ARIZONA

AuditorGeneral

Making a Positive Difference

Auditing Web Applications

NSAA Information Technology Workshop and Conference
September 24, 2019

Gina Alvarado, IT Auditor, Office of the Auditor General (AZ)
Sajay Rai, President and CEO, Securely Yours LLC

Auditing Web Applications Outline

Arizona audit plan
e \Web application testing and web application development

Recommendations/common findings
Secure coding standards

Case study

ARIZONA

AuditorGeneral

Arizona Auditor General

207 Staff
Financial, Federal and Performance Audits
State Agency, School District, University, County, Boards, Commissions Audits

In FY 2018 issued over 200 reports:

« 104 performance audits/follow-ups of state agencies and school districts,
7 financial investigations and alerts,

« 47 financial and federal compliance audits,

» 54 accountability reviews,

« 5 special audits/reviews

 Information Technology Audit Team

* 1 audit manager
* 6 IT auditors

ARIZONA

AuditorGeneral

Making a Positive Difference

Arizona - Experience

Auditing and reporting on web application issues since
2006

Varied practices by IT audit
o Have scanned, tested, and exploited web applications
o Worked with various IT consultants via an RFP process
o Also worked without IT consultants

ARIZONA

AuditorGeneral

Arizona - common security tools

.

Kall Linux

Securlty Audlt

Machines

-

~

Nessus

1?

Burp Suite

Metasploit

Qualys SSL
Scan

ARIZONA

AuditorGeneral

Arizona - training

Trainings

e Training from consultants during audit engagements
e SANS trainings

e Cybrary cybersecurity trainings and labs

Hands-on team exercises and hackathons

e Arizona Cyber Warfare Range
e Hacksplaining

Scan our own network monthly

ARIZONA

AuditorGeneral

Audit Planning

4)
Scan and provide results
- 5
o 10 \
» || Test and analyze the likelihood of an exploit

ARIZONA

AuditorGeneral

Audit Planning - root cause

Consider the root cause

e What processes might contribute to vulnerabilities identified in scanning
and testing?

We might consider other |IT areas such as:
e Web application development
e Vulnerability management
e Patch management
e Configuration management

ARIZONA

AuditorGeneral

Audit Plan Objectives

Objective: Web application testing

e Perform web app scanning and security testing of the entity’s mission
critical applications using a risk-based approach

e Arizona - Audit Methodology
o Step 1: Gather information
e Step 2: Define testing parameters
e Step 3: Perform reconnaissance
e Step 4: Perform scanning and testing
e Step 5: Communicate testing results and issues
o Step 6: Assess and document best practices, cause, and effect

ARIZONA

AuditorGeneral

Making a Positive Difference

Gather Information

Ask entity to fill out application inventory spreadsheet

e |dentifies the entity’s mission critical applications
e Includes web and non-web-based applications

e Provides key information about each application
e Description
e Type of data stored/processed
e Number of users
e How the application was developed
e Size of the application
e |P address

ARIZONA

AuditorGeneral

Define Testing Parameters

Select web applications using a risk-based
approach

* Factors to consider:
v'Sensitive data stored or processed in the application

v'Accessibility (internet accessible vs. internally
accessible)

v'"Number of dynamic pages and number of users

v'Purpose of the application and how it ties into other
audit objectives

v'Input from the entity

ARIZONA

AuditorGeneral

Define Testing Parameters

Fill out Security Testing Notification Letter

[Provides notification of our activities | Defines technical logistics

Necessary access e n Technical point of contact

P\ Service degradation and/or | i (Scanning and testing period \
interruption) ! - <
= Confidentiality of scanning and) ' | E;(I?fcr;]r?rllee?j (;fntgst.gsoicg t%ebe o

P testing results

J
/ _

ARIZONA

AuditorGeneral

Perform Reconnaissance

Perform a discovery scan of external-facing IP range

e Discovers live hosts, open ports, and services running on these live
hosts

e Compare the results of the discovery scan to the IP addresses in the
application inventory
e For all IP addresses not in the application inventory, follow-up with the entity

e Common tools

e NMAP
e Nessus

ARIZONA

AuditorGeneral

NMAP - Host Discovery

Host Discovery
*nmap -sn —n -v -0A outputfile -iL inputfile.txt
e -sn instructs NMAP to not perform a port scan
e -n instructs NMAP to not resolve any DNS names
e -v instructs NMAP to increase verbosity during the scan

o -0A instructs NMAP to export scan in normal, XML, and Grepable format
e -iL instructs NMAP to scan all IP addresses listed in the specified file

NMAP NMAP Reference Guide — nmap.org AuditorGeneral

https://nmap.org/

Nessus - Discovery Scan

Nessus om Scans Settings

Policy Templates
< Back to Policies
My Scans

All Scans Scanner

Trash

e

Advanced Scan

Policies
Plugin Rules

Scanners

&

DROWN Detection

Mobile Device Scan

Spectre and Melidown

' @

Audit Cloud Infrastructure

Host Discovery

=

Offline Config Audit

-

WannaCry Ransomware

!

Badlock D¢

Web Application Tests

Host Discovery

y 3

admin o

Nessus - Discovery Scan Results

Plugin 1D B3 risk B Host B protocol B Name B Synopsis
10180 None 111.11.11.01 tcp Ping the It was possible to identify the MNessus was able to determine if the remote hostis The remote hostis up
remote host status of the remote host alive using one or more of the following ping types: The remote host replied to a TCP SYN
(alive or dead). packet sent to port 443 with a SYN,ACK
- An ARP ping, provided the host is on the local packet

subnet and Nessus is running over Ethernet.

- An ICMP ping.

- ATCP ping, in which the plugin sends to the
remote host a packet with the flag SYN, and the host

will reply with a RST or a SYN/ACK.

- A UDP ping (e.g., DNS, RPC, and NTP).

10180 None 111.11.11.02 tcp Ping the It was possible to identify the Nessus was able to determine if the remote hostis The remote hostis up
remote host status of the remote host alive using one or more of the following ping types: The remote host replied to a TCP SYN
(alive or packet sent to port 80 with a SYN,ACK
dead). - An ARP ping, provided the host is on the local packet

subnet and Nessus is running over Ethernet.

- An ICMP ping.

- A TCP ping, in which the plugin sends to the
remote host a packet with the flag SYN, and the host

will reply with a RST or a SYN/ACK.

- A UDP ping (e.g., DNS, RPC, and NTP).

Nessus - Discovery Scan Results

10180 111.11.11.01 tcp Ping the The remote host is up
remote host The remote host
replied to a TCP SYN

packet sent to port
443 with a SYN, ACK
packet

ARIZONA

AuditorGeneral

Perform Reconnaissance

ldentify and research potential vulnerabilities

e Query service versions/configurations of the entity’s infrastructure

e Cross reference services and versions to vulnerabilities to identify
exploitable conditions

e Common security tools we use
e Qualys SSL Server Test
e Exploit-DB/ SearchSploit
e Common Vulnerabilities and Exposures (CVE) listing

e Security Headers scan

ARIZONA

AuditorGeneral

Qualys SSL Server Test

Home Projects Qualys Free Trial Contact

@ Qualys. ssi Labs

You are here: Home = Projecis = S5L Server Test

SSL Server Test

This free online service performs a deep analysis of the configuration of any S5L web server on the public Internet. Please note that the
information you submit here is used only to provide you the service. We don't use the domain names or the test results, and we never
will.

Hostname;

#| Do not show the results on the boards

Recently Seen

fip.exfo_com
ci.fcrepo.org

mail. munciepower com

gmail. com

Recent Best

winw_appintheair. mobi

bopb.by

Twin.com

|0ja-passeiorio paytour.com. ..

Recent Worst

www_rapid. metlife.com

nvidia.com

m2mhubuat wellsfargo.com

receipts thebluescan.com

ARIZONA

AuditorGeneral

Making a Positive Difference

https://www.ssllabs.com/ssltest/

Qualys SSL Server Test

Home Projects Qualys Free Trial Contact
@ Qualys. ssi Labs

You are here: Home = Projecis = 351 Senver Test = google.com

SSL Report: google.com

Assessed on: Tue, 27 Aug 2019 2000950 UTC | HIDDEN | Clear cache

Scan Another >>

Server Test time Grade

216.58.194.174
sfol07s13-in-fF174. 12100 net

Feady

Tue, 27 Aug 2019 20:06:27 UTC

Duration: 100.414 sec

2607:f8b0:4005:804:0:0:0:200e
sfol7s13-in-x0e.12100.net

Feady

Tue, 27 Aug 2019 20:08:07 UTC

Duration: 102.958 sec

Qualys SSL Test - detailed results

Protocol Details

Mo, server keys and hostname not seen elsewhere with SSLv2

(1) For a better understanding of this test, please read this longer explanation

DROWN (2) Key usage data kindly provided by the Censys network search engine; original DROWN website here
(3) Censys data is only indicative of possible key and certificate reuse; possibly out-of-date and not complete

Secure Renegotiation Supported

Secure Client-Initiated Renegotiation Mo

Insecure Client-Initiated Renegotiation Mo

BEAST attack Mot mitigated server-side (more info) TLS 1.0: exceeg

POODLE (SSLv3) Mo, SSL 3 not supported (more info)

POODLE (TLS) Mo (more info)

Zombie POODLE Mo (more info) TLS 1.2 : excess

GOLDENDOODLE Mo (more infg) TLS 1.2 : 8xcees

OpenSSL 0-Length Mo (more info) TLS 1.2 : excees

Sleeping POODLE Mo (more infg) TLS 1.2 : 8xceeo

Downgrade attack prevention Yes, TLS_FALLBACK_SCSV supported (more info)

SSL/TLS compression Mo

Scanning and Testing — getting started

Before starting scanning or testing
e Update and configure all scanners and security tools

e Remind the web application owners of the testing windows
e The entity should take necessary precautions to avoid unexpected outages
e The entity should not make any changes to the application during the testing window

e Email the entity at the start and end of testing each day

ARIZONA

AuditorGeneral

Perform Web Application Scanning

Web application scanning — uses automated scanners

to crawl a website to identify vulnerabilities.

e Common web application scanners:
e Burp Suite
e Nessus
e Nexpose

e Evidence and documentation
e Burp Suite issues report
e Screenshots
e Screen capture videos

e Keep an open eye for any strange behaviors or issues
ARIZONA

AuditorGeneral

Perform Web Application Testing

Web application testing — simulating attacks on a web

application to exploit identified vulnerabillities.

e Once a vulnerability is found, continue to test for that vulnerability in
other areas of the application

L] L] L]

. -—w - cawa e Pﬂ" oogig

‘ rrl"l (: II Il 10173310 0 gﬁéi . Fs

® O On Web appll atlo testl g tOOIS- 1% 11016 l “ i.l E‘:"::lz

s & 2 89 a4l Balte 2 200

% 2. o Vol D 3 1OghF s
_" %%010&1\.%1.& L -uo ! 0 :|.‘u goo‘ll:l;s"fo;io:'ﬂ?';{ '1_00 f :
a- hah DTS 0 19‘0 g ".iinlhge,li'n 1-'0{0'1 ;‘}‘3"1-‘; g‘;‘oh'
¥ (L ,;‘-‘i ORI AR IVoYNS 4 1 ol 00 0.7 ¢
0. 0a R By 418 14t i1y . b1 0 4118
0101 Q10" D D a 0, °

e Burp Suite
e Metasploit
e Nikto

e Responder

e Guidance — OWASP Testing Guide

ARIZONA

AuditorGeneral

Making a Positive Difference

Communicate Testing Results

Communicate the testing results as soon as possible

e Share vulnerabilities discovered on specific applications
e Schedule a meeting to discuss testing results verbally
e Share the detailed testing reports

e Recommend remediation solutions, when possible
Missing HTTP Security Headers (Medium)
A Security Headers scan was performed on the 5 web applications selected for testing. These security
headers provide additional security to web applications. The following HTTP Headers were missing from
the applications tested:
e Strict-Transport-Security (App 1, App 2, App 3, App 4, App 5)

Content-Security-Policy (App 1, App 2, App 3, App 4, App 5)

X-Frame-Options (App 2, App 4, App 9)

X-X55-Protection (App 1, App 2, App 3, App 4, App 9)

X-Content-Type-Options (App 1, App 2, App 3, App 5)

Referrer-Policy (App 1, App 2, App 3. App 4, App 9)

Feature-Policy (App 1, App 2, App 3, App 4, App 5)

ARIZONA

AuditorGeneral

Making a Positive Difference

Remediation: Add these headers to the appropriate web applications.

Arizona - challenges

' Lack of non-
Getting the _
notification production

, environment
letter signed for testing

ARIZONA

AuditorGeneral

Making a Positive Difference

Universities’ security controls slowed simulated attacks, but
vulnerabilities allowed unauthorized access to some IT systems and
sensitive data

However, auditors identified and exploited vulnerabilities to gain unauthorized access to some of the universities'
IT systems and sensitive data contained in them, such as educational records, medical documents, and
information about IT systems that could allow attackers to conduct further attacks. Specifically:

*» Sensitive data in web applications accessed—Auditors identified vulnerabilities in web applications
that could have allowed attackers to gain unauthorized access to sensitive data at ASU, NAU, and UA. At
ASU, auditors exploited a vulnerability and obtained unauthorized access to sensitive data on hundreds
of thousands of individuals, including names, addresses, phone numbers, grades, grade point averages,
and other information. Auditors exploited the vulnerability after ASU had removed some controls to provide
auditors more access to the web application. Removing controls is a common practice during penetration
testing (see page 13 for information on penetration testing) to help penetration testers more quickly identify
and exploit vulnerabilities during simulated attacks. Although ASU’s controls would have slowed down an
attacker, they would not necessarily have prevented an attacker from identifying the vulnerability and obtaining
sensitive data. At NAU, auditors exploited a vulnerability and obtained unauthorized access to thousands of
legal documents and unauthorized access to legally protected and sensitive data such as records related
to medical issues.'” At UA, auditors identified various vulnerabilities that could have provided access to
sensitive information about some web applications and potentially compromised them.

Auditors promptly notified the universities of the vulnerabiliies. ASU and NAU immediately fixed their

respective vulnerability and reported that they had reviewed their activity logs to confirm that there were

no other instances of unauthorized access on the web applications during the time that their respective T ZONA
vulnerability existed (see pages 19 through 20 for more information about activity logs). In addition, UA staff AuditorGeneral
reported that they immediately began to address their vulnerabilities. Making a Positive Differsnce

Root Cause of Vulnerabilities

Patch Management

(S
4 I
Vulnerability
Management
Web
N\) Application

Vulnerability

ARIZONA

AuditorGeneral

Making a Positive Difference

Vulnerability Management

(DENTIFYING ISSUES \
\
o Scannin Penetration Remediation or
- Testing Risk Acceptance
U 4 _) _ P

e Review entity’s vulnerability management policies and procedures
e Conduct interviews about the entity’s processes
e Perform vulnerability management remediation testwork

ARIZONA

AuditorGeneral

Making a Positive Difference

Missing vulnerability management components may
have contributed to auditors’ ability to identify and
exploit vulnerabilities.

UA should ensure it conducts sufficient scans and penetration tests at appropriate intervals—UA
scans only a portion of the IT systems on its network, does not scan web applications, and does not conduct
penetration testing. Specifically:

o UA’s network scanning is limited, and it does not scan web applications—Although UA has
scanning policies and procedures, these policies and procedures do not require all of UA’s IT systems
on its network to be scanned, thus increasing the potential that vulnerabilities may not be detected.

Additionally, a UA official reported that UA does not scan its web applications even though UA’s policies
and procedures require annual web application scanning. Further, IT standards and best practices
recommend that organizations analyze scan results and share these results across the organization to
help eliminate similar vulnerabilities in other IT systems, but a UA official reported that some of its scan
results are not being analyzed and therefore cannot be shared across the university.

UA does not conduct penetration testing—UA does not perform penetration testing for the IT systems
on its network or its web applications. In addition, UA has not developed penetration testing policies and
procedures that define which systems should be tested and the required time frames for doing so, as
recommended by IT standards and best practices.

ARIZONA

AuditorGeneral

Making a Positive Difference

Developing and implementing revised policies and procedures for its vulnerability management
process that include requirements and/or guidance for:

Regularly scanning all of the IT systems on its network and its web applications, with specified
scanning frequencies based on risk factors such as the amount and nature of sensitive data
contained in certain IT systems and web applications, and the extent that scanning is used to
assess whetherindividual units are identifying and addressing vulnerabilities, such as configuration
and patch-related vulnerabilities;

Analyzing scan results, including specifying time frames for conducting the reviews, and sharing
these results across the university to help eliminate similar vulnerabilities in other IT systems;

Conducting penetration testing at specified frequencies based on risk;

Using a risk-based approach for conducting penetration testing for the IT systems on its
network and its web applications, including specifying risk factors that should be considered
for conducting this testing, the frequency at which risks will be assessed, and procedures for
conducting penetration testing based on identified risks; and

Helping to ensure all higher-risk web applications are tested within a specified time frame, such
as determining whether to allocate additional resources for penetration testing or reducing the
scope or frequency of penetration tests for some or all high-risk web applications.

Web App Development Auditing

‘ Review entity’'s policies and procedures

‘ Interview web app developers and make observations

. ‘ Summarize the entity’s efforts

ARIZONA

AuditorGeneral

Web App Development Criteria

When developing web applications, organizations should:

1.Gather security requirements

2.Use up-to-date secure coding standards
3.Perform threat modeling during development
4.Review source code

5.Perform security testing before releasing a web application
to the live environment

6.Provide role-based training to web application developers

AuditorGeneral

Web App Development Best Practices

Open Web Application Security Project (OWASP)

e OWASP Testing Guide

e OWASP Code Review Guide

e OWASP Top 10 — 2017

e OWASP Top 10 Proactive Controls

National Institute of Standards and Technology (NIST)
e NIST Special Publication 800-53 revision 4 (AT-3)

National Institute of ARIZONA
AuditorGeneral

Open Web Application
Security Project Standards and TEChI‘IOIOgy

Lack of some web app security components may have
contributed to auditors’ ability to identify and exploit

vulnerabilities.

As previously discussed (see page 12), auditors
were able to exploit vulnerabilities in some web
applications to gain unauthorized access to sensitive
data at ASU and NAU. In addition, auditors identified
some common security vulnerabilities in all the web
applications tested at all three universities that could
have been used for further attacks. Although all three

universities have developed policies and procedures
for web application development, these policies
and procedures lack some of the security-related
components recommended by IT standards and
best practices, which may have contributed to these
vulnerabilities. Specifically:

Application
Development

ARIZONA

AuditorGeneral

Recommendations

Developing and implementing additional web application development policies and procedures that
include the following IT standards and best practices:

Gathering web application security requirements when developing web applications;
Using secure coding standards when developing web applications;

Requiring web application developers to be trained on developing secure software;

Conducting threat modeling during web application development or security testing before
releasing web applications to the live environment;

Reviewing web application source code for web applications it develops internally before these
web applications are released; and

Performing security testing before web applications are released.

ARIZONA

AuditorGeneral

Making a Positive Difference

Auditing Web Applications

NSAA Information Technology Workshop and Conference
Grand Rapids

September 24, 2019

Sajay Rai, CPA, CISSP, CISM
sajayrai@securelyyourslic.com
248-723-5224

Web Application Risks &
Vulnerabilities

Web Application Risks

Threat Attack Security Security Technical Business
Agents Vectors Weaknesses Controls Impacts Impacts

== =® Attack Weakness @ - =9Control® = =, Impact

-l/ u
m==0 Asset ©=
»=® Weakness® ==9Control@ = =

==® Weakness Impact

Weakness

Why Web Application Vulnerabilities Occur

Security
Professionals
Don’t Know The
Applications

“As a Network
Security
Professional, I don't
know how my
companies web
applications are
supposed to work so
I deploy a protective
solution...but don't
know if it’s
protecting what it’s
supposed to.”

The Web Application
Security Gap

Web Application
Developers
Don’t Know
Security

“As an
Application
Developer, I can
build great
features and
functions while
meeting
deadlines, but I
don’t know how
to develop my
web application
with security as a
feature.”

Web Application Vulnerabilities

“If builders built buildings the way
programmers wrote programs, then the first
woodpecker that came along would destroy
civilization.”

-Weinberg's Second Law

& Securely Yours LLC

Web Application Vulnerabilities

Web application vulnerabilities occur
in multiple areas.

Application

v Application Mapping
Administration v Cookie Manipulation

v' Extension Checking g ggrsig)tin;gApplication

v .
Common File Checks v/ Parameter Manipulation

v .
Platform Data Extension v Reverse Directory

Checking
Known Vulnerabilities Transversal

in Operating Systems,
Databases, and v Directory Enumeration
supporting

infrastructure

v' Backup Checking 7 e e

v Application Mapping

v' Cookie Poisoning/Theft
v Buffer Overflow

v SQL Injection

v' Path Truncation
v Hidden Web Paths
v Forceful Browsing

v Cross-site scripting

Web Application Vulnerabilities

Application

v Application Mapping
v' Cookie Manipulation

v' Custom Application
Scripting

v’ Parameter Manipulation

v' Reverse Directory
Transversal

v’ Brute Force

v Application Mapping

v' Cookie Poisoning/Theft
v Buffer Overflow

v SQL Injection

v Cross-site scripting

Application Programming:

Common coding techniques do not
necessarily include security

Input is assumed to be valid, but not
tested

Unexamined input from a browser
can inject scripts into page for replay
against later visitors

Unhandled error messages reveal
application and database structures

Unchecked database calls can be
‘piggybacked’ with a hacker’s own
database call, giving direct access to
business data through a web
browser

& Securely Yours LLC

Secure Coding Standards

= Secure coding refers to the practice of building secure
software with a high level of security and quality
software with a high level of security requires:

— Understanding common software weaknesses that
lead to security vulnerabilities

— Following secure coding standards and practices
— Performing in-depth code reviews

Open Web Application Security
Project (OWASP)

OWASP

= OWASP provides the following:
— Application security tools and standards

— Complete books on application security testing, secure
code development, and secure code review

— Presentations and videos

— “cheat sheets” on many common topics
— Standard security controls and libraries
— Local chapters

— Cutting edge research

— Conferences and education

10

& Securely Yours LLC

OWASP — Top 10 Vulnerabilities

Injection

Broken Authentication

Sensitive Data Exposure

XML External Entities (XXE)

Broken Access Control

Security Misconfiguration

Cross-Site Scripting (XSS)

Insecure Deserialization

Using components with Known Vulnerabilities
10. Insufficient Logging and Monitoring

© 0N ORrWDhRE

11

OWASP - 1. Injection

A1:2017-
Injection

Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted data is sent
to an interpreter as part of a command or query. The attacker’s hostile data can trick the

interpreter into executing unintended commands or accessing data without proper authorization.

Is the Application Vulnerable?

An application is vulnerable to attack when:

+ User-supplied data is not validated, filtered, or sanitized by the
application.

* Dynamic queries or non-parameterized calls without context-
aware escaping are used directly in the interpreter.

* Hostile data is used within object-relational mapping (ORM)
search parameters to extract additional, sensitive records.

*+ Hostile data is directly used or concatenated, such that the
SQL or command contains both structure and hostile data in
dynamic queries, commands, or stored procedures.

Some of the more common injections are SQL, NoSQL, OS

command, Object Relational Mapping (ORM), LDAP, and

Expression Language (EL) or Object Graph Navigation Library

(OGNL) injection. The concept is identical among all interpreters.

Source code review is the best method of detecting if
applications are vulnerable to injections, closely followed by
thorough automated testing of all parameters, headers, URL,
cookies, JSON, SOAP, and XML data inputs. Organizations can
include static source (SAST) and dynamic application test
(DAST) tools into the CI/CD pipeline to identify newly introduced
injection flaws prior to production deployment.

12

OWASP - 2. Broken Authentication

\\
A2:2017-Broken Application functions related to authentication and session management are often implemented
Authenticati incorrectly, allowing attackers to compromise passwords, keys, or session tokens, or to exploit
uthentication other implementation flaws to assume other users’ identities temporarily or permanently.

Is the Application Vulnerable?

Confirmation of the user's identity, authentication, and session
management are critical to protect against authentication-related
attacks.

There may be authentication weaknesses if the application:

» Permits automated attacks such as credential stuffing, where
the attacker has a list of valid usernames and passwords.

* Permits brute force or other automated attacks.

» Permits default, weak, or well-known passwords, such as
"Password1" or "admin/admin®.

» Uses weak or ineffective credential recovery and forgot-
password processes, such as "knowledge-based answers",
which cannot be made safe.

* Uses plain text, encrypted, or weakly hashed passwords (see
A3:2017-Sensitive Data Exposure).

» Has missing or ineffective multi-factor authentication.
» Exposes Session |IDs in the URL (e.g., URL rewriting).
* Does not rotate Session IDs after successful login.

* Does not properly invalidate Session |Ds. User sessions or
authentication tokens (particularly single sign-on (SSO) tokens)
aren’t properly invalidated during logout or a period of inactivity.

13

OWASP — 3. Sensitive Data Exposure

A3:2017- Many web applications and APls do not properly protect sensitive data, such as financial,
.- healthcare, and PIl. Attackers may steal or modify such weakly protected data to conduct credit
Sensitive Data card fraud, identity theft, or other crimes. Sensitive data may be compromised without extra
Exposure protection, such as encryption at rest or in transit, and requires special precautions when

exchanged with the browser.

Is the Application Vulnerable?

The first thing is to determine the protection needs of data in
transit and at rest. For example, passwords, credit card numbers,
health records, personal information and business secrets
require extra protection, particularly if that data falls under
privacy laws, e.g. EU's General Data Protection Regulation
(GDPR), or regulations, e.g. financial data protection such as
PCI Data Security Standard (PCI DSS). For all such data:

* Is any data transmitted in clear text? This concerns protocols
such as HTTP, SMTP, and FTP. External internet traffic is
especially dangerous. Verify all internal traffic e.g. between
load balancers, web servers, or back-end systems.

* Is sensitive data stored in clear text, including backups?

+ Are any old or weak cryptographic algorithms used either by
default or in older code?

+ Are default crypto keys in use, weak crypto keys generated or
re-used, or is proper key management or rotation missing?

* Is encryption not enforced, e.g. are any user agent (browser)
security directives or headers missing?

* Does the user agent (e.g. app, mail client) not verify if the
received server certificate is valid?

See ASVS Crypto (V7), Data Prot (V9) and SSL/TLS (V10) 14

OWASP - 4. XML External Entities (XXE)

A4:2017-XML Many older or poorly configured XML processors evaluate external entity references within XML
External documents. External entities can be used to disclose internal files using the file URI handler,
Entities (XXE) internal file shares, internal port scanning, remote code execution, and denial of service attacks.

Is the Application Vulnerable?

Applications and in particular XML-based web services or
downstream integrations might be vulnerable to attack if:

* The application accepts XML directly or XML uploads,
especially from untrusted sources, or inserts untrusted data into
XML documents, which is then parsed by an XML processor.

* Any of the XML processors in the application or SOAP based
web services has document type definitions (DTDs) enabled.
As the exact mechanism for disabling DTD processing varies

by processor, it is good practice to consult a reference such as
the OWASP Cheat Sheet 'XXE Prevention’.

+ If your application uses SAML for identity processing within
federated security or single sign on (SSO) purposes. SAML
uses XML for identity assertions, and may be vulnerable.

* If the application uses SOAP prior to version 1.2, it is likely
susceptible to XXE attacks if XML entities are being passed to
the SOAP framework.

» Being vulnerable to XXE attacks likely means that the
application is vulnerable to denial of service attacks including

the Billion Laughs attack.
15

OWASP - 5. Broken Access Control

A5:2017-Broken
Access Control

\

Restrictions on what authenticated users are allowed to do are often not properly enforced.
Attackers can exploit these flaws to access unauthorized functionality and/or data, such as access
other users' accounts, view sensitive files, modify other users’ data, change access rights, etc.

Is the Application Vulnerable?

Access control enforces policy such that users cannot act
outside of their intended permissions. Failures typically lead to
unauthorized information disclosure, modification or destruction
of all data, or performing a business function outside of the limits
of the user. Common access control vulnerabilities include:

* Bypassing access control checks by modifying the URL,
internal application state, or the HTML page, or simply using a
custom API attack tool.

+ Allowing the primary key to be changed to another users
record, permitting viewing or editing someone else's account.

+ Elevation of privilege. Acting as a user without being logged in,
or acting as an admin when logged in as a user.

* Metadata manipulation, such as replaying or tampering with a
JSON Web Token (JWT) access control token or a cookie or
hidden field manipulated to elevate privileges, or abusing JWT
invalidation

+ CORS misconfiguration allows unauthorized AP| access.

+ Force browsing to authenticated pages as an unauthenticated
user or to privileged pages as a standard user. Accessing API
with missing access controls for POST, PUT and DELETE.

16

OWASP - 6. Security Misconfiguration

A6:2017-Security
Misconfiguration

Security misconfiguration is the most commonly seen issue. This is commonly a result of insecure

default configurations, incomplete or ad hoc configurations, open cloud storage, misconfigured
HTTP headers, and verbose error messages containing sensitive information. Not only must all

operating systems, frameworks, libraries, and applications be securely configured, but they must

be patched and upgraded in a timely fashion.

Is the Application Vulnerable?

The application might be vulnerable if the application is:

* Missing appropriate security hardening across any part of the
application stack, or improperly configured permissions on
cloud services.

* Unnecessary features are enabled or installed (e.g.
unnecessary ports, services, pages, accounts, or privileges).

+ Default accounts and their passwords still enabled and
unchanged.

+ Error handling reveals stack traces or other overly informative
error messages to users.

» For upgraded systems, latest security features are disabled or
not configured securely.

* The security settings in the application servers, application
frameworks (e.g. Struts, Spring, ASP.NET), libraries,
databases, etc. not set to secure values.

* The server does not send security headers or directives or they
are not set to secure values.

* The software is out of date or vulnerable (see A9:2017-Using
Components with Known Vulnerabilities).

Without a concerted, repeatable application security

configuration process, systems are at a higher risk.

17

OWASP - 7. Cross-Site Scripting (XSS)

A7:2017- XSS flaws occur whenever an application includes untrusted data in a new web page without
g . proper validation or escaping, or updates an existing web page with user-supplied data using a
Cross-Site browser API that can create HTML or JavaScript. XSS allows attackers to execute scripts in the
Scripting (XSS) victim’s browser which can hijack user sessions, deface web sites, or redirect the user to

malicious sites.

Is the Application Vulnerable?

There are three forms of XSS, usually targeting users' browsers:

Reflected XSS: The application or API includes unvalidated and
unescaped user input as part of HTML output. A successful
attack can allow the attacker to execute arbitrary HTML and
JavaScript in the victim’s browser. Typically the user will need to
interact with some malicious link that points to an attacker-
controlled page, such as malicious watering hole websites,
advertisements, or similar.

Stored XSS: The application or API stores unsanitized user
input that is viewed at a later time by another user or an
administrator. Stored XSS is often considered a high or critical
risk.

DOM XSS: JavaScript frameworks, single-page applications, and
APls that dynamically include attacker-controllable data to a
page are vulnerable to DOM XSS. Ideally, the application would
not send attacker-controllable data to unsafe JavaScript APIs.

Typical XSS attacks include session stealing, account takeover,

MFA bypass, DOM node replacement or defacement (such as

trojan login panels), attacks against the user's browser such as

malicious software downloads, key logging, and other client-side

attacks. 18

OWASP - 8. Insecure Deserialization

A8:2017- Insecure deserialization often leads to remote code execution. Even if deserialization flaws do not
Insecure result in remote code execution, they can be used to perform attacks, including replay attacks,
Deserialization injection attacks, and privilege escalation attacks.

Is the Application Vulnerable?

Applications and APIs will be vulnerable if they deserialize hostile
or tampered objects supplied by an attacker.

This can result in two primary types of attacks:

+ Object and data structure related attacks where the attacker
modifies application logic or achieves arbitrary remote code
execution if there are classes available to the application that
can change behavior during or after deserialization.

* Typical data tampering attacks, such as access-control-related
attacks, where existing data structures are used but the content
is changed.

Serialization may be used in applications for:

* Remote- and inter-process communication (RPC/IPC)
+ Wire protocols, web services, message brokers

+ Caching/Persistence

» Databases, cache servers, file systems

* HTTP cookies, HTML form parameters, API authentication
tokens

19

OWASP - 9. Using Components with known
Vulnerabilities

A9:2017-Using
Components
with Known

Vulnerabilities

Components, such as libraries, frameworks, and other software modules, run with the same
privileges as the application. If a vulnerable component is exploited, such an attack can facilitate
serious data loss or server takeover. Applications and APIs using components with known
vulnerabilities may undermine application defenses and enable various attacks and impacts.

Is the Application Vulnerable?

You are likely vulnerable:

+ If you do not know the versions of all components you use
(both client-side and server-side). This includes components
you directly use as well as nested dependencies.

+ |If software is vulnerable, unsupported, or out of date. This
includes the OS, web/application server, database
management system (DBMS), applications, APls and all
components, runtime environments, and libraries.

+ If you do not scan for vulnerabilities regularly and subscribe to
security bulletins related to the components you use.

+ If you do not fix or upgrade the underlying platform,

frameworks, and dependencies in a risk-based, timely fashion.

This commonly happens in environments when patching is a
monthly or quarterly task under change control, which leaves
organizations open to many days or months of unnecessary
exposure to fixed vulnerabilities.
If software developers do not test the compatibility of updated,
upgraded, or patched libraries.
+ If you do not secure the components' configurations

(see A6:2017-Security Misconfiguration).

20

OWASP - 10. Insufficient Logging & Monitoring

A1 0'2.0.1 7- Insufficient logging and monitoring, coupled with missing or ineffective integration with incident
Insufficient response, allows attackers to further attack systems, maintain persistence, pivot to more systems,
Logging & and tamper, extract, or destroy data. Most breach studies show time to detect a breach is over
Monitori ng 200 days, typically detected by external parties rather than internal processes or monitoring.

Is the Application Vulnerable?

Insufficient logging, detection, monitoring and active response

occurs any time:

+ Auditable events, such as logins, failed logins, and high-value
transactions are not logged.

« Warnings and errors generate no, inadequate, or unclear log
messages.

* Logs of applications and APIs are not monitored for suspicious
activity.

* Logs are only stored locally.

* Appropriate alerting thresholds and response escalation
processes are not in place or effective.

* Penetration testing and scans by DAST tools (such as OWASP
ZAP) do not trigger alerts.

* The application is unable to detect, escalate, or alert for active
attacks in real time or near real time.

You are vulnerable to information leakage if you make logging
and alerting events visible to a user or an attacker (see A3:2017-
Sensitive Information Exposure).

21

OWASP Learning Tool — Juice Shop

Help with understanding the Juice Shop App:

22

https://sy-juice-app.herokuapp.com/#/
https://github.com/bsqrl/juice-shop-walkthrough

Securing Web Applications - WAF

How does the user transmit / receive data?

THE 7 LAYERS OF OSI
« WAF works at

Layers 5-7

« Normal F/W works at
Layer 3 or 4

24

How does the user transmit / receive data?

Laye
7
6
5
a

OSI model
Name Example protocols
Application Layer HTTP, FTP, DNS, SNMP, Telnet
Presentation Layer SSL, TLS
Session Layer NetBIOS, PPTP
Transport Layer TCP, UDP

Network Layer 1P, ARP, ICMP, lPSec

\
D¢ LH ¢ Laver

w;\ﬁ‘»-“ Q - - -v\ 's'

25

Web Application Firewalls

Web Application

End Users Firewall

Web Servers

26

Web Application Firewalls

= How does it work?

https://www.youtube.com/watch?v=p8CQOcF 9280

27

https://www.youtube.com/watch?v=p8CQcF_9280

Auditing Web Applications —
Guidelines and Demos

& Securely Yours LLC

Audit Guidelines

= Source Code Scan (as part of contract if the
application is outsourced)

= Vulnerability scan of the URL
= Credentialed internal scan
= Penetration Testing

29

& Securely Yours LLC

Lab/Demo 1

Vulnerability Scan

1.

The website (URL: http://52.38.65.32/) never went through
proper vulnerability scanning. This is one of the external
facing web application

The IT department would like you to perform a vulnerability
scan on the URL and determine if there are any security
risks. Use any vulnerability scanning tool you wish: For
example; “OWASP ZAP (Zed Attack Proxy)” which can be
found in Kali Linux or downloaded at
“https://github.com/zaproxy/zaproxy/wiki/Downloads”

Please note that it is illegal to scan any website without prior
authorization. We have given you the authorization to only scan
this URL. Please do not use this tool to scan other websites prior
to approval from the owners of the websites)

Be prepared to discuss the experience with others

30

& Securely Yours LLC

Lab/Demo 2

Source Code Scan

We have installed a free source code scan software called
RIPS:

http://ec2-52-38-65-32.Us-west-
2.compute.amazonaws.com/rips-0.55/rips-0.55/

The source code is at:
/inetpub\wwwroot\index.php

Good version:
The source code is at:
/inetpub\wwwroot\index2.php

31

http://ec2-52-38-65-32.us-west-2.compute.amazonaws.com/rips-0.55/rips-0.55/

	Slide Number 1
	Auditing Web Applications Outline
	Arizona Auditor General
	Arizona – Experience
	Arizona – common security tools
	Arizona – training
	Audit Planning
	Audit Planning – root cause
	Audit Plan Objectives
	Gather Information
	Define Testing Parameters
	Define Testing Parameters
	Perform Reconnaissance
	NMAP – Host Discovery
	Nessus – Discovery Scan
	Nessus – Discovery Scan Results
	Nessus – Discovery Scan Results
	Perform Reconnaissance
	Qualys SSL Server Test
	Qualys SSL Server Test
	Qualys SSL Test – detailed results
	Scanning and Testing – getting started
	Perform Web Application Scanning
	Perform Web Application Testing
	Communicate Testing Results
	Arizona – challenges
	Slide Number 27
	Root Cause of Vulnerabilities
	Vulnerability Management
	Slide Number 30
	Slide Number 31
	Web App Development Auditing
	Web App Development Criteria
	Web App Development Best Practices
	Slide Number 35
	Recommendations

