2

Use Figure 2 to help you answer this question.

Describe, as fully as you can, what happens when potassium reacts with chlorine to produce potassium chloride.
\qquad

Q10.

Magnesium oxide nanoparticles can kill bacteria.
The figure below shows the percentage of bacteria killed by different sized nanoparticles.

Percentage (\%) of bacteria killed

(a) (i) Give two conclusions that can be made from the figure above.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Points are plotted for only some sizes of nanoparticles.

Would collecting and plotting data for more sizes of nanoparticles improve the conclusions?

Give a reason for your answer.
\qquad
\qquad
(b) Magnesium oxide contains magnesium ions $\left(\mathrm{Mg}^{2+}\right)$ and oxide ions $\left(\mathrm{O}^{2-}\right)$.

Describe, as fully as you can, what happens when magnesium atoms react with oxygen atoms to produce magnesium oxide.
\qquad

Q11.

Glass is made from silicon dioxide.

© Velirina/iStock/Thinkstock
(a) Silicon dioxide has a very high melting point.

Other substances are added to silicon dioxide to make glass. Glass melts at a lower temperature than silicon dioxide.

Suggest why.
\qquad
\qquad
(b) Sodium oxide is one of the substances added to silicon dioxide to make glass.
(i) Sodium oxide contains Na^{+}ions and O^{2-} ions.

Give the formula of sodium oxide.
\qquad
(ii) Sodium oxide is made by heating sodium metal in oxygen gas.

Complete the diagram to show the outer electrons in an oxygen molecule $\left(\mathrm{O}_{2}\right)$.

(c) Glass can be coloured using tiny particles of gold. Gold is a metal.

Describe the structure of a metal.
\qquad
\qquad
\qquad
\qquad
\qquad

Q12.

This question is about the periodic table of elements.
Use the Chemistry Data Sheet to help you to answer these questions.
In 1869 Dmitri Mendeleev produced an early version of the periodic table.
(a) Draw a ring around the correct answer to complete each sentence.
(i) Mendeleev first arranged the elements in order of

their | atomic weight. |
| :--- |
| date of discovery. |
| electron number. |

(ii) Mendeleev then placed elements with similar properties in columns

called	groups.
periods.	
shells.	

(iii) When the next element did not fit the pattern,

| Mendeleev \quadignored the element.
 left a gap.
 put the element at the end of the row. |
| :--- | :--- |

(iv) Mendeleev was not able to include the noble gases (Group 0) in his periodic

	are not elements. table because the noble gases are not reactive. had not been discovered by 1869.

(b) Use the correct word from the box to complete each sentence.

electrons	molecules	neutrons	protons

In the modern periodic table elements are arranged in order of the number of
\qquad in their nucleus. Elements in the same group have the
same number of \qquad in their highest energy level (outer shell).
(c) Sodium (Na) is in Group 1 of the periodic table.

Nickel (Ni) is a transition element.
Tick (\checkmark) two correct statements about sodium and nickel.

Statement	Tick (\checkmark)
Sodium and nickel are both metals.	
Sodium has a higher melting point than nickel.	
Sodium is more reactive than nickel.	
Sodium is harder than nickel.	

(d) Chlorine, bromine and iodine are in Group 7 of the periodic table.

Chlorine is more reactive than bromine.
(i) Complete the word equation for the reaction between chlorine and sodium bromide.
chlorine + sodium bromide $\longrightarrow+$ sodium chloride
(ii) Why does iodine not react with sodium bromide solution?
\qquad
\qquad

Q13.
In 1869, Dmitri Mendeleev produced his periodic table of the elements.
Mendeleev placed the alkali metals in the same group.
(a) What evidence did Mendeleev use to decide that the alkali metals should be in the same group?
\qquad
\qquad
(b) Describe how the elements in the modern periodic table are arranged:
(i) in terms of protons
\qquad
\qquad
(ii) in terms of electrons.
\qquad
\qquad
(c) State two properties of transition elements that make them more useful than alkali metals for making water pipes.
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Describe and explain the trend in reactivity of the alkali metals (Group 1).
\qquad

Q14.

The Sun is mainly hydrogen and helium.
The diagrams show an atom of hydrogen and an atom of helium.

Hydrogen

Helium

(a) Draw a ring around the correct answer to complete each sentence.
molecule. nucleus.
shell.
an energy level
(shell).
a bond.
an electrical charge.
an energy level (shell).
(b) Use the diagrams in part (a) to help you to answer these questions.

Draw one line from each question to its correct answer.

Question

How many protons are there in the hydrogen atom?

How many electrons are there in

 the helium atom?Question

How many protons are there in the hydrogen atom?

Answer
\square
1
\square
2

What is the mass number of the helium atom?

3

4
(c) The Sun is 73% hydrogen and 25% helium. The rest is other elements.

What is the percentage of other elements in the Sun?
\qquad \%
(d) One of the other elements in the Sun is neon.

Neon is in the same group of the periodic table as helium.
Use the Chemistry Data Sheet to help you to answer these questions.
(i) How many protons are there in a neon atom?
\qquad
(ii) Which group of the periodic table are helium and neon in?
\qquad

Q15.
The Sun produces helium atoms from hydrogen atoms by nuclear fusion reactions.

(a) Describe the differences in the atomic structures of a hydrogen atom and a helium atom.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The Sun consists of 73% hydrogen and 25% helium.

The rest is other elements.
One of the other elements in the Sun is neon.
Use the Chemistry Data Sheet to help you to answer these questions.
(i) Complete the diagram to show the electronic structure of a neon atom.

(ii) Why is neon in the same group of the periodic table as helium?
\qquad
\qquad
\qquad

Q16.

This question is about atoms and molecules.
(a) Complete the table to show the relative masses of the particles in atoms.

Name of particle	Relative mass
Proton	
Neutron	1
Electron	

(b) The diagram shows an oxygen atom.

Use the correct number to complete each sentence.

8	16	18	24

The atomic (proton) number of the oxygen atom shown above is \qquad .

The mass number of the oxygen atom shown above is \qquad .
(c) (i) Draw a ring around the correct answer to complete each sentence.
isotopes.
molecules.
polymers.
(ii) An oxygen atom with a different number of neutrons has 10 neutrons.

Draw a ring around the symbol which represents this atom.
${ }_{8}^{16} \mathrm{O}$

${ }_{8}^{18} \mathrm{O}$
(d) A water molecule contains hydrogen and oxygen atoms.
(i) Use the correct answer to complete the sentence.

a compound	an element	a mixture

Water is \qquad .
(ii) Draw a ring around the correct structure of a water molecule.
H-O-H
$\mathrm{O}-\mathrm{H}-\mathrm{H}$
$\mathrm{O}-\mathrm{H}-\mathrm{O}$
(iii) Draw a ring around the type of bonding in a water molecule.
covalent ionic metallic
(iv) Draw a ring around the correct answer to complete each sentence.

The bonds in a water molecule are formed by	gaining losing sharing

Q17.

Kelp is a seaweed.
Kelp can be used in foods and as a renewable energy source.

© Ethan Daniels/Shutterstock
(a) Scientific experiments, on their own, cannot fully answer one of the following questions. Which one?

Tick (\checkmark) one box.

Questions	Tick (\boldsymbol{V})
How much carbon dioxide is produced when 100 g of kelp is burned?	
Does kelp give out more heat energy than coal?	
Will kelp last longer than coal as an energy source?	
Which fuel, kelp or coal, produces the most ash when burned?	

(b) Scientists cannot answer the question 'should people use kelp instead of coal as an energy source?'

Give two reasons why.
\qquad
\qquad
\qquad
(c) Sodium iodide can be produced from kelp.
(i) How many electrons are in the outer shell of an iodine atom?

(ii) Sodium iodide contains sodium ions (Na^{+}) and iodide ions $\left(\mathrm{I}^{-}\right)$.

Describe, as fully as you can, what happens when sodium atoms react with iodine atoms to produce sodium iodide.

You may use a diagram in your answer
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) The diagram shows the structure of sodium iodide.

Solid sodium iodide does not conduct electricity.
Why does sodium iodide solution conduct electricity?
\qquad
\qquad
(iv) When sodium iodide solution is electrolysed, iodine is formed at the positive electrode.

Complete and balance the half equation for the formation of iodine.

$$
\mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+\mathrm{e}^{-}
$$

(v) What is formed at the negative electrode when sodium iodide solution is electrolysed?

Explain why.
\qquad
\qquad
\qquad
\qquad

Q18.

The diagram represents a magnesium atom.

(a) Use words from the box to answer these questions.

electron	neutron	nucleus	proton

(i) What is the name of the central part of the atom? \qquad
(ii) What is the name of the particle with no charge? \qquad
(iii) What is the name of the particle with a negative charge?
(b) Use the diagram above to help you answer these questions.
(i) Draw a ring around the atomic (proton) number of this magnesium atom.
12
24
36
(ii) Draw a ring around the mass number of this magnesium atom.
12
24
36
(c) The diagram shows how magnesium and iodine atoms form magnesium iodide.

Only the outer electrons are shown.
The dots (\bullet) and crosses (\times) are used to represent electrons.

Use the diagram to help you to answer this question.
Describe, as fully as you can, what happens when magnesium reacts with iodine to make magnesium iodide.

To gain full marks you should use the words atom, electron and ion in your answer.
\qquad

Q19.

The picture shows a copper kettle being heated on a camping stove.
Copper is a good material for making a kettle because:

- it has a high melting point
- it is a very good conductor of heat.

(a) Explain why copper, like many other metals, has a high melting point.

Your answer should describe the structure and bonding of a metal.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Aeroplanes contain many miles of electrical wiring made from copper. This adds to the mass of the aeroplane.

It has been suggested that the electrical wiring made from copper could be replaced by carbon nanotubes which are less dense than copper.

The diagram shows the structure of a carbon nanotube.

(i) What does the term 'nano' tell you about the carbon nanotubes?
\qquad
\qquad
(ii) Like graphite, each carbon atom in the carbon nanotube is joined to three other carbon atoms.

Explain why the carbon nanotube can conduct electricity.
\qquad
\qquad
\qquad
\qquad
\qquad

Q20.
The periodic table on the Data Sheet may help you to answer these questions.
Part of the periodic table is shown below.

The letters are not the symbols of these elements.
Choose your answers only from the letters shown in the periodic table above.
Which letter, A, B, C, D or E, represents:
(a)
(i) an alkali metal Letter

(ii) a transition element

Letter

(iii) a Group 4 element

Letter

(b) A chemistry teacher demonstrated the reaction between sodium and water to a class of students. One of the students wrote the following notes:

The reaction between sodium and water

A piece of sodium was cut easily into smaller pieces with a knife.

The sodium was added to some water in a trough.
The sodium:

- floated
- melted quickly to give a silvery ball
- moved on the surface of the water
- fizzed.

Use the information in the box to help you answer these questions.
What evidence is there that:
(i) sodium has a low melting point
\qquad
\qquad
(ii) sodium is soft
\qquad
\qquad
(iii) a gas was produced?
\qquad
\qquad

Q21.

(a) Dmitri Mendeleev was one of the first chemists to classify the elements by arranging them in order of their atomic weights. His periodic table was published in 1869.

How did Mendeleev know that there must be undiscovered elements and how did he take this into account when he designed his periodic table?
\qquad
\qquad
\qquad
\qquad
\qquad
(b) By the early 20th century protons and electrons had been discovered.

Describe how knowledge of the numbers of protons and electrons in atoms allow chemists to place elements in their correct order and correct group.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The transition elements are a block of elements between Groups 2 and 3 of the periodic table.
(i) Transition elements have similar properties.

Explain why, in terms of electronic structure.
\qquad
\qquad
\qquad
\qquad
(ii) There are no transition elements between the Group 2 element magnesium and the Group 3 element aluminium.

Give a reason why, in terms of electronic structure.
\qquad
\qquad
\qquad

Q22.

A student was investigating the reaction of lithium and water.
She added a few drops of universal indicator to water in a trough and added a piece of lithium.

The word equation for the reaction is:
lithium + water \longrightarrow lithium hydroxide + hydrogen
(a) (i) The lithium floated on the water.

State two other observations that the student would see during the reaction.

1. \qquad
2. \qquad
(ii) Balance the symbol equation for the reaction of lithium and water.
$2 \mathrm{Li}(\mathrm{s})+$ \qquad $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow$ \qquad $\mathrm{LiOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
(iii) Describe a simple test and the result that would show the gas was hydrogen.
\qquad
\qquad
(iv) All Group 1 metals have similar reactions with water.

State why, in terms of electronic structure.
\qquad
\qquad
(b) Lithium and other Group 1 metals have different properties from the transition metals.

Tick $(\boldsymbol{\sim})$ two properties that are properties of Group 1 metals.
They react with oxygen.

They form coloured compounds.

They are strong and hard.

They have low melting points.

(c) The electronic structure of a potassium atom is $2,8,8,1$
(i) Draw a diagram to show the electronic structure of a potassium ion.

Show the charge on the potassium ion.
(ii) Potassium is more reactive than sodium.

Explain why, in terms of electronic structure.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q23.
(a) Which sub-atomic particles are present in the nucleus of an atom?
\qquad and \qquad
(b) There are two isotopes of the element chlorine:

Describe, in terms of sub-atomic particles, one similarity and one difference between atoms of the two isotopes of chlorine.

Similarity \qquad
\qquad
Difference \qquad
\qquad
(c) Chlorine reacts with hydrogen to produce hydrogen chloride.
(i) The table shows the values of some bond dissociation energies.

Bond	H-H	Cl-Cl	$\mathbf{H}-\mathbf{C l}$
Dissociation energy in kJ per mole	436	242	431

Use the values in the table to calculate the enthalpy change (ΔH) for the reaction.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}(\mathrm{~g})
$$

$$
\text { Enthalpy change }(\Delta H)=
$$

\qquad kJ per mole
(ii) Hydrogen also reacts with fluorine.
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HF}(\mathrm{g}) \quad \Delta H=-538 \mathrm{~kJ}$ per mole
Draw an energy level diagram for this reaction.

Include on your diagram labels to show:

- the reactants and the products
- the overall enthalpy change (ΔH)
- the activation energy.

Q24.
Magnesium burns in oxygen.

(a) Use the Chemistry Data Sheet to help you to answer this question.

The word equation for magnesium burning is:

$$
\text { magnesium }+ \text { oxygen } \longrightarrow \text { magnesium oxide }
$$

Draw one line from each substance to its correct description.

(b) The diagram represents a magnesium atom.

Complete the table to show the name of each particle and the charge of each particle in the magnesium atom.

Name of particle	Charge
proton	+1
neutron	-
	-1

(c) Use the Chemistry Data Sheet to help you to answer these questions.

Draw a ring around the correct answer to complete each sentence.
(i)

In a magnesium atom, the protons and neutrons are in the | core. |
| :--- |
| nucleus. |
| shell. |

(ii)

The number of protons in a magnesium atom is the \begin{tabular}{|l|}

\hline | atomic |
| :--- |
| number |
| mass |
| number. |
| group |
| number. |

\hline
\end{tabular}

(iii)

The sum of the protons and neutrons in a magnesium atom is the \begin{tabular}{|l|}

\hline | atomic |
| :--- |
| number. |
| mass |
| number. |
| group |
| number. |

\hline
\end{tabular}

(1)
(Total 8 marks)

Q25.

Aluminium has many uses.
(a) An aluminium atom has 13 electrons.
(i) Draw the electronic structure of an aluminium atom.

(ii) Name the two sub-atomic particles in the nucleus of an aluminium atom.
\qquad and \qquad
(iii) Why is there no overall electrical charge on an aluminium atom?
\qquad
\qquad
(b) Rail tracks are made from steel.

Molten iron is used to weld rail tracks.
The reaction of aluminium with iron oxide is used to produce molten iron.
(i) Balance the chemical equation for the reaction.

(ii) Why does aluminium react with iron oxide?
\qquad
\qquad

Q26.
This question is about lithium and sodium.
(a) Use the Chemistry Data Sheet to help you to answer this question.

In which group of the periodic table are lithium and sodium?

(b) A lithium atom can be represented as ${ }_{3}^{7} \mathrm{Li}$

The diagram represents the lithium atom.

(i) Some particles in the nucleus have a positive charge.

What is the name of these particles?
\qquad
(ii) Some particles in the nucleus have no charge.

What is the name of these particles?
\qquad
(iii) Use the correct answer from the box to complete the sentence.

(c) Sodium reacts with chlorine to produce sodium chloride.
sodium + chlorine \longrightarrow sodium chloride
The diagram shows how the reaction happens.
Only the outer electrons are shown.

Draw a ring around the correct answer to complete each sentence.
(i) A sodium atom changes into a sodium ion by
gaining
(ii) A sodium ion has

(iii) The ions in sodium chloride are held together by

strong | covalent |
| :--- |
| electrostatic |
| magnetic | forces.

(d) Sodium chloride is an ionic compound.

Tick (\checkmark) two properties of ionic compounds.

Property	Tick (\checkmark)
Do not dissolve in water	
High melting points	
Low boiling points	
Strong bonds	

(e) (i) The formula of sodium chloride is NaCl

Calculate the relative formula mass of sodium chloride.
Relative atomic masses: $\mathrm{Na}=23 ; \mathrm{Cl}=35.5$
\qquad
\qquad
Relative formula mass $=$ \qquad
(ii) Draw a ring around the correct answer to complete each sentence.

The relative formula mass of a substance, in grams,

(f) Nanoparticles of sodium chloride (salt) are used to flavour crisps.

What are nanoparticles?
\qquad
\qquad
(Total 12 marks)

Q27.
Oil rigs are used to drill for crude oil.

© Digital Vision/Photodisc
(a) Drills are made from an alloy of iron.

The diagrams show the particles in the alloy and in pure iron.

Use the diagrams to explain why the alloy is harder than pure iron.
\qquad
\qquad
\qquad
\qquad
(b) Drill heads contain diamonds.

Tick (\checkmark) two reasons why diamonds are hard.

Reason	Tick (\checkmark)
Diamonds have a giant covalent structure.	
Diamonds have high melting points.	
Diamonds are unreactive.	
Diamonds have strong bonds between carbon atoms.	

(c) Methane gas is often found where crude oil is found.

The diagram shows how atoms bond in methane.
Only the outer electrons are shown.

(i) Draw a ring around the correct answer to complete the sentence.

Methane is | a compound. |
| :--- |
| an element. |
| a mixture. |.

(ii) Draw a ring around the correct answer to complete each sentence.

The formula of methane is | $\mathrm{C}_{4} \mathrm{H}_{4}$ |
| :--- |
| $\mathrm{C}_{4} \mathrm{H}$ |
| CH_{4} |

(iii) Name the type of bond between the carbon and hydrogen atoms in methane.
(d) Explain why methane is a gas at $20^{\circ} \mathrm{C}$.
\qquad
\qquad
\qquad
\qquad

Q28.
Spacecraft have been to the planets Venus and Mars. The spacecraft have sent back information about the atmosphere of each planet.

(a) The main gas in the atmosphere of Mars is carbon dioxide.

Explain why, in terms of structure, carbon dioxide is a gas, even at low temperatures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The atmosphere on Venus contains droplets of sulfuric acid solution.
(i) Suggest a pH value for sulfuric acid solution.

$$
\mathrm{pH}=
$$

(ii) Name the ion which makes sulfuric acid solution acidic.
\qquad
(c) The atmosphere of Venus contains the isotopes ${ }_{1}^{2} \mathrm{H}$ and ${ }_{1}^{1} \mathrm{H}$

Describe the similarities and the differences in the isotopes ${ }_{1}^{2} \mathrm{H}$ and ${ }_{1}^{1} \mathrm{H}$
You should refer to the sub-atomic particles in each isotope.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q29.

This question is about the periodic table.
Use the Chemistry Data Sheet to help you answer these questions.
(a) Complete the sentences.

Elements in the periodic table are arranged in order of atomic
\qquad .

The elements in Group \qquad are called the noble gases.
(b) Calcium (Ca) is in Group 2.

Name one other element in Group 2.
\qquad
(c) Draw a ring around the correct answer to complete each sentence.
(i)

Sodium (Na) is \quad| an alkali metal. |
| :--- |
| a non-metal. |
| a transition metal. |

(ii)

	an alkali metal.
a Ni$)$ is	a non-metal. a transition metal.

(d) In 1869 Mendeleev produced his periodic table.

Why did Mendeleev leave gaps in his periodic table?
\qquad
\qquad

Q30.
The graph shows the boiling points of the halogens.

(a) Use the graph to help you answer these questions.
(i) Use the correct answer from the box to complete the sentence.

gas	liquid	solid

At room temperature chlorine is a \qquad .
(ii) Describe the trend in boiling point from fluorine to iodine.
\qquad
\qquad
(b) Chlorine reacts with metals to produce metal chlorides.
(i) When a chlorine atom forms a chloride ion it gains one electron.

What is the charge on a chloride ion?
\qquad
(ii) Write a word equation for the reaction between sodium and chlorine.
\qquad
(c) In the UK water companies add chlorine to tap water.

Why is chlorine added to tap water?
\qquad
(d) Water companies add fluoride to tap water in some parts of the UK.

Fluoride is added to improve dental health.
Suggest one reason why some people are against adding fluoride to tap water.
\qquad
\qquad
\qquad

Q31.
Lithium is in Group 1 of the periodic table.
Lithium reacts with water to produce a gas and an alkaline solution.

(a) (i) Name the gas produced.
(ii) Which ion causes the solution to be alkaline?
\qquad
(b) Potassium is also in Group 1 of the periodic table.

Potassium reacts with water in a similar way to lithium.
Write down two differences you would see between the reactions of potassium and lithium with water.

1. \qquad
\qquad
2. \qquad
\qquad

Q32.
The picture shows a diamond ring.

(a) Diamond is a form of carbon. The diagram represents a carbon atom.

Complete the table to show the name and charge of each type of particle in the carbon atom.

Name of particle	Charge
proton	

neutron	0
	-1

(b) Use the Chemistry Data Sheet to help you to answer these questions.
(i) Draw a ring around the correct answer to complete the sentence.

Gold and carbon are | compounds. |
| :--- |
| elements. |
| mixtures. |

(ii) Complete the sentence.

Gold and carbon have different properties because gold is a metal and carbon is a \qquad
(c) Draw a ring around the correct answer to complete each sentence.

Pure gold is not used to make the ring because pure gold is too $\begin{array}{ll}\text { hard. } \\ \text { reactive. } \\ \text { soft. }\end{array}$.
a compound.
The gold ring is made by mixing pure gold with other metals to form
an atom.
an alloy
(d) The data in the table shows some information about the three metals in the gold ring.

Name of metal	Atomic number	Percentage (\%) of metal
gold	79	
silver	47	16
copper	29	9

Draw one line from each question to its correct answer.

What is the percentage of gold in this ring?

How many electrons are there in a copper atom?

How many neutrons are in an atom of silver with a mass number of 108?
\square
\qquad
\qquad
\longrightarrow

Q33.
The picture shows a diamond ring.

(a) Diamond is a form of carbon. A carbon atom has six electrons.

Draw the electronic structure of a carbon atom.

(b) A gold atom has an atomic number of 79 and a mass number of 197.

Complete the table to show the name and number of each sub-atomic particle in this gold atom.

Name	Number
Proton	79
Electron	

(c) The bar chart shows the composition of this gold ring.

(i) Give the percentage of the other two metals in this gold ring.

Silver is \qquad $\%$ and copper is \qquad \%
(ii) This gold ring is not made from 100% gold.

Give two reasons why.

1. \qquad
\qquad
\qquad
2. \qquad

Q34.

This question is about atoms and molecules.
(a) In the diagrams below:
(N) is a nitrogen atom
(O) is an oxygen atom
(C) is a carbon atom.

Draw one line from each diagram to its correct description.
One line has been done for you.

Diagram

Description

Compound

Element

(O) (C)
(O) (C)
(0) 0

Polymer
(b) The diagram below shows a hydrogen atom.

Use words from the box to write the correct labels on the diagram.

alloy	electron	group	nucleus

(c) This chemical equation represents the reaction of hydrogen burning.

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

Complete the sentence to describe what is happening in this chemical reaction.
Hydrogen reacts with \qquad
\qquad
\qquad
\qquad

Atomic Structure Mark schemes Part -2

Q1.
(a) any one from:

- there was a flame
- energy was given out
- a new substance was formed
- the magnesium turned into a (white) powder answers must be from the figure
(b) Magnesium oxide
(c) The reaction has a high activation energy
(d) 9
(e) They have a high surface area to volume ratio
(f) any one from:
- Better coverage
- More protection from the Sun's ultraviolet rays
(g) any one from:
- Potential cell damage to the body
- Harmful effects on the environment
(h) indication of $\frac{1}{1.6}=0.625$ and use of indices $10^{-9}-10^{-6}=10^{3}$

Both steps must be seen to score first mark
$0.625 \times 1000=625$ (times bigger)

Q2.
(a) B
(b) D
(c) E
(d) C
(e) 92.5×6 and
7×7.5
$\frac{607.5}{100}$
6.075
6.08

1
allow 6.08 with no working shown for 4 marks

Q3.
(a) 13 (protons)

The answers must be in the correct order.
if no other marks awarded, award 1 mark if number of protons and electrons are equal

14 (neutrons)

13 (electrons)
(b) has three electrons in outer energy level / shell
allow electronic structure is 2.8.3
(c) Level 3 (5-6 marks):

A detailed and coherent comparison is given, which demonstrates a broad knowledge and understanding of the key scientific ideas. The response makes logical links between the points raised and uses sufficient examples to support these links.

Level 2 (3-4 marks):
A description is given which demonstrates a reasonable knowledge and understanding of the key scientific ideas. Comparisons are made but may not be fully articulated and / or precise.

Level 1 (1-2 marks):

Simple statements are made which demonstrate a basic knowledge of some of the relevant ideas. The response may fail to make comparisons between the points raised.

0 marks:

No relevant content.

Indicative content

Physical
Transition elements

- high melting points
- high densities
- strong
- hard

Group 1

- low melting points
- low densities
- soft

Chemical
Transition elements

- low reactivity / react slowly (with water or oxygen)
- used as catalysts
- ions with different charges
- coloured compounds

Group 1

- very reactive / react (quickly) with water / non-metals
- not used as catalysts
- white / colourless compounds
- only forms a +1 ion

Q4.
(a) any one from:

- heat
- stir
(b) filter
accept use a centrifuge
accept leave longer (to settle)
(c) any one from:
- wear safety spectacles
- wear an apron
(d) evaporation at \mathbf{A}
condensation at \mathbf{B}
(e) 100

Q5.
(a) The forces between iodine molecules are stronger
(b) anything in range +30 to +120
(c) Brown
(d) $2 \mathrm{I}^{-}+\mathrm{Cl}_{2} \rightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{-}$
(e) It contains ions which can move
(f) hydrogen iodine

Q6.
(a) line goes up before it goes down
energy given out correctly labelled
activation energy labelled correctly
(b) electrostatic force of attraction between shared pair of negatively charged electrons and both positively charged nuclei
(c) bonds formed $=348+4(412)+2(276)=2548 \mathrm{~kJ} / \mathrm{mol}$
bonds broken - bonds formed $=612+4(412)+(\mathrm{Br}-\mathrm{Br})-2548=95 \mathrm{~kJ} / \mathrm{mol}$
Alternative approach without using $\mathrm{C}-\mathrm{H}$ bonds
For step 1 allow $=348+2(276)=900 \mathrm{~kJ} / \mathrm{mol}$
Then for step 2 allow $612+(\mathrm{Br}-\mathrm{Br})-900=95 \mathrm{~kJ} / \mathrm{mol}$
193 (kJ / mol)
accept (+)193 (kJ / mol) with no working shown for $\mathbf{3}$ marks
-193(kJ / mol) scores 2 marks
allow ecf from step 1 and step 2
(d) Level 3 (5-6 marks):

A detailed and coherent explanation is given, which demonstrates a broad understanding of the key scientific ideas. The response makes logical links between the points raised and uses sufficient examples to support these links. A conclusion is reached.

Level 2 (3-4 marks):

An explanation is given which demonstrates a reasonable understanding of the key scientific ideas. A conclusion may be reached but the logic used may not be clear or linked to bond energies.

Level 1 (1-2 marks):

Simple statements are made which demonstrate a basic understanding of some of the relevant ideas. The response may fail to make logical links between the points raised.

0 marks:

No relevant content.

Indicative content

Size and strength

- chlorine atoms have fewer electron energy levels/shells
- chlorine atoms form stronger bonds
- $\quad \mathrm{Cl}-\mathrm{Cl}$ bond stronger than $\mathrm{Br}-\mathrm{Br}$
- $\quad \mathrm{C}-\mathrm{Cl}$ bond stronger than $\mathrm{C}-\mathrm{Br}$

Energies required

- more energy required to break bonds with chlorine
- more energy given out when making bonds with chlorine
- overall energy change depends on sizes of energy changes

Conclusions

- if $\mathrm{C}-\mathrm{Cl}$ bond changes less, then less exothermic
- if $\mathrm{C}-\mathrm{Cl}$ bond changes more, then more exothermic
- can't tell how overall energy change will differ as do not know which changes more.

Q7.
(a) Air

Steel
(b)

Allow 1 mark for the correct meanings linked to context but incorrect way around
(c) Damp litmus paper turns white
(d) $\operatorname{Iron}($ III $)$

Q8.
(a) 50
(b) 5%
(c) any two from:

- cost (9 carat is cheaper)
- pure gold is soft
or
24 carat gold is soft
or
9 carat gold is harder
allow 9 carat gold is stronger
allow gold is an alloy in 9 carat gold
- can change the colour

Q9.
(a) Propanol
(b) Butanol has the highest boiling point
(c)

(d) ethene + water (\rightarrow ethanol)
allow answers in either order
allow steam for water
(e) goes back to reactor
allow is recycled
(f) air contains oxygen
which oxidises ethanol
allow ethanol reacted with oxygen
to produce ethanoic acid

Q10.
(a) $\mathrm{C}_{5} \mathrm{H}_{12}$
(b) Alkanes
(c) (3) CO_{2}
(4) $\mathrm{H}_{2} \mathrm{O}$
allow for 1 mark $4 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
(d) contains hydrogen and carbon
(hydrogen and carbon) only
(e) (diesel)
produces more oxides of nitrogen
allow converse answers in terms of petrol
produces (more) particulate matter
produces less carbon dioxide
(f)

Photosynthesis

Q11.
(a) filtration
or
by passing through filter beds to remove solids
sterilisation to kill microbes
allow chlorine / ozone allow ultraviolet light
(b) water needs more / different processes
because it contains any two from:

- more organic matter
- more microbes
- toxic chemicals or detergents
(c) (as part of glassware attached to bung)
salt solution in (conical) flask
allow suitable alternative equipment, eg boiling tube
(at end of delivery tube)
pure water in test tube which must not be sealed
allow suitable alternative equipment, eg, beaker, condenser
heat source (to heat container holding salt solution)
if no other mark obtained allow for 1 mark suitable equipment drawn as part of glassware attached to bung and at end of delivery tube
(d) determine boiling point
should be at a fixed temperature $100^{\circ} \mathrm{C}$
allow should be $100^{\circ} \mathrm{C}$
allow if impure will boil at a temperature over $100^{\circ} \mathrm{C}$
(e) high energy requirement

Q12.
(a) $\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
allow 1 mark for correct formulae
(b) sensible scales, using at least half the grid for the points
all points correct
$\pm 1 / 2$ small square
allow 1 mark if 8 or 9 of the points are correct
best fit line
(c) steeper line to left of original
line finishes at same overall volume of gas collected
(d) acid particles used up
allow marble / reactant used up
so concentration decreases
so less frequent collisions / fewer collisions per second do not accept fewer collisions unqualified
so rate decreases / reaction slows down
(e) mass lost of 2.2 (g)
time taken of 270 s
allow values in range 265-270
$\frac{2.2}{270}=0.00814814$
allow ecf for values given for mass and time
0.00815 (g / s)
or
8.15×10^{-3}
allow 1 mark for correct calculation of value to 3 sig figs accept 0.00815 or 8.15×10^{-3} with no working shown for 4 marks
(f) correct tangent
eg $0.35 / 50$
0.007
allow values in range of $0.0065-0.0075$
7×10^{-3}
accept 7×10^{-3} with no working shown for 4 marks

Q13.

(a) both water vapour and ethanol will condense allow steam for water vapour allow they both become liquids allow ethane condenses at a lower temperature allow some of the steam hasn't reacted allow it is a reversible reaction / equilibrium
(b) amount will decrease
because the equilibrium will move to the left
(c) more ethanol will be produced

Q14.
(a) (i) 7
(ii) -1
(iii) neutrons
(b) number of protons
(c) atom \mathbf{Y}
(d) (i) Ne
allow neon
(ii) has a full outer shell allow in Group 0 allow a noble gas
or
full outer energy level allow the shells are full
or
has 8 electrons in its outer shell ignore in Group 8

Q15.
(a) the Earth's (surface) temperature was high or at/above $100^{\circ} \mathrm{C}$ allow the Earth's (surface) temperature was too / very hot or water evaporated / boiled or turned to steam / gas allow because of heat from volcanoes ignore the Earth's (surface) was covered by volcanoes ignore water turned to water vapour
(b) (i) air mixture
carbon dioxide compound
argon \longrightarrow element
allow only one line from each substance
(ii) oxygen
(iii) about 80%
(c) (i) $\quad 0.03(0)(\%)$
(ii) increased
slowly then rapidly
allow figures from graph to indicate increase
(iii) any two from:

- use of fossil fuels
- deforestation
allow less trees / plants
- cars/transport
- industry/factories
ignore more people

Q16.
(a) (i) electronic structure 2,3 drawn
allow any representation of electrons, such as, dots, crosses, or numbers $(2,3)$
(ii) nucleus
(iii) protons and neutrons
do not allow electrons in nucleus
(relative charge of proton) +1
allow positive
(relative charge of neutron) 0
allow no charge/neutral
ignore number of particles
(b) too many electrons in the first energy level or inner shell
allow inner shell can only have a maximum of 2 electrons
too few electrons in the second energy level or outer shell
allow neon has 8 electrons in its outer shell or neon does not have 1 electron in its outer shell
allow neon has a stable arrangement of electrons or a full outer shell
neon does not have 9 electrons or neon has 10 electrons
allow one electron missing
allow fluorine has 9 electrons
ignore second shell can hold (maximum) 8 electrons or 2,8,8 rule or is a noble gas or in Group 0
max 2 marks if the wrong particle, such as atoms instead of electrons
if no other mark awarded allow 1 mark for the electronic structure of neon is 2,8

Q17.
(a) add yeast
and ferment or by fermentation
allow in a warm place or temperatures within the range $20-45^{\circ} \mathrm{C}$ or with an airlock / absence of air
(b) heat (the mixture)
ethanol has a lower boiling point than water or more ethanol than water vaporises or ethanol evaporates first or when the temperature reaches $78^{\circ} \mathrm{C}$
condense (the vapour)
allow condense at different temperatures for the last two marking points
if no other mark is awarded, allow repeat distillation or use fractional distillation apparatus for 1 mark

Q18.
(a) (i) $7 /$ seven
(ii) 1
do not accept-1
Electron
(iii) isotopes
(b) (i) (sodium +) fluorine \rightarrow sodium fluoride
(ii) compounds
(iii) mole
(iv) sodium (atom) loses
fluorine (atom) gains
one electron
ions formed
allow sodium forms positive (ion) or fluorine forms negative (ion)
allow form ionic bond
allow to gain a full outer shell of electrons
allow forms noble gas structure
max 3 if reference to incorrect particle / bonding
(v) Dissolve in water

High melting point

Q19.
(a) (i) (mass number $=16$) because there are 8 protons and 8 neutrons (in the nucleus)
accept mass number is total number of protons and neutrons for 1 mark
(ii) same number of protons or both have 6 protons accept same atomic number
${ }^{12} \mathrm{C}$ has 6 neutrons
${ }^{14} \mathrm{C}$ has 8 neutrons
accept different number of neutrons for 1 mark numbers, if given, must be correct incorrect reference to electrons = max 2 marks
(b) (i) 2 bonding pairs
additional unbonded electrons negates this mark
4 unbonded electrons around oxygen
accept dot, cross or e or - or any combination
(ii) covalent
(iii) any one from:

- no delocalised / free electrons
ignore mobile electrons
- no overall electric charge
accept no charge (carriers)
- no ions
do not accept any implications of the presence of ions
(c) (i) larger
accept the size of a few hundred atoms
accept atoms are smaller (than nanoparticles)
allow up to 1000 atoms)
(ii) (nanoparticles have) large(r) surface area

Q20.
(a) atomic weights
must be in this order
electrons
proton numbers
(b) (i) $\mathrm{H} /$ hydrogen
allow H_{2} or h
(ii) one / 1
allow alkali metals
(iii) Potassium (K)
(iv) Iron has a higher density than potassium

Iron forms ions that have different charges
(c) any three from:

- melts
- fizzes / bubbles / effervesces
allow gas produced
- sodium floats
- \quad size of the sodium decreases
allow dissolves / disappears
- sodium moves
allow two marks for moves around on the surface of the water

Q21.
(a) (i) atomic weights
allow atomic masses
(ii) proton
allow proton number
(b) (i) F/fluorine allow F_{2}
(ii) any one from:

- copper has a higher density
- copper is stronger
- copper is harder
- copper is less reactive allow named property ignore colour, conductivity, melting point and boiling point allow converse for potassium
(iii) relative distance from nucleus
allow more / fewer energy levels / shells or larger / smaller atom
relative attraction to nucleus
allow more / less shielding
ease of gain or loss of electron
opposite explanation of ease of gain or loss of electron for other group
max 3 marks if 'outer' not mentioned

Q22.
(a) Y
(b) W
(c) V
(d) W
(e) X

Q23.
(a) (i) neutrons this order only
electrons
protons
(ii) box on the left ticked
(b) (i) effervescence / bubbling / fizzing / bubbles of gas
do not accept just gas alone
magnesium gets smaller / disappears
allow magnesium dissolves
allow gets hotter or steam produced
ignore references to magnesium moving and floating / sinking and incorrectly named gases.
(ii) Marks awarded for this answer will be determined by the Quality of Communication (QC) as well as the standard of the scientific response. Examiners should also refer to the information in the Marking Guidance and apply a 'best-fit' approach to the marking.

0 marks

No relevant content

Level 1 (1-2 marks)

There are simple statements of some of the steps in a procedure for obtaining magnesium chloride.

Level 2 (3-4 marks)

There is a description of a laboratory procedure for obtaining magnesium chloride from dilute hydrochloric acid and magnesium.

The answer must include a way of ensuring the hydrochloric acid is fully reacted or a method of obtaining magnesium chloride crystals.

Level 3 (5-6 marks)

There is a well organised description of a laboratory procedure for obtaining magnesium chloride that can be followed by another person.

The answer must include a way of ensuring the hydrochloric acid is fully reacted and a method of obtaining magnesium chloride crystals.

examples of the points made in the response:

- hydrochloric acid in beaker (or similar)
- add small pieces of magnesium ribbon
- until magnesium is in excess or until no more effervescence occurs *
- filter using filter paper and funnel
- filter excess magnesium
- pour solution into evaporating basin / dish
- heat using Bunsen burner
- leave to crystallise / leave for water to evaporate / boil off water
- decant solution
- pat dry (using filter paper).
*Student may choose to use a named indicator until it turns a neutral colour, record the number of pieces of magnesium added then repeat without the indicator.

Q24.
(a) (i) Proton
(ii) Neutron
(b) In order of increasing atomic number
(c) (i) 9
(ii) Gas
(d) (i) gains (one) electron
(to gain a) full outer energy level or noble gas configuration allow because it has seven outer electrons
(ii) add sodium hydroxide (solution)
allow ammonia (solution) or ammonium hydroxide or any other soluble hydroxide or flame test
(forms a) blue precipitate second mark dependent on suitable reagent being added allow blue-green / blue / green if flame test given

Q25.
(a) gold
(b) atom (s)
(c) (i) protons
any order allow proton
neutrons
allow neutron
(ii) 3 / three
(d) (i) Al
ignore any numbers / charges
(ii) any two from:

- limited resource
- expensive in terms of energy / mining
- effects on the environment, such as, landfill, atmospheric pollution, quarrying
allow uses a lot of energy to extract.
(e) resistant to corrosion
does not react (with water or food)
allow one mark for low density with a suitable reason given

Q26.
(a) (i) central block
(ii) conducts electricity
(b) any two from:

- visual pollution
- noise pollution
- dust pollution
- habitat destruction.
(c) (i) to concentrate the ore / copper carbonate
or
to remove / separate the rock
(ii) 12 (tonnes)

If answer is incorrect allow one mark for (127+132) - 247 or 259-247
(iii) any one from:

- so no reactant is wasted / left unreacted
- so they know how much product they will make
- need to record / compensate for the carbon dioxide produced allow so they can work out their carbon footprint.
(a) (i) protons
allow "protons or electrons", but do not allow "protons and electrons"
(ii) protons plus / and neutrons
(b) (because the relative electrical charges are) -(1) for an electron and +(1) for a proton
allow electrons are negative and protons are positive
and the number of electrons is equal to the number of protons if no other mark awarded, allow 1 mark for the charges cancel out
(c) (the electronic structure of) fluorine is 2,7 and chlorine is 2,8,7 allow diagrams for the first marking point
(so fluorine and chlorine are in the same group) because they have the same number of or 7 electrons in their highest energy level or outer shell
if no other mark awarded, allow 1 mark for have the same / similar properties
(d) S
(e) (i) ions
(ii) molecules

Q28.
(a) The ore is not pure or contains impurities or the ore does not contain 100% of the metal compound
allow to concentrate the metal or metal compound
rock / other compounds need to be removed / separated
(b) (i) (cast iron is) brittle
allow not strong
ignore weak
(ii) the oxygen reacts with carbon
allow carbon burns in oxygen or is oxidised
reducing the percentage of carbon in the mixture or producing carbon dioxide
(c) (i) aluminium has a low density

1
(ii) (because copper) is in the central / middle (block of the periodic table) whereas aluminium is in Group 3 (of the periodic table)
(iii) iron is more reactive (than copper)
ignore cost
so copper is displaced / reduced

Q29.
(a) 1
must be in this order
very small
accept negligible, 1 / 2000
allow zero
(b) The mass number
(c) C
(d) (i) 2
(ii) 3
(e) (i) 28
(ii) 42.9
accept ecf from (e)(i)
accept 42-43
(f) (i) 0.9
(ii) any one from:

- accurate
- sensitive
- rapid
- small sample.

Q30.
(a) because this lithium atom has 3 protons
and 4 neutrons
mass number is total of neutrons and protons
accept protons and neutrons have a mass of 1
accept number of neutrons $=7-3$ (protons)
ignore mass of electron is negligible
(b) grams
accept g
${ }^{12} \mathrm{C}$
allow carbon-12 or C-12
ignore hydrogen or H
(c) any three from:
max 2 if no numbers given
numbers if given must be correct

- both have 8 protons
accept same number of protons
- $\quad{ }^{18} \mathrm{O}$ has 10 neutrons
- ${ }^{16} \mathrm{O}$ has 8 neutrons
accept different number of neutrons or ${ }^{18} \mathrm{O}$ has two more neutrons for 1 mark
- both have 8 electrons.
accept same number of electrons

Q31.
(a) (i) Na
allow sodium
(ii) Cu
allow copper
(iii) C
allow carbon
(iv) He
allow helium
(b) H

> allow hydrogen
> do not allow H_{2}

Q32.
(a) (iron) is a metal
accept transition element
allow (iron) had different properties (to oxygen and sulfur) ignore electrons
(b) so that elements with similar properties could be placed together
allow to make the pattern fit ignore undiscovered elements
(c) atomic number(s)
allow proton number(s)
(d) all have one electron in the outer shell (highest energy level)
allow same number of electrons in the outer shell (highest energy level)
(so they) have similar properties
or
react in the same way
allow specific reactions e.g. with water

Q33.
(a) increase
(b) (i) Na^{+}and Br^{-}
both required
(ii) sodium chloride
allow NaCl
do not allow sodium chlorine
(iii) chlorine is more reactive than bromine
allow converse argument
allow symbols $\mathrm{Cl}, \mathrm{Cl}_{2}, \mathrm{Br}$ and Br_{2}
allow chlorine / it is more reactive
do not allow chloride or bromide
(iv) fluorine
allow F / F_{2}
do not allow fluoride.

Q34.
(a) Li and K
either order
allow lithium and potassium
(b) Fe
allow iron
(c) $\quad \mathrm{N}$ and As
either order
allow nitrogen and arsenic
(d) Cu
allow copper

Mark schemes

Q1.
(a) (i) Neutron (top label)

Electron (bottom label)
(ii) 13
(iii) electrons
(b) (i) compound
hydrogen
bond
(ii) $\quad \mathrm{C}_{4} \mathrm{H}_{10}$

Q2.
(a) Sulfur dioxide causes acid rain.
(b) red / orange / yellow
do not accept any other colours
because sulfur dioxide (when in solution) is an acid
(c) (there are) weak forces (of attraction)
do not accept any reference to covalent bonds breaking
between the molecules
do not accept any other particles
(d) Marks awarded for this answer will be determined by the Quality of Communication (QC) as well as the standard of the scientific response. Examiners should also refer to the information on page 5 and apply a 'best-fit' approach to the marking.

0 marks

No relevant content
Level 1 (1-2 marks)
A relevant comment is made about the data.
Level 2 (3-4 marks)
Relevant comparisons have been made, and an attempt made at a conclusion.

Level 3 (5-6 marks)

Relevant, detailed comparisons made and a justified conclusion given.
examples of the points made in the response
effectiveness

- W removes the most sulfur dioxide
- D removes the least sulfur dioxide

material used

- Both W and D use calcium carbonate
- Calcium carbonate is obtained by quarrying which will create scars on landscape / destroy habitats
- D requires thermal decomposition, this requires energy
- D produces carbon dioxide which may cause global warming / climate change
- S uses sea water, this is readily available / cheap

waste materials

- W product can be sold / is useful
- W makes carbon dioxide which may cause global warming / climate

change

- D waste fill landfill sites
- \quad S returned to sea / may pollute sea / easy to dispose of

Q3.
(a) (i) an electron
(iv) boron
(b) (i) GH_{3}
(ii) covalent

Q4.
(a) (i) Na
allow sodium / phonetic spelling
if more than one answer is given apply list principle
(ii) Fe
allow iron / phonetic spelling
if more than one answer is given apply list principle
(iii) Na or S
allow sodium or sulfur / sulphur / phonetic spelling
if more than one answer is given apply list principle
(iv) S
allow sulfur / sulphur / phonetic spelling
if more than one answer is given apply list principle
(v) Na
allow sodium / phonetic spelling
if more than one answer is given apply list principle

(iv)

首
(b) (i) any three from:

- effervescence / fizzing or bubbles or gas produced do not allow incorrectly named gas
- sodium melts or turns into a ball
- \quad sodium moves (on the surface)
- steam / mist / vapour is produced
ignore heat / temperature / flame / spark
- sodium gets smaller / disappears
allow dissolves
- colour of indicator is darker / more intense near the sodium Must be linked to near the sodium.
(ii) hydroxide or OH^{-}
allow OH without a charge
do not allow OH^{+}
(c)

diagram showing electron configuration of ion is 2,8
charge on ion is +
Bracket not necessary
$[2,8]^{+}$is worth 1 mark as there is no diagram

Q5.
(a) (i) points correctly plotted ($\pm 1 / 2$ small square)
four points = 2 marks
three points = 1 mark
straight line of best fit using full range of points from 0,0
(ii) any one from:
must explain why the point is below the line

- the solution may not have been properly stirred
- the electrodes may have been a larger distance apart
- the drop of sodium chloride may have been a smaller volume / smaller
allow not enough sodium chloride added
allow smaller amount of sodium chloride
do not allow too few drops added
ignore the student may have misread the conductivity meter
(iii) any one from:
- the volume of pure water
allow amount
- the concentration (of the solutions added)
- the volume (of the drops) of solution added ignore number of drops
- the distance between the electrodes
- the same electrodes or electrodes made of the same material
- same depth or surface area of electrodes in the water
- constant power supply ignore current
- stirred
(b) (i) because (pure) water is covalent / molecular (simple) or contains molecules
therefore (pure) water has no free / mobile electrons or ions molecules do not have a charge or molecules do not contain ions gains 2 marks
(ii) because there are ions in sodium chloride allow Na^{+}and / or Cl (ions) or ionic bonding. Ignore particles other than ions for MP1.
which can move or carry the current / charge MP2 must be linked to ions only.
(iii) Hydrogen
allow $\mathrm{H}_{2} / \mathrm{H}$

Q6.
(a) (i) any one from:

- one electron in the outer shell / energy level
- form ions with a $1+$ charge
(ii) any one from:
- hydrogen is a non-metal
- (at RTP) hydrogen is a gas
- hydrogen does not react with water
- hydrogen has only one electron shell / energy level
- hydrogen can gain an electron or hydrogen can form a negative / hydride / H^{-}ion
- hydrogen forms covalent bonds or shares electrons accept answers in terms of the Group 1 elements
(b) (i) (bromine) gains electrons
it = bromine
do not accept bromide ion gains electrons
(ii) I_{2} must both be on the right hand side of the equation

$$
+2 \mathrm{e}^{-}
$$

$$
2 \digamma-2 e^{-} \rightarrow I_{2} \text { for } 2 \text { marks }
$$

(iii) fluorine is the smallest atom in Group 7 or has the fewest energy levels in Group 7 or has the smallest distance between outer shell and nucleus the outer shell must be mentioned to score 3 marks
fluorine has the least shielding or the greatest attraction between the nucleus and the outer shell
therefore fluorine can gain an electron (into the outer shell) more easily

Q7.
(a) (i) copper is less reactive than hydrogen or copper is unreactive
(ii) Zinc and dilute hydrochloric acid
(b) (gas) syringe
(c) (i) 35 allow 3
because not close to others
accept it is much lower than the others ignore references to trends or patterns dependent on the first mark
(ii) $(49+50+48) / 3$
$=49$
correct answer with or without working gains 2 marks
allow ecf from anomaly identified in (i) for 2 marks:

- Exp 1 anomalous gives 43.3
- Exp. 2 anomalous gives 44
- Exp. 4 anomalous gives 44.7
answer of 45.5 or 46 (anomaly not excluded) gains 1 mark
correct working excluding anomaly but with wrong answer gains 1 mark

(iii) so that a mean can be calculated
accept improves accuracy of the mean or so anomalies can be identified / discarded or to reduce effect of random errors ignore makes it a fair test
ignore reliability, validity, repeatability, reproducibility
(d) (i) idea of mixing with oxygen / air, letting air / oxygen in accept converse
(ii) $\mathrm{H}_{2} \mathrm{O}$
do not accept incorrect additional products
balancing $2 \ldots$ (1) ... 2
allow fractions or multiples
dependent on first mark

Q8.
(a) (i) a proton
(ii) nucleus
(iii) 12
order must be correct

4
(b) (i) 5 / five (\%)
(ii) Carbon dioxide > global warming

Sulfur dioxide > acid rain

Water > no pollution

Q9.
(a) (i) 14
(ii) isotope
(iii) (very) small
accept smaller / tiny / (very) little
(b) (i) C
(ii) NH_{3}
(c) (i) nitric (acid)
(ii) indicator
(iii) crystallisation or evaporation
allow by heating or cooling or leave (on windowsill)
do not accept freezing
(iv) any one from:

- grass grows faster
- grass grows taller or thicker
allow grass grows better / greener
(d) potassium (atom) loses (an electron)
reference to incorrect bonding or particle $=\max 3$
chlorine (atom) gains (an electron)
ignore references to full outer shells

1 (electron)
electron

Q10.
(a) (i) any two from:
ignore any conclusion drawn referring to data below 7.5 nm or above 20 nm

- 100% of (type 1 and type 2) bacteria are killed with a particle size of 7.5 to 8.5 nm
accept nanoparticles in the range of 7.5 to 8.5 nm are most effective at killing (type 1 and type 2) bacteria
- as the size increases (beyond 8.5 nm), nanoparticles are less effective at killing (type 1 and type 2) bacteria
- type 1 shows a linear relationship or type 2 is non-linear
- type 1 bacteria more susceptible than type 2 (at all sizes of nanoparticles shown on the graph)
allow type 2 bacteria are harder to kill
(ii) (yes) because you could confirm the pattern that has been observed allow would reduce the effect of anomalous points / random errors
allow would give better line of best fit ignore references to reliability / precision / accuracy / reproducibility / repeatability / validity
or
(no) because trend / conclusion is already clear
(b) magnesium loses electron(s)
oxygen gains electron(s)
two electrons (per atom)
gives full outer shells (of electrons) or eight electrons in highest energy level reference to incorrect particles or incorrect bonding or incorrect structure = max 3
or
(electrostatic) attraction between ions or forms ionic bonds accept noble gas structure

Q11.
(a) weaker bonds
allow (other substances) react with the silicon dioxide
or
fewer bonds
ignore weaker / fewer forces
or
disruption to lattice
do not accept reference to intermolecular forces / bonds
(b) (i) $\mathrm{Na}_{2} \mathrm{O}$
do not accept brackets or charges in the formula
(ii)

electrons can be shown as dots, crosses, e or any combination

2 bonding pairs

accept 4 electrons within the overlap

2 lone pairs on each oxygen
accept 4 non-bonding electrons on each oxygen
(c) lattice / regular pattern / layers / giant structure / close-packed arrangement
(of) positive ions or (of) atoms
(with) delocalised / free electrons
reference to incorrect particles or incorrect bonding or incorrect structure = max 2

Q12.
(a) (i) atomic weight
(ii) groups
(iii) left a gap
(iv) had not been discovered by 1869
(b) protons
must be in correct order
electrons
(c) sodium and nickel are both metals
sodium is more reactive than nickel
(d) (i) bromine
allow $\mathrm{Br}_{2} / \mathrm{Br}$
do not allow bromide
(ii) iodine is less reactive (than bromine)

$$
\begin{aligned}
& \text { it = iodine } \\
& \text { allow converse } \\
& \text { do not allow bromide }
\end{aligned}
$$

Q13.
(a) similar properties
allow same properties
allow correct example of property
ignore answers in terms of atomic structure
(b) (i) in order of atomic / proton number
allow increasing number (of protons)
(ii) elements in same group have same number (of electrons) in outer shell or highest energy level
allow number (of electrons) increases across a period
(c) any two from:
statements must be comparative

- stronger / harder
ignore higher densities
- less reactive
- higher melting points
ignore boiling point
(d) reactivity increases down group
allow converse throughout
for next three marks, outer electron needs to be mentioned once otherwise max $=2$
outer electron is further from nucleus
allow more energy levels / shells
allow larger atoms
less attraction between outer electron and nucleus
allow more shielding
therefore outer electron lost more easily

Q14.
(a) (i) nucleus
(ii) an energy level (shell)
(b)

(c) $2 /$ two(\%)
(d) (i) 10 / ten
(ii) (group) 0
accept noble gases ignore (group) 8

Q15.

(a) hydrogen has one proton whereas helium has two protons
accept numbers for words accept hydrogen only has one proton ignore references to groups
hydrogen has one electron whereas helium has two electrons accept hydrogen only has one electron allow helium has a full outer shell (of electrons)
hydrogen has no neutrons or helium has two neutrons if no other mark awarded, allow helium has more electrons / protons / neutrons for 1 mark
(b) (i) 2 electrons on first shell and

8 electrons on outer shell
(ii) they have a stable arrangement of electrons accept they have full outer energy level / shell of electrons do not accept they have the same number of electrons in their outer energy level / shell
allow they are noble gases
ignore they are in group 0
(a) proton 1 ignore \pm
electron very small owtte
allow zero
allow values from 1 / 1800 to 1 / 2000 or $0.0005-0.00055$
(b) 8

16
(c) (i) Isotopes
(ii) ${ }_{8}^{18} \mathrm{O}$
(d) (i) compound
(ii) $\mathrm{H}-\mathrm{O}-\mathrm{H}$
(iii) covalent
(iv) sharing

1

Q17.
(a) Will kelp last longer than coal as an energy source?
(b) any two from:

- cannot be determined by experiment
allow can't predict how long kelp / coal will last allow more testing needed
- based on opinion
- ethical or environmental or economic reason
allow could damage ecosystem allow reference to cost
(c) (i) 7
(ii) sodium (atom) loses (electron) and iodine (atom) gains (an electron)
reference to incorrect bonding or incorrectly named particle $=\max 2$
any or all marks can be obtained from a labelled diagram ignore inner shell electrons if shown

1 electron
(electrostatic) attraction or forms ionic bond(s)
(iii) ions can move (in the solution)

1
(iv) $2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}$
(v) hydrogen is formed
because sodium is more reactive (than hydrogen)
1

Q18.
(a) (i) nucleus
(ii) neutron
(iii) electron
(b) (i) 12
(ii) 24
(c) any four from:
sharing / covalent / metallic = max 3

- magnesium (atom) reacts with two iodine (atoms)
- magnesium (atom) loses electrons
- 2 electrons (from each atom)
- lodine (atom) gains electron(s)
- 1 electron or an electron (to each atom)
- iodide ion formed
allow iodine ion
- iodide has negative charge / is a negative ion / particle allow iodine ignore l^{2-}
- magnesium ion formed
- magnesium has positive charge
- oppositely charged ions attract
- a giant structure / lattice is formed allow 1 mark for unqualified reference to ion formation or ionic bonding

Q19.

(a) reference to incorrect bonding or incorrect structure or incorrect particles = max 3
giant structure / lattice
ignore many bonds
made up of positive ions surrounded by delocalized / free electrons allow positive ions surrounded by a sea of electons
with strong bonds / attractions
allow hard to break for strong
so a lot of energy is needed to break these bonds / attractions / forces ignore high temperature ignore heat
(b) (i) that they are very small
or
1-100 nanometres or a few(hundred) atoms accept tiny / really small / a lot smaller / any indication of very small eg. microscopic, smaller than the eye can see ignore incorrect numerical values if very small is given
(ii) delocalised / free electrons allow sea of electrons
one non-bonded electron from each atom accept electron(s) moving through the structure / nanotube allow electron(s) carry / form / pass current / charge

Q20.
(a) (i) E
(ii) C
(iii) A
(b) (i) quickly melted
allow melts in contact with water, allow bp $100^{\circ} \mathrm{C}$ (of water) shows mp is low ignore one other piece of information
(ii) easily cut
ignore one other piece of information
(iii) effervescence / fizzing / bubbling
ignore named gas
ignore one other piece of information

Q21.
(a) if placed consecutively, then elements would be in wrong group / have wrong properties
allow some elements didn't fit pattern
left gaps
(b) (elements placed in) atomic / proton number order
(elements in) same group have same number of outer electrons
any one from:

- number of protons = number of electrons
- reactions/(chemical) properties depend on the (outer) electrons
- number of shells gives the period
allow number of shells increases down the group
(c) (i) (transition elements usually) have same / similar number of outer / 4th shell electrons
allow 2 electrons in outer shell
(because) inner (3rd) shell / energy level is being filled ignore shells overlap
(ii) $\quad \underline{2}^{\text {nd }}$ shell / energy level can (only) have maximum of 8 electrons accept no d-orbitals
or
$2^{\text {nd }}$ shell / energy level cannot have 18 electrons

Q22.
(a) (i) any two from:

- bubbles / effervescence / fizzing ignore hydrogen / gas produced
- lithium disappears / gets smaller allow dissolves do not allow melts / burns
- lithium moves on the surface of the water ignore floats
- (universal indicator) turns blue / purple
(ii) 2
left-hand side correct

2
right-hand side correct
allow multiples for full credit
(iii) light / burn, which will give a (squeaky) pop / explosion
(iv) all have 1 electron in their outer shell / energy level
allow have the same number of electrons in their outer shell / energy level
(b) They react with oxygen

They have low melting points
(c) (i) electronic structure $[2,8,8]$ is drawn incomplete inner shells scores a maximum of 1 mark charge is +
allow $[2,8,8]^{+}$for 1 mark
(ii) because (in potassium) the outer shell electron is further away from the nucleus or because potassium atoms are larger than sodium atoms
it should be clear that the candidate is referring to the outer shell electron: if this is not clear a maximum of 2 marks can be awarded
therefore the outer shell electron is less strongly attracted to the nucleus or is more shielded from the attraction of the nucleus and so the outer shell electron in potassium is more easily lost

3 marks can be scored for answering the question in terms
of sodium

Q23.

(a) neutron(s) answers can be in either order
proton(s)
(b) same number (17) protons or same number electrons if candidate chooses to quote numbers, they must be correct
different numbers of neutrons $\left({ }^{35} \mathrm{Cl}\right.$ has 18 and ${ }^{37} \mathrm{Cl}$ has 20)
(c) (i) $-184 \mathrm{~kJ} / \mathrm{mol}$
correct answer with or without working gains 3 marks
allow 2 marks for $184 \mathrm{~kJ} / \mathrm{mol}$
If answer incorrect award up to $\mathbf{2}$ marks for any two of the steps below:

- bonds broken: $(436+242)=678(\mathrm{~kJ})$
- bonds formed: $(2 \times 431)=862(\mathrm{~kJ})$
- bonds broken - bonds formed
allow ecf for arithmetical errors
(ii)

the reactants and the products at the correct level ignore labels on the axes
$\Delta \mathrm{H}$ correctly labelled
allow -538 if in correct place
E_{a} correctly labelled
correctly labelled endothermic reaction gains max. 2 marks

Q24.
(a)

one mark for each substance linked correctly to its description
do not accept more than one line from each substance
(b) 0 / zero / none / no charge
electron
(c) (i) nucleus
(ii) atomic number
(iii) mass number

Q25.
(a) (i) 2.8 .3
any sensible symbol can be used to represent an electron
(ii) proton(s) and neutron(s)
both needed for the mark
(iii) number of protons is equal to number of electrons
allow positive and negative charges cancel out allow same amount of protons and electrons
(b) (i) $\mathbf{2} \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathbf{2} \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}$
equation must be balanced
(ii) aluminium is more reactive (than iron)
it = aluminium
accept converse
accept aluminium displaces iron
accept aluminium is higher in the reactivity series (than iron)

Q26.

(a) $1 /$ one
(b) (i) protons
(ii) neutrons
(iii) 7
(c) (i) losing
(ii) a positive
(iii) electrostatic
(d) high melting points
strong bonds
(e) (i) 58.5
(ii) mole
(f) very small (particles) or ignore tiny / small / smaller / microscopic etc.

1-100nm in size or
(particle with a) few hundred atoms

Q27.
(a) (alloy) atoms / ions / particles not in layers
accept layers are distorted
accept different (size) particles / atoms
so, (alloy) layers / atoms / ions / particles can't slide
if no other mark awarded allow (an alloy) is a mixture of metals for 1 mark
(b) diamonds have a giant covalent structure
(c) (i) a compound
(ii) CH_{4}
(iii) covalent
(d) methane has a low boiling point or boiling point less than $20^{\circ} \mathrm{C}$ molecules
because it has small molecules
accept it has forces between molecules
accept weak forces between molecules for 2 marks

Q28.
(a) has simple / small molecules
accept molecular covalent
the intermolecular forces / intermolecular bonds (are weak)
do not accept weak covalent bonds or reference to incorrect bonding
only need a small amount of energy to be overcome
accept only need a small amount of energy to separate the molecules
if no other mark awarded, allow it has a low boiling point for 1 mark
(b) (i) any pH value from 0 to 6.9
(ii) hydrogen
allow H^{+}
ignore $\mathrm{H} / \mathrm{H}_{2} / \mathrm{H}^{+}$
(c) any three from:

- same number of protons
accept same atomic number
numbers if given must be correct
- ${ }^{2} \mathrm{H}$ has one neutron
- 'H has no neutrons
accept different mass number or different number of neutrons for 1 mark
ignore relative atomic mass
- same number of electrons
numbers if given must be correct

Q29.
(a) number

0
allow 8
(b) beryllium or magnesium or strontium or barium or radium allow correct symbols
(c) (i) an alkali metal
(ii) a transition metal
(d) for undiscovered elements
accept so elements with similar properties were in the same groups
accept so elements fitted the pattern of properties

Q30.
(a) (i) gas
(ii) Increases
(b) (i) -1
allow Cl^{-}
allow -
allow negative
(ii) sodium + chlorine \rightarrow sodium chloride
allow correct symbol equation
(c) reduce microbes
accept sterilise
accept prevent diseases
allow disinfect
allow kill bacteria / germs / microbes / micro-organisms
allow to make it safe to drink
ignore get rid of bacteria
(d) any one from:

- no freedom of choice
allow unethical
- fluoride in toothpaste
- too much can cause fluorosis
allow too much can cause damage to teeth

Q31.
(a) (i) hydrogen
accept H_{2}
allow H
(ii) hydroxide
accept OH^{-}
allow OH
do not accept lithium hydroxide
(b) any two from:
'it' = potassium
potassium:
accept converse for lithium

- reacts / dissolves faster
allow reacts more vigorously / quickly / violently / explodes ignore reacts more
- bubbles / fizzes faster
allow fizzes more
allow more gas
- moves faster (on the surface)
allow moves more
- melts
allow forms a sphere
- produces (lilac / purple) flame
allow catches fire / ignites
do not accept other colours

Q32.
(a) $+1 /+$
do not accept 1 without the +
electron
allow phonetic spelling
(b) (i) elements
(ii) non-metal
(c) soft
an alloy
(d)

one mark for each correct link extra lines lose the mark

Q33.
(a) 2,4
allow electrons in any position on correct shells
(b) (electron) 79
neutron
allow phonetic spelling
(c) (i) 16 and 9
in this order
(ii) any two from:
ignore reasons about colour / lustre / corrosion / rarity

- (100% / pure) gold is soft allow layers can slide in pure gold
- (alloyed) to make the metal hard(er)
ignore just 'the ring is an alloy'
allow (alloyed) to stop the layers sliding
allow (alloyed) to make the metal strong
- gold is expensive or alloy is less expensive

Q34.
(a) NN linked to element

OCO linked to compound
(b) electron
nucleus
must be correct order
(c) (reacts with) oxygen
to produce water
must be names
accept hydrogen oxide
allow steam

