Attachment 4 to IPN-97-041

Response to Request for Additional Information on the Resolution of Unresolved Safety Issue A-46

Indian Point 3 Nuclear Power Plant

Docket No. 50-286

PDR

	JOB NO. 96C2915 Calculation C-001 SUBJECT: NYPA - Indian Point Unit 3. USI A-46 Outlier Resolution	Sheet 1 of 8 Date: 8/26/96 Revision 0
STEVENSON \& ASSOCIATES a structural-mechanical consulting engineering firm	Refueling Water Storage Tank RWST-31	By: A. Karavoussianis

Table of Contents

\qquad
Objective1
Analytical Approach 1
Summary 1
Calculation 3
References 8
Appendix AAppendix B

Objective

The Refueling Water Storage Tank (RWST-31) is a cylindrical flat bottom vertical tank which stands about 48 ft . tall and is 40 ft . in diameter (Ref. 2). The tank is anchored by $24-\mathbf{2 " ~}^{\prime \prime}$ cast-in-place bolts, equally spaced in a $40^{\prime}-6{ }^{\prime \prime}$ diameter bolt circle around the tank (Ref. 1).

The A-46 evaluation declared the tank an outlier because the tank's anchorage capacity was less than the seismic demand.

This calculation recompiles the A-46 evaluation and also considers the effect of fluid hold-down forces.

Analytical Approach

This calculation follows the computational methodology described in Appendix H of EPRI NP 6041. This is essentially the same methodology used in Section 7 of the GIP; the procedure in NP-6041 is "equation-based", and allows for a more accurate calculation than the "chart-based" method in GIP Section 7. It should be noted that the critical GIP Section 7 criteria were maintained, namely:

- GIP Appendix C procedures were used to calculate the anchor bolt allowables,
- 4% damping was used to calculate the impulsive mode response,
- a reduction factor of 0.72 was applied to the computed tank shell buckling stress.

The capacity was calculated both ignoring and including the effects of fluid hold-down. Note that GIP Section 7 ignores the effect of fluid hold-down.

Summary

The attached calculations show that the tank has a seismic demand of 0.24 g (at the impulsive mode frequency), and has a seismic capacity of 0.60 g if fluid hold-down is ignored, and a seismic capacity of 0.62 g if fluid hold-down is included. The tank therefore meets GIP

	JOB NO. 96C2915 Calculation C-001 SUBJECT: NYPA - Indian Point Unit 3. USI A-46 Outlier Resolution	Sheet 2 of 8 Date: $8 / 26 / 96$ Revision 0
STEVENSON \& ASSOCIATES a structural-mechanical consulting engineering firm	Refueling Water Storage Tank RWST-31	By: A. Karavoussianis Check: S. Anagnostis

requirements with a factor of safety of 2.5 , and has a factor of safety of 2.6 if fluid hold-down is included. Therefore, the tank outlier is resolved.

This evaluation yielded a significantly different result than the original A-46 evaluation (Ref 2), which concluded that the seismic demand exceeded the capacity by about a factor of 2 . The principal reasons for the difference are as follows:

1. Both this and the original evaluation computed an impulsive mode frequency of about 6 Hz . Based on this frequency, this evaluation used a spectral acceleration of 0.24 g - the ground response spectra, 4% damping, peak value within 20% of the calculated frequency. The original evaluation used a spectral acceleration of 0.41 g - this appears to be the 4% damped ground response spectra value multiplied by 1.875 (under certain conditions, GIP Section 4 permits the use of 1.25×1.5 the ground response spectra as the estimate of an in-structure response spectrum). The tank is in the yard, therefore there is no requirement to amplify the ground spectrum - the original evaluation overestimated the demand by a factor of 1.7.
2. The anchor bolt capacity is limited by bending stresses induced in the tank wall by the bolt chair (see GIP Section 7.3.2, Step 9). The critical parameter is the width of the bolt chair's top plate. The original evaluation used the distance between the outside edges of the chair's vertical stiffeners (about $7^{\prime \prime}$). The GIP procedure assumes that each chair has a top plate that spans between the vertical stiffeners, but the IP3 RWST has a top plate that is a continuous ring. The continuous ring top plate is a much stronger design than the individual top plate design assumed in the original evaluation. The AISI design guide for steel tanks (Ref. 14) - which is the source of the bolt chair evaluation procedure contained in the GIP recommends that continuous ring top plates be evaluated as continuous rings, not as individual plates. This evaluation did so, and the anchor bolt capacity increased from 18.9 kips in the original evaluation to 55.7 kips , a factor of about 3.

	JOB NO. 96C2915 Calculation C-001 SUBJECT: NYPA - Indian Point Unit 3. USI A-46 Outlier Resolution	Sheet 3 of 8 Date: 8/26/96 Revision 0
STEVENSON \& ASSOCIATES a structural-mechanical consulting engineering firm	Refueling Water Storage Tank RWST-31	By: A. Karavoussianis Check: S. Anagnostis

Calculation

The capacity calculations are attached as appendix A (w/o fluid hold-down) and Appendix B (with fluid hold-down). This section of the calculation computes the bolt hold-down capacity and other various input parameters common to both appendices.

Tank shell material is SA 240 Type 304 Stainless Steel. (Ref. 2)

$$
\sigma_{Y}=30 \mathrm{ksi}, \quad \sigma_{U}=75 \mathrm{ksi} \& E_{S}=28300 \mathrm{ksi} \quad \text { (ref. 10) }
$$

Nominal capacity $=350,000 \mathrm{gal}=46823 \mathrm{ft}^{3}$ (ref. 2)
Fluid height, $\mathrm{H}=46823 /\left[\pi(20-0.285 / 12)^{2}\right]=37.35 \mathrm{ft}=448 \mathrm{in}$
Bolt Hold-Down Capacity: (ref. 5 \& 6)

1. Bolt tensile capacity, (assume A307 bolts)

2" Cast-in-Place bolts,
Bolt nominal area $=3.14 \mathrm{in}^{2}$

$$
T_{\text {nom }}=1.7 \times 20 \times 3.14=107 \mathrm{kip}
$$

2. Anchorage of bolt into concrete foundation:

Embedment, $\mathrm{L}=33^{n}-2^{\prime \prime}$ (anchor fitting) $-10^{\prime \prime}$ (chair height) -3^{n} (thread above chair) $=18^{n}$
Edge distance, $\mathrm{E}=9{ }^{\prime \prime}$
$\alpha=90-\cos ^{-1}(9 / \mathrm{r}) ; \mathrm{r}=\mathrm{L}=18^{\prime \prime} ; \quad \alpha=30^{\circ}$

Ignoring concrete pad curvature:
Projected area $=A=\frac{180+2 \times 30}{360} \times \pi \times 18^{2}+9 \times 18 \times \cos (30)=819 \mathrm{in}^{2}$
Concrete Pull-out Strength, (ref. 12)
$P_{c}=A \times 4 \Phi \sqrt{f_{c}^{\prime}}=819 \times 4 \times 0.85 \times \sqrt{3000}=152500 \mathrm{lbs}=153 \mathrm{kip}$
A-46 Concrete Pull-out Strength $=P_{c} / 2=77 \mathrm{kip}$
Part of the bolt hold-down capacity calculation requires the dimension of the bolt chairs. The following dimension designations are shown in EPRI 5228, Vol. 4. figure 2-14. (ref. 3 page 19)

$$
\begin{array}{llll}
a=g+2 j+2 b & c=1.375^{n} & f=1.5^{n} & j=0.50^{n} \\
a=17.25^{n} \text { (avg.) } & d=2^{n} & g=5.5^{n} \text { (avg.) } & k=3.50^{n} \text { (avg.) } \\
b=5.5^{n} & e=3^{n} & h=10^{n} & t_{b}=0.185^{n}
\end{array}
$$

	JOB NO. 96C2915 Calculation C-001 SUBJECT: NYPA - Indian Point Unit 3. USI A-46 Outlier Resolution	Sheet 4 of 8 Date: 8/26/96 Revision 0
STEVENSON \& ASSOCIATES a structural-mechanical consulting engineering firm	Refueling Water Storage Tank RWST-31	By: A. Karavoussianis Check: S. Anagnostis

3. Capacity of plate to transfer load to chair gussets; (ref. 6)

$$
\begin{aligned}
& S_{P}=\frac{(0.375 g-0.22 d) r_{B S}}{f c^{2}}=\frac{(0.375 \times 5.25-0.22 \times 2) \times 77000}{1.5 \times 1.375^{2}}=41500 \mathrm{psi} \\
& S_{P}=41500 \rho s i>f_{y}=30000 \rho s i \quad \therefore T_{P}=77.0 \times \frac{30000}{41500}=55.7 \mathrm{kip}
\end{aligned}
$$

4. Capacity of vertical gusset plates: (ref. 6)

- $\frac{k}{j}=\frac{3.50}{0.5}=7.0<\frac{95}{\sqrt{\frac{f_{y}}{1000}}}=\frac{95}{\sqrt{\frac{30000}{1000}}}=17.35 \quad$ (O.K.)
- $j=0.5^{n}>0.04(h-c)=0.04(10-1.375)=0.35^{n}$ and $j=0.5=0.5^{n}$
- $\frac{T_{p}}{2 \mathrm{kj}}=\frac{55700}{2 \times 3.50 \times 0.5}=15900 \mathrm{psi}<0.6 \times 30000=18000 \mathrm{psi}$

5a. Tank shell capacity based on $17.25^{\prime \prime}$ wide bolt chair top plate (ref. 6):

$$
\mathrm{S}_{\mathrm{S}}=\frac{T_{\mathrm{p}} \mathrm{e}}{\mathrm{t}_{\mathrm{s}}{ }^{2}}\left[\frac{1.32 \mathrm{Z}}{\frac{1.43 \mathrm{a} \mathrm{~h}^{2}}{R \mathrm{t}_{\mathrm{s}}}+\left(4 \mathrm{ah}^{2}\right)^{0.333}}+\frac{0.031}{\sqrt{R \mathrm{t}_{\mathrm{s}}}}\right]
$$

$$
Z=\frac{1.0}{\frac{\left(0.177 \mathrm{in}^{-1}\right) a t_{b}}{\sqrt{R t_{s}}}\left[\frac{t_{b}}{t_{s}}\right]^{2}+1.0}=\frac{1.0}{\frac{\left(0.177 \mathrm{in}^{-1}\right) \times 17.25 \times 0.1875}{\sqrt{240 \times 0.285}} \times\left[\frac{0.1875}{0.285}\right]^{2}+1.0}=0.971
$$

$$
\mathrm{S}_{\mathrm{S}}=\frac{55700 \times 3}{0.285^{2}} \times\left[\frac{1.32 \times 0.971}{\frac{1.43 \times 17.25 \times 10^{2}}{240 \times 0.285}+\left(4 \times 17.25 \times 10^{2}\right)^{0.333}}+\frac{0.031}{\sqrt{240 \times 0.285}}\right]
$$

$S_{S}=2.057 \times 10^{6} \times(0.0233+0.00375)=55640 \mathrm{psi}>\mathrm{f}_{\mathrm{y}}=30000 \mathrm{psi}$
Therefore, $T_{p}=55.7 \times 30 / 55.64=30.0 \mathrm{kip}$
Check the weld between the chair and the tank wall:

	JOB NO. 96C2915 Calculation C-001 SUBJECT: NYPA - Indian Point Unit 3. USI A-46 Outlier Resolution	Sheet 5 of 8 Date: 8/26/96 Revision 0
STEVENSON \& ASSOCIATES a structural-mechanical consulting engineering firm	Refueling Water Storage Tank RWST-31	By: A. Karavoussianis Check: S. Anagnostis

$W_{w}=T_{p} \sqrt{\left.\frac{1}{a+2 h}\right]^{2}+\left[\frac{e}{a h+0.667 h^{2}}\right]^{2}}$
$W_{w}=55700 \sqrt{\left[\frac{1}{17.25+2 \times 10}\right]^{2}+\left[\frac{3}{17.25 \times 10+0.667 \times 10^{2}}\right]^{2}}=55700 \sqrt{0.0268^{2}+0.0125^{2}}$
$\mathrm{W}_{\mathrm{w}}=1650 \mathrm{lbs} / \mathrm{in} \leq \frac{30600 \mathrm{t}_{\mathrm{w}}}{\sqrt{2}}=\frac{30600 \times 0.1875}{\sqrt{2}}=4057 \mathrm{lbs} / \mathrm{in} \quad \therefore$ Weld is adequate .
5b. Tank shell capacity based on continuous ring bolt chair top plate:
Per Reference 14, Volume 2, Part VII (which is the source for the bolt chair evaluation in the GIP), when the top plate is a continuous ring the evaluation should be to "check for maximum stress in the circumferential direction, considering the ring as though it were loaded with equally spaced concentrated loads equal to Pe / h. Portion of the shell within $16 t$ either side of the attachment may be counted as part of the ring."

The ring cross section is shown below:
$A=(10.5)(.285)+(1.375)(5.5)=10.55 \mathrm{in}^{2}$
$1.375 x^{2} / 2=1.375(5.5-x)^{2} / 2+.285(10.50)(5.5-x+.143)$
$7.56 x+2.99 x=20.80+16.89$
$x=3.57$ in.
$I=1.375(3.57)^{3} / 12+1.375(3.57)(3.57 / 2)^{2}$
$+1.375(1.93)^{3} / 12+1.375(1.93)(1.93 / 2)^{2}$
$+10.50(.285)^{3} / 12+10.50(.285)(1.93+.285 / 2)^{2}=37.0 \mathrm{in}^{4}$
$S=37.0 / 3.57=10.4 \mathrm{in}^{3}$

The ring is loaded with 24 equal radial forces, F. From Reference 15, Table 17, the maximum hoop load, N , and moment, M , are:

	JOB NO. 96C2915 Calculation C-001 SUBJECT: NYPA - Indian Point Unit 3. USI A-46 Outlier Resolution	Sheet 6 of 8 Date: $8 / 26 / 96$ Revision 0
STEVENSON \& ASSOCIATES a structural-mechanical consulting engineering firm	Refueling Water Storage Tank RWST-31	By: A. Karavoussianis

$$
\begin{aligned}
& N=\frac{F}{2}\left(\sin \left(7.5^{\circ}\right)+\sin \left(22.5^{\circ}\right)+\ldots+\sin \left(172.5^{\circ}\right)\right)=3.83 F \\
& M=\frac{F R}{2}\left(\frac{24}{\pi}-\sin \left(0^{\circ}\right)-\sin \left(15^{\circ}\right)-\ldots--\sin \left(165^{\circ}\right)\right)=0.0218 F R
\end{aligned}
$$

The maximum allowable F is calculated by equating the total stress to the yield stress:
$\frac{\mathrm{N}}{\mathrm{A}}+\frac{\mathrm{M}}{\mathrm{S}}=30 \mathrm{ksi}, \quad\left(\frac{3.83}{10.55}+\frac{0.0218(240)}{10.4}\right) \mathrm{F}=30 \mathrm{ksi}, \quad \mathrm{F}=34.6 \mathrm{k}$
Finally, the maximum allowable bolt load is $\mathrm{Fh} / \mathrm{e}=34.6(10 / 3)=115 \mathrm{k}$. This is larger than the 30 k computed is Step 5 a above, and governs.

The conclusion is that the allowable bolt load is governed by bending of the bolt chair's top plate (Step 3 above), which has a value of 55.7 k , and is ductile.

The maximum uplift height, "deltae0" is equal to 1% of the effective bolt length $=0.01\left(33^{n}-2^{n}\right.$ (anchor fitting) $-3^{n \prime}$ (threaded length above bolt chair)) $=0.28^{n}$.

Tank Shell Thickness: (ref. 6)

Section Number	Thickness (in)	To Height (ft)
1	0.285	8.25
2	0.227	16.50
3	0.1875	24.75
4	0.1875	33.00
5	0.1875	41.25

$$
\begin{aligned}
& t_{a v}=\frac{\sum_{i=1}^{5} t_{i} h_{i}}{H^{\prime}}=\frac{(0.285+0.227+3 \times 0.1875) \times 8.25}{41.25}=0.215 \text { in } \\
& t_{\text {ef }}=\frac{t_{a v}+t_{\min }}{2}=\frac{0.215+0.1875}{2}=0.201 \text { in }
\end{aligned}
$$

	JOB NO. 96C2915 Calculation C-001 SUBJECT: NYPA - Indian Point Unit 3. USI A-46 Outlier Resolution	Sheet 7 of 8 Date: $8 / 26 / 96$ Revision 0
STEVENSON \& ASSOCIATES a structural-mechanical consulting engineering firm	Refueling Water Storage Tank RWST-31	By: A. Karavoussianis Check: S. Anagnostis

Check the flexibility of the concrete foundation:
The tank is supported on a concrete foundation mat ($42^{\prime} \varnothing \times 2^{\prime}$ thk) which is at grade. Below grade, the mat is supported by a 2^{\prime} concrete ring around its perimeter and an 11^{\prime} square concrete block at the center. Both the concrete ring and block are approx. 10' tall and doweled into concrete fill which sits directly on rock.
$W_{\text {Top }}=W_{\text {Foundation Mat }}+W_{H}+W_{S}+W_{W} \quad$ (see appendix A)
$W_{\text {Top }}=\pi \times 21^{2} \times 2 \times 0.150+10+46+2927=3400 \mathrm{kip}$
$E=57000 \times\left(f_{c}\right)^{0.5}=57000 \times(3000)^{0.5}=3.122 \times 10^{6} \mathrm{psi}($ ref. 13)
$v=0.15 \quad G=\frac{E}{2(1+v)}=\frac{3.122 \times 10^{6}}{2(1+0.15)}=1.36 \times 10^{6} \mathrm{psi}$
$\mathrm{K}=\mathrm{kGA} / \mathrm{L}=1.35 \times 10^{6}\left(0.5 \pi\left(21^{2}-19^{2}\right)+0.83(11)^{2}\right)(144) / 10 / 12=3.66 \times 10^{8} \mathrm{lb} / \mathrm{in}$
$f=\frac{1}{2 \pi} \sqrt{\frac{K}{m}}=\frac{1}{2 \pi} \sqrt{\frac{3.66 \times 10^{8} \times 386}{3400 \times 10^{3}}}=32 \mathrm{~Hz}$.
Therefore, the tank's foundation may be considered to be rigid.

	JOB NO. 96C2915 Calculation C-001 SUBJECT: NYPA - Indian Point Unit 3. USI A-46 Outlier Resolution	Sheet 8 of 8 Date: $8 / 26 / 96$ Revision 0
STEVENSON \& ASSOCIATES a structural-mechanical consulting engineering firm	Refueling Water Storage Tank RWST-31	By: A. Karavoussianis Check: S. Anagnostis

References

1. "Refueling Water Storage Tank Foundation, Concrete \& Reinforcing Details", Dwg. No. 9321-F14683-2
2. "Design Calculations, $1-40^{\prime}-0 \phi \times 41^{\prime}-3$ DRT Refueling Water Storage Tank T-31, 350,000 Gal. Nom. Capacity", Excerpts, SEWS for RWST 21, S\&A Log 96C2915-DC-008.
3. Atometrics Calculation No. 18904-IP3-SQ017, Rev. O., SEWS for CST, S\&A Log 96C2915-DC-008.
4. "Summary of Seismic Response Spectra Characteristic", NYPA File No. 44-B-0181, S\&A Log 96C2915-DC-005.
5. "A Methodology for Assessment of Nuclear Power Plant Seismic Margin (Revision 1)", EPRI NP-6041-SL, Revision 1, Project 2722-23, Final Report, August 1991.
6. \quad "Seismic Verification of Nuclear Plant Equipment Anchorage (Revision 1), Volume 4: Guidelines on Tanks and Heat Exchangers", EPRI NP-5228-SL, Revision 1, Volume 4, Project 2925-1, Final Report, June 1991.
7. "Seismic Design of Liquid Storage Tanks", Journal of the Technical Council of ASCE, April 1981
8. Mark's Standard Handbook, $9^{\text {th }}$ Edition, Table 3.3.2.
9. Manual of Steel Construction, Allowable Stress Design, AISC, $9^{\text {th }}$ Edition.
10. ASME Boiler and Pressure Vessel Code, 1980 Edition, Appendices.
11. "Generic Implementation Procedure (GIP) for Seismic Verification of Nuclear Plant Equipment", SQUG, Revision 2, Corrected 2/14/92.
12. "Code Requirement for Nuclear Safety Related Concrete Structures ($\mathrm{ACl} 349-80$)", Appendix B.
13. "Building Code Requirement for Reinforced Concrete and Commentary ($\mathrm{ACl} 318-89$)".
14. AISI, "Steel Plate Engineering Data - Volumes 1 and 2 - Revised Edition - 1992"
15. Young, Warren C., "Roark's Formulas for Stress \& Strain", 6th Edition, 1989.

Refueling Water Storage Tank, RWST 31, GIP Criteria, w/o Fluid Holddown

Weight Summary

$$
\begin{array}{ll}
W_{H}:=\pi \cdot R \cdot \sqrt{R^{2}+H_{d}^{2} \cdot t_{h} \cdot \gamma_{s}} & W_{H}=10 \cdot \mathrm{kip} \\
X_{H}:=H_{s}+\frac{H_{d}}{2} & X_{H}=534 \cdot \mathrm{in} \\
W_{s}:=\pi \cdot 2 \cdot R \cdot t_{a} \cdot H_{s} \cdot \gamma_{s} & W_{S}=46 \cdot \mathrm{kip} \\
X_{s}:=\frac{H_{s}}{2} & \\
W_{W}:=\pi \cdot R^{2} \cdot H \cdot \gamma_{f} & W_{W}=2927 \cdot \mathrm{kip}
\end{array}
$$

Impulsive Mode

$$
\frac{t a}{R}=0.0009 \quad \frac{H}{R}=1.867
$$

$$
\mathrm{C}_{\mathrm{W}}:=0.09 \quad \text { Frequency coefficient from Haroun and Housner (1981) }
$$

$$
c_{\mathrm{LI}}:=C_{W} \cdot \sqrt{\frac{0.127 \cdot \rho_{\mathrm{s}}}{\rho_{\mathrm{f}}}}
$$

$$
C_{L I}=0.09
$$

$$
f_{I}:=\frac{C_{L I}}{2 \cdot \pi \cdot H} \cdot \sqrt{\frac{E_{s}}{\rho_{s}}}
$$

$$
f_{1}=6.268 \cdot \mathrm{~Hz} \quad 0.8 \cdot f_{1}=5.014 \cdot \mathrm{~Hz} \quad 1.2 \cdot f_{1}=7.521 \cdot \mathrm{~Hz}
$$

$\mathrm{S}_{\mathrm{AI}}:=0.24 \cdot \mathrm{~g} \quad$ From IP3 SSE Ground Spectra 5\% Damping, $\times(5 / 4)^{\wedge} 0.5$ to estimate 4\% damping
$\mathrm{S}_{\mathrm{AI}}:=$ Scale. $_{\mathrm{SI}} \quad \mathrm{S}_{\mathrm{AI}}=0.6 \cdot \mathrm{~g}$
$W_{1}:=\left\{\begin{array}{l}\left(1-0.436 \cdot \frac{R}{H}\right) \cdot W_{w} \text { if } \frac{H}{R} \geq 1.5 \\ \left(0.764 \cdot W_{w}\right) \text { if } \frac{H}{R}<1.5\end{array}\right.$

$$
W_{1}=2244 \cdot k i p
$$

$X_{1}:=\left\lvert\, \begin{aligned} & {\left[\left(0.5-0.188 \cdot \frac{R}{H}\right) \cdot H\right] \text { if } \frac{H}{R} \geq 1.5} \\ & \left(0.304 \cdot H \cdot \frac{W_{w}}{W_{1}}\right) \text { if } \frac{H}{R}<1.5\end{aligned}\right.$

$$
X_{1}=178.9 \cdot \mathrm{in}^{\prime}
$$

$$
\begin{array}{ll}
V_{1}:=\frac{S_{A l}}{g} \cdot\left(W_{H}+W_{S}+W_{1}\right) & V_{1}=1380 \cdot \mathrm{kip} \\
M_{1}:=\frac{S A l}{g} \cdot\left(W_{H} \cdot X_{H}+W_{S} \cdot X_{S}+W_{1} \cdot X_{1}\right) & M_{1}=20901 \cdot \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Sloshing Mode

$$
\begin{aligned}
& f_{c}:=\sqrt{\frac{1.5 \cdot \frac{\mathrm{ft}}{\sec ^{2}}}{R} \cdot \tanh \left[1.835 \cdot\left(\frac{H}{R}\right)\right]} \quad f_{c}=0.274 \cdot \mathrm{~Hz} \\
& S_{A c}:=0.100 \cdot \mathrm{~g} \quad \text { IP3 SSE Ground Spectra @ 0.5\% Damping at } 0.5 \mathrm{~Hz} \\
& S_{A c}:=\text { Scale. } S_{A c} \quad S_{A c}=0.25 \cdot g \\
& W_{C}:=0.46 \cdot \frac{R}{H} \cdot \tanh \left[1.835 \cdot\left(\frac{H}{R}\right)\right] \cdot W_{W} \\
& W_{c}=720 \cdot k i p \\
& X_{C}:=\left(1-\frac{\cosh \left(1.835 \cdot \frac{H}{R}\right)-1}{1.835 \cdot \frac{H}{R} \cdot \sinh \left(1.835 \cdot \frac{H}{R}\right)}\right) \cdot H \\
& V_{C}:=\frac{S A c}{g} \cdot W_{C} \\
& M_{c}:=\frac{S A C}{g} \cdot W_{c} \cdot X_{C} \\
& V_{c}=180 \cdot k i p \\
& M_{c}=4881 \cdot \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

Vertical Mode

$$
\begin{aligned}
& f_{v}:=\frac{1}{4 \cdot H} \cdot\left[\rho_{f} \cdot\left(\frac{2 \cdot R}{t_{s} \cdot E_{s}}+\frac{1}{K}\right)\right]^{-\frac{1}{2}} \\
& f_{v}=7.288 \cdot \mathrm{~Hz} \\
& 0.8 \cdot f_{v}=5.831 \cdot \mathrm{~Hz} \\
& 1.2 \cdot f \mathrm{f}=8.746 \cdot \mathrm{~Hz} \\
& \mathrm{~S}_{\mathrm{Av}}:=0.15 \cdot \mathrm{~g} \quad 2 / 3 \text { Horizontal, } 5 \% \text { Damping } \times(5 / 4)^{\wedge} 0.5 \text { to estimate } 4 \% \text { damping } \\
& S_{A v}:=S_{\text {cale }} \cdot S_{A v} \\
& S_{A V}=0.375 \cdot g
\end{aligned}
$$

Demand

$$
\operatorname{SRSS}(x, y):=\sqrt{x^{2}+y^{2}}
$$

$$
V_{s h}:=\operatorname{sRSS}\left(V_{1}, V_{c}\right)
$$

$$
V_{\text {sh }}=1391 \cdot k i p
$$

$$
M_{\text {sh }}:=\operatorname{SRSS}\left(M_{1}, M_{c}\right)
$$

$$
M_{\text {sh }}=21463 \cdot k i p \cdot \mathrm{ft}
$$

Pressures

$$
\frac{y}{\mathrm{in}} \frac{\mathrm{P}_{\mathrm{st}}(y)}{\mathrm{psi}} \frac{P_{c}(y)}{\mathrm{psi}} \frac{P_{v}(y)}{\mathrm{psi}} \frac{P_{s h}(y)}{\mathrm{psi}} \frac{P_{s m}(y)}{\mathrm{psi}}
$$

$$
\begin{array}{|c|c|c|c|c|c|}
\hline 250 & 9.028 & 0.281 & 3.73 \\
\hline 448 & 16.178 & 0.118 & 3.687 & \left.\begin{array}{|c|}
\hline 5.244 \\
\hline 4.853 \\
\hline 3.678 \\
\hline 6.089 \\
\hline
\end{array} \right\rvert\, & \\
\hline
\end{array}
$$

448		

$$
\begin{array}{ll}
P_{c p}:=P_{s t}(H)+P_{s h}(H)+0.4 \cdot P_{v}(H) & P_{c p}=21.797 \cdot \mathrm{psi} \\
P_{\mathrm{cm}}:=P_{s t}(H)+P_{s h}(H)-0.4 \cdot P_{v}(H) & P_{\mathrm{cm}}=17.914 \cdot p s i \\
P_{\mathrm{tm}}:=P_{s t}(H)-P_{s h}(H)-0.4 \cdot P_{v}(H) & P_{\mathrm{tm}}=10.559 \cdot \mathrm{psi} \\
P_{\mathrm{a}}:=P_{\mathrm{st}}(H)-0.4 \cdot P_{\mathrm{v}}(H) & P_{\mathrm{a}}=14.236 \cdot \mathrm{psi}
\end{array}
$$

$$
\begin{aligned}
& y:=(H-198 \cdot i n), H . . H \\
& P_{s t}(y):=\gamma_{f} \cdot y \quad P_{i}:=\frac{W_{1} \cdot X_{1} \cdot \frac{g}{1.36 \cdot R \cdot H^{2}}}{} \\
& P_{i}=3.676 \cdot \mathrm{psi} \\
& P_{c}(y):=\frac{0.267 \cdot W_{w} \cdot \frac{S_{A c}}{g}}{R \cdot H} \cdot \frac{\cosh \left[1.835 \cdot\left(\frac{H-y}{R}\right)\right]}{\cosh \left[1.835 \cdot\left(\frac{H}{R}\right)\right]} \\
& P_{V}(y)=0.8 \cdot \gamma_{f} \cdot H \cdot \frac{S_{A v}}{g} \cdot \cos \left(\frac{\pi}{2} \cdot \frac{H-y}{H}\right) \\
& \begin{array}{l}
P_{s h}(y):=\operatorname{SRSS}\left(P_{i}, P_{c}(y)\right) \\
P_{s m}(y):=\operatorname{SRSS}\left(P_{\operatorname{sh}}(y), P_{v}(y)\right)
\end{array}
\end{aligned}
$$

Elephant Foot Buckling

$$
\begin{aligned}
& S_{1}:=\frac{R}{400 \cdot t_{s}} \\
& S_{1}=2.105 \\
& \sigma_{y e}:=\sigma_{y s} \\
& \sigma_{\text {ye }}=30 \cdot \mathrm{ksi} \\
& \sigma_{p}:=\frac{0.6 \cdot E_{s}}{\left(\frac{R}{t_{s}}\right)}\left[1-\left(\frac{P_{c p} \cdot R}{\sigma_{y e} \cdot t^{s}}\right)^{2}\right] \cdot\left(1-\frac{1}{1.12+S_{1} 1.5}\right) \cdot\left(\frac{S_{1}+\frac{\sigma_{y e}}{36 \cdot k s i}}{S_{1}+1}\right) \\
& \sigma_{p}=9079 \cdot p s i \\
& C_{B e}:=\sigma_{p} \cdot t_{s} \\
& C_{B e}=2587 \cdot \frac{\mathrm{Ib}}{\mathrm{in}}
\end{aligned}
$$

Diamond Shape Buckling

$$
\begin{aligned}
& \phi:=\frac{1}{16} \cdot \sqrt{\frac{R}{t_{s}}} \quad \phi=1.814 \\
& \gamma:=1-0.73 \cdot\left(1-e^{-\phi}\right) \quad \gamma=0.389 \quad \frac{P_{\mathrm{cm}}}{E_{s}} \cdot\left(\frac{R}{t_{s}}\right)^{2}=0.449
\end{aligned}
$$

$\Delta \gamma:=0.19 \quad$ Manually from Figure Figure 6 of NASA SP-8007 based on Pc-
$\sigma_{c b}:=(0.6 \cdot \gamma+\Delta \gamma) \cdot\left(\frac{E_{s}}{\left(\frac{R}{t_{s}}\right)}\right.$
$C_{B d}:=\sigma_{c b}{ }^{\cdot t} s$
$C_{B d}=4055 \cdot \frac{\mathrm{lb}}{\mathrm{in}}$
$C_{B}:=0.72 \cdot \min x\left(C_{B e}, C_{B d}\right)$
$C_{B}=1863 \cdot \frac{\mathrm{lb}}{\mathrm{in}}$

Compute Base Moment and Shear Capacity

$$
\begin{aligned}
& h_{a}:=28 \cdot \mathrm{in}^{\prime} \\
& \delta_{\mathrm{e} 0}:=0.01 \cdot\left(\mathrm{~h}_{\mathrm{a}}\right) \quad \delta_{\mathrm{e} 0}=0.28 \cdot \mathrm{in} \\
& \mathrm{~h}_{\mathrm{c}}:=10 \cdot \mathrm{in} \quad \text { Assumed, not sensitive } \\
& W_{\mathrm{te}}:=\left(W_{\mathrm{H}}+W_{\mathrm{s}}\right) \cdot\left(1-0.4 \cdot \frac{\text { Scale } \cdot \mathrm{A}_{\mathrm{v}}}{\mathrm{~g}}\right) \\
& C_{1}(\beta):=\frac{1+\cos (\beta)}{\sin (\beta)+(\pi-\beta) \cdot \cos (\beta)} \\
& C_{2}(\beta):=\frac{\sin (\beta) \cdot \cos (\beta)+\pi-\beta}{1+\cos (\beta)}
\end{aligned}
$$

$$
W_{t e}:=\left(W_{H}+W_{s}\right) \cdot\left(1-0.4 \cdot \frac{S c a l e \cdot A_{v}}{g}\right) \quad W_{t e}=50 \cdot \mathrm{kip}
$$

$$
\begin{array}{ll}
\beta 1:=1.800 \quad \text { Initial Guess } & \mathrm{N}_{\mathrm{b}}:=24 \\
\mathrm{i}:=1,2 . . \mathrm{N}_{\mathrm{b}} & \mathrm{~A}_{\mathrm{b}}:=3.140 \cdot \mathrm{in}^{2} \\
\alpha_{\mathrm{i}}:=\mathrm{i} \cdot \frac{360}{\mathrm{~N}_{\mathrm{b}}} \cdot \mathrm{deg} & \mathrm{~T}_{\mathrm{BC}}:=55.7 \cdot \mathrm{kip} \\
\delta_{\mathrm{e}_{\mathrm{i}}}:=\delta \mathrm{e} 0 \cdot \frac{\cos \left(\alpha_{\mathrm{i}}\right)-\cos (\beta 1)}{1-\cos (\beta 1)} & \mathrm{K}_{\mathrm{b}}:=\frac{\mathrm{A}_{\mathrm{b}} \cdot \mathrm{E}_{\mathrm{s}}}{\mathrm{~h}_{\mathrm{a}}}
\end{array}
$$

$T_{b_{i}}:=\operatorname{maxx}\left(\operatorname{minx}\left(\delta e_{i} \cdot K_{b}, T_{B C}\right), 0 \cdot k i p\right)$

$\beta=1.8$
$\delta_{c}:=\delta_{e 0} \frac{1+\cos (\beta)}{1-\cos (\beta)}$
$C_{m}:=\min x\left(\frac{E_{s} \cdot t_{s} \cdot \delta_{c}}{h_{c}}, C_{B}\right)$ $C_{m}=1863 \cdot \frac{\mathrm{lb}}{\mathrm{in}}$
$M_{S C}:=C_{m} \cdot C_{2}(\beta) \cdot R^{2}+\sum_{i} T_{b_{i}} \cdot R \cdot \cos \left(\alpha_{i}\right)$

$$
\begin{array}{ll}
M_{\mathrm{sc}}=21425 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
\text { COF }:=0.55 & \\
\mathrm{~W}_{\mathrm{ve}}:=\mathrm{W}_{\mathrm{te}}+\mathrm{P}_{\mathrm{a}} \cdot \pi \cdot R^{2} & \mathrm{~V}_{\mathrm{sc}}=1444 \cdot \mathrm{kip} \\
\mathrm{~V}_{\mathrm{sc}}:=\text { COF } \cdot \mathrm{W}_{\mathrm{ve}} & \text { Factor_of_Safety }=0.998 \\
\text { Factor_of_Safety }:=\operatorname{minx}\left(\frac{M_{\text {sc }}}{M_{\text {sh }}} \cdot \frac{V_{\text {sc }}}{V_{\text {sh }}}\right) & \text { Capacity: } \mathrm{S}_{\mathrm{Al}}=0.6 \cdot g
\end{array}
$$

Refueling Water Storage Tank, RWST 31, GIP Criteria, w/ Fluid Holddown

$$
\begin{aligned}
& R:=240 \cdot \text { in } \\
& H:=448 \text { in } \\
& H_{s}:=495 \cdot \mathrm{in} \\
& H_{d}:=78 \text { in } \\
& \mathbf{t}_{\mathbf{s}}:=0.285 . \mathrm{in} \\
& t_{h}:=0.1875 \cdot \text { in } \\
& t_{\mathrm{a}} \text { : }=0.215 \text { in } \\
& t_{b}:=0.1875 \cdot \text { in } \\
& \mathrm{E}_{\mathrm{s}}:=28300 \cdot \mathrm{ksi} \\
& v:=0.33 \\
& K:=316 \cdot k s i \\
& \sigma_{\mathrm{ys}}:=30 \cdot \mathrm{ksi} \\
& \sigma_{\text {us }}:=75 \cdot \mathrm{ksi} \\
& \text { Radius } \\
& \text { Fluid Height } \\
& \text { Shell Height } \\
& \text { Dome Height } \\
& \text { Shell thickness } \\
& \text { Head shell thickness } \\
& \text { Average shell thickness } \\
& \text { Bottom plate thickness } \\
& \text { Shell Young's modulus } \\
& \min x(x, y):=i f(x>y, y, x) \\
& \text { Poisson's ratio } \\
& \text { Water bulk modulus, Mark's Standard Handbook, 9th Ed., Table 3.3.2 } \\
& \text { Shell yield stress } \\
& \text { Shell ultimate stress } \\
& \sigma_{\mathrm{yb}}:=30 \cdot \mathrm{ksi} \\
& \sigma_{u b}=75 \cdot \mathrm{ksi} \\
& \text { Bottom plate yield stress } \\
& \text { Bottom plate ultimate stress } \\
& \gamma_{f}:=62.4 \cdot p c f \\
& \text { Fluid weight } \\
& \gamma_{\mathrm{s}}:=490 \cdot \mathrm{pcf} \\
& \rho_{f}:=\frac{\gamma_{f}}{g} \\
& \rho_{\mathrm{s}}:=\frac{\gamma_{\mathrm{s}}}{\mathrm{~g}} \\
& I_{b}:=\frac{t_{b}{ }^{3}}{12 \cdot\left(1-v^{2}\right)} \\
& I_{b}=0.000616 \cdot \mathrm{in}^{3} \\
& A_{V}:=0.10 \cdot \mathrm{~g} \quad 2 / 3 \mathrm{ZPA} \text { of ground spectra } \\
& \text { Scale }:=2.58 \quad \text { Spectral acceleration scale factor. Assumed, must iterate so that the } \\
& \text { demand } M_{\text {sh }} \text { is close to the capacity } M_{s c^{\prime}} \text { (factor of safety }=1.0 \text {) }
\end{aligned}
$$

Weight Summary

$$
\begin{array}{ll}
W_{H}:=\pi \cdot R \cdot \sqrt{R^{2}+H_{d}^{2} \cdot t^{\prime}} \cdot \gamma_{s} & W_{H}=10 \cdot \mathrm{kip} \\
X_{H}:=H_{s}+\frac{H_{d}}{2} & X_{H}=534 \cdot \mathrm{in} \\
W_{s}:=\pi \cdot 2 \cdot R \cdot t_{a} \cdot H_{s} \cdot \gamma_{s} & W_{S}=46 \cdot \mathrm{kip} \\
X_{s}:=\frac{H_{s}}{2} & \\
W_{W}:=\pi \cdot R^{2} \cdot H \cdot \gamma_{f} & W_{w}=2927 \cdot \mathrm{kip}
\end{array}
$$

Impulsive Mode

$$
\frac{t_{a}}{R}=0.0009 \quad \frac{H}{R}=1.867
$$

$C_{W I}:=0.09 \quad$ Frequency coefficient from Haroun and Housner (1981)
$C_{L I}:=C_{W} \cdot \sqrt{\frac{0.127 \cdot \rho_{\mathrm{s}}}{\rho_{\mathrm{f}}}}$
$C_{L I}=0.09$
$f_{1}:=\frac{C_{L I}}{2 \cdot \pi \cdot H} \cdot \sqrt{\frac{E_{s}}{\rho_{s}}}$
$f_{1}=6.268 \cdot \mathrm{~Hz}$
$0.8 \cdot f_{f}=5.014 \cdot \mathrm{~Hz}$
$1.2 \cdot f_{I}=7.521 \cdot \mathrm{~Hz}$
$\mathrm{S}_{\mathrm{AI}}:=0.24 \cdot \mathrm{~g} \quad$ From IP3 SSE Ground Spectra 5\% Damping, $\times(5 / 4)^{\wedge} 0.5$ to estimate 4\% damping
$\mathrm{S}_{\mathrm{Al}}:=$ Scale. $_{\mathrm{Al}} \quad \mathrm{S}_{\mathrm{Al}}=0.619 \cdot \mathrm{~g}$
$W_{1}:=\left\lvert\, \begin{array}{lll}\left(1-0.436 \cdot \frac{R}{H}\right) \cdot W_{W} & \text { if } & \frac{H}{R} \geq 1.5 \\ \left(0.764 \cdot W_{w}\right) & \text { if } & \frac{H}{R}<1.5\end{array}\right.$
$W_{1}=2244 \cdot \mathrm{kip}$
$x_{1}:=\left\lvert\, \begin{aligned} & {\left[\left(0.5-0.188 \cdot \frac{R}{H}\right) \cdot H\right] \text { if } \frac{H}{R} \geq 1.5} \\ & \left(0.304 \cdot H \cdot \frac{W_{w}}{W_{1}}\right) \text { if } \frac{H}{R}<1.5\end{aligned}\right.$

$$
X_{1}=178.9 \cdot \text { in }
$$

$$
\begin{array}{ll}
V_{1}:=\frac{S_{A I}}{g} \cdot\left(W_{H}+W_{S}+W_{1}\right) & V_{1}=1424 \cdot \mathrm{kip} \\
M_{1}:=\frac{S_{A I}}{g} \cdot\left(W_{H} \cdot X_{H}+W_{S} \cdot X_{s}+W_{1} \cdot X_{1}\right) & M_{1}=21570 \cdot \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Sloshing Mode

$$
\begin{aligned}
& f_{c}:=\sqrt{\frac{1.5 \cdot \frac{\mathrm{ft}}{\sec ^{2}}}{R} \cdot \tanh \left[1.835 \cdot\left(\frac{H}{R}\right)\right]} \quad \quad f_{c}=0.274 \cdot \mathrm{~Hz} \\
& S_{A C}:=0.100 \cdot \mathrm{~g} \quad \text { IP3 SSE Ground Spectra@ 0.5\% Damping at } 0.5 \mathrm{~Hz} \\
& S_{A c}:=\text { Scale } \cdot S_{A c} \quad S_{A c}=0.258 \cdot \mathrm{~g} \\
& W_{C}:=0.46 \cdot \frac{R}{H} \cdot \tanh \left[1.835 \cdot\left(\frac{H}{R}\right)\right] \cdot W_{W} \quad W_{C}=720 \cdot k i p \\
& X_{C}:=\left(1-\frac{\cosh \left(1.835 \cdot \frac{H}{R}\right)-1}{1.835 \cdot \frac{H}{R} \cdot \sinh \left(1.835 \cdot \frac{H}{R}\right)}\right) \cdot H \quad X_{C}=325.5 \cdot \mathrm{in} \\
& V_{c}:=\frac{S A c}{g} \cdot W_{C} \\
& M_{c}:=\frac{S A C}{g} \cdot W_{c} \cdot X_{c} \quad M_{c}=5037 \cdot k i p \cdot f t
\end{aligned}
$$

Vertical Mode

$$
\begin{aligned}
& f_{v}:=\frac{1}{4 \cdot H} \cdot\left[\rho_{f} \cdot\left(\frac{2 \cdot R}{t_{S} \cdot E_{s}}+\frac{1}{K}\right)\right]^{-\frac{1}{2}} \\
& f_{v}=7.288 \cdot \mathrm{~Hz} \quad \quad 0.8 \cdot f_{v}=5.831 \cdot \mathrm{~Hz} \quad 1.2 \cdot f_{v}=8.746 \cdot \mathrm{~Hz} \\
& S_{A v}:=0.15 \cdot \mathrm{~g} \quad 2 / 3 \text { Horizontal } 5 \% \text { Damping } x(5 / 4)^{\wedge} 0.5 \text { to estimate } 4 \% \text { damping } \\
& S_{A v}:=\text { Scale } \cdot S_{A v} \quad S_{A v}=0.387 \cdot g
\end{aligned}
$$

Demand

$$
\begin{array}{ll}
\operatorname{SRSS}(x, y):=\sqrt{x^{2}+y^{2}} & \\
V_{\text {sh }}:=\operatorname{SRSS}\left(V_{1}, V_{c}\right) & V_{\text {sh }}=1436 \cdot \mathrm{kip} \\
M_{\text {sh }}:=\operatorname{SRSS}\left(M_{1}, M_{C}\right) & M_{\text {sh }}=22150 \cdot \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Pressures

$$
\begin{aligned}
& y:=(H-198 \cdot i n), H . . H \\
& P_{s t}(y):=\gamma_{f} \cdot y \\
& P_{i}:=\frac{W_{1} \cdot X_{1} \cdot \frac{S_{\mathrm{AI}}}{g}}{1.36 \cdot R \cdot H^{2}} \\
& \mathrm{P}_{\mathrm{i}}=3.794 \cdot \mathrm{psi} \\
& P_{c}(y):=\frac{0.267 \cdot W_{w} \cdot \frac{S A c}{g}}{R \cdot H} \cdot \frac{\cosh \left[1.835 \cdot\left(\frac{H-y}{R}\right)\right]}{\cosh \left[1.835 \cdot\left(\frac{H}{R}\right)\right]} \\
& P_{v}(y):=0.8 \cdot \gamma_{f} \cdot H \cdot \frac{S A v}{g} \cdot \cos \left(\frac{\pi}{2} \cdot \frac{H-y}{H}\right) \\
& P_{s h}(y):=\operatorname{SRSS}\left(P_{i}, P_{c}(y)\right) \\
& P_{s m}(y):=\operatorname{SRSS}\left(P_{s h}(y), P_{v}(y)\right)
\end{aligned}
$$

y	$\mathrm{P}_{\text {st }}(\mathrm{y}$	${ }_{c}(\mathrm{y})$	$P_{v}(y)$	$P_{\text {sh }}(y)$	$\mathrm{P}_{\text {sm }}(\mathrm{y})$
in	psi	psi	psi	psi	psi
250	9.028	0.29	3.849	3.805	5.412
448	16.178	0.122	5.009	3.796	6.284

$$
\begin{array}{ll}
P_{c p}:=P_{s t}(H)+P_{s h}(H)+0.4 \cdot P_{v}(H) & P_{c p}=21.977 \cdot p s i \\
P_{c m}:=P_{s t}(H)+P_{s h}(H)-0.4 \cdot P_{v}(H) & P_{c m}=17.97 \cdot p s i \\
P_{\mathrm{tm}}:=P_{s t}(H)-P_{s h}(H)-0.4 \cdot P_{v}(H) & P_{t m}=10.379 \cdot p s i \\
P_{a}:=P_{s t}(H)-0.4 \cdot P_{v}(H) & P_{a}=14.174 \cdot p s i
\end{array}
$$

Elephant Foot Buckling

$$
\begin{aligned}
& S_{1}:=\frac{R}{400 \cdot t_{s}} \quad S_{1}=2.105 \\
& \sigma_{y e}:=\sigma_{y s} \quad \sigma_{y e}=30 \cdot \mathrm{ksi} \\
& \sigma_{p}:=\frac{0.6 \cdot E_{s}}{\left(\frac{R}{t_{s}}\right)} \cdot\left[1-\left(\frac{P_{c p} \cdot R}{\sigma_{y e \cdot t}}\right)^{2}\right] \cdot\left(1-\frac{1}{1.12+S_{1}^{1.5}}\right) \cdot\left(\frac{S_{1}+\frac{\sigma_{y e}}{36 \cdot k s i}}{S_{1}+1}\right)
\end{aligned}
$$

$$
\sigma_{p}=8989 \cdot p s i
$$

$$
C_{B e}:=\sigma_{p} \cdot t_{s}
$$

$$
C_{B e}=2562 \cdot \frac{\mathrm{lb}}{\mathrm{in}}
$$

Diamond Shape Buckling

$$
\begin{aligned}
& \phi:=\frac{1}{16} \cdot \sqrt{\frac{R}{t_{s}}} \quad \phi=1.814 \\
& \gamma:=1-0.73 \cdot\left(1-e^{-\phi}\right) \quad \gamma=0.389 \quad \frac{P_{\mathrm{cm}}}{\mathrm{E}_{\mathrm{s}}} \cdot\left(\frac{\mathrm{R}}{t_{\mathrm{s}}}\right)^{2}=0.45
\end{aligned}
$$

$\Delta \gamma:=0.19 \quad$ Manually from Figure Figure 6 of NASA SP-8007 based on Pc-
$\sigma_{c b}:=(0.6 \cdot \gamma+\Delta \gamma) \cdot \frac{E_{s}}{\left(\frac{R}{t_{s}}\right)}$

$$
\begin{array}{ll}
C_{B d}:=\sigma_{\mathrm{cb}} \cdot \mathrm{t} \mathrm{~s} & \mathrm{C}_{\mathrm{Bd}}=4055 \cdot \frac{\mathrm{lb}}{\mathrm{in}} \\
C_{B}:=0.72 \cdot \min \times\left(\mathrm{C}_{\mathrm{Be}}, \mathrm{C}_{\mathrm{Bd}}\right) & \mathrm{C}_{\mathrm{B}}=1844 \cdot \frac{\mathrm{lb}}{\mathrm{in}}
\end{array}
$$

Page B6 of B9

Fluid Hold Down Force

$$
\begin{aligned}
& P:=P_{s t}(H)-0.09 \cdot P_{s h}(H)-0.4 \cdot P_{v}(H) \\
& \text { Average pressure for fluid hold-down calculation } \\
& P=13.833 \cdot p s i \\
& \kappa:=\sqrt{\frac{R}{t s} \cdot \sqrt{3 \cdot\left(1-v^{2}\right)}} \\
& K=37.11 \\
& K:=\frac{E s_{s} s^{3}}{12 \cdot\left(1-v^{2}\right)} \\
& K=5105 \cdot \mathrm{lb} \cdot \mathrm{ft} \\
& K_{S}:=\frac{2 \cdot K \cdot K}{R} \\
& K_{s}=18944 \cdot \mathrm{lb} \\
& M_{F}:=\frac{R \cdot t_{s}}{\sqrt{12 \cdot\left(1-v^{2}\right)}} \cdot\left(1-\frac{R}{H \cdot \kappa}\right) \cdot P \\
& M_{F}=285 \cdot 1 \mathrm{~b} \\
& L:=1 \cdot \mathrm{in}, 2 \cdot \mathrm{in} . .30 \cdot \mathrm{in} \\
& F(L):=1+\frac{K_{s} \cdot L}{2 \cdot E_{s} \cdot I_{b}} \\
& T_{e}(L):=\left[\frac{L}{2}+\frac{1}{F(L)} \cdot\left(\frac{K_{s} \cdot L^{2}}{12 \cdot E_{s} \cdot I_{b}}+\frac{M_{F}}{P \cdot L}\right)\right] \cdot P \\
& M_{e}(L):=\left(\frac{1}{F(L)}\right) \cdot\left(\frac{K_{s} \cdot L^{3}}{12 \cdot E_{s} \cdot I_{b}}+\frac{M_{F}}{P}\right) \cdot P \\
& \delta e^{(L)}:=\left[\frac{L^{4}}{24}-\frac{1}{F(L)} \cdot\left(\frac{K_{S_{S}} \cdot L^{5}}{72 \cdot E_{S^{\prime}} \cdot b}+\frac{M_{F}}{P} \cdot \frac{L^{2}}{6}\right)\right] \cdot \frac{P}{E_{S^{1} b}} \\
& M_{p b}:=\min x\left(\sigma_{u s} \cdot \frac{t_{s}{ }^{2}}{4}, \sigma_{u b} \cdot \frac{t_{b}{ }^{2}}{4}\right) M_{p b}=0.659 \cdot \frac{k i p \cdot \text { in }}{i n} \\
& F_{H}:=\frac{\sigma y^{\cdot t} s}{2 \cdot k}+\frac{M_{p b} \cdot k}{R} \quad F_{H}=0.217 \cdot \frac{k i p}{i n} \\
& T_{m}(L):=\sqrt{4 \cdot M_{p b} \cdot P} \cdot \sqrt{1+\frac{F_{H^{\cdot}} e^{(L)}}{2 \cdot M_{p b}}}
\end{aligned}
$$

Job\# 96C2915
IP3 A-46 Outlier Resolution RWST-31

Calculation 96C2915-C001 A-46 Outlier Resolution Appendix B

Page B7 of B9
Revision 0
By AK 7/4/96 Chk. SA 8/26/96

		$T^{T} e^{(L)}$	$\mathrm{T}_{\mathrm{m}}(\mathrm{L})$
$\frac{L}{\text { in }}$	$\frac{\delta e^{(L)}}{\text { in }}$	$\left(\frac{16}{i n}\right)$	$\left(\frac{16}{\text { in }}\right.$)
1	-0.002	192.544	190.952
2	-0.002	84.588	190.902
3	-0.005	61.192	190.857
4	-0.008	56.456	190.835
5	-0.008	58.359	190.857
6	-0.008	63.245	190.947
7	-0.002	69.677	191.131
8	0.029	76.994	191.44
9	0.059	84.854	191.91
10	0.102	93.068	192.577
11	0.16	101.521	193.482
12	0.237	110.143	194.669
13	0.335	178.886	196.184
14	0.459	127.721	198.071
15	0.612	136.624	200.379
16	0.799	145.581	203.152
17	1.023	154.579	206.436
18	1.289	163.611	210.272
19	1.602	172.67	214.699
20	1.967	181.751	219.751
21	2.39	190.849	225.457
22	2.876	199.963	231.844
23	3.432	209.09	238.931
4	4.063	218.227	246.733
5	4.775	227.373	255.26
26	5.577	236.528	264.519
27	6.473	245.688	274.512
28	7.473	254.855	285.238
29	8.583	264.027	296.693
30	9.81	273.204	308.873

㢄

$\frac{T e^{(L)}}{\left(\frac{1 b}{i n}\right)}$
$\frac{T_{e 0+} \mathrm{T}_{\mathrm{e}} \cdot \delta \mathrm{d}(\mathrm{L})}{\left(\frac{\mathrm{lb}}{\mathrm{in}}\right)}$

$h_{\mathbf{a}}:=28 \cdot \mathrm{in}$
$\delta_{\mathrm{e} 0}:=0.01 \cdot\left(\mathrm{~h}_{\mathrm{a}}\right) \quad \delta_{\mathrm{e} 0}=0.28 \cdot \mathrm{in}$
$h_{c}:=10 \cdot$ in \quad Assumed, not sensitive

$$
\begin{aligned}
& \Delta T_{e}:=T_{e 1} \cdot \delta e 0 \\
& W_{\text {te }}:=\left(W_{H}+W_{S}\right) \cdot\left(1-0.4 \cdot \frac{\text { Scale } \cdot A_{v}}{g}\right) \\
& W_{\text {te }}=50 \cdot \mathrm{kip} \\
& C_{1}(\beta):=\frac{1+\cos (\beta)}{\sin (\beta)+(\pi-\beta) \cdot \cos (\beta)} \\
& C_{2}(\beta):=\frac{\sin (\beta) \cdot \cos (\beta)+\pi-\beta}{1+\cos (\beta)} \\
& C_{3}(\beta):=\frac{\sin (\beta)-\beta \cdot \cos (\beta)}{\sin (\beta)+(\pi-\beta) \cdot \cos (\beta)} \cdot \frac{1+\cos (\beta)}{1-\cos (\beta)} \\
& C_{4}(\beta):=\frac{\beta-\sin (\beta) \cdot \cos (\beta)}{1-\cos (\beta)} \\
& \beta 1:=1.64 \quad \text { Initial Guess } \\
& i:=1,2 . . N_{b} \\
& \alpha_{i}:=i \cdot \frac{360}{N_{b}} \cdot \operatorname{deg} \\
& \delta_{e_{i}}:=\delta_{e 0} \frac{\cos \left(\alpha_{i}\right)-\cos (\beta 1)}{1-\cos (\beta 1)} \\
& T_{b_{i}}:=\operatorname{maxx}\left(\operatorname{minx}\left(\delta_{e_{i}} \cdot K_{b}, T_{B C}\right), 0 \cdot k i p\right) \\
& \beta_{d}:=1.0,1.1 . .3
\end{aligned}
$$

$$
\begin{aligned}
& \beta=1.634 \\
& \delta_{c}:=\delta_{e} \cdot \frac{1+\cos (\beta)}{1-\cos (\beta)} \\
& C_{m}:=\operatorname{minx}\left(\frac{E_{s} \cdot t_{s} \cdot \delta_{c}}{h_{c}}, C_{B}\right) \quad C_{m}=1844 \cdot \frac{\mathrm{lb}}{\text { in }} \\
& M_{s c}:=C_{m} \cdot C_{2}(\beta) \cdot R^{2}+\sum_{i} T_{b_{i}} \cdot R \cdot \cos \left(\alpha_{i}\right)+T_{e 0} \cdot R^{2} \cdot 2 \cdot \sin (\beta)+\Delta T_{e} \cdot C_{4}(\beta) \cdot R^{2} \\
& M_{s c}=23148 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
& \text { COF : }=0.55 \\
& W_{\text {ve }}:=W_{\text {te }}+P_{a} \cdot \pi \cdot R^{2} \\
& \mathrm{~V}_{\mathrm{sc}}:=\mathrm{COF} \cdot \mathrm{~W}_{\mathrm{ve}} \\
& V_{\text {sC }}=1438 \cdot \mathrm{kip} \\
& \text { Factor_of_Safety }:=\operatorname{minx}\left(\frac{M_{s c}}{M_{s h}}: \frac{V_{s c}}{V_{s h}}\right) \\
& \text { Factor_of_Safety }=1.002 \\
& \text { Capacity: } \mathrm{S}_{\mathrm{Al}}=0.619 \cdot \mathrm{~g}
\end{aligned}
$$

