

Attacking critical infrastructures Behind the scenes

Maarten Oosterink

maarten.oosterink@capgemini.com m00st on Twitter

Allow me to introduce myself

Maarten Oosterink

IT security consultant at Capgemini Expert / advisor at CPNI.NL (cybersecurity and process control security) maarten.oosterink@capgemini.com or @m00st

Raised alongside computers, started using them in the pre-PC era and used modems when autodial was a feature. Exploring the boundaries of technology ever since..

2000: IT manager at Vuurwerk Internet (largest Dutch hosting provider at the time)
2001: BOFH and later interception specialist at Netherlands Forensic Institute
2005: Consultant at Capgemini
2008: Process Control Security at oil major
Now: Expert / Advisor for Dutch Centre for Protection of National Infrastructure

FOX-IT

CPNI.NL

How does all this work?

PROCESS CONTROL INTRODUCTION

How does this work?

- Programmable Logic Controllers communicate with sensors, actuators via discrete channels or specific networks (Profibus, Fieldbus, WirelessHART)
- PLCs communicate with Human Machine Interface (HMI) and DCS servers for providing status and control
- Servers 'control' a complex process interfacing with one or more PLCs and interface (in)directly with IT systems (e.g. ERP, SAP, optimisation tools)
- Interface between IT systems and process control mostly via historian (Pi, PHD, Wonderware)
- Safety Integrity Systems operate separate from the control systems, with fixed boundaries. Engineered to bring process to a safe state (Fukishima)

Level 1

Level 2

Level 3

Level 4

Image credit: Stefan Esser

What's the situation

TIME FOR A QUIZ..

- System lifecycle is:
- A. 25 years
- B. 10 years
- C. 5 years
- D. All of the above

We use Windows systems because:

- A. They are cheap
- B. They have open standards
- C. We know them from home
- D. All of the above

Our systems run:

- A. Windows 2000 workstation
- B. Windows XP
- C. Windows Vista Home Premium
- D. All of the above

- Systems are patched:
- A. During install, FAT, SAT and commissioning
- B. Following plant maintenance cycles (every 1, 2 or 4 years)
- C. Every 2nd Tuesday of the month
- D. Never

- Applications are patched:
- A. As soon as vendor notification is received
- B. Following plant maintenance cycles (every 1, 2 or 4 years)
- C. Never
- D. When the sales guy calls about upgrades

- IT Systems are maintained by:
- A. The IT department
- B. Your local engineer/operator
- C. The vendor
- D. None of the above

The process control landscape

(UN)COMMON TECHNOLOGY

(Un)common technology

(Un)common mitigations

No CD-Rom drive

Hardening		Limit physical access	Application whitelisting		
Only essential OS parts		Malware Protection			
Choose correct PC model		Disable USB ports	Anti-virus	Host based fir	ewall / IDS
	MBSA tool	Microsoft WSUS			
Awareness		atching	Incident Detection		
Security training ^{Purdue model}	Vendor maintenance contracts Follow local permit to work system		& Response		CIENA
Staging (Citrix) Network Architecture Intrusion Detection System					
FirewallsNetwork segregationApplication aware firewalls			Security Operations Centre		

Peeling the layers

DISMANTLING STUXNET

Stuxnet's journey to success

Day 0

Infection

Propagation

Payload

Stuxnet Conclusions

The Good

- 4x 0-day for relevant systems (Windows XP and Vista)
- Designed for industrial environment: USB and S7P propagation to jump air-gap and RPC to jump L3 to L2
- Code is better than the code being abused

The Bad

- Initial hand-off got out of hand (AtomStroyExport)
- Did the four star general really want all this attention?

This presentation was about attacking critical infrastructure?

ATTACK VECTORS

Attack vectors

Human Factor

- Night shifts and remote locations
- Computers like home
- Cold and noisy auxiliary rooms
- Poor IT skills
- Third party engineers / vendor maintenance

Attack vectors

Procedural

- Low patch frequency
- Manual patching
- Backups on removable drives
- Company IT policy doesn't fit

Attack vectors

Technological

- 90s networking (design and technology)
- Badly configured and maintained firewalls, ACLs
- IDS maturity (signatures), no security monitoring
- Control bus (Level 2) uses custom high-availability protocols.
 'Not so robust' Windows driver implementation
 - Yokogawa Vnet/IP
 - Honeywell FTE
 - Invensys Nodebus
- OSI layers 5 to 7 (as researchers get better access)

Are you done?

Take-aways

Pretty common technology (together with some ancient stuff)

The industry has a hard time taking on the other chores than come with modern IT

Attacks move up the OSI stack, but proprietary network protocols are of interest..

