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ABSTRACT
Basic Liner algebra subprograms (BLAS) is a fundamental
library in scientific computing. In this paper, we present a
template-based optimization framework, AUGEM, which can
automatically generate fully optimized assembly code for
several dense linear algebra (DLA) kernels, such as GEMM,
GEMV, AXPY and DOT, on varying multi-core CPUs with-
out requiring any manual interference from developers. In
particular, based on domain-specific knowledge about algo-
rithms of the DLA kernels, we use a collection of parameter-
ized code templates to formulate a number of commonly oc-
curring instruction sequences within the optimized low-level
C code of these DLA kernels. Then, our framework uses
a specialized low-level C optimizer to identify instruction
sequences that match the pre-defined code templates and
thereby translates them into extremely efficient SSE/AVX

instructions. The DLA kernels generated by our template-
based approach surpass the implementations of Intel MKL

and AMD ACML BLAS libraries, on both Intel Sandy Bridge
and AMD Piledriver processors.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations on matrices

General Terms
Performance
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Widely considered a most fundamental library in scientific
and engineering computing, Basic Linear Algebra Subpro-
grams (BLAS) include a collection of commonly used Dense
Linear Algebra (DLA) kernels organized into three levels,
Level-1, Level-2, and Level-3. The Level-1 BLAS includes a
group of vector-vector operations, the Level-2 BLAS includes
various matrix-vector operations, and the Level-3 BLAS is
dedicated to variations of the matrix-matrix operations [15].

Many BLAS libraries, e.g., Intel MKL, AMD ACML, IBM

ESSL, ATLAS [16], and GotoBLAS [12], have been supplied
by CPU vendors or HPC researchers to achieve a highest
level of performance on the varying hardware platforms.
In these libraries, many DLA kernels are implemented in
assembly manually by domain experts to attain optimal
performance [4]. For example, GotoBLAS, a highly opti-
mized library developed by Kazushige Goto [12], includes
a large number of manually written assembly code varia-
tions to accommodate the numerous different hardware plat-
forms. Such processor-specific approach, however, can result
in poor performance portability of the kernels as manually
porting these assembly codes to new emerging architectures
can be excessively labor intensive and error prone.

To automatically achieve performance portability, exist-
ing research has adopted source-level code generation [16,
5] and optimization [6, 17] combined with automated em-
pirical tuning to identify desirable implementations of dense
matrix computations. However, most existing frameworks,
including the ATLAS code generator [16], generate low-level
C code and rely on a general-purpose vendor-supplied com-
piler, e.g., the Intel or the GCC compilers, to exploit the
hardware ISA, e.g., to allocate registers and schedule assem-
bly instructions. As the result, the automatically generated
C kernels typically do not perform as well when compared
with manually developed assembly. In fact, to attain com-
parable performance with that attained by vendor-supplied
BLAS libraries, many DLA kernels in ATLAS are manually
implemented in assembly by domain experts, with the best
implementations of various kernels selected by its automated
empirical tuning system [19].

In this paper, we present a new optimization framework,
AUGEM, to fully automate the generation of highly effi-
cient DLA kernels in assembly and thus significantly en-
hance the portability of BLAS kernels on varying multi-core
CPUs without requiring any interference by domain experts



and without sacrificing any efficiency. In particular, based
on domain-specific knowledge about algorithms of the DLA

kernels, we identify a number of commonly occurring in-
struction sequences within the low-level C code of these ker-
nels automatically generated by typical source-to-source op-
timizations such as loop blocking, unroll&jam, and scalar
replacement. We then use a number of code templates to
formulate these instruction sequences and to drive a spe-
cialized low-level C optimizer which automatically identifies
instruction sequences that match the pre-defined code tem-
plates and thereby translates them into extremely efficient
SSE/AVX instructions, based on the best known optimiza-
tion strategies used in manually-tuned assembly implemen-
tations. The machine-level optimizations in our approach
include SIMD Vectorization, Register Allocation, Instruction
Selection and Instruction Scheduling. The goal is to auto-
matically generate highly optimized assembly kernels that
can fully exploit underlying hardware feature without rely-
ing on a general purpose vendor compiler for machine-level
optimizations, which is the approach adopted by most ex-
isting auto-tuning frameworks for generating DLA kernels.

A key technical novelty of our work lies in demonstrating
that in spite of their sensitively to minor variations of the
hardware and complex interactions with the source-level op-
timizations (e.g., loop blocking and unrolling), machine-level
assembly code optimization can be made portable across dif-
ferent machines and source-to-source code generators within
a domain-specific context. By specializing machine-level op-
timizations using a collection of commonly occurring code
templates within a targeting computational domain, our
template-based approach is similar in philosophy to the peep-
hole optimization approach widely adopted by modern com-
pilers [7]. However, our work has taken this traditional
pattern-based optimization approach to a different level, where
the relevant machine-level optimizations are collectively con-
sidered and specialized for important patterns of instruction
sequences. While our framework currently supports only the
optimization of several DLA kernels, the technical approach
has much wider generality and can be adapted for different
domains.

Our experimental results show that the DLA kernels gen-
erated by our template-based machine-level optimizations
surpass the implementations of two vendor-supplied BLAS

libraries, Intel MKL and AMD ACML, and two state-of-the-
art BLAS libraries, GotoBLAS and ATLAS, on both an Intel
Sandy Bridge and an AMD Piledriver processor. Further,
the GEMM kernel generated by our framework for the In-
tel Sandy Bridge CPU has been adopted as a part of our
open-source BLAS library OpenBLAS [21].

The rest of the paper is organized as the following. Section
2 provides an overview of our AUGEM framework. Section 3
summarizes the optimization templates currently supported
within our framework. Section 4 discusses the code genera-
tion of four critical DLA kernels, GEMM, GEMV, AXPY and
DOT, using this framework. Section 5 evaluates the effec-
tiveness of our framework by comparing it with four main
stream BLAS libraries. Finally, Section 6 reviews related
work, and Section 7 presents our conclusions.

2. THE AUGEM FRAMEWORK
Figure 1 shows the overall structure of our template-based

optimization framework. Taking as input a simple C im-
plementation of a DLA kernel, it automatically generates

an efficient assembly kernel for the input code through four
components, the Optimized C Kernel Generator, the Tem-
plate Identifier, the Template Optimizer, and the Assembly
Kernel Generator. All components are fully automated us-
ing POET, an interpreted program transformation language
designed to support programmable control and parameteri-
zation of compiler optimizations so that the best optimiza-
tion configurations can be selected based on performance
feedback of the optimized code [20, 18]. The only manually
integrated component is the collection of optimization tem-
plates currently supported by the framework, which we have
manually identified by carefully examining the instruction
sequences of the DLA kernels being targeted for optimiza-
tion. The following summarizes the purpose of each of the
automated components.

Figure 1: The Overall Framework

2.1 Optimized C Kernel Generator
The Optimized C Kernel Generator invokes the POET op-

timization library [18] to apply five source-to-source opti-
mizations, loop unroll&jam, loop unrolling, strength reduc-
tion, scalar replacement, and data prefetching, to generate
a low-level optimized C code from an original simple DLA

kernel.
The source-to-source optimizations applied within our Op-

timized C Kernel Generator can alternatively be applied by
a general-purpose optimizing compiler. We chose to use
the POET library to take advantage of its support for pro-
grammable control and parameterization of the optimiza-
tions [18]. In particular, because loop unrolling factors are
extremely sensitive to variations of the underlying machine
architecture, our Optimized C Kernel Generator automat-
ically experiments with different unrolling and unroll&jam
configurations and selects the best performing configurations
based on the performance of their optimized code.

2.2 Template Identifier
The Template Identifier serves to examine the optimized

code from the Optimized C Kernel Generator to identify
all the code fragments that match any of our pre-defined
code templates, which are composed of commonly occurring
instruction sequences within the DLA kernels.

We employ a simple recursive-descent tree traversal algo-
rithm to identify the instruction sequences that match the
pre-define code templates. These instruction sequences are
then tagged with the corresponding templates to be further



optimized by our Template Optimizer. The algorithm is im-
plemented in a straightforward fashion using the POET lan-
guage [18], which offers built-in pattern matching support
for the different types of AST (Abstract Syntax Tree) nodes
that represent the input code.

2.3 Template Optimizer
The Template Optimizer takes the identified code frag-

ments annotated by the Template Identifier and uses a num-
ber of specialized machine-level optimizers to generate ex-
tremely efficient SSE/AVX instructions for each of the in-
struction sequences. Figure 2 shows the overall algorithm,
where Optimizer is a lookup table that maps each tem-
plate name to a built-in optimizer for it, and reg table is
a variable-register map used to remember the assignment
of registers to existing variables to ensure the consistency
of register allocation decisions across different regions of in-
struction sequences. For each code region r that has been
annotated by our Template Identifier with a matching tem-
plate name, the algorithm invokes the corresponding tem-
plate optimizer based on the annotation r annot of r to
transform the input code (lines 5∼7). Each template op-
timizer attempts to collectively apply three machine-level
optimizations, SIMD Vectorization, Register Allocation, and
Instruction Selection/Scheduling, based on the best known
optimization strategies use in the manual implementations
of the DLA kernels.

Input: input: template-annotated kernel in low-level C
arch: architecture specification

Output: res: optimized kernel in assembly
1: res = input;
2: reg table = empty;
3: reg free=available registers(arch);
4: for each annotated code region r in input do
5: r annot = template annotation(r);
6: r1 = Optimizer[r annot]

(r, reg table, reg free, arch);
7: res = replace r1 with r in res;
8: end for

Figure 2: The Algorithm of The Template Optimizers

2.4 Assembly Kernel Generator
After generating efficient SIMD instructions for each template-

tagged code fragment, our framework invokes a global As-
sembly Kernel Generator to translate the rest of low-level C
code within the input DLA kernels to assembly instructions
of the underlying machine in a straightforward fashion and
to generate complete machine-code implementations. The
variable-register mappings recorded in the reg table defined
in Figure 2 are used to maintain the consistency of the reg-
ister allocation decisions across template-tagged regions and
the rest of the low-level C code fragments.

3. OPTIMIZATION TEMPLATES
Our framework currently supports the following optimiza-

tion templates, illustrated in Figure 3, to summarize the
structures of instruction sequences within varying DLA ker-
nels.
• The mmCOMP (A, idx1, B, idx2, res) template, which

is composed of four instructions: Load A[idx1], Load
B[idx2], Multiply results of the preceding two loads,

mmCOMP(A,idx1,B,
idx2,res):

tmp0=A[idx1]
tmp1=B[idx2]
tmp2=tmp0*tmp1
res=res+tmp2

mmSTORE(C,idx,res):
tmp0=C[idx]
res=res+tmp0
C[idx]=res

mvCOMP(A,idx1,B,
idx2,scal):

tmp0=A[idx1]
tmp1=B[idx2]
tmp0=tmp0*scal
tmp1=tmp1+tmp0
B[idx2]=tmp1

mmUnrolledCOMP
(A,idx1,n1,B,idx2,n2,res):
mmCOMP(A,idx1,B,idx2,
res0)

......
mmCOMP(A,idx1+n1-1,B,
idx2+n2-1,resn1×n2−1)

mmUnrolledSTORE
(C,idx,n,res):
mmSTORE(C,idx,res0);
......
mmSTORE(C,idx+n-1,
resn−1)

mvUnrolledCOMP
(A,idx1,B,idx2,n,scal):
mvCOMP(A,idx1,B,idx2,
scal)

......
mvCOMP(A,idx1+n-1,B,
idx2+n-1,scal)

Figure 3: Existing Templates within our framework

and Add the result of multiplication to a scalar vari-
able res. The variables A, idx1, B, idx2, and res are
parameters of the template, where A and B are array
(pointer) variables, and idx1 are idx2 are integer scalar
variables, and res is a floating point scalar variable.
• The mmSTORE (C, idx, res) template, which is com-

prised of three instructions: Load C[idx], Add the
loaded value to a scalar variable res, and Store res
back to C[idx]. The array variable C, integer variable
idx, and floating point variable res are parameters of
the template.
• The mvCOMP (A, idx1, B, idx2, scal) template, which

includes five instructions: Load A[idx1], Load B[idx2],
Multiply the result of the first load with a scalar vari-
able scal, Add the result of the multiplication to the
result of the second load, and Store the result of the
addition back to array B[idx2].
• The mmUnrolledCOMP (A, idx1, n1, B, idx2, n2,

res) template, which contains a sequence of n1×n2
mmCOMP templates, with each repetition increment-
ing the pair of array subscripts idx1 and idx2 of the
previous instance by either (1,0) or (0,1), so that all
combinations of A elements from idx1 through idx1 +
n1 − 1 and all B elements from idx2 through idx2 +
n2− 1 are operated on one after another in a continu-
ous fashion. The res parameter is expanded into a se-
quence of scalar variables res0, ..., resn1×n2−1, to save
the results of all the individual mmCOMP computa-
tions. Instruction sequences that match this template
are typically generated by applying the unrolling op-
timization to a loop that surrounds a mmCOMP tem-
plate.
• The mmUnrolledSTORE (C, idx, n, res) template,

which contains a sequence of n mmSTORE templates,
with each repetition incrementing the array subscript
idx of the previous instance by 1, so that all the C
elements that lie contiguously from idx through idx+
n − 1 are stored to memory one after another. In the
mmCOMP kernel, this template follows the mmUnrollCOMP



template to save all the results computed by the indi-
vidual mmCOMP instructions into memory. The vari-
ables A, idx1, B, idx2, and res are parameters of the
template.
• The mvUnrolledCOMP (Ã, idx1, B̃, idx2, n, scal)

template, which contains a sequence of n mvCOMP

templates, with each repetition incrementing the pair
of array subscripts, idx1 and idx2, of the previous in-
stance by 1, so that all combinations of Ã elements
from idx1 through idx1+n−1 and all B̃ elements from
idx2 through idx2 + n − 1 are operated on one after
another in a continuous fashion. Instruction sequences
that match this template are typically generated by
unrolling a loop that surrounds a mvCOMP template.

The Template Optimizer of our framework includes a col-
lection of specialized optimizers, summarized in the follow-
ing, with each optimizer focusing on generating efficient as-
sembly instructions for one of the pre-defined code tem-
plates. Our framework currently focuses on X86-64 ISA (In-
struction Set Architecture) and supports two SIMD instruc-
tion modes, SSE and AVX. Additionally, we also support
the FMA instruction set, which is a further extension to
the 128/256-bit SIMD ISA set to compute fused-multiply-
add (FMA) operations [1].

3.1 The mmCOMP Optimizer
As illustrated by Figure 4 (a), which contains an instruc-

tion sequence for computing (ptr A[0]×ptr B[0]) and stor-
ing the result to scalar variable res0, each statement in
a mmCOMP template can be directly mapped to a three-
operand assembly instruction in the form of (op,src1,src2,dest),
shown in Figure 4 (b). These assembly instructions can be
mapped into concrete machine instructions based on the ISA

(Instruction Set Architecture) of a targeting X86-64 proces-
sor, which our framework currently supports.

(a) (b) (c)

Figure 4: An Example of Applying mmCOMP Optimizer

The main optimization applied by our framework for a
mmCOMP (A, idx1, B, idx2, res) template is register allo-
cation, where all the scalar variables used within the tem-
plate are classified based on the array variables that they
correlate to. For example, the register allocation for the four
scalar variables in Figure 4 (a) are based on the following
criteria.
• tmp0 is used to load an element from Array A, so it is

allocated with a register assigned to A.
• tmp1 is used to load an element from Array B, so it is

allocated with a register assigned to B.
• res0 is later saved as an element of Array C, so it is

allocated with a register assigned to C.
• tmp2 is not correlated to any array from the original

code, so it is allocated with a pure temporary register.
In particular, a separate register queue is dedicated to

each array variable, so that different physical registers are
used for values from different arrays. This strategy serves
to minimize any false dependence that may be introduced
through the reuse of registers and thus can expose more par-
allelism to a later SIMD vectorization step. Note while phys-
ical registers are allocated locally within each template, the
live range of each variable is computed globally during the
template identification process and included as part the of
template annotations. Therefore variables that live beyond
the boundaries of their containing code regions can remain
in registers with their register assignment remembered in
the global reg table variable in Figure 2. Only when a scalar
is no longer alive would it’s register be released, and its as-
signment record be deleted from the reg table. Suppose the
total number of available physical registers is R, and the in-
put code uses m arrays, our framework currently dedicates
R/m registers to each array variable. Figure 4 (c) shows the
register allocation results of Figure 4 (b), where regi is a
macro used to represent the name of a physical register.

After register allocation, the next step of our mmCOMP

Optimizer is to translate the three-address assembly instruc-
tions in Figure 4 (c) to valid machine instructions. Table 1
lists the instruction mapping rules to the three assembly in-
structions, Load, Mul, Add, within the mmCOMP template
for both of the 128-bit SSE situation and the 256-bit situa-
tion. From Table 1, the two instructions, Mul and Add, in
the mmCOMP template should be collectively translated to
three SSE instructions to generate correct two-operand valid
SSE instructions for our three-operand pseudo instruction,
shown at Line 2. Furthermore, the two instructions, Mul
and Add, in the mmCOMP template would be collectively
translated into one FMA3 instruction, shown at Line 3, or
one FMA4 instruction, shown at Line 41. The instruction
selection decisions are made according to the ISA supported
by the target processor.

Table 1: Instruction Mapping Rules for The mmCOMP
Template

Instruction SSE AVX
Load arr,idx,r1 Load idx*SIZE(arr),r1 Load idx*SIZE(arr),r1

Mul r0,r1,r2
Add r2,r3,r3

Mov r1,r2
Mul r0,r2
Add r2,r3

Mul r0,r1,r2
Add r2,r3,r3

Mul r0,r1,r2
Add r2,r3,r3

FMA3 r0,r1,r3 FMA3 r0,r1,r3

Mul r0,r1,r2
Add r2,r3,r3

FMA4 r0,r1,r3,r3 FMA4 r0,r1,r3,r3

3.2 The mmSTORE Optimizer
An example of the mmSTORE template is shown in Fig-

ure 5 (a), which contains an instruction sequence for com-
puting ptr C0[0] += res0. The three low-level C state-
ments within the template can be easily mapped into assem-
bly instructions, illustrated in Figure 5 (b). Similar to the
mmCOMP Optimizer, the main optimization here is Register
Allocation, where the the element of the array being incre-
mented (ptr C0[0] in Figure 5 (a)) is allocated with a new
register associated with the array, and the existing scalar
variable (res0) continues to use its assigned register saved
in the global reg table in Figure 2. Figure 5 (c) shows the

1In the multiply-add operation, d=a*b+c, FMA3 requires
the register of d to be either a, b, or c, while FMA4 requires
d to be a fourth register [1]



register allocation results of Figure 5 (b). For machine code
generation, Table 2 lists the instruction mapping rules for
translating the three-address assembly instructions of the
mmSTORE template to the 128-bit SSE and the 256-bit in-
structions.

(a) (b) (c)

Figure 5: An Example of Applying mmSTORE Optimizer

Table 2: Instruction Mapping Rules for The mmSTORE
Template

Instruction SSE AVX
Load arr,idx,r1 Load idx*SIZE(arr),r1 Load idx*SIZE(arr),r1

Add r1,r2,r3 Add r1,r2 Add r1,r2,r3
Store r3,arr,idx Store r1,idx*SIZE(arr) Store r3,idx*SIZE(arr)

3.3 The mvCOMP Optimizer
Figure 6 (a) illustrates an example mvCOMP instruction

sequence for computing (ptr A[0]×scal) and then using the
result to increment a second array, ptr B. The five low-level
C statements within the template can be easily mapped into
assembly instructions, shown in Figure 6 (b). Similar to the
mmCOMP Optimizer, the main optimization here is Reg-
ister Allocation. Figure 6 (c) gives the register allocation
results of Figure 6 (b). For machine code generation, Ta-
ble 3 lists the instruction mapping rules for translating the
three-address assembly instructions of the mvCOMP tem-
plate to the 128-bit SSE and the 256-bit instructions. The
two operations Mul and Add can be translated into different
assembly instructions (shown at Line 2∼4), based on the
ISA supported by the target processor.

(a) (b) (c)

Figure 6: An Example of Applying mvCOMP Optimizer

3.4 The mmUnrollCOMP Optimizer
Figure 7 shows an instruction sequence identified by our

Template Identifier as matching the mmUnrollCOMP tem-
plate, which contains four related repetitions of the mmCOMP

templates. The main optimization for the mmUnrollCOMP

template is SIMD vectorization, where we apply the opti-
mization based on two best known vectorization strategies
used in manual-tuned assembly GEMM kernel implementa-
tions to generate extremely efficient SIMD instructions for
varying multi-core processors.

Table 3: Instruction Mapping Rules for The mvCOMP Tem-
plate

Instruction SSE AVX
Load arr,idx,r1 Load idx*SIZE(arr),r1 Load idx*SIZE(arr),r1

Mul r0,r1,r2
Add r2,r3,r3

Mov r1,r2
Mul r0,r2
Add r2,r3

Mul r0,r1,r2
Add r2,r3,r3

Mul r0,r1,r2
Add r2,r3,r3

FMA3 r0,r1,r3 FMA3 r0,r1,r3

Mul r0,r1,r2
Add r2,r3,r3

FMA4 r0,r1,r3,r3 FMA4 r0,r1,r3,r3

Store r1,arr,idx Store r1,idx*SIZE(arr) Store r1,idx*SIZE(arr)

Figure 7: A Code Fragment Matching the mmUnrollCOMP
Template

Suppose one SIMD instruction could operate on n double-
precision floating-point data. The first vectorization strat-
egy targets the situation where n repetitions of mmCOMP

templates load n contiguous elements of one array (A in
Figure 7) and a single element of the other array (B in Fig-
ure 7). It folds all n repetitions of the instructions into a
single sequence of SIMD instruction: Vld-Vdup-Vmul-Vadd,
where the Vld instruction is used to load n contiguous ele-
ments into one SIMD register, the Vdup instruction is used
to load a single array element and then place n replications
of the value into a SIMD register, the Vmul instruction is
used to multiply the results of the preceding two loads, and
the Vadd instruction add the result of multiplication to one
SIMD register.

Figure 8 shows the vectorization result of Figure 7 using
the vectorization strategy discussed above. Here n = 2,
so every two repetitions of the mmCOMP templates are
merged into a single SIMD Vld-Vdup-Vmul-Vadd instruc-
tion sequence. Lines 1-4 show the vectorization results for
mmCOMP0 and mmCOMP1, and Lines5-8 show the vector-
ization result for mmCOMP2 and mmCOMP3. To distin-
guish this vectorization strategy with the second one, we
name it the Vdup method.

The second strategy target n×n repetitions of mmCOMP

templates that operate on n contiguous elements of both ar-
rays. Here the vectorization folds all n∗ repetitions of the
instructions into a single sequence of Vld-Vld-Vmul-Vadd
SIMD instructions followed by n−1 repetitions of the Shufi-
Vmul-Vadd instruction sequence, where the Shufi instruc-
tions (i ∈ [0,n-2]) serve to shuffle the n values of a SIMD

register based on the value of a 8-bit immediate. We name
this vectorization strategy the Shuf method.

Figure 9 shows the vectorization result of Figure 7 using
the Shuf method. Here n = 2, so the low-level C instruc-



Figure 8: The Vectorized Results by Using Vdup Method
for Figure 7

tions within the four repetitions of the mmCOMP templates,
mmCOMP0∼mmCOMP3, are translated to seven SIMD in-
structions, including four Vld-Vld-Vmul-Vadd SIMD instruc-
tions, shown at Lines 1-4, which compute (ptr A[0]×ptr B[1],
ptr A[1]×ptr B[0]), and three Shuf0-Vmul-Vadd SIMD in-
structions at Line 5-7, which compute (ptr A[0]×ptr B[1],
ptr A[1]×ptr B[0]) by shuffling (ptr B[0], ptr B[1]) stored in
vectorized Variable vec1 to the (ptr B[1], ptr B[0]) format.
The macro Imm0 shown at Line 5 is the 8-bit immediate
that controls the shuffling result of the source operand.

Figure 9: The Vectorized Results by Using Shuf Method for
Figure 7

The vectorization strategies discussed above are difficult
to be applied automatically by existing general-purpose com-
pilers due to the difficulty of generalizing the uses of the
Vdup or the Shuf instructions. The Register Allocation strat-
egy used in the mmUnrollCOMP optimizer is similar with
that in the mmCOMP Optimizer except that it uses SIMD

registers. The instruction mapping rules of the Vld, Vmul
and Vadd instructions are the same with the mapping rules
of the Load, Mul and Add instructions respectively, discussed
in the mmCOMP Optimizer. Table 4 lists the instruction
mapping rules for the Vdup and Shuf instructions.

Table 4: Instruction Mapping Rules for The mmUnroll-
COMP Template

Instruction SSE AVX
Vld arr,idx,r1 Vld idx*SIZE(arr),r1 Vld idx*SIZE(arr),r1

Shuf imm0,r1,r2 Shuf imm0,r1,r2 Shuf imm0,r1,r2

3.5 The mmUnrollSTORE Optimizer
Figure 10 (a) shows an instruction sequence that matches

the mmUnrollSTORE template, which contains two related
repetitions of the mmSTORE templates. The most impor-
tant optimization for the mmUnrollSTORE template is the
SIMD vectorization. The vectorization strategy finds n rep-
etitions of the mmSTORE templates within the code frag-
ment, which serve to increment n contiguous elements of an
array in memory, and fold the n repetitions into a single

sequence of three SIMD instructions: Vld-Vadd-Vst, where
the Vld instruction loads n contiguous elements of the ar-
ray into a single SIMD register, the Vadd instruction adds
the values from previous computations (already saved into
a SIMD register) to the new SIMD register, and the Vst in-
struction stores the final result in the new SIMD register back
to memory. Figure 10 (b) shows the vectorization result of
Figure 10 (a). The machine-level code generation in this
optimizer is similar to that of the mmSTORE Optimizer.

(a) (b)

Figure 10: An Example of Applying mmUnrollSTORE Op-
timizer

3.6 The mvUnrollCOMP Optimizer
Figure 11 (a) shows an instruction sequence that matches

the mvUnrollCOMP template, which contains two related
repetitions of the mvCOMP template. The most important
optimization for this template is SIMD vectorization. The
vectorization scheme finds n repetitions of the mvCOMP

templates within the code fragment, which load n contigu-
ous elements of array ptr A, and n contiguous elements of
array ptr B respectively. It folds all n repetitions of the in-
structions into a single sequence of SIMD instruction: Vld-
Vld-Vmul-Vadd-Vsd, where the first Vld instruction is used
to load n contiguous elements of the first array into one
SIMD register, the second Vld instructions is used to load
n contiguous elements of the second array into one SIMD

register, the Vmul instruction is used to multiply the result
of the first Vld with an existing scalar variable, the Vadd
instruction is used to increment the result of the second Vld
by adding the result of the Vmul, and the Std instructions
is used to modify the second array by storing the result of
Vadd to it. Figure 11 (b) shows the vectorization result of
Figure 11 (a). The machine-level code generation in this
optimizer is similar to that of the mvCOMP Optimizer.

(a) (b)

Figure 11: An Example of Applying mvUnrollCOMP Opti-
mizer

4. DENSE LINEAR ALGEBRA KERNELS
GENERATION



This Section demonstrates the process of applying our
framework to optimize four dense DLA kernels: the General
Matrix-Matrix multiplication (GEMM) kernel, which lies at
the foundation of Level-3 routines in BLAS; GEMV, a typi-
cal Level-2 BLAS operation that computes a matrix-vector
product; and two typical Level-1 BLAS operations, AXPY

and DOT, which perform vector-vector computations.

4.1 GEMM
Our GEMM kernel is based on a general block-partitioned

algorithm originally developed by Goto in GotoBLAS [12].
Figure 12 shows a simple C implementation of the GEMM

kernel, which performs two primary operations: 1) res +=
A[l × Mc + i] × B[j × Kc + l], shown at Line 7∼10, 2)
C[j × LDC + i] += res, shown at Line 12∼14.

Figure 12: The Simple C Implementation of GEMM Kernel

4.1.1 Generating Optimized C Kernel
With Figure 12 as the input, an example optimized code

produced by our Optimized C Kernel Generator is shown
in Figure 13. Here each of the two outer loops j and i in
Figure 12 are unrolled by a factor of 2, and their unrolled
iterations are jammed inside the innermost loop, resulting in
four repetitions of the code at Lines 13-16 in Figure 13. The
unrolling of the innermost loop l is optionally turned off in
this example. Four pointer variables, ptr A, ptr B, ptr C0,
and ptr C1, are introduced by the strength reduction trans-
formation to reduce the cost of evaluating array subscripts
by incrementally adjusting the starting addresses of matrices
at each loop iteration at Lines 4, 9, 18, 25, 27 of Figure 13.
Further, the array references to ptr A, ptr B, ptr C0, and
ptr C1 are replaced with scalar variables, e.g., tmp0, tmp1,
tmp2, and res0, at Lines 13-17 and 20-24 by the scalar re-
placement optimization to promote register reuse. Three
prefetching instructions are inserted at Lines 7-8 and 12 by
the prefetching optimization to preload array elements that
will be referenced in the next iterations of the loops.

4.1.2 Identifying Templates
Figure 14 presents the identified templates for the code in

Figure 13 by invoking our Template Identifier to recognize all
the code fragment that match any of the pre-defined tem-
plate shown in Figure 3. Here, four mmCOMP templates

Figure 13: Example Generated GEMM Kernel by The Op-
timized C Kernel Generator

are identified in the innermost Loop l, shown at Line 13-
19 in Figure 14. These templates are then further merged
using a single mmUnrollCOMP template. Four mmSTORE

templates are also identified after Loop l, shown at Line 21-
24. Because the first two STORE templates operate on the
array pointer ptr C0, while the latter two operate on the
array pointer ptr C1, these templates are divided into two
mmUnrollSTORE templates.

4.1.3 Optimizing Templates
As described in Section 2, the Template Optimizer com-

ponent includes a collection of specialized template opti-
mizers, each focusing on optimizing one of the pre-defined
code templates. Therefore four template optimizers, The
mmCOMP Optimizer, The mmSTORE Optimizer, the The
mmUnrollCOMP Optimizer and The mmUnrollSTORE Op-
timizer, are invoked to operate on the GEMM kernel.

4.1.4 Generating a Complete Assembly Kernel
After producing efficient SIMD instructions for each template-

tagged code region within the GEMM kernel, the rest of low-
level C code is then translated by our Assembly Kernel Gen-
erator in a straightforward fashion to generate a complete
machine-code implementation of GEMM kernel. The reg-
ister allocation decisions across template-annotated regions
and the rest of the low-level C code regions are maintained
by the symbol table reg tab.

4.2 GEMV
Figure 15 shows a simple C implementation of the GEMV

kernel, which performs one primary operation, Y [j] += A[j×
LDA + i]×scal, shown at Line 7∼11. The code generation



Figure 14: Example Template-tagged Optimized GEMM
Kernel

processes of the GEMV kernel are similar with that applied
to the GEMM kernel except that the mvCOMP and mvUn-
rollCOMP Optimizers are used to generate optimized assem-
bly code.

Figure 15: The Simple C Implementation of GEMV Kernel

4.3 AXPY
Figure 16 shows a simple C implementation of the AXPY

kernel, which contains one primary operation: Y [i] += X[i]
× alpha, shown at Line 4∼8. The optimization of this code
can be driven by the same templates as those identified for
the GEMV kernel.

4.4 DOT
Figure 17 shows a simple C implementation of the DOT

kernel, which performs one primary operation: res+=X[i]×Y [i],

Figure 16: The Simple C Implementation of AXPY Kernel

shown at Line 4∼7. The optimization of this code can be
driven by the same templates as those identified for the
GEMM kernel.

Figure 17: The Simple C Implementation of DOT Kernel

Although we used our framework to optimize only four
DLA kernels in this paper, the same approach is applicable
to many other dense linear algebra kernels. In particular,
most BLAS Level-3 routines, such as SYMM, SYRK, SYR2K,
TRMM, and TRSM, can be implemented by casting the bulk
of computation in terms of the GEMM kernel [13]. Similarly,
most Level-2 routines invoke optimized Level-1 kernels, such
as AXPY and DOT, to obtain high performance. Therefore,
a large collection of DLA operations could potentially bene-
fit from the highly optimized assembly kernels automatically
generated by this paper. Therefore, we expect our technical
approach to have a wide applicability in the dense matrix
computation domain. To support assembly-level kernel op-
timization for other domains, our approach can be extended
to summarize additional common sequences of instructions
by using templates similar to those shown in Figure 3. Then,
specialized optimizers can be similarly constructed to collec-
tively integrate the relevant low-level optimization strategies
based on appropriate domain knowledge.

5. PERFORMANCE EVALUATION
To validate the effectiveness of our AUGEM optimization

framework, we compare the performance of the optimized
code generated by AUGEM with that of four well-known
implementations of BLAS libraries, GotoBLAS, ATLAS, Intel
MKL and AMD ACML, on two different processors, an Intel
Sandy Bridge and an AMD Piledriver processor. Table 5
lists the platform configurations. We selected the code path
of ACML to be FMA3 by setting the environment variable
ACML FMA = 3 on the Piledriver processor. We measured
the elapsed time of each evaluation five times, and report
the average performance attained by the five evaluations.



Table 5: Platforms Configurations

CPU
Intel Sandy Bridge
8C E5-2680
(2.7GHz)

AMD Piledriver
6380 Processor
(2.5GHz)

L1d Cache 32KB 16KB
L2 Cache 256KB 2048KB
Vector Size 256-bit 256-bit
Core(s) per socket: 8 8
CPU socket(s) 2 2
Compiler gcc-4.7.2 SAME

GotoBLAS
GotoBLAS2 1.13
BSD version

SAME

ATLAS ATLAS 3.11.8 version SAME
MKL MKL 11.0 updated 2 N/A
ACML N/A ACML 5.3.0 version

Figure 18 compares the overall performance of the five
GEMM kernel implementations. Each GEMM implementa-
tion has been evaluated using 20 double-precision matrices
with varying sizes, with the output matrix size being square
(m = n) ranging from 10242 to 61442, and with the input
matrix sizes being m∗k and k∗n with k set to 256. Here the
average performance of GEMM kernel automatically gener-
ated by our AUGEM framework outperforms those by In-
tel MKL, ATLAS and GotoBLAS by 1.4%, 3.3% and 89.5%
respectively on the Intel Sandy Bridge processor and out-
performs those by AMD ACML, ATLAS and GotoBLAS by
2.6%, 5.9% and 66.8% respectively on the AMD Piledriver.
GotoBLAS has the lowest performance level on these two
platforms as it lacks support for the AVX and FMA instruc-
tions since it was no longer actively maintained.

Figure 19 compares the performance of the GEMV im-
plementations using 24 double-precision matrices with sizes
ranging from 20482 to 51202. Here the average performance
of GEMV kernel automatically generated by our framework,
outperforms those by Intel MKL, ATLAS, and GotoBLAS

by 3.7%, 13.4%, and 8.4% respectively on the Intel Sandy
Bridge processor and outperforms the AMD ACML, ATLAS

and GotoBLAS by 23.6%, 14.3%, and 20.2% respectively on
the AMD Piledriver.

Similarly, Figure 20 compares the overall performance of
the AXPY implementations using 20 double-precision vec-
tors with sizes ranging from 105 to 2 × 105, and Figure 21
compares the overall performance of the DOT implemen-
tations using the same input sets. Here the AXPY kernel
automatically generated by our framework (AUGEM) out-
performs those by Intel MKL, ATLAS, and GotoBLAS by
19.7%, 6.0%, and 12.2% respectively on the Intel Sandy
Bridge processor and outperforms those by the AMD ACML,
ATLAS, and GotoBLAS by 45.5%, 8.2% and 14.2% respec-
tively on the AMD Piledriver. Similarly, the DOT kernel
by our AUGEM framework outperforms those by Intel MKL,
ATLAS, and GotoBLAS by 7.1%, 29.5%, and 1.0% respec-
tively on the Intel Sandy Bridge processor and outperforms
those by the AMD ACML, ATLAS, and GotoBLAS by 28.3%,
17.7% and 54.9% respectively on the AMD Piledriver.

Table 6 shows the average performance of six higher level
DLA routines, SYMM, SYRK, SYR2K, TRMM, TRSM, and
GER, which invoke the four low-level kernels, GEMM, GEMV,
AXPY and DOT, to obtain high performance. The GER rou-
tine implementations are tested using 24 double-precision
matrices with sizes ranging from 20482 to 51202. The in-
put matrix sizes of the other five Level-3 routines are m ∗ k
and k ∗ n with k set to 256 and m = n ranging from 10242

to 61442. In most cases, invoking kernels generated by our
framework enables these DLA routines to outperform those
from Intel MKL, AMD ACML, ATLAS, and GotoBLAS, ex-
cept for the TRSM routine, which solves the triangular ma-
trix equation: B = L−1∗B. Here the TRSM computation
has been transformed into two steps: 1) B1 = L−1

11 ∗ B1;
2) B2 = B2 − L21 ∗ B1 [13]. Since the first step cannot
be simply derived from the GEMM kernel, it is translated
into low-level C code in a straightforward fashion (without
special optimizations) by our framework. As a result, its
performance is lower than that of Intel MKL on the Intel
Sandy Bridge processor and lower than that of AMD ACML

and ATLAS on AMD Piledriver processor.

Table 6: Performance of AUGEM vs other BLAS Libraries
on Intel Sandy Bridge and AMD Piledriver

Intel Sandy Bridge (Mflops)
Routine AUGEM MKL ATLAS GotoBLAS
SYMM 24897.83 24260.85 23758.52 13488.95
SYRK 24451.40 21999.18 20620.53 13340.15
SYR2K 24442.98 21491.33 23854.72 13367.47
TRMM 24189.95 23476.25 23358.58 13336.13
TRSM 23474.78 23786.23 23411.75 13349.65
GER 2532.63 2447.28 2438.53 2362.58

AMD Piledriver (Mflops)
Routine AUGEM ACML ATLAS GotoBLAS
SYMM 18843.88 18240.28 17884.97 11201.67
SYRK 15843.88 13918.50 13238.50 9287.22
SYR2K 15847.23 14256.98 14923.63 9300.85
TRMM 17545.33 17519.58 17295.95 11111.32
TRSM 16467.08 17250.58 16534.28 10980.12
GER 1254.52 1052.88 1248.22 1225.14

The above results demonstrate that the DLA kernels pro-
duced by our template-based approach are able to perform
better than four of the main-stream BLAS libraries, justi-
fying that machine-level assembly code optimizations can
be made portable within a domain-specific context. By for-
mulating the performance critical computational patterns
within the low-level C code generated by source-to-source
optimizers, we can customize specialized machine-level op-
timizations to generate extremely efficient SIMD assembly
instruction for these important patterns without requiring
any manual interference from developers.

6. RELATED WORK
Many existing BLAS libraries, e.g., PHiPAC [5] and AT-

LAS [15] [16], include code generators that can automati-
cally produce highly efficient implementations of DLA ker-
nels on varying architectures. A number of general-purpose
source-to-source compilers [6, 9, 8, 10, 17] can also generate
highly efficient low-level C code for various DLA routines.
These systems typically use empirical tuning to automati-
cally experiment with different optimization choices and se-
lect those that perform the best. The BTO compiler [14,
4] can generate efficient implementations for arbitrary se-
quences of basic linear algebra operations. It uses a hybrid
analytic/empirical method for quickly evaluating the benefit
of each optimization combination. However, most of the ex-
isting work, including ATLAS [15], generate low-level C code
and relies on a general-purpose vendor compiler, e.g., the In-
tel or GCC compiler, to exploit the hardware ISA, e.g., to
allocate registers and schedule assembly instructions. As a
result, they cannot fully take advantage of hardware features
and thus yield suboptimal performance when compared with
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Figure 18: Overall Performance of DGEMM on x86 Processors
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Figure 19: Overall Performance of DGEMV on x86 Processors

1 0 0
0 0 0
1 0 5

0 0 0
1 1 0

0 0 0
1 1 5

0 0 0
1 2 0

0 0 0
1 2 5

0 0 0
1 3 0

0 0 0
1 3 5

0 0 0
1 4 0

0 0 0
1 4 5

0 0 0
1 5 0

0 0 0
1 5 5

0 0 0
1 6 0

0 0 0
1 6 5

0 0 0
1 7 0

0 0 0
1 7 5

0 0 0
1 8 0

0 0 0
1 8 5

0 0 0
1 9 0

0 0 0
1 9 5

0 0 0
2 0 0

0 0 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

4 5 0 0

Pe
rfo

rm
an

ce
 (M

flo
ps

)

V e c t o r  S i z e  

 A U G E M
 M K L   1 1 . 0
 A T L A S   3 . 1 1 . 8
 G o t o B L A S   1 . 1 3

0

2

4

6

8

1 0

(a) SandyBridge

1 0 0
0 0 0
1 0 5

0 0 0
1 1 0

0 0 0
1 1 5

0 0 0
1 2 0

0 0 0
1 2 5

0 0 0
1 3 0

0 0 0
1 3 5

0 0 0
1 4 0

0 0 0
1 4 5

0 0 0
1 5 0

0 0 0
1 5 5

0 0 0
1 6 0

0 0 0
1 6 5

0 0 0
1 7 0

0 0 0
1 7 5

0 0 0
1 8 0

0 0 0
1 8 5

0 0 0
1 9 0

0 0 0
1 9 5

0 0 0
2 0 0

0 0 0
0

3 0 0
6 0 0
9 0 0

1 2 0 0
1 5 0 0
1 8 0 0
2 1 0 0
2 4 0 0
2 7 0 0
3 0 0 0
3 3 0 0

Pe
rfo

rm
an

ce
 (M

flo
ps

)

V e c t o r  S i z e

 A U G E M
 A C M L   5 . 3 . 0
 A T L A S   3 . 1 1 . 8
 G o t o B L A S   1 . 1 3

(b) Piledriver

Figure 20: Overall Performance of AXPY on x86 Processors
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(b) Piledriver

Figure 21: Overall Performance of DOT on x86 Processors

manual-tuned assembly implementations. Existing work on
deploying fast matrix multiplication algorithms [11] [3] [2]
can achieve better performance than the general matrix mul-
tiplication (GEMM) algorithm used in the BLAS libraries.

7. CONCLUSION
This paper presents a template-based optimization frame-

work, AUGEM, which automatically generates highly opti-
mized assembly implementations for Dense Linear Algebra
kernels for varying multi-core processors without requiring
any manual interference from developers, thus significantly
reducing the laborious work of manually developing assem-
bly code for varying architectures. Our template-based ap-
proach provides a means to collectively consider multiple
machine-level optimizations in a domain/application specific
setting and allows the expert knowledge of how best to opti-
mize varying kernels to be seamlessly integrated in the pro-
cess. Our future work will focus on extending our template-
based approach to support a much broader collection of rou-
tines and additional domains. In particular, we will integrate
the other generated DLA kernels, GEMV, AXPY and DOT,
within our open-source BLAS library, OpenBLAS [21].
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