
Enterprise DevOps
Building a Service
Oriented Organization

White Paper

	

We believe that two of the critical indicators of improved IT performance
are shorter lead times and increased reliability; DevOps enables
improvements along both of these axes simultaneously.

In this paper we will describe why securing these improvements is
important for the vast majority of organizations, whether they build
software products, provide IT services or outsource their IT requirements
to 3rd party providers.

We define what DevOps is and briefly describe the practices that support
it before focusing in more detail on two aspects of DevOps that can be
particularly challenging for enterprises: creating the right organizational
structure and managing the transformation.

For organizational structure we describe why it is necessary to think of
teams within an organization as a set of interacting services. Then we look
at how Kanban is not just an appropriate method for managing the work
of these teams, but also a proven, low-risk method for enabling a DevOps
transformation. We conclude with case studies illustrating the results that
a successful DevOps implementation can deliver.

For some organizations many of the approaches we describe may already
be commonplace, whilst for others they will seem revolutionary. This
reality is consistent with our characterization of DevOps as a journey: one
on which different organizations have travelled different distances and at
different speeds. By providing you with key takeaways and action points
we hope that we can help you to take the next steps on your DevOps
journey.

02 Enterprise DevOps: Building a Service Oriented Organization

	

•	 The DevOps imperative 							 4

Why IT performance is critical for success in a digital world 	

•	 The DevOps journey 								 6

DevOps is a philosophy for how to build software 	

•	 Organizational structure 							 10

Choosing an organizational structure that supports DevOps at scale 	

•	 Organizational transformation 					 	 14

Using Kanban to evolve collaboratively towards DevOps

•	 Conclusion 								 18

Taking the next steps on your DevOps journey

•	 Acknowledgements						 19

Contents

03Enterprise DevOps: Building a Service Oriented Organization

The DevOps imperative

Effective development, deployment, operation and maintenance of
software are critical factors for business success for the vast majority
of organizations, leading some to say that “now every company is a
software company”1. This is borne out by the level of investment that
organizations are making in IT: 95% of all capital projects include an
IT component and 50% of all capital spending is technology related2.
And often IT is driving business success. For example, one leading UK
high-street retailer attributed their entire revenue growth purely to an
increase in online sales3.

Responsiveness is no longer
optional
Many organizations now operate in business environments that are
unpredictable and changing rapidly4. One key to success in these
environments is short lead times for software development, both to
keep up with competitors and to rapidly try out new features and
services with customers. To quote Gartner on this topic: “The digital
world demands greater enterprise dexterity in creating value from
technology.”5

In practice, many organizations struggle to achieve this “enterprise
dexterity”. Only 25% of enterprises feel their software deployment and
delivery is effective6 and the perception of the business is often that IT
is too slow or is working on the wrong things7.

For example, after a period of significant growth, Salesforce found
that their release cycles had become “long and unpredictable” which
led to late feedback on new features8. In another example, one team
at Microsoft “had the worst reputation for customer service…they had
a five-month lead time on change requests and this, along with their
backlog of requests, was growing uncontrollably”9. In both of these
cases the need for change was recognized: unresponsiveness in
software development was hurting their business.

1 http://www.forbes.com/sites/techonomy/2011/11/30/now-every-company-is-a-software-company/

2 https://blog.newrelic.com/2015/06/24/gene-kim-why-devops-matters/

3 http://www.telegraph.co.uk/news/shopping-and-consumer-news/11324611/Click-and-collect-overtakes-home-delivery-at-John-Lewis.html

4 http://ascent.atos.net/devops-or-die/

5 Bimodal IT: How to Be Digitally Agile Without Making a Mess, Gartner, 2014

6 http://www.forbes.com/sites/benkerschberg/2015/02/04/why-devops-integration-and-continuous-delivery-hold-the-key-to-enterprise-mobile-app-dev/

7 2-Speed IT, Atos White Paper

8 http://www.slideshare.net/sgreene/the-year-of-living-dangerously-extraordinary-results-for-an-enterprise-agile-revolution-368526/21-Lack_of_visibility_at_all

9 Kanban: Successful Evolutionary Change for Your Technology Business, David J. Anderson, 2010
10 http://itrevolution.com/one-of-the-best-devops-talks-on-it-transformation-continuously-deploying-culture-by-rembetsy-and-mcdonnell-velocity-london-2012/
11 http://ascent.atos.net/a-new-era-of-project-management/

Why IT performance is critical
for success in a digital world

Reliability is critical
Reducing lead times for software development is important in
unpredictable business environments. But for any organization that
depends on software systems for their business success, reliability is
also critical: in order for technology to drive revenue and profitability,
it has to be operational. This was a significant concern for online
marketplace company Etsy in 2008 when “deployments would
routinely fail…with no easy way to restart the services or rollback
changes”10. Just like the teams at Salesforce and Microsoft, they also
recognized the need for change though, in their case, it was poor
availability, rather than long lead times, that was hurting their bottom
line. Like Salesforce and Microsoft, they were also successful in
transforming their software development capability. We will return to
each of these stories at the end of this paper to understand how each
transformation was achieved.

A new way of consuming software
services
The necessity for reduced lead times and increased reliability does
not only apply to in-house software development. Organizations that
buy software services from 3rd party providers will often have exactly
the same needs. However the challenges for these organizations are
different.

In many cases funding custom development will be replaced
altogether by the use of software, platforms and infrastructure that
are provided “as a service”. In these cases organizations will consume
only what they need, when they need it, and pay only for what they
use. Doing this enables them to avoid the costs, timescales and risks
associated with rebuilding something themselves which is already
commercially available. Instead they can focus their resources on
development activities where they can add the most value.

04 Enterprise DevOps: Building a Service Oriented Organization

http://www.forbes.com/sites/techonomy/2011/11/30/now-every-company-is-a-software-company/
https://blog.newrelic.com/2015/06/24/gene-kim-why-devops-matters/
http://www.telegraph.co.uk/news/shopping-and-consumer-news/11324611/Click-and-collect-overtakes-home-delivery-at-John-Lewis.html
http://www.telegraph.co.uk/news/shopping-and-consumer-news/11324611/Click-and-collect-overtakes-home
http://ascent.atos.net/devops-or-die/
Bimodal IT: How to Be Digitally Agile Without Making a Mess, Gartner, 2014
http://www.forbes.com/sites/benkerschberg/2015/02/04/why-devops-integration-and-continuous-delivery-hold-the-key-to-enterprise-mobile-app-dev/
http://www.slideshare.net/sgreene/the-year-of-living-dangerously-extraordinary-results-for-an-enterp
http://itrevolution.com/one-of-the-best-devops-talks-on-it-transformation-continuously-deploying-culture-by-rembetsy-and-mcdonnell-velocity-london-2012/

Where a 3rd party is needed for custom software development,
supplier selection will need to focus more on the provider’s capability
to work collaboratively on incremental features which are delivered
into production more frequently. Rather than demonstrating that they
can manage a large delivery with fixed scope, cost and timescales,
suppliers will need to show a willingness to refine and change scope,
cost and timescales within an agile framework agreement. Where
both sides understand how this relationship can work to mutual
benefit, we have seen this approach be highly successful11.

Organizations that contract in this way will also need to learn new
ways to plan and budget for software development. Their role will
change from signing-off large batches of work at key milestones (e.g.
requirements, functional design and user acceptance) to providing
a continuous stream of prioritized requirements and working
collaboratively with the supplier to validate the software as it is built.

The urgency for DevOps adoption
As we described earlier, many organizations now rely on software for
their business success, and many find themselves operating in rapidly
changing business environments. We believe that the extent to which
these factors apply to your business can help you understand how
urgent DevOps adoption is for you (see Figure 1):

•	 If you do not use software at all (or use it only in a supporting role)
then you may not need to implement DevOps anywhere. But
beware of Digital Complacency: even if you don’t see software as a
differentiator for you today, it may still be a vital component of your
business strategy tomorrow.

•	 If software is a differentiator for you but you operate in a relatively
stable business environment then you may wish to prioritize and
target your DevOps implementation using models such as Bi-Modal
IT12 and 2-Speed IT13 which can help you identify where the return
on investment will be greatest.

•	 If your entire business is built around software (fully Digital) and your
business context is undergoing significant disruption (Digitalization)
then implementing DevOps across your entire enterprise will be an
urgent concern.

To avoid Digital Complacency it is important to consider not only your
current position but where you will be in the future and how ready you
are to respond to that change. As a cautionary tale consider that in the
year 2000 video rental firm Blockbuster enjoyed a dominant market
position (and would have been placed somewhere in the bottom
left of this diagram). However, 10 years later, they found themselves
on the bottom right: a traditional company using software only in a
supportive role but now operating in a market that was undergoing
massive digital disruption. Unable to respond quickly enough to that
change they lost market share, ultimately resulting in them filing for
bankruptcy14.

Our journey from New Norm to
DevOps
In 2009 Atos published “Emerging Business Technology – Unleashing
Digital Potential”15 in which we identified how organizational thinking
needed to change towards a “New Norm” in order to deliver results in
a digital world. Our work applying this thinking with numerous clients
across many different markets enabled us to refine these concepts
further and led to our publication of “2-Speed IT” in 2014. In that paper
we analyzed how the demand for IT has increased over time whilst
the capability to meet this demand has declined, and we outlined
high-level approaches to closing this gap based on the successful
results we had achieved with our customers.

This paper represents the next evolution in our thinking: DevOps as an
enabler for business success in a digital world.

12 Bimodal IT: How to Be Digitally Agile Without Making a Mess, Gartner, 2014
13 2-Speed IT, Atos White Paper
14 http://www.businessinsider.com/how-netflix-bankrupted-and-destroyed-blockbuster-infographic-2011-3
15 Emerging Business Technology – Unleashing Digital Potential, Atos White Paper

Business Environment Dynamism

Beware:
Digital Complacency

Urgent:
DevOps Everywhere

Slow moving Predictable Highly competitive Digitalization

Fully digital

So�ware is
fundamental

So�ware is
supportive

Minimal
reliance on

so�ware

D
i�

er
en

ti
at

io
n

 T
h

ro
u

gh
 S

o
�

w
ar

e

Prioritized:
Bi-Modal IT
2-Speed IT

Figure 1 : Urgency for DevOps Adoption

Urgency for DevOps Adoption Model developed by the Atos
Scientic Community DevOps track

05Enterprise DevOps: Building a Service Oriented Organization

http://www.businessinsider.com/how-netflix-bankrupted-and-destroyed-blockbuster-infographic-2011-3

The DevOps journey

Frequent deployment
By promoting more frequent delivery and deployment of software,
DevOps enables more business value to be delivered faster19.
Deploying more frequently enables rapid feedback from end-
users about how features are being used and what new features
are required, which can then be used to validate and inform future
development activities. One example of this approach is Experiment
Driven Development supported by A/B testing (where different
versions of software are live in production at the same time and usage
patterns are monitored). Another example is IBM’s Design Thinking20
which also aims to create a rapid feedback loop between end users
and system designers. One positive outcome of these approaches
is an end to throw-away proofs-of-concept: rather an initial version
is created and then, if it delivers value, continually evolved based on
feedback. This avoids costs because you do not need to build the
same thing twice (once as a prototype and then again for real usage).

DevOps is not a highly prescriptive set of rules. Instead we define it as
a philosophy for how to build and operate software that encourages
teams to focus on business value, work collaboratively, deploy
software more frequently in smaller increments and build reliable
solutions. DevOps promotes continuous improvement across all of
these dimensions and, as such, is a journey without a final destination16.

Business value
Work is managed across the entire end-to-end software value stream
(from initial idea through to release and maintenance of features
that are meeting the business need). Teams self-organize around the
work17, taking full responsibility for the development of the software
and the operation and maintenance of it in production. By collecting
metrics over the entire value stream, teams can optimize themselves
for the delivery of business value using paradigms such as The Theory
of Constraints18.

Collaboration
DevOps aims to break down silos and remove any “us and them”
mentality between different departments. In fact, this is where the
term DevOps stems from: the idea that the people developing
software and the people deploying and maintaining it in production
should collaborate closely together, often in the same team, or even
without any role distinction. However this increase in collaboration
should not be restricted just to development and operations. We
are seeing the emergence of terms like BizDevOps (to emphasize
collaboration with the business), CusDevOps (to emphasize
collaboration with the customer) and DevSecOps (to emphasize that
everyone has responsibility for security). But these new terms can
be unnecessarily limiting: DevOps promotes greater collaboration
between all stakeholders including (but not restricted to) end users,
customers, security experts, compliance managers, sales people and
business executives.

Increased collaboration also improves organizational resilience
because knowledge is shared across the team (thus reducing
dependency on any one individual). One specific technique that
supports this is pair programming, where developers work on code
in pairs, thereby ensuring quality control through peer review is
implemented at the time new code is being written (and avoiding
rework). In the case of Extreme Programming all code is written in this
way and team members rotate who they work with every day.

16 https://ascent.atos.net/devops-the-answer-to-everything/
17 Kanban from the Inside: Understand the Kanban Method, connect it to what you already know, introduce it with impact, Mike Burrows, 2014
18 The Goal: A Process of Ongoing Improvement, Eliyahu M. Goldratt and Jeff Cox, 2004
19 http://ascent.atos.net/agile-myths-will-deliver-faster-cheaper/
20 http://www.ibm.com/design/thinking/

Deployment Pipeline

One technique that is heavily
associated with DevOps is having a
defined and highly automated method
of moving a change from the point at
which a developer has finished coding
it through to it being in production and
available for all users.

To effectively support DevOps the
Deployment Pipeline should:

•	Be highly automated
•	 	Detect errors early (both through

automated testing and monitoring of
the software in production)

•	 	Reduce the risk of a deployment
causing downtime

•	 	Enable straightforward roll-back in
case of issues

DevOps is a philosophy for how
to build software

06 Enterprise DevOps: Building a Service Oriented Organization

https://ascent.atos.net/devops-the-answer-to-everything/
http://ascent.atos.net/agile-myths-will-deliver-faster-cheaper/
http://www.ibm.com/design/thinking/

Practices, technology and tooling
There are a number of practices that support DevOps which have
been extensively documented and are well supported by technologies
and tools. We believe that some of these can be classed as “Best
Practices” for software development: they are widely regarded as the
best approach and are practices that organizations should be using
now (see Table 1). Others we have classed as “Next Practices”. These
practices are already being used successfully by many organizations
and we expect that many will become Best Practices in the next 2-3
years. These are practices that organizations should be evaluating
today and planning to use in the future. Evaluating and adopting
these practices (and the supporting techniques and tooling) can
be achieved through a combination of consultancy, training and
coaching. The fundamental approach will be similar whether an
organization has 5 employees or 50,000.

Where larger organizations have a unique challenge is how they
organize themselves to enable DevOps and apply this at scale. This is
the topic we will cover next.

21 https://insights.sei.cmu.edu/devops/2015/04/devops-case-study-netflix-and-the-chaos-monkey.html

To support frequent delivery and deployment, many activities are
extensively automated: testing, code inspection, software build,
deployment and monitoring of the software once it is in production.
The extensive automation required for successful DevOps is often
supported by the use of cloud based tooling and especially IaaS
(Infrastructure as a Service) and PaaS (Platform as a Service). For
example, in one case we have worked with clients to setup a PaaS with
a self-service portal to automatically provision environments for the
development, delivery, testing and deployment of applications in order
to reduce lead-times.

Reliability
DevOps places a strong emphasis on delivering software that is
reliable in the broadest sense: a combination of meeting the business
needs and being available. Practices such as Peer Review and Test
Driven Development help to ensure that reliable software is developed
in the first place. Building Self-Healing Resilient Software (described in
Table 1) keeps availability as high as possible even if issues arise with
the software itself or the underlying infrastructure: some organizations
even intentionally create failure scenarios in production on a random
basis in order to incentivize teams to build fault-tolerant systems21.

ITIL and DevOps

We do not consider that ITIL and DevOps
are contradictory approaches. We see
alignment in many areas (for example
ITIL’s Continual Service Improvement).
However, we do recognize that the way
ITIL is often implemented in practice
means that it can be associated with
overly bureaucratic processes (such
as every change needing approval at a
Change Advisory Board) which are not
consistent with the DevOps philosophy.

DevOps Word Cloud by Atos Scientific Community DevOps track

07Enterprise DevOps: Building a Service Oriented Organization

https://insights.sei.cmu.edu/devops/2015/04/devops-case-study-netflix-and-the-chaos-monkey.html

Best Practices
Practice Description Supporting techniques

(listed alphabetically)
Example supporting
technologies/tools
(listed alphabetically)

Key DevOps enabler

Continuous Integration Frequent integration
of code into a shared
repository which is verified
by an automated build.

Branch by Abstraction
Build Automation
Feature Branch
Feature Toggle
Test Automation
Trunk Based
Development (TBD)

Coverity
Git
Jenkins
Maven
Nexus
Selenium
SonarQube

Frequent deployment

Continuous Delivery Delivering every change
to a quality assurance
environment and ensuring
business applications
and services function as
expected through rigorous
automated testing.

IaaS
Infrastructure as code
PaaS

Alien4cloud
Ansible
AWS
Azure
Chef
Cloud Foundry
Docker
GoCD
Kubernetes
OpenShift
Puppet

Frequent deployment

Test Driven Development Writing automated tests
before writing code.

Refactoring Mocking frameworks
xUnit family

Reliability

Peer Review Peer review of code and
test cases.

Pair Programming
Pull Requests

BitBucket
Gerrit
GitHub
Phabricator
Review Board

Collaboration

08 Enterprise DevOps: Building a Service Oriented Organization

Next Practices

Practice Description Supporting techniques
(listed alphabetically)

Example supporting
technologies/tools
(listed alphabetically)

Key DevOps enabler

Continuous Deployment Automatic deployment into
production of changes that
pass all automated tests.

Blue/Green Deployment
Canary Releases
Dark Launching
Deployment Pipeline
IaaS
Infrastructure as code
PaaS
Push Karma

Alien4cloud
Ansible
AWS
Azure
Chef
Cloud Foundry
Docker
Kubernetes
OpenShift
Puppet

Frequent deployment

Release vs. Deploy Clearly differentiating
between deployment (the
technical act of installing
software in a given
environment) and releasing
(the business decision to
deliver new features to end
users).

Canary Releases
Feature Toggle

ff4j
togglz

Reliability

Behaviour Driven
Development

An extension of Test Driven
Development where tests
are specified in business
language that describes the
desired system behaviour.

Cucumber Business value

Experiment Driven
Development

Implementing features as
“experiments” to validate
business assumptions
about user behaviour.

A/B testing
Design Thinking
Feature Toggle
Lean Startup

Business value

Blameless Post-mortem Holding a blameless post-
mortem after each incident
in production with the goal
of improving the system
and limiting the negative
impact.

A/B testing
Design Thinking
Feature Toggle
Lean Startup

Reliability

Self-Healing Resilient
Software (Anti-Fragile)

Building systems capable
of automatic detection of
failures and restoration of
service without human
intervention.

Bulkhead pattern
Chaos monkeys
Circuit breaker pattern

Alien4Cloud
Atos Compose
Hystrix
Simian Army

Reliability

Auto-Scaling Software Architecting software
so that it can be easily
scaled by running multiple
instances.

12 Factor App
Actor Based
Programming
Serverless Architecture

Alien4cloud
AKKA
AWS
Azure
Cloud Foundry
OpenShift

Reliability

Table 1: DevOps best practices and next practices

Developed by the authors in collaboration with other experts (see acknowledgements)

09Enterprise DevOps: Building a Service Oriented Organization

Organizational structure
Choosing a structure that
supports DevOps at scale

To successfully implement DevOps, teams should be autonomous
and cross-functional: frequent new releases into production will not
be possible if every change requires the explicit involvement and
approval of several other departments and teams (for example
database administrators, system testers and release engineers). These
teams must also not be too large: research has shown that team sizes
of 5-9 give the best balance of performance in terms of productivity,
predictability, responsiveness and quality22. Many people describe this
ideal team size as the “2 pizza team”: a team that can be comfortably
fed by two (probably large) pizzas23.

For small companies (with 10 or fewer employees) this is not a
challenge: they are typically structured as one team which is, by
default, cross-functional and autonomous. This team will naturally be
highly aligned with business goals; the team is the company.

However, once an organization grows to a size where more than 10
engineers are required to develop and maintain the software that
the business needs, then these engineers will need to be divided
into separate teams to avoid growing beyond the optimum “2 pizza”

In practice, there are usually many projects running in parallel in a
large organization and they often have to compete with each other
for these resources. There is a large amount of explicit coordination
required, both to ensure that resources are available at the right time,
and to ensure that projects do not conflict with each other. Even with
perfect planning, resources sometimes have to be diverted without
prior notice to address high priority incidents not related to the project
they are assigned to. Furthermore, if a project is dependent on one
department that happens to be especially busy at one point in time,
then the project may be delayed: not because of the time taken to
do the work but because of the length of time that the project has
to wait for a resource to become available. Figure 2 shows a highly
simplified illustration of functional organization with the flow of value
to the business highlighted in green. The software applications deliver
value and it is projects that increase this value over time. Because the
organizational hierarchy is not aligned with the delivery of value to the
business there can be a gap between what the business wants and
how people on each team are incentivized (explicitly or implicitly).

Furthermore, with a functional organization like this, the design of the
systems will inevitably reflect the specialisms of each department
(known as Conway’s law25). As we will see later, this kind of architecture
does not readily support frequent and independent releases of
individual software components.

22 Impact of Agile Quantified LKUK 2014, Larry Maccherone, Presented at LKUK 2014, https://lkuk14.sched.org/event/1rzAA6V/the-impact-of-lean-and-agile-quantified-2014
23 Succeeding with Agile: Software Development Using Scrum, Mike Cohn, 2009
24 Migrating to Cloud Native Application Architectures, Matt Stine, 2015, https://download3.vmware.com/vmworld/2015/downloads/oreilly-cloud-native-archx.pdf
25 How do committees invent? By Melvin E. Conway, 1968, http://www.melconway.com/Home/Committees_Paper.html

Figure 2: Functional Organization

Web Store

User Interface

Business Logic

Database

Mobile Store

User Interface

Business Logic

Database

Project

N
et

w
o

rk
s

Se
rv

ic
es

Marketing Development Database Admin Infrastructure

Analysis Web Mobile Testing

size. At this point decisions have to be made about how to structure
the organization. Here we discuss three approaches to organization
structure: functional, autonomous cross-functional, and service
oriented. As we will see here, some of these structures are more suited
to DevOps than others.

Functional organization
One traditional approach to structuring an organization (which does
not support the DevOps philosophy) is to create teams of people
who share certain expertise (for example database administrators,
software developers, testers, etc.). This is usually referred to as a
functional (or siloed) organization. These teams are not aligned with
the software applications that deliver value to the business. When one
of these applications needs to be enhanced, a common approach is to
commission a project team:

“The team is assigned a project manager, and the project manager
then collaborates with various silos to obtain “resources” for each
specialty needed to staff the project.”24

10 Enterprise DevOps: Building a Service Oriented Organization

https://lkuk14.sched.org/event/1rzAA6V/the-impact-of-lean-and-agile-quantified-2014
https://download3.vmware.com/vmworld/2015/downloads/oreilly-cloud-native-archx.pdf
http://www.melconway.com/Home/Committees_Paper.html

Autonomous cross-functional
teams
An alternative to functional organization is cross functional
organization. In this arrangement teams are aligned with the software
applications that deliver value to the business and are accountable
for the successful delivery of that value. They have a high degree
of autonomy and the full complement of skills required to develop,
deploy, operate and maintain their application. They are naturally
focused on delivering business value as the management hierarchy
and the flow of value is aligned.

It has been well established in the field of product development
that autonomous cross-functional teams are the optimal choice for
reducing lead times26. Part of this reduction in lead time is because
of “the willingness of team members to work outside of their primary
specialty”. For example, more people on a team might perform testing
or release activities if that is what is required at a given point in time
(which means that those activities do not become a bottleneck).

One objection to this approach is that it is less efficient than organizing
teams by function. However, modern management thinking has
learned lessons in this area from large military organizations:

Figure 3: Autonomous Cross-Functional Teams

“Routine tasks were standardized and everyone was trained in how
to do them. Today they are called standard operating procedures
or SOPs. They are very useful because they create uniformity and
therefore predictability where that has a high value. They enhance
efficiency by enabling these tasks to be carried out at speed with little
supervision.”27

The Best Practices and Next Practices that we have described earlier
are the Standard Operating Procedures for DevOps and they enable
the use of cross-functional teams to increase the pace of delivery
whilst also maintaining high efficiency.

However there are still two key challenges with this approach which
relate to enabling reuse between different applications and scaling the
number of people who can work on an application.

26 Managing the Design Factory: A Product Developers Tool Kit, Donald Reinertsen, 1998
27 The Art of Action: How Leaders Close the Gaps Between Plans, Actions and Results, Stephen Bungay, 2010

Web Store

User Interface

Business Logic

Database

Mobile Store

User Interface

Business Logic

Database

Web Store Mobile Store

N
et

w
o

rk
s

Se
rv

ic
es

N
et

w
o

rk
s

Se
rv

ic
es

With this approach to organization, reuse between teams is not
encouraged: in Figure 3 the business logic for the Web Store and the
Mobile Store may be very similar, but to retain their independence and
autonomy, the teams may choose not to share the code base.

Scalability poses two issues. Firstly, even for medium sized
applications, it can be difficult to put together a single team that has all
the required skills and expertise to develop and deploy the complete
application. Secondly, some applications are so large that they will
require more than one team to develop and maintain them.

11Enterprise DevOps: Building a Service Oriented Organization

Feature teams and feature slicing
One way of addressing some of the scalability challenges is for more
than one autonomous cross-functional team to work on the same
software application in parallel. They work across the entire application
stack to deliver specific features (hence they are known as feature
teams). To facilitate this, work must be divided into features that can be
independently developed (known as feature slicing).

Each team must be able to deliver new features independently of
each other. To be able to release independently of other teams, feature
branches may be created in the software version control system.
However if these feature branches are long lived, this can lead to
painful merges28. An alternative approach (which avoids this problem)
is to break down large changes into multiple smaller changes, each
of which can be committed to the main source repository and
deployed independently (known as Trunk Based Development).
One useful technique which supports Trunk Based Development is
Branch by Abstraction which enables larger changes to be introduced
progressively as a series of smaller enhancements .

Using feature teams and feature slicing does support DevOps and can
be applied successfully at scale (for example over 600 developers
working on a code base of over 10 million lines of code30). However,
using feature teams and feature slicing do not inherently facilitate
reuse between teams working on different applications, nor do they
reduce the difficulty of creating teams with the full complement of
expertise necessary to work across the entire application.

Figure 4: Feature Teams

The service oriented organization
We are increasingly seeing that applications can be architected as a
set of microservices (independently deployable, scalable and business-
centric software services). By using this architectural style it becomes
possible to structure the organization around these microservices. As
shown in Figure 5, all the teams are autonomous and cross-functional,
and fully responsible for delivering value (either directly to the
business or to other internal teams). Requirements flow in the reverse
direction to value: if an enhancement to the Mobile Store requires an
enhancement to the Shopping Cart, then the Mobile Store team will
define the requirements and the Shopping Cart team will build and
deploy the updated software that meets them.

Using this approach it is possible to reuse components (for example
the Shopping Cart is reused by both the Web Store and Mobile Store
applications). Furthermore, whilst each team still needs the skills to
develop and deploy across the entire stack for their microservice, the
breadth of skills required is usefully constrained by the scope of the
microservice. Two additional benefits of this organization relate to
team stability and the way that interactions between teams can be
managed and optimized by clearly defining how the teams interface
with each other.

Figure 5: Service Oriented Organization

28 http://martinfowler.com/bliki/FeatureBranch.html

Web Store Web Store Web Store

Feature Team I Feature Team 2 Feature Team 3

Web Store

User Interface

Business Logic

Database N
et

w
o

rk
s

Se
rv

ic
es

IaaS PaaS

Payments Shoping Cart Stock Control

Web Store Mobile Store

12 Enterprise DevOps: Building a Service Oriented Organization

Team stability

Teams organized around the delivery of microservices will tend to be more stable because, although sometimes new software is created, most
development work concerns existing software31. In contrast to creating short-lived temporary teams to deliver projects (as described earlier),
the life-cycle of a DevOps team will match the life-cycle of the software that they develop and maintain. This improves knowledge retention and
boosts productivity: research has shown that teams with greater stability achieve up to 60% better productivity and 40% better predictability,
with the best results achieved by teams that have been together for 3 years or longer32.

Although team stability brings benefits, it can be unsettling for some. For a team that is responsible for a microservice, their work is not
“complete” or “finished” until their microservice is no longer in use.

Defined interfaces
Drawing on lessons learned from systems theory and applied to product development, it is recognized that one of the strongest levers for
influencing overall organizational performance is the interfaces between teams rather than the teams themselves33. These interfaces are far
more than a definition of how microservices will interface technically. They should also define how responsive the team can be (using lead-time
and throughput metrics based on past performance), what pre-requisites they require in order to start work, how progress is monitored and
what the criteria are for work being considered complete. Additionally they will define how work is allocated to the team (and by whom) as well
as specifying whose agreement is required to expedite high priority work items. Publishing these team “interface specifications” enables teams
to manage their dependencies on other teams and, as such, they are a key to scaling DevOps to be enterprise wide.

Example Team Interface

Pre-requisites User story

Key acceptance criteria

Approved by product owner

Expediting Requires agreement of product owner and business division manager

Lead time 80th centile: 4 weeks

90th centile: 6 weeks

95th centile: 10 weeks

Throughput 20 user stories per month

Progress tracking Kanban board

Email when status changes

Definition of done Live in production for 1 week

Validated and accepted by requestor

29 http://paulhammant.com/blog/branch_by_abstraction.html
30 Development and Deployment at Facebook, Dror Feitelson, Eitan Frachtenberg & Kent Beck, 2013, https://research.facebook.com/publications/development-and-

deployment-at-facebook/
31 http://www.infoq.com/articles/kelly-beyond-projects
32 Impact of Agile Quantified LKUK 2014, Larry Maccherone, Presented at LKUK 2014, https://lkuk14.sched.org/event/1rzAA6V/the-impact-of-lean-and-agile-quantified-2014
33 Managing the Design Factory: A Product Developers Tool Kit, Donald Reinertsen, 1998

Example Team Interface developed by the authors to illustrate the types of information that should typically be included

13Enterprise DevOps: Building a Service Oriented Organization

http://paulhammant.com/blog/branch_by_abstraction.html
https://research.facebook.com/publications/development-and-deployment-at-facebook/
https://research.facebook.com/publications/development-and-deployment-at-facebook/
http://www.infoq.com/articles/kelly-beyond-projects
https://lkuk14.sched.org/event/1rzAA6V/the-impact-of-lean-and-agile-quantified-2014

Using Kanban to evolve
collaboratively towards DevOps
Earlier we described Best and Next Practices (together with examples
of the associated technology and tooling) which can support the
DevOps philosophy. However, it is estimated that only 30% of the effort
required to implement DevOps relates to changes in this area34. The
remaining 70% of the implementation effort is needed to introduce the
necessary processes, culture and organizational structure.

The challenge of this organizational change should not be
underestimated: numerous research studies over the last two decades
have concluded that only 30% of transformation programs are
successful35. However, in recent years we have seen Kanban emerge
as a lower-risk method for driving organizational change which is
highly aligned with DevOps. Our practical experience with Kanban has
confirmed that it is effective in a variety of different contexts and can
scale to software deliveries involving hundreds of employees.

It is possible for DevOps adoption to take place in a bottom-up
manner, driven by employees who understand the philosophy and
can foresee the benefits. However, our experience shows that this
kind of adoption will usually only occur within small “pockets” of the
organization. Furthermore their efforts can be undermined if the
stakeholders (whom the team interfaces with) are not sufficiently
engaged with the change. Therefore we feel that a vital ingredient for
successful enterprise-wide DevOps adoption is executive sponsorship,
which includes a recognition that it is not just a technical change for
engineers, but a cultural shift that will impact everyone.

There is no longer a target state
In simple terms, traditional approaches to transformation start by
identifying the “as is” state and the “desired” state and then manage
the transition between these two states as a project. This approach
to transformation is fundamentally at odds with DevOps which, as
we have described earlier, is a journey without a final destination.
What’s more, the notion of a fixed pre-defined “desired” state does
not make sense in the rapidly changing business environments in
which many companies now operate. In these contexts, the correct
“desired state” in the future is simply unknowable months or years
in advance. What is needed instead is an approach to change which
builds organizational resilience by enabling it to adapt and respond to
external pressures and demands; a shift from “As-Is and To-Be grand
designs” to “Next state, evolving, adaptive change”36.

Organizational transformation

Kanban for evolutionary change
Although Kanban can be used to describe a number of different
techniques and approaches (for example many Scrum teams will
describe their task board as a “Kanban Board”), here we are specifically
considering the Kanban Method as first described by David J
Anderson in his book “Kanban: Successful Evolutionary Change for
Your Technology Business” which was published in 2010. Since its
publication, the popularity of this approach has grown and many
case-studies have reported successful results through its application37.
Within Atos, we consider it to be the most effective catalyst for driving
enhancements in throughput and quality by embedding a culture of
continuous improvement.

Starting with what you do now
The Kanban approach is based on the principle that people within an
organization can and will find the best ways of working, provided that
goals are clearly articulated to them, they are given information that
helps them understand how they work and they have the autonomy
to change the way they work. To achieve this Kanban defines nine
values, six foundational principles and six core practices38 which
we believe support the philosophy of DevOps and can catalyze the
required organizational changes (see Table 2).

Kanban explicitly states that you should “start with what you do now”
and initially “respect current processes, roles, responsibilities and job
titles” focusing instead on organizing the work and letting “people
self-organize around it, allowing the system to change as a result”39.
This side-steps one common barrier to successful transformation:
resistance to change because it challenges people’s roles and
positions within the business. As teams organize around the work and
seek to continuously improve, processes and roles may be adjusted if
and when required.

Kanban does not seek to impose any specific software development
practices or processes either. If a team is using Scrum then they
will continue to do so, with Kanban providing a mechanism to
continuously improve the way they work (an approach known as
Scrumban). We have used Kanban in this way to drive improvements
where a team was already practicing Scrum to deliver a major high
security government project. In this case we saw cycle times and
throughput improve by over 20%. In fact, it often makes sense to use
Agile methods like Scrum or XP as the initial process when setting
up a new team, with Kanban then providing a means for the team to
continuously self-optimize.

34 Report of the Syntec DevOps Camp-Paris Feb. 2016
35 http://www.mckinsey.com/business-functions/organization/our-insights/the-irrational-side-of-change-management
36 Emerging Business Technology – Unleashing Digital Potential, Atos White Paper
37 http://leankanban.com/case-studies/
38 Essential Kanban Condensed, David J Anderson and Andy Carmichael, 2016
39 Kanban from the Inside: Understand the Kanban Method, connect it to what you already know, introduce it with impact, Mike Burrows, 2014

14 Enterprise DevOps: Building a Service Oriented Organization

http://www.mckinsey.com/business-functions/organization/our-insights/the-irrational-side-of-change-management
http://leankanban.com/case-studies/

Because Kanban is non-prescriptive, it enables and encourages
teams to be autonomous, asking only that they focus on continually
improving their ability to deliver business value.

Because Kanban respects existing processes and roles, and
emphasizes evolutionary change, we have seen that it can be
implemented quickly, with relatively little effort and without meeting
significant resistance. However the implementation still needs to be
managed so that all stakeholders fully understand what the benefits
will be (both for the organization and for them personally) and what
will be expected of them. To achieve this, organizations can use an
approach known as Systems Thinking Approach To Implementing
Kanban (STATIK). This is a 9 step process that covers the identification
and understanding of services, the design of appropriate Kanban
systems and the socialization of those systems within the business.

Perhaps surprisingly for a method that emphasizes changing so little
at the outset, we have seen many examples of it delivering radical
transformation in ways of working over short timescales.

Visualizing work
One challenge with managing software work (in common with all
knowledge work) is that the end-product is not physical. In a factory
you can literally see what people are working on and you can
identify where there are bottlenecks by observing where inventory
is accumulating. In contrast, when you watch a team of software
developers at work you cannot see what they are working on, where
the bottlenecks are, what work is blocked or how each person is
contributing to the end goal. This makes it hard for teams to self-
organize around the work and optimize for faster lead times.

Kanban addresses this by visualizing the work. Usually the preferred
approach is to use a physical board that can be easily seen by
the whole team all of the time. The board is divided into separate
columns: one for each knowledge discovery step that work has to
pass through (for example analysis, design, code, test, integration
and deployment). Sticky post-it notes or magnetic cards are used to
represent each software change and are placed in the column that
reflects their current status. Other things that are commonly visualized
on the Kanban board are the priority of the change, who is currently
working on it and whether it is blocked. Software tools can be used
as a complement to or instead of physical boards to work around
constraints (such as the team not being co-located) and to automate
the collection of metrics.

Figure 6: Example Kanban Board

Backlog Next
2

Analysis
2

Design
2

Code
4

Test
4

Integration
4

Deployment
6

Done

Lead Time

Figure 1: Example Kanban Board

15Enterprise DevOps: Building a Service Oriented Organization

Kanban DevOps Philosophy
Values Foundational

Principles
Core
Practices

Business value Collaboration Frequent
deployment

Reliability Continuous
improvement

Balance Manage the
work

Limit work in
progress

Transparency

Service
orientation

Visualize

Make policies
explicit

Implement
feedback loops

Collaboration Improve
collaboratively,
evolve
experimentally

Customer
Focus

Focus on
customer
needs

Manage flow

Flow

Leadership Encourage
acts of
leadership at
all levels

Respect Start with what
you do now

Agreement Agree to
pursue
evolutionary
change

Table 2: How Kanban Supports DevOps

Explicit policies are defined (and usually displayed on the Kanban
board) which state what the pre-requisites are for a change to move
from one column to the next (often called “definitions of done”). They
should include all requirements, including non-functional requirements
such as security, performance, accessibility and code quality. These
policies provide clarity, not only for the team(s) doing the work, but
also to those outside of the team: they define how the team interfaces

with the wider organization. Adjusting these policies is one of the ways
that teams can seek to improve the process.

We have found that Kanban boards not only help teams to manage
their work, but also act as an excellent information radiator to keep
interested stakeholders updated of progress across distributed sites.

Kanban to DevOps mapping developed by the Atos Scientific Community DevOps track

16 Enterprise DevOps: Building a Service Oriented Organization

Limiting work in progress
Kanban implements Work In Progress (WIP) limits. These are
commonly visualized by writing a number at the top of each column
on the Kanban board which is the maximum number of changes that
will be allowed to accumulate in that column at any one time. Research
has shown that lowering the overall WIP results in shorter lead times
and improved reliability (a 75% reduction in defects)40 .

Limiting WIP also creates slack in the system. Kanban recognizes the
value of slack as it “can be used to improve responsiveness to urgent
requests and to provide bandwidth to enable process improvement…
without slack there is no tactical agility in the business”41.

Controlling WIP also makes it easier to spot issues and bottlenecks.
Without WIP limits, if a work item becomes blocked it is often easier
for team members to start work on something else in the backlog
rather than un-blocking the change that has already been started (a
popular Kanban mantra is “stop starting and start finishing”). Without
WIP limits it is easy for everyone to be “busy” which can hide where
the real bottleneck is. Some have described the practice of reducing
WIP limits as lowering the water level in the value stream so that “even
the smallest problems in our system will be visible, just as the rock in a
canal will be visible”42.

Feedback loops
To enable continuous improvement, Kanban defines a number of
regular review meetings at all levels within the organization, ranging
from daily “stand-ups” (usually around the Kanban board) through
to strategy reviews where the direction for teams across the entire
enterprise is set43.

Metrics
Kanban encourages the collection and analysis of metrics to inform
and validate process improvement activities and enable better
planning of work. Two key metrics are throughput (the number of
changes delivered within a given time period) and lead time (the
elapsed time that it takes for a change to move through the WIP
limited part of the system). These metrics allow forecasts to be
made for how long it will take to deliver future work based on past
performance. Statistical methods can be used to build forecasts
with specific confidence levels (for example a 90% confidence that
a set of tasks can be completed within 8 weeks). The enterprise can
use this data to plan work effectively using risk-based approaches to
scheduling such as Cost of Delay44 and Real Options45.

A catalyst for organizational change
Kanban does not attempt to redefine the current organizational
structure. However we have found that, in practice, teams will often
reorganize themselves when given the insight into the overall value
stream that Kanban provides and asked to optimize for lead time and
throughput. For example, in one case, deployment was a bottleneck
and developers were quite willing to take on deployment activities
when they could see that this was what was constraining delivery lead
times. In another case, developers, an architect and a test manager all
picked up testing tasks to address a testing bottleneck, enabling the
whole team to stay on track. We have also seen cases where team
members volunteered to learn new technologies because they could
see how it would alleviate a bottleneck within the system. Whilst not
mandating cross-functional teams, Kanban naturally leads to this by
aligning people around the delivery of business value.

In summary, we have found that Kanban offers an effective, low-
risk approach to organizational change which is highly aligned with
DevOps. Kanban can be scaled across an enterprise and enables you
to manage your organization as a set of interconnected services.

40 Impact of Agile Quantified LKUK 2014, Larry Maccherone, Presented at LKUK 2014, https://lkuk14.sched.org/event/1rzAA6V/the-impact-of-lean-and-agile-quantified-2014
41 Kanban: Successful Evolutionary Change for Your Technology Business, David J. Anderson, 2010
42 https://hakanforss.wordpress.com/2014/08/18/how-to-improve-flow-efficiency-with-scrum-agile2014-qa/
43 Essential Kanban Condensed, David J Anderson and Andy Carmichael, 2016
44 The Principles of Product Development Flow, Donald Reinertsen, 2009
45 Commitment: Novel about Managing Project Risk, Olav Maassen, Chris Matts & Chris Geary, 2013

17Enterprise DevOps: Building a Service Oriented Organization

https://lkuk14.sched.org/event/1rzAA6V/the-impact-of-lean-and-agile-quantified-2014
https://hakanforss.wordpress.com/2014/08/18/how-to-improve-flow-efficiency-with-scrum-agile2014-qa/

Conclusion
Taking the next steps on your
DevOps journey
In this paper we have defined DevOps as a philosophy for how to build
and operate software which encourages teams to focus on business
value, work collaboratively, deliver software more frequently in smaller
increments and build reliable solutions. We have explained that
DevOps is associated with several practices which are supported by a
range of techniques, tools and technologies. Enterprise DevOps raises
two particular challenges: creating the right organizational structure,
and managing the transformation.

For each of these we have discussed approaches that have been
proven to work, both by us in collaboration with our clients and
also widely in the technology industry. At the start of this paper we
described specific challenges that were faced by Salesforce, Microsoft
and Etsy; let’s now return to their stories and see how they successfully
overcame them.

Salesforce were concerned that their release cycles had become long
and unpredictable. To address this they embarked on an enterprise-
wide Agile transformation impacting over 200 engineers and lasting
3 months. This was followed by another 12 months of continuous
improvement. The keys to success that they identified were executive
commitment, a focus on principles over mechanics, extensive
automation and radical transparency. In other words this was DevOps
in action, and it delivered impressive results including increased
customer satisfaction, higher productivity, higher morale, an increase
in on-time delivery and a reduction in mean time to release46.

The team we described at Microsoft had a bad reputation for
customer service due to their long lead times and their large and
growing backlog of requests. They implemented a Kanban system
which, over a period of 13 months, resulted in a 200% improvement in

Key Takeaways
Urgency Evaluate the urgency of DevOps adoption based on your business context and consider using models like

Bi-Modal IT or 2-Speed IT if a prioritized approach makes sense for your organization.

Consuming IT Assess how you consume IT services and consider where you can use SaaS, PaaS or IaaS solutions. Where
you outsource software development think about how your relationship with providers needs to evolve.

Best Practices Establish which Best Practices you are already using and where additional training, consultancy and
coaching may be required.

Next Practices Evaluate DevOps Next Practices to understand which you should consider adopting within your
organization and over what timescales.

Organizational Structure Understand the extent to which your existing organizational structure is appropriate for DevOps and
where the key challenges are.

Evolutionary Change Implement Kanban as a low risk method to catalyze your DevOps transformation.

46 http://www.slideshare.net/sgreene/the-year-of-living-dangerously-extraordinary-results-for-an-enterprise-agile-revolution-368526/
47 Kanban: Successful Evolutionary Change for Your Technology Business, David J. Anderson, 2010
48 http://itrevolution.com/one-of-the-best-devops-talks-on-it-transformation-continuously-deploying-culture-by-rembetsy-and-mcdonnell-velocity-london-2012/

49 http://www.slideshare.net/beamrider9/continuous-deployment-at-etsy-a-tale-of-two-approaches

productivity and a 90% reduction in lead times (as well as completely
eliminating their backlog)47. What is perhaps most striking in this
case study is that there was no radical change; rather this was an
implementation of a Kanban system to limit work in progress and drive
evolutionary improvement which yielded impressive results.

As we stated earlier, the key driver for change at Etsy was improving
reliability rather than lead times. Over the course of three years they
radically changed their approach to building, deploying and operating
software. They created slack time for improvement projects, reduced
batch sizes and prioritized improving “how they worked” over “doing
the work”48. The result of this was that they deployed into production
6,419 times in 2012 and those deployments were performed by
196 different people. They reported reduced downtime as a result
because, although they were deploying more frequently, the likelihood
and severity of problems was reduced and the speed with which they
could rectify them was faster49.

What we clearly see from these three examples, and which is also
supported by numerous other case studies and our own experience,
is that the application of DevOps can radically transform the IT
performance of an organization. What’s more, DevOps is not an
approach that is reserved for small start-ups or businesses that were
born-in-the-internet. By using the Best and Next Practices associated
with DevOps and structuring your teams as we have described,
it can be applied at scale in any enterprise. Furthermore Kanban
provides a low risk way to implement a DevOps philosophy and
drive the required change in culture and mindset. DevOps may be a
journey without a final destination, but it is also a journey on which
any enterprise can take steps today, and realize significant benefits
tomorrow.

18 Enterprise DevOps: Building a Service Oriented Organization

http://www.slideshare.net/sgreene/the-year-of-living-dangerously-extraordinary-results-for-an-enterprise-agile-revolution-368526/
http://itrevolution.com/one-of-the-best-devops-talks-on-it-transformation-continuously-deploying-cul
http://www.slideshare.net/beamrider9/continuous-deployment-at-etsy-a-tale-of-two-approaches

About the Atos Scientific Community
Publically launched by Thierry Breton, Chairman and CEO of Atos, and sponsored by Hubert Tardieu, the Scientific Community has 125 members
from all geographies where Atos operates, representing a rich mix of skills and backgrounds. Its aim is to help Atos anticipate and craft its
vision of upcoming technology disruptions and the future business challenges that will be faced by the markets it serves. By making this vision
available to its clients, and by investing in areas related to the findings, Atos intends to help its clients make informed decisions regarding the
future of their Business Technology solutions.

About the C-LAB & the SICP
Founded in 1985, the Cooperative Computing & Communication Laboratory (C-LAB) is a joint research and development laboratory operated
by Atos and the Paderborn University. C-LAB’s vision is based on the fundamental premise that the gargantuan challenges thrown up by the
transition to a future information society can only be met through global cooperation and intensive linking of theory and practice. This is
why, under one roof, staff from university and from industry cooperate closely on joint projects within a common research and development
organization together with international partners. In doing so, C-LAB concentrates on those innovative subject areas in which cooperation is
expected to bear particular fruit for the partners and their general well-being.

The cooperation of C-Lab has been intensified since 2014 in the Software Innovation Campus Paderborn (SICP). The SICP is a cooperation
between ten leading-edge technology companies, the Paderborn University and the Fraunhofer IEM. Thus, the campus continues the success
story of the 30-year ongoing cooperation model of the C-Lab.

About the Authors
The authors would like to thank the following members of the Atos Scientific Community for their review of early drafts of this paper: David
Cunningham, John Hall, Jan Krans, Luis Lancos, Mischa van Oijen, Rob Price, Purshottam Purswani and Mike Smith.

The authors would also like to thank the following contributors to Table 1: DevOps Best Practices and Next Practices: Chris Baynham-Hughes,
Mike Burrows, Thierry Caminel, David Cunningham, Adrian Hepworth and Jean-Marc Meessen.

Jean-Marc Cadudal
Cloud Solution Architect and Member of the
Scientific Community, France
Email: jean-marc.cadudal@atos.net
Twitter ID: @JMCadudal

Adam Jackson
Head of Atos Decision Factory
and Member of the Scientific Community, UK
Email: adam.jackson@atos.net
Twitter ID: @adamecjackson

Hannu Ojasalo
Head of Professional Services and Member of
the Scientific Community, Finland
Email: hannu.ojasalo@atos.net
Twitter ID: @Ojasalo

David Daly (Editor-in-Chief)
Global Deal Assurance Manager for Worldline
and Member of the Scientific Community, UK
Email: david.daly@worldline.com
Twitter ID: @DavidDalyWL
Host of #DevOpsChat Twitter Chat via @
DevOpsStars

Jean-François James,
Software Architect, Head of French Expert
Network for Worldline and Member of the
Scientific Community, France
Email: jean-francois.james@worldline.com
Twitter ID: @jefrajames

Martin Pfeil
CTO Global Siemens Account and
Member of the Scientific Community,
Germany
Email: martin.pfeil@atos.net
Twitter ID: @marpfeil

Prof. Gregor Engels
Executive Director C-LAB at Paderborn
University, Germany
Email: engels@upb.de

Dr. Simon Oberthür
R&D Manager Mobile & Cloud Systems,
Software Innovation Campus Paderborn at
Paderborn University, Germany
Email: oberthuer@sicp.de
Twitter ID: @zottel

Dick van der Sar
Thought Leader DevOps, The Netherlands
Email: dick.vandersar@atos.net
Twitter ID: @Dvdsar

Acknowledgements

19Enterprise DevOps: Building a Service Oriented Organization

C
T

_1
6

10
27

_S
E

_D
ev

O
p

s_
B

u
ild

in
g

_a
_S

er
vi

ce
_O

ri
en

te
d

_O
rg

an
iz

at
io

n
-V

0
1

Atos SE (Societas Europaea) is a leader
in digital services with pro forma annual
revenue of circa € 12 billion and circa 100,000
employees in 72 countries. Serving a global
client base, the Group provides Consulting
& Systems Integration services, Managed
Services & BPO, Cloud operations, Big
Data & Cyber-security solutions, as well as
transactional services through Worldline,
the European leader in the payments and
transactional services industry. With its
deep technology expertise and industry
knowledge, the Group works with clients
across different business sectors: Defense,
Financial Services, Health, Manufacturing,
Media, Utilities, Public sector, Retail,
Telecommunications, and Transportation.

Atos is focused on business technology that
powers progress and helps organizations
to create their firm of the future. The Group
is the Worldwide Information Technology
Partner for the Olympic & Paralympic Games
and is listed on the Euronext Paris market.
Atos operates under the brands Atos, Atos
Consulting, Atos Worldgrid, Bull, Canopy, Unify
and Worldline.

Find out more about us
atos.net
ascent.atos.net

Let’s start a discussion together

About Atos

All trademarks are the property of their respective owners. Atos, the Atos logo, Atos Codex, Atos Consulting, Atos Worldgrid, Worldline, BlueKiwi,
Bull, Canopy the Open Cloud Company, Unify, Yunano, Zero Email, Zero Email Certified and The Zero Email Company are registered trademarks of
the Atos group. Atos reserves the right to modify this document at any time without notice. Some offerings or parts of offerings described in this
document may not be available locally. Please contact your local Atos office for information regarding the offerings available in your country. This
document does not represent a contractual commitment. November 2016. © 2016 Atos

