
Audio Engineering Society

 Convention Paper 10483
Presented at the 150th Convention

2021 May 25-28, Online

This paper was peer-reviewed as a complete manuscript for presentation at this convention. This paper is available in the AES
E-Library (http://www.aes.org/e-lib) all rights reserved. Reproduction of this paper, or any portion thereof, is not permitted
without direct permission from the Journal of the Audio Engineering Society.

pyloudnorm: A simple yet flexible loudness meter in Python
Christian J. Steinmetz and Joshua D. Reiss

Centre for Digital Music, Queen Mary University of London, London, UK

Correspondence should be addressed to Christian J. Steinmetz (c.j.steinmetz@qmul.ac.uk)

ABSTRACT

The ITU-R BS.1770 recommendation for measuring the perceived loudness of audio signals has seen widespread
adoption in broadcasting. Due to its simplicity, this algorithm has now found applications across audio signal
processing. Here we describe pyloudnorm, a Python package that enables the measurement of integrated loudness
following the recommendation. While a number of implementations are available, ours provides an easy-to-install
package, a simple interface, and the ability to adjust the algorithm parameters, a feature that others neglect. We
outline the design of pyloudnorm and discuss a set of modifications based upon recent literature that improve the
robustness of loudness measurements. We perform an evaluation comparing accuracy and runtime with six other
implementations, demonstrating that pyloudnorm is both fully compliant and one of the fastest options.

1 Introduction

The nonlinear nature of the human auditory system
makes measurement of the perceived loudness of sound
challenging [1]. While subjective loudness has been
an active area of research in psychoacoustics over the
last half century [2–5], these models are often com-
plex and not applicable to measuring the loudness of
streaming or recorded audio. For this reason, there
has been a longstanding interest within the broadcast
industry in simple loudness models, as they enable
the ability to monitor and control the listener experi-
ence [6–11]. Concurrently, there has been interest in
methods for measuring the loudness of music such as
Vickers’ loudness [12] and ReplayGain [13]. In an
effort to standardize, simplify, and improve upon previ-
ous approaches, the ITU-R BS.1770 recommendation
was proposed [14], and has now seen widespread adop-
tion [15, 16]. The proposed metering algorithm was
later included in the EBU R 128 recommendation,
which dictates loudness for broadcast material [17].

The ITU-R BS.1770 recommendation proposes a
straightforward algorithm consisting of frequency-
weighting filters and gated energy measurements. The
algorithm has been shown to correlate well with the
perceived loudness of broadband content, is computa-
tionally efficient, and relatively easy to implement. For
all these reasons it has now seen widespread adoption
in the broadcast industry, and with the rise of online
streaming platforms, interest in content normalization
with the recommendation has sustained [18, 19].

While this recommendation has been found to correlate
well with broadband content, further listening studies
have discovered that this is not always the case, espe-
cially for narrowband content [20–23]. These investi-
gations have led to a series of proposed modifications
to the original recommendation, which generally con-
sists of adjustments to the algorithm parameters for
the frequency-weighting filters and gating block sizes.
While these modifications are relatively straightforward
to incorporate, there has been limited adoption thus far.

Steinmetz and Reiss pyloudnorm

Fig. 1: Measurement of integrated loudness following the ITU-R BS.1770 recommendation [14].

While originally intended for broadcast scenarios, due
to its simplicity and efficacy, the ITU-R BS.1770 rec-
ommendation has now found applications across au-
dio signal processing [23–30]. In order to meet the
demand for applications outside its original scope, a
number of implementations now exist that provide a
programmatic interface. Unfortunately, most of these
implementations are either difficult to install, provide
an interface that is not efficiently accessed from Python,
or do not allow for modifications of the algorithm pa-
rameters. For these reasons, we built pyloudnorm1, a
Python package that is easily installed and integrated
into existing projects, while also providing the ability
to adjust the underlying algorithm parameters.

The simplicity and flexibility of this package has
lead to an interest in pyloudnorm, which a variety of
works now utilize. Current applications include pre-
processing for audio machine learning datasets, such
as the CLEAR dataset for acoustic question answer-
ing [31], a dataset of multichannel hearing aid record-
ings [32], the LibriMix dataset which generated mix-
tures of speech for source separation [33], the creation
of music mixtures in the Slakh dataset [34], and the
OrchideaSOL dataset [35], which features orchestral
recordings. In addition to dataset pre-processing, there
have also been applications in feature extraction for
machine learning with the Surfboard library [36], as
well as in data augmentation in Scaper [37], and as a
final post-processing step in voice conversion [38].

The structure of the paper is as follows. In Section 2
we describe the algorithm and introduce recently pro-
posed modifications. Then in Section 3 we introduce
pyloudnorm, along with other existing implementa-
tions. Section 4 presents an evaluation of these imple-
mentations using the compliance material provided by
the recommendation, as well as our own collection of
examples. We finally present conclusions in Section 5.

1https://github.com/csteinmetz1/pyloudnorm

2 Algorithm

The proposed algorithm is outlined for the stereo case at
a high level in Fig. 1. First, the “K”-frequency weight-
ing consists of a high-shelf filter that aims to mimic the
response of the head, followed by a highpass filter that
reduces the influence of low frequencies. Then we take
the filtered signal of each channel yi, and split this into
overlapping blocks of 400 ms, with an overlap of 75%.
We then compute the energy of each block j in each
channel i

zi, j =
1
N

N

∑
n=1

yi, j[n]2,

where N is the number of samples in each block, and n
is the sample index within the block. The loudness of
each block is then given by

l j =−0.691+10log10 ∑
i

gi · zi, j,

where gi = [1,1,1,1.41,1.41], for the left, right, centre,
left surround, and right surround, respectively.

The final step involves applying a gate in order to re-
duce the influence of blocks with low energy. An abso-
lute threshold is given by Γa = −70 dB LUFS, along
with a second relative threshold Γr, which is deter-
mined by first measuring the loudness of all the blocks
above the absolute threshold and subtracting 10

Γr =−0.691+10log10 ∑
i

gi

(
1
|Jg|∑Jg

zi, j

)
−10,

where Jg = { j : l j > Γa}, and |Jg| is the number of
blocks above the threshold. This enables us to com-
pute the final integrated loudness in the same way by
summing only blocks that fall above both thresholds

LKG =−0.691+10log10 ∑
i

gi

(
1
|Jg|∑Jg

zi, j

)
,

this time where Jg = { j : l j > Γa and l j > Γr}.

AES 150th Convention, Online, 2021 May 25-28
Page 2 of 8

Steinmetz and Reiss pyloudnorm

2.1 Proposed modifications

The recommendation makes clear that loudness mea-
surements correlate well with perception only when the
signal being measured is broadband in nature.

It should be noted that while this algorithm
has been shown to be effective for use on
audio programmes that are typical of broad-
cast content, the algorithm is not, in general,
suitable for use to estimate the subjective
loudness of pure tones. [14]

While this is not often an issue when employed in
broadcast scenarios, the use of this recommendation
in other applications has continued to increase, poten-
tially leading to inaccurate measurements. For exam-
ple, when measuring the loudness of narrowband or
percussive content, such as isolated instruments, sound
effects, impulse responses, as well as other recordings.

The degree to which measurements produced by the rec-
ommendation deviate from perception has been studied.
A number of modifications have been proposed that aim
to improve the performance and robustness of measure-
ments. Cabrera et al. [20] proposed some of the first
adjustments, informed by a number of listening studies.
This involved raising the cutoff frequency of the high-
pass filter to 149 Hz, and the replacement of the high-
shelf filter by a notch filter centered at 1 kHz. Pestana
and Barbosa [39] first identified potential shortcomings
of the recommendation for common multitrack sources,
and later suggested adopting a smaller gating block size
of 280 ms in combination with a +10 dB gain on the
high-shelf filter [21].

More recently, Fenton and Lee [22] provided two alter-
native frequency-weighting filters. The first adjustment
proposed boosting the gain of the high-shelf filter by
+5 dB and changing the cutoff of the highpass filter to
130 Hz, as well as the addition of a peaking filter with
a center frequency of 500 Hz. They also investigated
a more complex modification that replaced this peak-
ing filter with a higher order variant. Fenton [23] later
extended these results with a further listening study,
providing optimized filter and gating block size pa-
rameters for different instrument types, which they
found improved the quality of equal loudness-based
mixes. De Man [40] noted that the original recommen-
dation only provided filter coefficients at 48 kHz, so
they reverse-engineered the filter specification from the
original recommendation and provided filter prototypes
that enable fully compliant filters at any sample rate.

3 Implementation

We designed pyloudnorm with simplicity in mind. This
means that users can measure the loudness of an ar-
ray of audio samples using just three lines of code, as
shown in Listing 1. This includes importing the pack-
age, instantiating a meter with the appropriate sample
rate, and then passing an array of audio samples to
measure. Calling the integrated loudness method will
return the integrated loudness in dB LUFS of an array
of audio samples, as measured by a meter following
the original recommendation.

import pyloudnorm as pyln
create BS.1770 meter
meter = pyln.Meter(rate)
measure loudness of signal x
loudness = meter.integrated_loudness(x)

Listing 1: Using pyloudnorm in Python.

This enables users to carry out loudness measurements
following the recommendation without any underlying
knowledge of the algorithm and its parameters. But, as
outlined in the previous section, a number of modifica-
tions have been proposed, which improve performance
for some use cases. To facilitate the integration of these
modifications, pyloudnorm additionally exposes the
underlying algorithm parameters to users if desired. To
enable use of the proposed modifications we include
pre-defined filter specifications. This facilitates the use
of these modifications by simply passing a correspond-
ing string while instantiating the meter. We hope that
this will enable users to make more accurate measure-
ments in the growing and diverse applications of the
loudness recommendation.

In addition to the modifications that have been pro-
posed thus far, pyloudnorm also includes the ability
to easily adopt new modifications. This includes any
adjustments to the gating block size and frequency-
weighting filters. This even enables users to define any
cascade of arbitrary second-order filters, providing a
high level of flexibility, if desired. To facilitate this, we
include an IIR filter class that implements not only the
highpass and high-shelf filter prototypes used in the
original recommendation, but also low-shelf, lowpass,
peaking, and notch filter prototypes. This functional-
ity enables easy adoption of future modifications, as
well as provides a platform for experimenting with new
modifications to the recommendation.

AES 150th Convention, Online, 2021 May 25-28
Page 3 of 8

Steinmetz and Reiss pyloudnorm

4 Evaluation

Beyond pyloudnorm, a wide variety of implementa-
tions of the loudness recommendation have been made
available, both in streaming and offline formats. In this
section we compare pyloudnorm to four open source
offline implementations, as well as two commercial im-
plementations that provide a graphical user interface.

4.1 Other implementations

Essentia [41] is a popular C++ library with a Python
interface for music information retrieval feature extrac-
tion. In addition to many other common audio features,
Essentia includes an implementation of the loudness
recommendation. While Essentia provides an extensive
collection of audio features, it is large and somewhat
cumbersome to install, making it less attractive in the
case where only loudness measurements are desired.
Another popular alternative is ffmpeg2, a cross-
platform tool for processing audio and video. Results
from the meter can be accessed in Python by making
calls to the command-line, or optionally through a wrap-
per, at the cost of some additional overhead compared
to a pure Python implementation.
libebur1283 provides an implementation in C, and ad-
dresses some of the limitations of ffmpeg, namely that
it provides a more efficient interface since it has less
overhead than the far more powerful ffmpeg tool. Nev-
ertheless, it still suffers from a similar problem in that
it does not feature a direct implementation in Python.
A more recent implementation, loudness.py [40], ad-
dresses many of these limitations by providing a Python
implementation utilizing NumPy [42], making it the
closest to pyloudnorm. Additionally, loudness.py pro-
vides a more precise implementation of the frequency-
weighting filters based upon reverse-engineering the
filter specifications in the recommendation. The ma-
jor limitation is that it provides a standalone Python
function, and therefore cannot easily be installed and
imported within a Python project, as pyloudnorm can.
We also consider two commercial implementations.
These include the meter in Adobe Audition4, a popular
digital audio workstation, and youlean5, a web-based
implementation. This implementation allows users to
upload audio files to a web page for them to be analyzed
with measurements reported back to the user.

2https://ffmpeg.org/
3https://github.com/jiixyj/libebur128
4https://www.adobe.com/products/audition
5https://youlean.co/file-loudness-meter/

4.2 Compliance material

While no reference meter exists, the ITU-R BS.1770
recommendation provides compliance material in order
to evaluate meter implementations [43]. The provided
compliance material consists of mono, stereo, and mul-
tichannel audio files at 48 kHz sample rate. The recom-
mendation states that a compliant meter should measure
within ± 0.1 dB LUFS of the target value.

As a first step, we compare the measurements of the
compliance material from the different implementa-
tions. Since pyloudnorm incorporates the filter specifi-
cation from loudness.py proposed by De Man [40], we
perform measurements with pyloudnorm both in its de-
fault configuration, as well as with the modified filters.
We report the full results of these measurements in Ta-
ble 1. While we find that pyloudnorm, libebur128, and
Audition provide measurements that are fully compli-
ant, surprisingly, we find that some implementations do
not produce the correct measurements. Code to repro-
duce these results along with the compliance material
is made available online6.

loudness.py

The loudness.py implementation achieves compliance
on all test material except for AbsGateTest, which
has a significant error of -1.96 dB LUFS. This is likely
due to an issue when the input signal contains multiple
blocks of total silence. Interestingly, the result of a com-
putation with a block of silence results in a loudness for
the block of −∞ dB LUFS, which conceptually agrees
with our understanding, yet this causes a problem when
summing the loudness of the blocks. In pyloudnorm,
we handle this by converting −∞ values to the smallest
value supported by the platform (generally −1.8e308
for float64) before the summation of the blocks.

ffmpeg

Similar to loudness.py, ffmpeg produces mostly com-
pliant measurements with the exception of a single test
case. We measured a deviation of +0.4 dB LUFS from
the target value in RelGateTest . It is unclear what
causes this deviation in the measurement. Interestingly,
on many of the other measurements, particularly the
sine tone examples, the ffmpeg meter produces read-
ings that are exactly +0.1 dB LUFS above the target,
which is at the exact limit for compliance.

6https://github.com/csteinmetz1/pyloudnorm-eval

AES 150th Convention, Online, 2021 May 25-28
Page 4 of 8

Steinmetz and Reiss pyloudnorm

File Target

Implementation

pyloudnorm loudness.py ffmpeg libebur128 Essentia Audition youlean
Default De Man

FrequencySweep -18.0 -18.03 -17.99 -17.99 -18.00 -18.00 -18.18 -18.03 -18.02

25Hz_2ch -23.0 -23.00 -22.99 -22.99 -23.10 -23.00 -26.37 -23.04 -23.02
100Hz_2ch -23.0 -23.03 -22.99 -22.99 -23.10 -23.00 -22.86 -23.04 -23.02
500Hz_2ch -23.0 -23.04 -22.99 -22.99 -23.10 -23.00 -22.99 -23.04 -23.02
1000Hz_2ch -23.0 -23.03 -22.99 -22.99 -23.10 -23.00 -23.00 -23.04 -23.02
2000Hz_2ch -23.0 -23.03 -22.99 -22.99 -23.10 -23.00 -23.00 -23.04 -23.02
10000Hz_2ch -23.0 -23.04 -22.99 -22.99 -23.10 -23.00 -23.00 -23.04 -23.02

25Hz_2ch -24.0 -24.00 -23.99 -23.99 -24.10 -24.00 -27.21 -24.04 -24.02
100Hz_2ch -24.0 -24.03 -23.99 -23.99 -24.10 -24.00 -23.92 -24.04 -24.02
500Hz_2ch -24.0 -24.04 -23.99 -23.99 -24.10 -24.00 -23.99 -24.04 -24.02
1000Hz_2ch -24.0 -24.04 -23.99 -23.99 -24.10 -24.00 -24.00 -24.04 -24.02
2000Hz_2ch -24.0 -24.04 -23.99 -23.99 -24.10 -24.00 -24.00 -24.04 -24.02
10000Hz_2ch -24.0 -24.04 -23.99 -23.99 -24.10 -24.00 -24.00 -24.04 -24.02

RelGateTest -10.0 -10.07 -10.03 -10.03 -9.60 -10.00 -10.03 -10.07 -10.15
AbsGateTest -69.5 -69.49 -69.45 -71.46 -69.50 -69.50 -69.45 -69.49 -69.55

Mono_Voice+Music -23.0 -23.03 -22.99 -22.99 -23.10 -23.00 -22.97 -23.03 -22.98
Mono_Voice+Music -24.0 -24.03 -23.99 -23.99 -24.10 -24.00 -23.97 -24.04 -23.98
Stereo_VinL+R -23.0 -23.03 -22.98 -22.98 -23.10 -23.00 -22.97 -23.02 -22.99
Stereo_VinL+R -24.0 -24.02 -23.98 -23.98 -24.10 -24.00 -23.97 -24.02 -23.98

Table 1: Comparison of loudness algorithm implementations with provided compliance material [43].
Measurements that are not within the ±0.1 dB LUFS tolerance for compliance are marked in boldface.

5 10 15 20 25 30
Frequency (Hz)

45

40

35

30

25

20

Lo
ud

ne
ss

 (d
B

LU
FS

)

pyloudnorm (Default)
pyloudnorm (De Man)
loudness.py
ffmpeg
loudness-scanner
essentia

Fig. 2: Measured loudness of -6 dB sinusoidal tones.

Essentia

We find that Essentia underestimates the loudness
of very low frequency content, as is evident in the
25Hz_2ch test case, where we measure a deviation of
-3.37 dB LUFS. This leads us to believe that Essentia
has a subtle difference in the shape of the filter in the
low-end of the frequency range. We measured the loud-
ness of a number of low frequency sine tones with a
peak of -6 dB, as shown in Fig. 2. This clearly demon-
strates a deviation in the shape of the filtering in the
low frequencies, yet the cause of this is not clear.

4.3 Challenging material

As a further investigation, we collected a set of mate-
rial aimed at challenging the implementations. This
includes a number of pure tones, noise, as well as instru-
ment recordings. Since there exists no target loudness,
we look for agreement among the implementations. We
compute the mean measurement across all implemen-
tations and identify any that appear to disagree with
the mean by a significant margin (≥ 0.5 dB LUFS). We
report measurements on these signals in Table 2.

Notably, we find that ffmpeg produces results that dis-
agree with the other implementations for a number
of the test signals, in some cases producing a devia-
tion of over 1 dB LUFS. Essentia agrees for most of
the test material, but measures a deviation of nearly
-5 dB LUFS for the 16 Hz sine tone, as we would ex-
pect based on our earlier findings. loudness.py agrees
with the other implementations, and the issue we ob-
served previously does not appear. Finally, it appears
that youlean deviates significantly, with a moderate dif-
ference in six of the thirteen test signals. As before,
pyloudnorm, libebur128, and Audition tend to produce
measurements that closely agree with each another.

AES 150th Convention, Online, 2021 May 25-28
Page 5 of 8

Steinmetz and Reiss pyloudnorm

File

Implementation

Mean pyloudnorm loudness.py ffmpeg libebur128 Essentia Audition youlean
Default De Man

sine_16Hz -24.08 -23.44 -23.44 -23.36 -23.50 -23.40 -28.48 -23.48 -23.51
sine_1000Hz -3.13 -3.05 -3.01 -3.01 -3.00 -3.00 -3.01 -3.05 -3.88
sine_1000Hz_pad -4.18 -4.19 -4.15 -4.15 -4.20 -4.10 -4.15 -4.19 -4.32
sine_16000Hz -19.77 -19.69 -19.64 -19.64 -19.70 -19.60 -19.64 -19.69 -20.52
sine_19000Hz -19.78 -19.69 -19.64 -19.64 -19.80 -19.60 -19.64 -19.69 -20.52
multi-sines -10.65 -10.67 -10.62 -10.62 -10.60 -10.60 -10.64 -10.67 -10.79
hf-noise -9.34 -9.21 -9.16 -9.15 -9.60 -9.20 -9.16 -9.21 -10.04
chirp-150-190 -6.69 -6.55 -6.50 -6.52 -6.50 -6.50 -6.51 -6.55 -7.88
our_gating_test -3.37 -3.37 -3.33 -3.33 -3.30 -3.30 -3.33 -3.37 -3.61

piano-D6 -25.12 -25.02 -24.98 -24.98 -28.20 -25.00 -24.98 -25.03 -22.73
soprano-E4 -29.74 -29.82 -29.77 -29.57 -29.60 -29.60 -29.78 -29.61 -30.15
vibraphone-C6 -17.29 -16.95 -16.90 -16.90 -17.90 -16.90 -19.60 -16.95 -16.23
violin-B3 -12.78 -12.82 -12.78 -12.69 -12.70 -12.70 -12.78 -12.74 -13.00

Table 2: Comparison of loudness algorithm implementations with alternative material.
Measurements that disagree with others significantly (≥ 0.5 dB LUFS) are marked in boldface.

Overall, it appears that many of the trends from the orig-
inal compliance material hold, namely that pyloudnorm,
along with loudness.py, libebur128, and Adobe Audi-
tion produce measurements that tend to agree with each
other. Nevertheless, these findings underlie an impor-
tant realization that not all of these implementations
produce equivalent results. Therefore care should be
taken when utilizing their measurements, especially in
cases where measurements will be compared across the
different implementations, as this could lead to audible
differences in normalization.

4.4 Runtime

As the final component of our evaluation, we inves-
tigate the runtime performance of the Python imple-
mentations. While this evaluation does not directly
measure the runtime of each implementation, it pro-
vides insight into the amount of time required when
performing these measurements from Python. We mea-
sured the average execution time for each audio file
in the set of compliance material over 10 runs. We
then report the average real-time factor (RTF) for each
implementation in Table 3, with the real-time factor
indicating how much faster the execution takes with
respect to the duration of the audio file.

We find that ffmpeg is clearly the slowest, and this is
likely due to the overhead required in the processing
pipeline, which must be invoked in order to measure the
loudness. This is followed by Essentia, which provides

Implementation RTF Audio Loader

ffmpeg 26x ffmpeg
Essentia 88x Essentia
libebur128 114x ffmpeg
loudness.py 421x pysoundfile

pyln (Default) 338x pysoundfile
pyln (De Man) 455x pysoundfile

Table 3: Mean real-time factor.

its own interface for reading audio data from disk. It
performs about 3x faster than ffmpeg, but still lags
behind the others. libebur128 achieves a 4x speedup
compared to ffmpeg, likely due to having less overhead.

In the case of the native Python implementations, which
include pyloudnorm and loudness.py, we utilize the
soundfile package7 to read the audio data from disk.
We count the time to load the audio data in the timings
to provide a more fair comparison with the previous
methods that require system calls and utilize their own
data loading process. We see a significant speedup
with loudness.py, which achieves a RTF that is 16x
greater than ffmepg. These timings are comparable
to pyloudnorm, which has similar overhead. These
results appear to agree with our intuition that simpler
implementations with less overhead tend to perform
more efficiently.

7https://github.com/bastibe/python-soundfile

AES 150th Convention, Online, 2021 May 25-28
Page 6 of 8

Steinmetz and Reiss pyloudnorm

5 Conclusion

In this work, we presented pyloudnorm, an easy-
to-install Python package that implements the
ITU-R BS.1770 recommendation for measuring the
perceived loudness of audio signals. We outlined the
flexible design of pyloudnorm, and discussed the op-
tional modifications that we incorporate based on re-
cent literature. These modifications aim to improve
the performance of measurements for more diverse
content, and have been neglected in previous imple-
mentations. We compared pyloudnorm to a number
of open source and commercial implementations, and
performed an evaluation of their measurements on the
original compliance material, as well as our own test
signals. We found that while most meters are compli-
ant, a few appear to produce unexpected measurements,
and may not be fully compliant. We demonstrated that
pyloudnorm is both fully compliant, and tends to agree
with other meters on a set of test material meant to
stress these implementations. Finally, we compared
the runtime of these implementations and found that
pyloudnorm is among one of the fastest options.

Acknowledgements

This work is supported by the EPSRC UKRI Centre for
Doctoral Training in Artificial Intelligence and Music
(EP/S022694/1).

References

[1] Stevens, S. S., “The measurement of loudness,”
JASA, 27(5), pp. 815–829, 1955.

[2] Stevens, S. S., “The direct estimation of sensory
magnitudes: Loudness,” The American journal of
psychology, 69(1), pp. 1–25, 1956.

[3] Zwicker, E. and Scharf, B., “A model of loudness
summation.” Psychological review, 72(1), p. 3,
1965.

[4] Moore, B. C. and Glasberg, B. R., “A revision of
Zwicker’s loudness model,” Acta Acustica united
with Acustica, 82(2), pp. 335–345, 1996.

[5] Moore, B. C. J., “Development and Current Status
of the “Cambridge” Loudness Models,” Trends in
Hearing, 18, 2014.

[6] Bauer, B., Torick, E., Rosenheck, A., and Allen,
R., “A loudness-level monitor for broadcasting,”
IEEE Transactions on Audio and Electroacous-
tics, 15(4), pp. 177–182, 1967.

[7] Jones, B. L. and Torick, E. L., “A new loudness in-
dicator for use in broadcasting,” SMPTE Journal,
90(9), pp. 772–777, 1981.

[8] Bauer, B. and Torick, E., “Researches in loudness
measurement,” IEEE Transactions on Audio and
Electroacoustics, 14(3), pp. 141–151, 1966.

[9] Skovenborg, E. and Nielsen, S. H., “Evaluation of
different loudness models with music and speech
material,” in 116th AES Convention, 2004.

[10] Soulodre, G. A., “Evaluation of objective loud-
ness meters,” in 116th AES Convention, 2004.

[11] Lund, T., “Control of Loudness in Digital TV,” in
NAB Convention, 2006.

[12] Vickers, E., “Automatic long-term loudness and
dynamics matching,” in 111th AES Convention,
2001.

[13] Robinson, D. J. M., Perceptual model for assess-
ment of coded audio, Ph.D. thesis, University of
Essex, 2002.

[14] ITU-R BS.1770-4, “Algorithms to Measure Au-
dio Programme Loudness and True-peak Audio
Level,” Recommendation, International Telecom-
munications Union, 2015.

[15] Lund, T., “ITU-R BS. 1770 Revisited,” in NAB
Convention, 2011.

[16] Lund, T., “The CALM Act and cross-platform
broadcast,” in NAB Convention, 2012.

[17] EBU R 128, “Loudness normalisation and permit-
ted maximum level of audio signals,” Recommen-
dation, European Broadcasting Union, 2012.

[18] Katz, B., “Sound Board: Can We Stop the Loud-
ness War in Streaming?” JAES, 63(11), pp. 939–
940, 2015.

[19] Grimm, E., “Analyzing Loudness Aspects of 4.2
Million Musical Albums in Search of an Optimal
Loudness Target for Music Streaming,” in 147th
AES Convention, 2019.

AES 150th Convention, Online, 2021 May 25-28
Page 7 of 8

Steinmetz and Reiss pyloudnorm

[20] Cabrera, D., Dash, I., and Miranda, L., “Multi-
channel loudness listening test,” in 124th AES
Convention, 2008.

[21] Pestana, P. D., Reiss, J. D., and Barbosa, A.,
“Loudness measurement of multitrack audio con-
tent using modifications of ITU-R BS. 1770,” in
134th AES Convention, 2013.

[22] Fenton, S. and Lee, H., “Alternative Weighting
Filters for Multi-Track Program Loudness Mea-
surement,” in 143rd AES Convention, 2017.

[23] Fenton, S., “Automatic mixing of multitrack ma-
terial using modified loudness models,” in 145th
AES Convention, 2018.

[24] Olive, S. E., Welti, T., and McMullin, E., “A vir-
tual headphone listening test methodology,” in
AES Conference: 51st International Conference:
Loudspeakers and Headphones, 2013.

[25] Jillings, N., Moffat, D., De Man, B., and Reiss,
J. D., “Web Audio Evaluation Tool: A browser-
based listening test environment,” in 12th Sound
and Music Computing Conference, 2015.

[26] Friberg, A. et al., “Using listener-based perceptual
features as intermediate representations in music
information retrieval,” JASA, 136(4), pp. 1951–
1963, 2014.

[27] Schoeffler, M., Stöter, F.-R., Bayerlein, H., Edler,
B., and Herre, J., “An Experiment about Esti-
mating the Number of Instruments in Polyphonic
Music: A Comparison Between Internet and Lab-
oratory Results.” in ISMIR, pp. 389–394, 2013.

[28] Ward, D., Reiss, J. D., and Athwal, C., “Multi-
track mixing using a model of loudness and partial
loudness,” in 133rd AES Convention, 2012.

[29] Mansbridge, S., Finn, S., and Reiss, J. D., “Imple-
mentation and evaluation of autonomous multi-
track fader control,” in 132nd AES Convention,
2012.

[30] Ward, D. and Reiss, J. D., “Loudness algorithms
for automatic mixing,” in AES Workshop on Intel-
ligent Music Production, 2016.

[31] Abdelnour, J., Salvi, G., and Rouat, J., “CLEAR:
A Dataset for Compositional Language and Ele-
mentary Acoustic Reasoning,” in ViGIL Workshop
at NeurIPS 2020, 2018.

[32] Fischer, T., Caversaccio, M., and Wimmer, W.,
“Multichannel acoustic source and image dataset
for the cocktail party effect in hearing aid and
implant users,” Scientific data, 7(1), pp. 1–13,
2020.

[33] Cosentino, J., Pariente, M., Cornell, S., Dele-
forge, A., and Vincent, E., “LibriMix: An Open-
Source Dataset for Generalizable Speech Separa-
tion,” arXiv:2005.11262, 2020.

[34] Manilow, E. et al., “Cutting Music Source Separa-
tion Some Slakh: A Dataset to Study the Impact
of Training Data Quality and Quantity,” in WAS-
PAA, IEEE, 2019.

[35] Cella, C. E. et al., “OrchideaSOL: a dataset of
extended instrumental techniques for computer-
aided orchestration,” arXiv:2007.00763, 2020.

[36] Lenain, R., Weston, J., Shivkumar, A.,
and Fristed, E., “Surfboard: Audio Fea-
ture Extraction for Modern Machine Learning,”
arXiv:2005.08848, 2020.

[37] Salamon, J., MacConnell, D., Cartwright, M., Li,
P., and Bello, J. P., “Scaper: A library for sound-
scape synthesis and augmentation,” in WASPAA,
pp. 344–348, 2017.

[38] Chen, M., Shi, Y., and Hain, T., “Towards
Low-Resource StarGAN Voice Conversion us-
ing Weight Adaptive Instance Normalization,”
arXiv:2010.11646, 2020.

[39] Pestana, P. D. and Barbosa, Á., “Accuracy of ITU-
R BS. 1770 Algorithm in Evaluating Multitrack
Material,” in 133rd AES Convention, 2012.

[40] De Man, B., “Evaluation of Implementations of
the EBU R128 Loudness Measurement,” in 145th
AES Convention, 2018.

[41] Bogdanov, D. et al., “Essentia: An audio analysis
library for music information retrieval,” in ISMIR,
2013.

[42] Harris, C. R. et al., “Array programming with
NumPy,” Nature, 585(7825), pp. 357–362, 2020.

[43] ITU-R BS.2217, “Compliance material for Rec-
ommendation ITU-R BS.1770,” Recommenda-
tion, International Telecommunications Union,
2011.

AES 150th Convention, Online, 2021 May 25-28
Page 8 of 8

