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Abstract. This paper presents deep learning techniques for audio-based bird 

identification at very large scale. Deep Convolutional Neural Networks 

(DCNNs) are fine-tuned to classify 1500 species. Various data augmentation 

techniques are applied to prevent overfitting and to further improve model accu-

racy and generalization. The proposed approach is evaluated in the BirdCLEF 

2018 campaign and provides the best system in all subtasks. It surpasses previ-

ous state-of-the-art by 15.8 % identifying foreground species and 20.2 % con-

sidering also background species achieving a mean reciprocal rank (MRR) of 

82.7 % and 74.0 % on the official BirdCLEF Subtask1 test set. 

Keywords: Bird Species Identification, Biodiversity, Deep Learning, Deep 

Convolutional Neural Networks, Data Augmentation. 

1 Introduction 

A system for audio-based bird identification has proven to be particularly useful for 

biodiversity monitoring and education. It can help professionals working with bioa-

coustic sounds by processing large audio collections in a fast and automated way. Or 

help amateurs to identify birds in self-made recordings. The LifeCLEF bird identifica-

tion task challenges participants to identify different bird species in a large collection 

of audio recordings provided by Xeno-Canto [1]. The number of training files as well 

as the number of species to identify constantly grew over the last few years. Starting 

with 501 species in 2014 the number was doubled in 2015. Since 2016 there are 1500 

different species to identify in the test sets. An overview and further details about the 

BirdCLEF tasks are given in [2]. They are among others part of the LifeCLEF 2018 

evaluation campaign [3]. 

Distinguishing between so many different birds is a challenging fine-grained classifi-

cation problem. Until 2016, the best system used template matching of small sound 

elements combined with a large number of acoustic features and a random forest en-

semble learning method for classification [4],[5]. With the rise of deep learning, since 

2016, the best systems are based on convolutional neural networks [6],[7]. The ap-

proach described in this paper also uses neural networks and deep learning. It is build-

ing on the work of previous solutions to the task and combines proven techniques 

with new methods, especially regarding data preparation and augmentation. 



2 Implementation Details and Model Training 

Data Preparation 

 

Audio files provided in the training and test sets are not only of different duration and 

quality, they also have different formats regarding sample rate, bit depth and number 

of channels. In a first step, two data sets are formed with homogeneous file properties. 

For the first set all files are resampled to 44.1 kHz followed by normalization to a 

maximum signal amplitude of -3 dB. For a second set all files are first high pass fil-

tered at a frequency of 2 kHz (Q = 0.707), resampled to 22050 Hz, mixed to mono 

and finally also normalized to -3 dB. The training set is augmented by additionally 

extracting 381 audio files using the time coded annotation of species in the metadata 

of the newly provided soundscape validation set. All files belonging to the training set 

are further processed to create additional data sets with different content described 

more detailed below: 

 BirdsOnly  

 NoiseOnly 

 AtmosOnly 

 LowQuality 

Via segmentation, the audio content of each training file is separated in signal and 

noise parts. Segmentation is done in frequency domain applying image processing 

methods like median clipping [8] and further morphological operations on the spec-

trogram image to extract individual sound events. The method was already success-

fully used in previous bird identification tasks amongst others to extract segments for 

feature engineering via template matching [4,5,9]. The position of audio segments in 

time can be used to divide an audio file into signal parts, representing bird call or song 

elements, and noise parts, representing background sounds or noise. One data set is 

formed by concatenating all frames of a file belonging to bird sounds (BirdsOnly) and 

another one by concatenating all frames belonging to background sounds (NoiseOn-

ly). Since the noise files are created by concatenating small parts, sometimes only a 

few milliseconds in duration, taken from various positions of the original source file, 

they can have rapid changes in amplitude and frequency. To get a more realistic set of 

background atmosphere a third data set (AtmosOnly) is formed using and concatenat-

ing only parts consisting of longer sequences of successive frames related to noise 

with an overall duration greater than one second. This set is significantly smaller 

compared to the other sets since most files don’t have parts without birds singing for a 

longer period of time.  

Many recordings from the community-based online platform Xeno-Canto are created 

by amateurs with non-professional equipment. To simulate low quality or highly 

compressed recordings a fourth data set (LowQuality) has been created by encoding 

all training files to MP3 with a low target bit rate (lame parameter: -V7) and decoding 

them back to WAV format afterwards. 



 

For model evaluation the training data is split into training and validation sets. This is 

done by creating 8 stratified folds. For model training only three of them are actually 

used with individual validation sets of ca. 10 to 20 percent of the training set. To get a 

more realistic estimation of model performance validation sets are created with re-

spect to bird individuals. An IndividualID was assigned to each audio file in order to 

achieve all files belonging to the same bird are either part of the training or the valida-

tion set. Files got the same unique IndividualID if they belong to the same class and 

were recorded by the same author at the same day.  

Training Setup 

 

For audio-based bird identification DCNNs are trained via PyTorch [10]. Different 

models pre-trained on the ImageNet data set are fine-tuned with spectrogram images 

representing short audio chunks. For audio file reading and processing the PySound-

File and librosa [11] python packages are utilized. The basic data loading pipeline can 

be summarized as follows: 

 extract audio chunk from file with a duration of ca. 5 seconds  

 apply short-time Fourier transform 

 normalize and convert power spectrogram to decibel units (dB) via logarithm 

 convert linear spectrogram to mel spectrogram 

 remove low and high frequencies  

 resize spectrogram to fit input dimension of the network  

 convert grayscale image to RGB image 

In each training epoch all training files are processed in random order to extract audio 

chunks at random position. Training is done with a batch size of ca. 100 - 200 sam-

ples using either 2 or 3 GPUs (Nvidia Geforce 1080 and 1080 Ti). Categorical cross 

entropy is used as loss function considering only foreground species as ground truth 

targets. Stochastic gradient descent is used as optimizer with Nesterov momentum of 

0.9, weight decay of 1e-4 and an initial learning rate of 0.01. Learning rate is de-

creased during training by ca. 10
-1

 in 3 to 4 steps until 0.0001 whenever performance 

on the validation set stopped improving.  

 

Validation and post-processing for submission. For the validation and test set audio 

chunks are extracted successively from each file and channel (if not mono) with an 

overlap of 10 % for validation files during training and 80 % for files in the test set. 

Predictions are averaged for each file (Subtask1: monophone recordings) and time 

interval (Subtask2: soundscape recordings) by taking the mean over all chunks and 

channels. To emphasize chunks with higher prediction values, suggesting a more 

confident identification, all predictions are squared before taking the mean. A similar 

technique called mean exponential pooling is employed in the baseline system pro-

vided by [12] this year. 

If species composition is known in advance, e.g. based on knowledge about recording 

habitat or time, removing predictions of unlikely species can further improve identifi-



cation performance. To exploit this fact, predictions of species, not part of data sets in 

previous years, are removed for corresponding files of the validation and test sets. 

Other metadata besides year of recording or data set membership is not utilized and 

none of the provided metadata is used for model training. 

Data Augmentation 

 

Various data augmentation techniques are employed to prevent overfitting and im-

prove model accuracy. The following augmentation methods are applied in time do-

main regarding audio chunks: 

 use files from different data sets (Original, BirdsOnly, LowQuality) 

 extract chunks from random position in file (wrap around if end of file is reached 

and continue reading from beginning) 

 apply jitter to duration (ca. ± 0.5 s) 

 add 2 audio chunks from random files of the NoiseOnly set 

 add 2 audio chunks from random files of the AtmosOnly set 

 add 2 audio chunks from random files belonging to the same bird species 

 apply random factor to signal amplitude of all chunks before summation 

 apply random cyclic shift 

 skip random number of samples (time interval dropout) 

 reconstruct audio signal by summing up individual sound elements 

Some of the above mentioned techniques were used before in previous BirdCLEF 

tasks for example adding background noise or sounds from other files belonging to 

the same bird class with random intensity [6,13,14]. Applying cyclic shift to the sam-

ple array by a random amount was also employed by [6] and has the same effect as 

cutting the audio chunk in two pieces at random position and switching their order 

[14]. However, some techniques from the above list were not used previously: 

 

Time interval dropout. With a chance of ca. 30 % a random number of samples 

corresponding to a time interval between zero and the duration of an entire chunk are 

skipped at random time when reading from the audio file. 

 

Reconstruction via sound elements with dropout. With a chance of ca. 30 % the 

audio chunk is (re)constructed using the information extracted in the segmentation 

preprocessing step. Single sound elements are cut from the audio file, multiplied by a 

short fade in and out envelope, band pass filtered and summed up to recreate the orig-

inal audio signal. With this procedure it is possible to vary position and length of each 

sound event individually by adding a small offset to its starting time or by applying a 

small amount of time stretching to it. Furthermore sound element dropout can be im-

plemented by choosing some elements to be skipped and not added to the audio signal 

sum. 

 



 

All above described operations are performed in time domain. The final audio chunk 

is than transformed to frequency domain by applying a short-time Fourier transform. 

Different FFT parameters are used depending on the sample rate and whether fre-

quencies are chosen to be linear or mel scaled. Normalization and logarithm is applied 

yielding a dynamic range of approximately 100 dB. Low and high frequencies are 

removed to get a spectrogram representing a frequency range of about 150 to 10500 

Hz. Furthermore the spectrogram is resized to fit the input dimension of the DCNN 

used for training (e.g. 299x299 pixels for InceptionV3 [15]). Since all networks were 

pre-trained with RGB images the grayscale image is duplicated to all three color 

channels. Further augmentation is applied in frequency domain to the spectrogram 

image: 

 pitch shift & frequency stretch by removing additional high and low frequency 

bands (random number of the first 10 and last 6 rows of the image are cut) 

 piecewise time stretch by resizing random number of columns at random position 

 piecewise frequency stretch by resizing random number of rows at random position 

 use different interpolation filters for resizing 

 apply color jitter (brightness, contrast, saturation, hue) 

Pitch or frequency shifting and stretching was previously applied in similar ways by 

e.g. [7] and [16]. 

 

Piecewise time stretch. Besides manipulating the duration or speed of an entire audio 

chunk, time stretching is also applied piecewise with a 50 % chance to change speed 

at multiple times within a chunk. This is accomplished by dividing the spectrogram 

image in several vertical pieces, each having a width randomly chosen between 10 

and 100 pixel. Then, pieces are resized individually by a factor randomly chosen be-

tween 0.9 and 1.1 along the horizontal (time) axis.  

 

Piecewise frequency stretch. The same procedure is applied in an analogous way to 

the frequency axis with a 40 % chance and a stretch factor between 0.95 and 1.15.  

 

Random choice of interpolation filter. For resizing, the high-quality Lanczos filter 

of the Python Imaging Library is used by default. However in 15 % of the cases a 

different resampling filter is chosen from the library with equal chance: Nearest, Box, 

Bilinear, Hamming and Bicubic. 

 

As a last augmentation step color jitter is applied to the final spectrogram image. This 

is a very common method during training for image classification (e.g. ImageNet). 

Brightness, contrast and saturation of the spectrogram image are slightly varied (fac-

tor 0.3) as well as hue (factor 0.01). Color jitter was also used by [7]. 

 

Table 1 demonstrates the effect of augmentation on model performance. All models in 

the table are trained using the same parameter settings (if not mentioned otherwise) 

with a learning rate of 0.01 until performance on the validation set stopped improving 

(ca. 200 epochs). The first two models in the table show a MRR gain of almost 10 % 



for using no augmentation at all compared to applying all above described techniques. 

For the other models augmentation methods are separately turned off to show their 

individual influence. The greatest impact on identification performance is gained by 

adding background noise from the NoiseOnly and AtmosOnly sets. The least influence 

is achieved by randomly choosing chunks from the LowQuality set leading even to a 

better MRR score if this method is turned off. 

Table 1. Influence of augmentation methods on identification performance.  

Settings MRR [%] 

Without augmentation 65.538 

Complete augmentation 74.466 

Without adding NoiseOnly and AtmosOnly chunks 67.893 

Without adding AtmosOnly chunks 72.696 

Without adding NoiseOnly chunks 73.186 

Without piecewise time and frequency stretch 73.681 

Without time interval dropout 73.825 

Without using BirdOnly chunks 73.848 

Without reconstruct via sound elements 73.853 

Without color jitter 73.984 

Without adding same class chunks 74.098 

Without duration jitter 74.105 

Without using LowQuality chunks 74.533 

Table 2 shows the impact of using different post-processing methods to get a file-

based (or for Subtask2 a file and time interval based) prediction for each species. The 

default method uses 5 seconds chunks with an overlap of 10 %. Predictions are sum-

marized for each file by simply averaging all chunk predictions. Better identification 

results are achieved by squaring chunk predictions before taking the mean, using 

more chunks with larger overlap and removing predictions of species known to be not 

present in a recording. 

Table 2. Influence of post-processing methods on identification performance.  

Settings MRR [%] 

Default post-processing 74.466 

Predictions squared before averaging 75.788 

Pred. squared & 80 % overlap of chunks 75.904 

Pred. squared & 80 % overlap & unlikely species excluded 77.540 



 

3 Results 

For the first run different models were used for Subtask1 and Subtask2 whereas for 

runs 2, 3 & 4 the same models or ensemble of models were used for both subtasks. 

The main properties of models for the first 3 runs are listed in table 3. Results on the 

official BirdCLEF test sets are summarized in table 4. 

 

Table 3. Main properties of models used for submitted runs 1-3. 

Model ID M1 M2 M3 

Included in run 1, 2, 3, 4 1, 2, 3, 4 3, 4 

High pass filtered Yes No Yes 

Sample rate [Hz] 22050 44100 22050 

Number of channels mono multi mono 

Chunk duration [s] 5 5 6 

Duration jitter [s] 0.45 0.45 0.5 

FFT size [samples] 1024 4096 1536 

FFT hop size [samples] 256 512 384 

Lowest frequency [Hz] 160 160 160 

Highest frequency [Hz] 10300 11000 1100 

Frequency scaling Mel Mel Mel 

Number of mel bands 256 256 310 

Network architecture InceptionV3 InceptionV3 InceptionV3 

Image input size [pixel] 299x299 299x299 299x299 

Validation fold 7 7 6 

Validation MRR [%] 77.63 77.58 76.37 

 

Run 1 

A single model was trained for each subtask (M1 for Subtask1, M2 for Subtask2) by 

fine-tuning pre-trained InceptionV3 networks with mel spectrograms of 5 seconds 

audio chunks as inputs. Models M1 and M2 mainly differ in the pre-processing of 

audio files and choice of FFT parameters (see table 3). For Subtask1 pre-filtered, 

mono audio files were used with a sample rate of 22050 Hz. For Subtask2 audio files 

were not filtered or mixed down to mono. 

Run 2 

For the second run an ensemble of the two models from the first run was used for both 

subtasks by averaging their predictions. Furthermore predictions of new species were 

removed for recordings belonging to older BirdCLEF data sets. 



Run 3 

For this run a third model (M3) was added to the ensemble of models from the previ-

ous runs. M3 used 6 seconds audio chunks, a larger number of mel bands and slightly 

different FFT parameters (see table 3). It was trained on a different training/validation 

split than M1 and M2. Furthermore predictions of the two best snapshots per model 

(regarding performance on the validation set) were chosen for averaging instead of 

just one, resulting in 6 predictions per species and file for Subtask1 (or file and time 

interval for Subtask2). For this and the next run, unlikely species were also removed 

for older recordings.  

Run 4 

Again all models and snapshots from the previous runs were reused plus two addi-

tional snapshots per model. Furthermore snapshots of 4 models created in an earlier 

phase were added to the ensemble. Those early models were trained using spectro-

gram images with linear instead of mel frequency scaling and did not have the later 

developed piecewise time and frequency stretch augmentation. One of the models was 

trained by fine-tuning a SENet154 network [17] with input dimension of 224x224 

pixel. Although performing worse on the validation set (MRR: 72.7 – 75.8 %) com-

pared to the models used in the first three runs, adding those early models to the en-

semble still helped to raise identification performance in both subtasks. 

 

Table 4. Official scores on the BirdCLEF 2018 test sets. 

Run #Models #Snap-

shots 

MRR Subtask1 [%] 

(main species only) 

MRR Subtask1 [%] 

(+ background species) 

c-mAP Subtask2 [%]  

(soundscapes) 

1 1 1 78.0 (M1) 69.6 (M1) 14.3 (M2) 

2 2 2 81.5 72.8 18.1 

3 3 6 82.3 73.7 18.7 

4 7 18 82.7 74.0 19.3 

 

Figure 2 and 3 compare scores of all submissions to the BirdCLEF 2018 subtasks. 

The above described approaches provided best systems for both, identifying birds in 

monophone and soundscape recordings. More results and evaluation details can be 

accessed via the BirdCLEF 2018 webpage [18] and the crowdAI leaderboards [19], 

[20]. 

 



 

 

Fig. 1. Official scores of the BirdCLEF 2018 “Subtask1: monophone recordings” bird identi-

fication task. The above described methods and submitted runs belong to MfN. 

 

 

 

Fig. 2.  Official scores of the BirdCLEF 2018 “Subtask2: soundscape recordings” bird identi-

fication task. The above described methods and submitted runs belong to MfN. 



4 Discussion 

In the following paragraph some insights are summarized about what worked and 

what did not work so well during the experiments and processing of the task. Alt-

hough low frequencies are discarded, pre-process the audio files by applying a soft 

high pass filter led to slightly better identification results. Also mel spectrograms 

performed better compared to spectrograms with linear frequency scaling.  

The best network for the task seemed to be the InceptionV3 architecture. Other net-

works were also tested for a few training epochs (ResNet152, DualPathNet92, Incep-

tionV4, DensNet, InceptionResNetV2, Xception, NasNet). But even the more recent 

or larger architectures that are superior in other image classification tasks could not 

meet the performance of the InceptionV3 network with attention branch. Of course 

that doesn’t mean that other networks are not potentially able to give better results 

with the proper tuning.  

For model training extracting audio chunks at random position on the fly worked 

better than using pre-sliced, overlapping chunks. Squaring predictions of chunks be-

fore taking the mean was beneficial when summarizing the results per file or time 

interval.  

It proved to be a good decision to create training and validation splits with respect to 

bird individuals recorded over several files. For Subtask1 the MRR scores were in 

most cases even better on the test set than on the validation set.  

If species composition is known in advance based on knowledge about habitat or 

recording season and time, removing unlikely species leads to less confusion and 

significantly helps classification. It would be interesting to see to what extent identifi-

cation performance can be even further improved if metadata was additionally used 

and incorporated into the training process. 

Augmentation prevents overfitting and strongly improves accuracy of models or 

model ensembles. A few techniques were adapted from previous work and could be 

successfully complemented with some new approaches. In an extra experiment it was 

tried to show their individual influence by turning them off one by one. Another may-

be even better approach would have been to start from the model without augmenta-

tion and turning them on individually. For example the impact of duration jitter can-

not be really verified if piecewise time stretching is also applied.  

Some augmentation methods did not work as well as expected like e.g. deliberately 

degrading the audio quality. Nevertheless it still might be a beneficial training strate-

gy if the model is deployed for bird recognition on mobile or embedded devices 

where recordings need to be highly compressed because of energy and storage con-

strains.  
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