
1

Auditing
DevSecOps
Projects

2

“Continuous everything” calls for
a new approach to mitigating
information technology (IT) risks

Auditing DevSecOps projects

ln the ever-evolving world of IT development,
there is once again a new kid on the block.

Many companies are on the journey to employ Development
Security Operations (DevSecOps)1 as an evolutionary extension of
Agile principles (refer to our point of view on Auditing Agile Projects
for more information). As noted in a recent Gartner publication
(“Hype Cycle for Agile and DevOps,” 2020), “DevOps continues to
grow, and the percentage of respondents saying they do not have
any plans to adopt DevOps has dropped from 28% in 2016 to only
8% in 2019.” Wow—this is a game changer!

“New technologies and approaches are being introduced on an
increasingly frequent basis.”2 Like the shift from traditional waterfall
development to Agile, the growing movement toward DevSecOps
has significant implications for internal audit (IA) teams. Change
management processes are continuous and largely automated
in a DevSecOps environment, which challenges IA teams to shift
their mindsets about IT risks and the controls in place to mitigate
them. The first step in adapting to a DevSecOps world is to better
understand what DevSecOps is and what it isn’t.

1. Although DevOps and DevSecOps should not be used interchangeably, the control considerations within this POV apply to both.
2. George Spafford and Joachim Herschmann, “Hype Cycle for Agile and DevOps,” Gartner, 2020.

3

DevSecOps defined

DevSecOps: Integrate security into DevOps3

3. Abhishek Baranwal, “DevSecOps: Security with DevOps,” https://blog.knoldus.com/devsecops-security-with-devops/, last modified September 19, 2019

At a high level, DevSecOps is a software development and delivery
approach that emphasizes communication and collaboration
between development, security, and IT operations (ITOps). More
than a methodology, DevSecOps is also a mindset that builds on
Agile and Lean thinking to provide technology faster, with
greater stability, quality, scalability, and security.

Even though DevSecOps is a combination of the words
“development,” “security,” and “operations,” the term encompasses
many teams involved in the software development and delivery
process. “Dev” is understood to mean everyone on the code
development side, including developers, front-end designers,
and quality assurance. Meanwhile, “Ops” is understood to include
everyone on the systems side, including system administrators
and support teams responsible for the product after it’s been
moved to production. “Sec” is understood to mean cybersecurity
professionals responsible for system restriction, compliance, and
secure applications.

Code review

Static analysis Audit

Recover

Response

Detect

Monitor

Threat
IntelligenceThreat model

policies

Compliance
validatiion

Penetratrion
testing

Code

Release

Plan

Deploy

Bu
ild

Test
Monitor

O
perate

Auditing DevSecOps projects

In a DevSecOps world, the collective team
works together to support development,
delivery, and post-go-live maintenance,
using automation and monitoring to build,
test, and release software rapidly,
frequently, and more reliably.

Historically, developers have seen security professionals as
causing delays, and security professionals have seen developers as
responsible for introducing security flaws subject to compromise.
These teams coming together drives increased value and efficiencies
by solutioning together up front.

4

Like Agile, DevSecOps offers the advantage of short, frequent
releases. Indeed, the primary goal of continuous delivery with
DevSecOps is to make software deployments painless, low-risk
events that can be performed incrementally, at any time, and on
demand. However, in a DevSecOps world, team members wear
many hats, and tools are used to automate historically manual
tasks, such as code quality checks, execution of test scripts,
and deployments. These factors raise some questions about
the efficacy of traditional change management controls in a
DevSecOps environment.

DevOps dissolves the barriers between
development and operations to generate value
quickly with quality and stability. It can:

Characteristics of DevOps

Deliver software faster with less effort by optimizing

the end-to-end technology value stream

Continuously provide high quality, from the point of

creation to operation

Reduce manual rework and heighten quality through

automated delivery of software and infrastructure.

Make work in progress more visible to better

understand constraints and balance workloads.

Risk management
changes

Auditing DevSecOps projects

5

DevSecOps teams are different than what many organizations are
accustomed to, with several team members wearing multiple hats as
compared with the traditional development life cycle. This challenges
IT teams to reconsider the effectiveness of traditional change
management controls, such as SoD.

The risk of a user making an inappropriate change to the
environment, either maliciously or unintentionally, without
appropriate testing and approval has historically been mitigated
by SoD between the person who develops the change and the
person who implements it, as well as appropriate testing prior
to deployment. With more frequent, iterative changes and the
multi-skilled roles within the DevSecOps team, traditional SoD isn’t
maintained in a DevSecOps environment.

Increased use of tools in a DevSecOps environment may also
inadvertently create SoD conflicts if not carefully understood and
designed. Consider a company that has integrated DevSecOps into
its change management process and that manages its DevSecOps
tools through a centralized team. In this instance, the same
administrators may inadvertently have the ability to both develop
and promote code across tools.

Okay, auditors, let’s rethink
historical segregation of duties (SoD)!

Requiring changes to be approved by someone else
on the team, ideally via automated workflows. Some
examples of this may be user acceptance testing (UAT)
performed by the business, product owner approval, or
business stakeholder approval. Regardless of how it’s
implemented, the idea is to prevent one person from being
able to change the code and put it into production without
anyone else knowing or being involved.

Mitigating controls, such as monitoring and alerting,
to detect inappropriate changes that did not follow
standard procedures. This can be done manually or,
for more mature organizations, via bespoke continuous
monitoring rules or alerts that show when a change was
made and how it ties back to the other controls in
the process.

Auditing DevSecOps projects

When SoD isn’t possible, DevSecOps teams should consider
identifying other controls to address the risk that a single user could
make a change without appropriate testing and approval. Some
common examples include:

6

Auditing DevSecOps projects

Automation doesn’t mean that humans are left out of the process.
Manual decisions still need to be made to tell the automated tool
how to perform. These human-centric aspects of the process should
also be considered in the risk-management approach. For example,
in order to gain assurance that the code is functioning as intended,
someone will need to know which test scripts are relevant and how
to incorporate appropriate scenarios and acceptance criteria into
them. Similarly, if automated workflows are being used, someone
will need to determine to whom those tasks will be routed and how
the flow will be maintained. And, if continuous monitoring is being
implemented, someone will need to consider what or who should be
monitored and whether the process is accurate and complete.

Managing the
manual aspects

Handling
the tools

Automated controls largely depend upon effective
GITCs to govern consistent operations, and the
pipeline itself depends upon automated controls
to function efficiently and consistently. Accordingly,
risks can compound quickly when handling
automated tools, such as those used for automated
testing. For instance, an automated testing tool
typically needs to be configured so it can recognize
when acceptance criteria have been met. A simple
configuration mistake could not only prevent the
test script from running, but also cause one or
more GITCs to fail. Furthermore, if test scripts are
inappropriately modified, or the team fails to update
them when new functionality is introduced, it could
cause similar cascading effects.

Quick tip!

Automation can offer many benefits, such as continuous
monitoring and workflow management. Teams often rely
on tools to achieve these goals. For instance, DevSecOps
teams may likely use tools to scan source code and to
automate regression, security, and performance testing.
Such tools can enable developers to identify and address
issues like security vulnerabilities that previously wouldn’t
have been detected until after the product had been moved
into production.

By building an automated pipeline,
these activities can be performed
continuously throughout the delivery
process, so quality is built into
products from the beginning.

However, this new way of working also poses new risks.
A lot more tools come into play in an automation-heavy
DevSecOps environment, which means there are risks
around those tools being modified inappropriately or
configured incorrectly. Automated controls also include
configurable settings, as well as automated rules and/or
algorithms and calculations, which introduce additional
change management challenges.

For instance, an unauthorized user could modify
the information in a tool that is used to assess the
effectiveness of a control or that could be used as evidence
in an audit. Or, since tools can include automated controls
that rely on general IT controls (GITCs), an unauthorized
change could cause the tool to malfunction and result in
an ineffective control.

7

Auditing DevSecOps projects

In a DevSecOps environment, IA teams will increasingly
need to bring tools into the audit scope, testing
automations that function as controls, as well as
testing the controls over source data. At a minimum,
IA teams should consider the tools that support
GITCs in managing approvals, generating reports,
and maintaining documentation. This includes
understanding the tool, assessing how it is used,
considering the risks, and determining any additional
testing procedures that may be required. Pay attention
to tools used within the change management process.
For example, if a code management tool is used to
control access, the GITCs over it may likely be relevant
to an audit.

Automated testing and approval in a DevSecOps
environment also alters the type of documentation
used for evidence of change management controls.
In addition to manual documentation via tickets or
emails, IA teams should consider:

 • Testing that is documented in the form of automated
test cases

 • Automated validation checks performed by the
change tool

 • Access and change management controls related
to supporting tools

Putting DevSecOps to the test

Bringing development and operations together into a cohesive
approach opens the door for software development teams to attain
a new level of efficiency and effectiveness. When auditing, the
intent is to help them to walk through that door while addressing
the associated change management risks. This requires knowledge
of how DevSecOps works, as well as a shift in perspective. In a
DevSecOps environment, historical project and change management
controls should be reevaluated because the ways of forming teams,
working together, and deploying products are different.

By focusing on the new change management risks and how
processes can be tweaked, DevSecOps teams can leverage these
tools to mitigate risks without bogging down development by
introducing cumbersome new compliance processes.

If IA can bring this point of view and mindset to DevSecOps-related
audits and consultations with technical teams, compliance and
DevSecOps efficiencies can harness value creation.

Conclusion

8

About Deloitte

This document contains general information only and Deloitte is not, by means
of this document, rendering accounting, business, financial, investment, legal,
tax, or other professional advice or services. This document is not a substitute
for such professional advice or services, nor should it be used as a basis for any
decision or action that may affect your business. Before making any decision or
taking any action that may affect your business, you should consult a qualified
professional adviser.

Deloitte shall not be responsible for any loss sustained by any person who relies
on this document.

As used in this document, “Deloitte” means Deloitte & Touche LLP, a subsidiary
of Deloitte LLP. Please see www.deloitte.com/us/about for a detailed description
of our legal structure. Certain services may not be available to attest clients
under the rules and regulations of public accounting.

Copyright © 2021 Deloitte Development LLC. All rights reserved.

Sarah Fedele
Principal
Deloitte & Touche LLP
+1 713 982 3210
sarahfedele@deloitte.com

Sarah Adams
Managing Director
Deloitte & Touche LLP
+1 713 982 3416
saradams@deloitte.com

Ryan Gentry
Manager
Deloitte & Touche LLP
+1 713 982 2298
rygentry@deloitte.com

Julia McDonald
Manager
Deloitte & Touche LLP
+1 617 585 5961
jumcdonald@deloitte.com

Contact us

Ranjani Narayanan
Senior manager
Deloitte & Touche LLP
+1 617 437 3847
rnarayanan@deloitte.com

Kristen Heikkinen
Senior manager
Deloitte & Touche LLP
+1 617 437 3488
kheikkinen@deloitte.com

