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Abstract. With crime migrating to the web, the detection of abusive
robotic behaviour is becoming more important. In this paper, we pro-
pose a new audio CAPTCHA construction that builds upon the Cocktail
Party problem (CPP) to detect robotic behaviour. We evaluate our pro-
posed solution in terms of both performance and usability. Finally, we
explain how to deploy such an acoustic CAPTCHA in the wild with
strong security guarantees.
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1 Introduction

ARPANET, a precursor to the modern Internet, was first presented to the public
in 1972 at International Computer Communication Conference [37]. A revolu-
tionary application appeared the same year — the email software. It was the
first application for people-to-people communication on scale and remained the
largest network application for over a decade. A lot has changed since then — a
large proportion of the world is now connected and more and more devices are
produced with built-in networking capability.

By 1998 it became apparent that criminals have found a way to use connectivity
to their advantage [16] and since then the war with spam has begun [25]. Com-
puter abuse, ranging from spam and identity theft to cyberbullying, is a common
occurrence in the modern world — by now it inhabits all modern platforms and
is largely commoditised [38, 45, 30, 6]. It also scales, as abusers have figured out
ways to automate their enterprises.

Completely Automated Public Turing Test To Tell Computers and Humans
Apart (CAPTCHA) was created to stop automatic computer service abuse. All
CAPTCHASs operate on a simple principle — they use problems that humans are
good at and computers struggle to solve. Modern CAPTCHASs are ubiquitous
and come in all forms and shapes. Most of them exploit the human ability to
recognise objects even when only partial information is available.
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When first introduced, CAPTCHAs were simple and imposed low usability costs.
So long as image-recognition technology was primitive and Internet crime was
still in its infancy, distorted images were sufficient to stop most robots. But
as more commerce moved online and CAPTCHA solving was suddenly worth
money, solving services started appearing — e.g. anticaptcha [44]. In fact, anti-
captcha was so popular and so widely used in Russian underground forums, that
at one point people started to use its credit as a currency.

Today machine learning software is getting good at image recognition and sys-
tems are forced to use many additional markers to identify human behaviour.
For example, Google, amongst other things, monitors cursor movement exten-
sively to find automatic behaviour. However, such techniques impose a usability
cost: instead of having to solve one simple task as in the early days, today people
may be asked to solve a whole series of problems and are not usually given any
feedback on why the system doubts their humanity.

Moreover, behavioural factors like cursor tracking are not themselves sufficient
to limit automatic computer service abuse; CAPTCHA itself has to evolve too.
Abusers collect data over time, allowing them to simulate human-like behaviour
and find heuristics to solve tasks that were once hard for them. That, in turn,
means that for CAPTCHA to be effective it has to evolve at least as fast as the
attacker.

In this paper, we propose a new way to detect robots based on our human ability
to separate overlapping human voices — referred to by psychologists as the Cock-
tail Party Problem. We evaluate our CPP CAPTCHA’s performance against
the best speech transcribers available currently and run several user studies to
explore its usability costs. We discuss it’s implications and investigate the naive
attack performance. Finally, we describe how to run a cocktail-party CAPTCHA
in the real world, and explore security guarantees.

We need new types of defences, and this paper presents one possibility. The
remainder of this paper is structured as follows. Section 2 tells the story of
CAPTCHASs and describes how our proposal relates to previous work in the field.
Section 3 describes the necessary background information and describes con-
ducted experiments. Section 4 evaluates the performance of our audio CAPTCHA
mechanism in terms of both usability and protection. Finally, Section 5 explains
how one can use it in practice.

2 Related Work

CAPTCHA was invented by von Ahn and Blum, and started being used at scale
by websites which were happy for anyone to open an account (e.g. for webmail
service) but did not want to let scripts open thousands of accounts [58]. The
earliest CAPTCHASs involved reading text from distorted images, but a short
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time later, the first non-visual CAPTCHAS were introduced [34, 58].

There is a substantial literature on visual CAPTCHAs and automated algo-
rithms used to break them, with an arms race proceeding through the 2000s [7,
13]. Audio CAPTCHASs were much less used in those early days (e.g. for visually
impaired users) and were initially evaluated only for their usability [54, 36]; later
they too became the target of attacks [56].

There have been attempts to combine visual and audio CAPTCHAs [29], where
either the visual stimuli (images of an animal) or the auditory stimuli (animal
sounds) can be recognised; other studies used bird noises and claimed promising
results [48]. Another thread of research in the field of psychology exploited the
mechanism of background speech, impairing short-term memory performance
[20]. CAPTCHA designers have also attempted introducing cognitive complexity.
Tam et al. proposed paraphrasing the question or answer to make life more
difficult for machines, while still allowing humans to use contextual insight to
solve the problem [56].

3 Methodology and Background
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Fig.1: reCAPTCHA process

3.1 What is a modern CAPTCHA?

Modern CAPTCHASs are trying to balance out four main objectives. First, a
CAPTCHA must be solvable for humans; second, a CAPTCHA must be hard
for robots to solve; third, it should be hard for the robots to collect system
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feedback; and fourth, a CAPTCHA should be able to evolve with little change
to the overall experience. These objectives are further discussed below.

Human usability with images and audio Human handling of different types
of noise is a well-understood problem, especially in the image classification do-
main [47, 5, 23]. For example, Geirhos et al. investigated human performance for
an object detection task and compared it to the state of the art Deep Neural
Networks (DNNs) [23]. Authors find that additional noise degraded performance
for both humans and DNNs, but human performance degraded at a lower rate. It
should be noted that DNNs were not exposed to the transformations considered
by the authors in the training phase. Similarly, human comprehension of speech
is well researched [27,46]. Humans non-linearly weight frequencies of acoustic
signals and are better at distinguishing lower frequencies [42]. In practice, that
means that humans can comprehend speech quite well, especially if the signal-
to-noise (SNR) ratio in lower parts of the spectrum is large enough. It was also
found that phase plays an equally important role in human understanding, par-
ticularly in low SNR settings [32, 51]. Usability impacts of different CAPTCHA
designs have been thoroughly evaluated both in terms of human solution ac-
curacy and response time [12,48,59,60]. Additionally, anecdotal evidence was
presented that even simple CAPTCHAS can drive legitimate users away [21].

Robot usability It is not clear what makes a problem hard. von Ahn and
Blum, original creators of CAPTCHA, have defined an AI problem to be hard ‘if
the people working on it agree that it’s hard’ [2]. They argue that this definition
captures the reality, and compare it to canonical cryptographic definitions, where
cipher constructions are based on problems that are known to be hard.

Robot data collection As more data gets harvested it becomes easier to use
machine learning tools to automatically find solutions for CAPTCHAs. There
are multiple ways to make learning harder for the attacker. First, the amount
of unique data exposed to the attacker can be reduced. That can be done by
supplying the same sample to the attacker, but with varying transformation on
top of it. With features of just one sample present, it would learn to recognise
that sample, rather than to generalise to a task. Second, noise can be added to
the interaction with the CAPTCHA. This additional randomness could affect
the convergence of the attacker. Randomness could come in different forms:
supplying a sample from a completely different task and observing performance;
or randomly passing or failing him. This randomness could also be controlled
for a more complex interaction. By adding a skip button, one directly reduces
the chances of getting a correct answer and allows for asking of an incorrect
question. What is more, there is no simple way to go around it. An attacker
needs to add a classifier to the overall system and learn it separately. That
is because the skip button cannot be proxied using classification confidence,
which was previously shown to be an ineffective metric across tasks [19, 28].
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Furthermore, by also asking two CAPTCHAs at the same time an attacker
would struggle with attributing errors to made predictions. Finally, data could
be supplied to the attacker with pre-defined bias, such that the attack would
learn a backdoor [3,39]. Ultimately, the interaction with an attacker should not
be thought of as many individual interactions, but rather it should be viewed as
a sequence of decisions.

CAPTCHA evolution It is always a matter of time until CAPTCHA becomes
solvable. In practice, that means that CAPTCHA systems should be built in such
a way that it can be changed with relative ease, whilst preserving human us-
ability levels. For example, Geirhos et al. noted that DNNs were struggling with
unknown types of noise applied to objects for the object recognition task [23].
Evolution against a DNN attacker can then be build on top of that principle —
over time applied noise should be changing both in terms of noise distribution
and noise magnitude.

CAPTCHA solution costs CAPTCHA solution services are a long estab-
lished business that had been thoroughly studied both in technological [12] and
business aspects [44, 17]. Multiple online services offer services for solving popular
CAPTCHASs. As of early June 2020, solving CAPTCHASs does not cost much.
Depending on the platform it costs from 0.6% to 2.5$ for 1000 CAPTCHAs.
These services provide almost unlimited bandwidth for solving purely image-
based CAPTCHA and from 5 to 7 per minute for more complex behaviour-based
ones. Back in 2010, it was reported that those businesses use a hybrid solution
approach, i.e. they solve it automatically if CAPTCHA is vulnerable, otherwise,
humans from low-cost labour markets are hired [44].

CAPTCHA example Figure 1 shows an example of a CAPTCHA asked by
reCAPTCHA, one of the most popular CAPTCHA providers. Here, the user
is asked to transcribe two words: ‘morning’ and ‘overlooks’. The CAPTCHA is
easy for humans to solve: there are only two main transformations applied to
the images and text occlusion is minimal. According to the principals described
in Section 3.1, it is easy to evolve such a CAPTCHA in response to improving
attacker performance: other transformations could be applied, and the dictionary
could be expanded to include more special characters. Finally, the data collection
principle described in Section 3.1 is also followed. The robot is not provided
feedback on the performed transcriptions and, if a mistake is made, it would not
know which of two words it was mistaken about 3.
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Fig.2: CPP CAPTCHA process

3.2 What is a cocktail party problem and why does it work?

Humans are much better than machines at disambiguating a single speaker from
a group of people speaking at once [26]. That phenomenon is commonly referred
to as a Cocktail Party Problem. In essence, it refers to cases where one or more
voices are talking concurrently with the speech of interest. Background noise,
consistent of natural human speech, serves as a form of semantic noise which
should hinder human understanding less than it hinders machines. The Cock-
tail Party effect has already been investigated from numerous angles: from the
general phenomenon [14], the cues that impact effectiveness [33,43], over the
influence of working memory capacity [15] to the intentional control of auditory
selective attention [24,50]. In this paper, we propose an acoustic CAPTCHA
construction based on the Cocktail Party Problem phenomenon.

3.3 CPP CAPTCHA

We propose to use the Cocktail Party Problem to build a robust acoustic CAPT—
CHA system as is depicted in Figure 2. The problem itself can be formulated
as follows. A user is provided a challenge speech sample M and a question g,
such that M = Sorig +> ;o . Si + Zj:O..m Nj, where S,,4 is the speech of in-
terest, Sp..S, are background speech samples and Ny..N,, are non-speech noise
samples. Question ¢ is formulated in such a way that humans will be able to
semantically extract S,.;q from M, whereas computers will struggle to do so. Do
note here, that question ¢ can make semantic references to both speech back-
ground samples and noise. For example, the user may be asked “How many times
did a bird sing after word ’cat’ was said by a female voice?”. The user is asked

3 reCAPTCHA uses two words, out of which the correct solution is known for one [44].
The correctness is assessed based on the editing distance of the provided solution
and the control word.
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to solve a tuple (M, q) and respond to the CAPTCHA system.

The construction described above is generic and encompasses a lot of differ-
ent possibilities. In this paper, we describe and evaluate three different CPP
CAPTCHA construction possibilities. We use speech signals comprised of either
numbers, digits or individual words as both signals of interest and background
speech. We assume that there is only a single speaker in the background S, and
background noise is either no noise, bird singing, elephant sounds or white noise.
Before starting the CAPTCHA the user gets question ¢ explaining which voice
he has to focus on: in this paper, we used the speaker’s gender as the semantic
information. Figures 3 to 5 display the introduction examples of our study, where
participants could repeat the CAPTCHA and see the actual solution.

First we start with the digit CAPTCHA, where two sets of 6 to 9 digits were read
out by a female or male voice. The introduction screen is presented in Figure 3.
While listening to the CAPTCHA the user had to focus on the specified voice
and enter the corresponding digits.

DIGIT CAPTCHAS: transcribe all digits said by the relevant voice

Example: Type in the digits said by the female voice.

> o -00:00

Answer = 922016

Fig. 3: Example interface for digit CAPTCHAs

The second type is the character CAPTCHA, where two sets of 6 to 9 characters
were read out by a female or male voice. Similarly to digits, participants were
presented with an introduction screen as depicted in Figure 4. While listening
to the CAPTCHA the user had to focus on the specified voice and enter the
corresponding characters.

CHARACTER CAPTCHAS: transcribe all characters said by the relevant voice

Example: Type in the characters said by the male voice.

> o -00:00

Answer = cfmncej

Fig. 4: Example interface for character CAPTCHAs
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Finally we used a word CAPTCHA, where two sets of 3 to 6 English words
were read out by a female or male voice. The introduction screen is presented
in Figure 5. The words in each set are related to one of a given set of images.
After listening to the CAPTCHA, the user had to select the relevant image
for the specified voice. For example, the participant would be told ‘apple tasty
tomato broccoli carrot cucumber’ with a male voice, and a female voice would
be saying 'rose nature tulip daisy buttercup’. The user would then be expected
to pick the picture with vegetables (5) for male voice and picture with flowers
(2) for female voice in Figure 5.

WORD CAPTCHAS: pick the one image most related to the words said by the relevant voice

Example: Select the image related to the words said by the male voice.

Answer =4

Fig.5: Example interface for word CAPTCHAs

3.4 Ethics

The overall study is separated into two parts. First, we ran a preliminary study
of the audio CAPTCHA mechanism. The participants were informed of their
rights and both verbal and written consent was collected. As the study included
extensive user interaction, we followed university guidelines and acquired ethics
approval from the University of Cambridge Computer Laboratory Ethics Board.
We made sure that the participants were not harmed in any way and no sensitive
information was collected.

For the second usability evaluation, we followed the ethic guidelines of the Karl-
sruhe Institute for Technology. We made sure that all collected data followed uni-
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versity guidelines on ethical data handling and the most recent GDPR, policies.
As astudy platform, we used SoSci Survey 4, that is compliant with the European
Data Protection Regulations. As a recruitment platform, we used Clickworker °.
Participants were clearly explained what the study was about and it’s purpose.
Expectations were set out and no deception was used. Participants were told
that they could terminate their participation at any point without providing
reasons and without any negative consequences. Their participation was 100%
voluntary and payment of €3 per participant for 50 participants was provided.

3.5 Experiments

The aim of the experiments is two-fold. First, we aim to assess the user-friendliness
of different CAPTCHA schemes to allow comparison. Second, based on the re-

sults acquired, we identify what features make audio CAPTCHAs user-friendly.

For this, we use conventional usability evaluation following the ISO 9241-11 [1]

definition of usability. The ISO standard has three main components:

— Effectiveness: the audio CAPTCHA is unambiguous and therefore easy to
use;

— Efficiency: the audio CAPTCHA is solved a high percentage of the time
and in as short a time as possible;

— Satisfaction: the audio CAPTCHA triggers a high level of satisfaction
among the users, i.e. they should be satisfied and motivated to continue
using it in the future.

Most people today are familiar with visual CAPTCHASs, as they are ubiquitous
and are used to deter robot activity practically everywhere online. Although the
users can occasionally be annoyed at CAPTCHASs, they are largely accepted. We
aim to develop an audio CAPTCHA scheme that is at least as good in terms of
usability. It should be noted, however, that people have been exposed to visual
CAPTCHAS for the past 20 years and it is hard to reproduce the same learning
artefacts. Measurements are collected in the following three forms:

— Effectiveness: Number of failed attempts at the audio CAPTCHA;
— Efficiency: Repetitions and duration until successful completion;
— Satisfaction: SUS Questionnaire [4,10, 11, 49].

3.6 Experimental Process

The study evaluates three forms of CAPTCHAs. The whole process is depicted
in Figure 6. FEach type represents a different aspect of perception: numbers, let-
ters, and entire words. First, the participants receive Informed Consent to read
and accept. We then explain the procedure of the study. The participants are

4 80Sci is a platform designed for running experiments https://www.soscisurvey.de
5 Clickworker is a platform similar to MTurk for finding participants in Europe
https://www.clickworker.de
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Welcome & ; Introduction to ; 60 CAPTCHA ; ; Socio-
Informed Consent [ CAPTCHA systems ] { random order ] [ St } [demographics}

Character 15 no noise
Digit 15 bird
Word 15 elephant

15 white noise

Fig. 6: Usability experiment pipeline

informed that participation can be terminated at any time without any conse-
quences. After that, the participants are shown an example for each of the three
CAPTCHA types. We explain how to deal with every type of CAPTCHA and
what the right solution is. The participants can listen to the CAPTCHA as often
as they want until they feel confident in using it. Each CAPTCHA, regardless
of type, consists of two voices — one female and one male. It is accompanied by
a description such as:

— Description 1: “Transcribe all digits said by the relevant voice - example:
type in the digits said by the female voice”;

— Description 2: “Transcribe all characters said by the relevant voice - ex-
ample: type in the characters said by the female voice”;

— Description 3: “Word CAPTCHASs: pick the one image most related to the
words said by the relevant voice - select the image related to the words said
by the male voice.”

Then the entire sequence of the 60 CAPTCHAs is presented randomly. To avoid
framing and cognitive load effects, the sequence of CAPTCHASs gets reshuffled
for every subject. Those CAPTCHASs are categorised based on their type: num-
ber, character, and word. Once participants finish solving CAPTCHAs, they
get to the usability questionnaire. The questionnaire follows the standard us-
ability guidelines of System Usability Score. To avoid framing and order effects,
the order of questions is randomised. Finally, the study concludes with socio-
demographic questions on gender, age, and highest educational achievement.

4 Evaluation

4.1 Usability

For the analysis of usability, we consider four different factors. First, we look
at the primary total number of correctly solved CAPTCHAs. In each case,
we distinguish the noise type. Then, to assess order effects, we split the
CAPTCHASs into three groups depending on the period in which they have been
solved. The participants have seen a total of 60 CAPTCHASs, we split the three
groups into equal-sized bins: 1st — 20th, 21st — 40th, and 41st — 60th. By evaluat-
ing the recognition rate in such a way we can assess the learning effect. Finally,
we consider the number of errors. Consequently, we distinguish how the rate
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Table 1: Percentage of correct answers for CAPTCHA and noise types
Noise Type Digits + std Characters + std Word =+ std

None 85.71% 15.94 26.53% 18.43 68.57% 17.32
Bird 75.51% 20.11 18.78% 14.95 79.59% 18.93
Elephant 73.47% 23.23 39.59% 23.63 81.22% 19.75
White 57.55% 25.37 20.82% 17.78 48.98% 24.17
Overall 71.80% 21.17 26.60%  18.7 69.90% 20.04

of CAPTCHA recognition changes if one or two errors are allowed. Finally, the
System Usability Scale values (SUS) are analyzed to assess the subjective per-
ception of the CAPTCHAs.

First, we turn to the number of correctly recognized CAPTCHAs. It can be seen
in Table 1 that the character-based CAPTCHASs have a significantly worse recog-
nition rate (mean = 26.60%) when compared to both word (mean = 69.90%) and
digit-based (mean = 71.80%) CAPTCHAs. The overall best performance was ob-
served for digit-based CAPTCHAs without noise with 85.71% recognition rate,
and the worst recognition was observed for character-based CAPTCHAs with
bird noise with 18.78% recognition rate. Interestingly, we observe that in some
cases participants recognise characters and words better in the presence of noise,
than without it. We have two hypotheses regarding why this happens. First, it
might be the case that participants focus more in the presence of noise. Given
CPP CAPTCHA is a low to medium complexity task, a possible explanation
could be found with the Yerkes-Dodson Law. It was previously found that a cer-
tain level of arousal is beneficial for task performance, and additional noise could
just trigger that response [18,9,57,22]. Second, it might be the consequence of
a shuffling procedure — some letters are harder to recognise when they overlap.
The sequences were randomised for every participant and type of CAPTCHA.
We have not controlled in the experiments that the overlaps are consistent across
participants, and that could have affected the results. In the subsequent studies,
both of those factors should be controlled for.

Table 2: Correct answers per position asked during the study

Type 1t020 21to40 41 to 60
Digits 4.13 5.07 5.41
Characters 1.67 1.88 2.04
Word 4.33 4.98 4.61

Overall 3.37 3.97 4.02
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Next, we turn to the order effects. Table 2 shows how recognition rate changes
over time. Here, it is noticeable that for all three types there is an increase in the
number of correct answers over time. For all of the considered cases, except for
word-based, the increase is observed through all of the time-periods. For word-
based CAPTCHAs, improvement is only observed after the first period. Finally,
we note that only in the digit-based CAPTCHAsS, there is a significant increase
for both transitions with p = .036, T =2.162 and p = .007, T = 2.835.

Table 3: Correct answers per error tolerance

Type 0 Error 1 Error 2 Errors
Digits 71% 91% 96%
Characters 26% 65% 86%
Overall 48% 78% 91%

In the third step, we consider how solvable the CAPTCHAs are when a par-
ticipant is allowed to make a certain number of mistakes when making their
transcription. Table 3 shows the results of the experiment. Note that we only
consider the character- and digit-based CAPTCHA types here as word consti-
tutes a binary choice. We find that participants were solving 71% of digit-based
CAPTCHASs correctly without any errors, 91% with 1 error allowed and 96%
with 2 errors allowed. Here, a significant performance increase of 20% is observed
with just a single misclassification. An even more significant improvement is ob-
served for character-based CAPTCHAs. Only 26% of CAPTCHAS are solved
without any errors, but a single misclassification improved performance by al-
most 40% to 656%. With 2 errors allowed, we observe that performance improved
by a further 20% up to 86%. Note here how close the human performance is for
digit and character-based CAPTCHASs in the presence of just two errors. The
complexity of digit and character tasks are extremely different — random guess

1

o for n digits and 567 for n characters.

Finally, Table 4 presents the SUS values for different types of CAPTCHAs. It
appears that for different CAPTCHA types there is no significant difference in
terms of usability. For all three types, the mean values are in the range of about
45, with a minimum of around 30 and a maximum of 70. We find that acoustic
CPP CAPTCHA performs consistently worse in terms of usability compared to
the visual-based ones. Yet, the difference to the closest contender — reCaptcha
v2 — is not too large. reCAPTCHA is a very widely used system, meaning it
is really hard to control for learning effects. Moreover, Jiang et al. specifically
recruited active web users [31]. Given that participants of our study encountered
CPP CAPTCHA for the first time, we believe that with more careful design and
control for learning effects the usability could be further improved.

probability of
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Table 4: SUS Score for CAPTCHA types

Type Mean SD Min Max
Digits 46.17 9.07 275 70.0
Characters 44.54 825 275 67.5
Word 45.56 7.82 32.5 70.0
Overall 45.42 838 29.17 69.17
TapCHA [31] 85.0 - - -
Web Interfaces [4] 68.2 - - -
Cell Phones Interface [4] 65.9 - - -
ReCAPTCHA v2 [31] 65.0 - - -

4.2 Naive transcription performance

Now we turn to the adversarial evaluation. In this paper, we assume a naive
attacker that is ignorant of the existence of the background noise in the sample.
Although naive, that scenario represents a realistic case of a scalable attack in
the real-world. For example, it was previously shown that acoustic reCAPTCHA
can be easily solved using Google Cloud Speech out of the box with little to no
modifications [8]. For the study, we chose Sphinx and Google Cloud Speech as
benchmarks. To make it easier for the transcribers, unless stated otherwise, we
used no additional noise and clean generated speech. We have attempted using
recorded speech and got similar performance as is shown in Figure 7. We decided
to use generated speech as it presents an idealistic clean scenario. We turn to
the case of a more skilful attacker in Section 5.

Figures 8 to 10 show the recognition rate for text generated with MaryTTs,
IBM Text-to-Speech, and Google Text-to-Speech. As text transcription tools we
chose Google Cloud Speech and Spinx. Overall, we observe that simply using
transcribers does not work any more — the recognition rate for digits and char-
acters is consistently low, even when reduced dictionaries are used.

First, we turn to per-character recognition rates which are shown in Figure 8.
Similarly, the character CAPTCHA recognition rates are low. Here, we further
evaluate the character recognition rates for the speech of different genders. In-
terestingly, we find that when faced with interleaved voices, both Google Cloud
Speech and Sphinx appear to choose male voices over female voices.

Digit CAPTCHA recognition rate is relatively higher than that for characters.
We observe that Sphinx with a reduced dictionary is capable of recovering from
60% to 95% of digit sequences correctly, yet full dictionary approaches perform
worse. Similarly to characters, Google Cloud Speech favours male voices over
female, yet conflicting evidence is observed for Sphinx. The detection rate for
per-digit recognition with source-separated IBM and recorded digit CAPTCHAs
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Fig. 7: Per-digit recognition rates for source-separated IBM and recorded digit
CAPTCHAS, using a digit dictionary for Sphinx
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Fig.9: Per-digit recognition rate for digit CAPTCHAs

ranges from a minimum of 60% for female voices with bird noises to close to 100%
for noiseless scenarios. The per-word recognition rate for character CAPTCHASs
ranges from 0% with Male speech produced by Google Text-to-Speech for Sphinx,
up to 75% for Male voices produced by IBM Text-to-Speech for Google Cloud
Speech.

This observation is also reflected in the recognition rates for Sphinx as is shown
in Figure 7, which is much higher than the mixed recognition rates for both syn-
thesised and recorded speech. However, recorded speech still seems to be much
more resistant than synthetic speech.

To conclude, per-character, per-digit and per-word recognition rates are rela-
tively poor. That is not surprising — the transcribers were not designed to solve
multi-speaker situations. We do observe that digits are handled relatively better,
which is consistent with the observation that it is the easiest of three tasks to
solve complexity-wise.

Interestingly, we observe inconsistencies in the way that multi-speaker speech is
handled. We see that different transcribers, when faced with a choice, consis-
tently pick male voices over female. That finding suggests that similarly to other
natural language models, transcribers used in this paper overfit to the dataset
gender biases [41, 55].



16 Reinheimer et al.

100 T T T T T T

90 + I Google Cloud Speech |
[ sphinx

80 7

70 1

60

50

40

Recognition Rate

30

20

10

0 "

5 OC)\G\ Q@g\\ p (\;(\5\ oog\e\ o o N(f:h

NE S ?aﬁ\ﬁ\e e}e\w \N’}e G \\Na\e \\w\e
© O
¢@

Fig. 10: Per-word recognition rate for character CAPTCHAs

5 Conclusion and Discussion

In this paper, we have presented Cocktail Party Problem-based CAPTCHA con-
struction. We have evaluated its performance in terms of usability and robustness
against modern transcribers. We have observed that the Cocktail Party Prob-
lem does have an effect on the way transcription works, practically making it
impossible for transcribers to be used out of the box. Interestingly, we observed
that when faced with overlapping voices, transcribers have a gender bias, consis-
tently picking male voices over female. Finally, we ran a user study to evaluate
proposed CAPTCHA usability. We observe that participants could successfully
solve it without prior experience and were getting better over time. We find that
the usability scores were lower than the ones for the textual CAPTCHAs. In-
terestingly we observe that the closest contender is reCaptcha v2 — one of most
commonly used visual-based CAPTCHAs — with a SUS difference between the
two of 20. That, in turn, suggests that with more careful design and control for
learning effects the usability of audio CAPTCHA based on the Cocktail Party
Problem can be further improved.

CPP CAPTCHA in the real world CAPTCHA systems are not impene-
trable. In the past, they have set off an arms race with new attacks and schemes
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being proposed several times a year. The same is to be expected for any new
CAPTCHA that finds its way into use.

Same holds for the CAPTCHA construction described in this paper. Recently,
a machine learning-based solution to the Cocktail Party Problem was proposed.
In particular, Simpson described how one might go about generating a neural
network that separates the speakers in a given audio file, with a network trained
on the dataset of separated audio files [53]. The mechanism is based on the idea
of binary mask generation and the network itself learns the relationship between
the different frequencies of a human speaker.

We re-implemented Simpson’s paper and evaluated the performance of our CAP-
TCHA on a synthesised speaker against his CPP solver and standard text-to-
speech transcribers. Using the method, we successfully managed to separate the
speakers in the audio files and the speech to text system, and have been able to
get the original text with 95% accuracy against almost 0% with CPP. Although
a voice synthesiser represents an idealistic scenario (very idealistic scenario with
perfect information and practically no task associated) of the attack with a very
well-defined speaker, it is still representative of the machine learning ability to
solve the problem.

Despite the success of the attack described above, we believe that the proposed
solution is still deployable in the wild. We have seen successful attacks on image-
based CAPTCHASs that ask a human to solve classification tasks, that we know
computers solve much better [35]. There are several reasons why these solutions
remain relevant. First and foremost, despite machine learning being able to per-
form a task very well, it can do so only for a local problem. Cloudflare simply
changes the classification task every now and then, forcing the adversaries to
either collect a new dataset or learn the task in an online manner. Both of those
problems are already extremely hard but are made even harder with the help
of a few heuristics. For example, if you suspect that the attacker is trying to do
online learning you start to misguide that learning by saying that correct guesses
are wrong and the wrong ones are correct. This will also allow the defender to
embed trojans into the dataset [40]. Or one can simply ask the robot to solve
multiple CAPTCHAs and not report to it if it solved any of them. Second, in
practice, there is a lot more then just a single CAPTCHA, behavioural profiles
are being built of an individual interacting with a system, which can also be
used to detect fraudulent behaviour. For example, with audio one knows the
minimum amount of time it should take for a user to solve a task. Similarly, one
can also construct samples that she expects machine learning to solve slowly and
measure how long it took the model to answer [52].

Visual and Language-based CAPTCHAs When compared to traditional
visual CAPTCHA systems, language-based acoustic CAPTCHA represents a
much richer interaction environment. Even if an attacker manages to learn to
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solve a local Cocktail Party Problem, it would still not destroy the CPP con-
struction. First, the decision space for the attacker is still a lot larger than in the
case of object detection. Language is a lot more discrete and interactions are a
lot more subtle. Especially with audio in the analogue form — numerous distinct
transformations can be used to diffuse human speech. There is little to no phys-
ical limitation on the way language is comprehended by humans, whereas there
are large physical limitations to picture representations. Second, both natural
language and acoustic natural language tasks are not yet solved by the state of
the art machine learning. Although there have been models built which perform
consistently well on a number of benchmarks, there is still no model available
that is capable of solving all of the natural language comprehension tasks and
quickly change between them. Third, most modern language models largely limit
the language space with which they work. That is either done through reducing
dictionary sizes or controlling the embedding space size. Performance is the is-
sue here: if models are too complex or large they either do not fit in memory,
take too long to train or have very large latency. In practice, that reduction is
affordable for natural language tasks because models still extract information
from unknown words by approximating them with known words. Same does not
hold true for language-based CAPTCHAS, as the precision of the answer here
is paramount. Finally, language and speech are really easy to change and nu-
merous questions can be asked about the exchange of multiple speakers in an
audio sample, with each one of those questions being of a different size. That
makes the evolutionary principle of CAPTCHA construction particularly strong.

Future research directions For future research, several approaches are worth
pursuing. For example, in the field of word CAPTCHA, there is the possibility
to use it entirely as an audio CAPTCHA and to design the response via audio
playback. Furthermore, similar to visual CAPTCHASs, users could be allowed
to select more than one image. Different languages could be used together for
CPP construction to target multi-language or non-native speakers. Motoyama
et al. previously categorised the manual labour pool of CAPTCHA solving ser-
vices using CAPTCHAs in different languages [44]. The authors find significant
differences in CAPTCHA service performance, suggesting that language mix-
ture might be a potential way to control CAPTCHA complexity and protect
against those services. recCAPTCHA already used a Navajo language speech as
background noise, here we propose to extend it to many more languages [60].
Furthermore, the current study could be repeated with non-synthetic voices to
evaluate the influence of human speech on performance and usability. The voices
could also be modified in different facets, e.g. prosodic elements such as pitch
and rate of speech. In the field of study design, users could be given the pos-
sibility to play CAPTCHA as often as possible. It would be interesting to see
how the performance of robots changes compared to that of humans as they
learn. Furthermore, the type of questions could be varied by linking them to the
background noise, for example, “how often could you hear a bird in the back-
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ground?”. Finally, some CAPTCHAs showed apparent learning effects for the
participants. Therefore, it would be interesting to conduct a longitudinal study
to check if the familiarity with a CAPTCHA affects usability.
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