
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

Aurora: Statistical Crash Analysis for
Automated Root Cause Explanation

Tim Blazytko, Moritz Schlögel, Cornelius Aschermann, Ali Abbasi,
Joel Frank, Simon Wörner, and Thorsten Holz, Ruhr-Universität Bochum

https://www.usenix.org/conference/usenixsecurity20/presentation/blazytko

AURORA: Statistical Crash Analysis for Automated Root Cause Explanation

Tim Blazytko, Moritz Schlögel, Cornelius Aschermann, Ali Abbasi,
Joel Frank, Simon Wörner and Thorsten Holz

Ruhr-Universität Bochum, Germany

Abstract
Given the huge success of automated software testing tech-
niques, a large amount of crashes is found in practice. Identi-
fying the root cause of a crash is a time-intensive endeavor,
causing a disproportion between finding a crash and fixing
the underlying software fault. To address this problem, vari-
ous approaches have been proposed that rely on techniques
such as reverse execution and backward taint analysis. Still,
these techniques are either limited to certain fault types or
provide an analyst with assembly instructions, but no context
information or explanation of the underlying fault.

In this paper, we propose an automated analysis approach
that does not only identify the root cause of a given crash-
ing input for a binary executable, but also provides the ana-
lyst with context information on the erroneous behavior that
characterizes crashing inputs. Starting with a single crashing
input, we generate a diverse set of similar inputs that either
also crash the program or induce benign behavior. We then
trace the program’s states while executing each found input
and generate predicates, i. e., simple Boolean expressions that
capture behavioral differences between crashing and non-
crashing inputs. A statistical analysis of all predicates allows
us to identify the predicate pinpointing the root cause, thereby
not only revealing the location of the root cause, but also pro-
viding an analyst with an explanation of the misbehavior a
crash exhibits at this location. We implement our approach in
a tool called AURORA and evaluate it on 25 diverse software
faults. Our evaluation shows that AURORA is able to uncover
root causes even for complex bugs. For example, it succeeded
in cases where many millions of instructions were executed
between developer fix and crashing location. In contrast to
existing approaches, AURORA is also able to handle bugs with
no data dependency between root cause and crash, such as
type confusion bugs.

1 Introduction

Fuzz testing (short: fuzzing) is a powerful software testing
technique that, especially in recent years, gained a lot of trac-

tion both in industry and academia [28, 29, 31, 47, 49, 53, 59].
In essence, fuzzing capitalizes on a high throughput of in-
puts that are successively modified to uncover different paths
within a target program. The recent focus on new fuzzing
methods has produced a myriad of crashes for software sys-
tems, sometimes overwhelming the developers who are tasked
with fixing them [37, 50]. In many cases, finding a new crash-
ing input has become the easy and fully automated part, while
triaging crashes remains a manual, labor-intensive effort. This
effort is mostly spent on identifying the actual origin of a
crash [58]. The situation is worsened as fuzzing campaigns
often result in a large number of crashing inputs, even if only
one actual bug is found: a fuzzer can identify multiple paths
to a crash, while the fault is always the same. Thus, an ana-
lyst has to investigate an inflated number of potential bugs.
Consequently, developers lose time on known bugs that could
be spent on fixing others.

To reduce the influx of crashes mapping to the same bug,
analysts attempt to bucket such inputs. Informally speaking,
bucketing groups crashing inputs according to some metric—
often coverage or hashes of the call stack—into equivalence
classes. Typically, it is assumed that analyzing one input from
each class is sufficient. However, recent experiments have
shown that common bucketing schemes produce far too many
buckets and, even worse, cluster distinct bugs into the same
bucket [42]. Even if there are only a few inputs to investigate,
an analyst still faces another challenge: Understanding the
reasons why a given input leads to a crash. Often, the real
cause of a crash—referred to as root cause—is not located at
the point the program crashes; instead, it might be far earlier
in the program’s execution flow. Therefore, an analyst needs
to analyze the path from the crashing location backward to
find the root cause, which requires significant effort.

Consider, for example, a type confusion bug: a pointer to
an object of type A is used in a place where a pointer to B is
expected. If a field of B is accessed, an invalid access on a
subsection of A can result. If the structures are not compatible
(e. g., A contains a string where a pointer is expected by B),
this can cause memory corruption. In this case, the crashing

USENIX Association 29th USENIX Security Symposium 235

location is most likely not the root cause of the fault, as the
invariant “points to an instance of B” is violated in a different
spot. The code that creates the object of type A is also most
likely correct. Instead, the particular control flow that makes
a value from type A end up in B’s place is at fault.

In a naive approach, an analyst could inspect stack and
register values with a debugger. Starting from the crash, they
can manually backtrace the execution to the root cause. Using
state-of-the-art sanitizers such as the ASAN family [51] may
detect illegal memory accesses closer to the root cause. In
our example, the manual analysis would start at the crashing
location, while ASAN would detect the location where the
memory corruption occurred. Still, the analyst has to manually
recognize the type confusion as the root cause—a complicated
task since most code involved is behaving correctly.

More involved approaches such as POMP [57], RE-
TRACER [33], REPT [32] and DEEPVSA [38] use auto-
mated reverse execution and backward taint analysis. These
are particularly useful if the crash is not reproducible. For
example, REPT and RETRACER can analyze crashes that
occurred on end-devices by combining core dumps and In-
tel PT traces. However, these approaches generally do not
allow to automatically identify the root cause unless there is
a direct data dependency connecting root cause and crashing
instruction. Furthermore, REPT and RETRACER focus on
providing an interactive debugging session for an analyst to
inspect manually what happened before the crash.

In cases such as the type confusion above, or when debug-
ging JIT-based software such as JavaScript engines, a single
crashing input may not allow identifying the root cause with-
out extensive manual reasoning. Therefore, one can use a
fuzzer to perform crash exploration. In this mode, the fuzzer
is seeded with crashing inputs which it mutates as long as
they keep crashing the target application. This process gener-
ates new inputs that are related to the original crashing input,
yet slightly different (e. g., they could trigger the crash via a
different path). A diverse set of crashing inputs that mostly
trigger the same bug can aid analysis. Observing multiple
ranges of values and different control-flow edges taken can
help narrow down potential root causes. However, none of
the aforementioned methods takes advantage of this infor-
mation. Consequently, identifying the root cause remains a
challenging task, especially if there is no direct data depen-
dency between root cause and crashing instruction. Although
techniques such as ASAN, POMP, REPT and RETRACER
provide more context, they often fail to identify the root cause
and provide no explanation of the fault.

In this paper, we address this problem by developing an
automated approach capable of finding the root cause given
a crashing input. This significantly reduces human effort:
unlike the approaches discussed previously, we do not only
identify a code location, but also an explanation of the prob-
lem. This also reduces the number of locations an analyst

has to inspect, as AURORA only considers instructions with a
plausible explanation.

To enable precise identification of the root cause, we first
pick one crashing input and produce a diverse set of similar
inputs, some of which cause a crash while others do not. We
then execute these newly-generated inputs while tracking the
binary program’s internal state. This includes control-flow
information and relevant register values for each instruction.
Given such detailed traces for many different inputs, we create
a set of simple Boolean expressions (around 1,000 per instruc-
tion) to predict whether the input causes a crash. Intuitively,
these predicates capture interesting runtime behavior such
as whether a specific branch is taken or whether a register
contains a suspiciously small value.

Consider our previous type confusion example and assume
that a pointer to the constructor is called at some location in
the program. Using the tracked information obtained from the
diversified set of inputs, we can observe that (nearly) all calls
in crashing inputs invoke the constructor of type A, while calls
to the constructor of B imply that the input is not going to
cause a crash. Thus, we can pinpoint the problem at an earlier
point of the execution, even when no data taint connection
exists between crashing location and root cause. This exam-
ple also demonstrates that our approach needs to evaluate a
large set of predicates, since many factors have to be captured,
including different program contexts and vulnerability types.
Using the predicates as a metric for each instruction, we can
automatically pinpoint the possible root cause of crashes. Ad-
ditionally, the predicates provide a concrete explanation of
why the software fault occurs.

We built a prototype implementation of our approach in
a tool called AURORA. To evaluate AURORA, we analyze
25 targets that cover a diverse set of vulnerability classes,
including five use-after-free vulnerabilities, ten heap buffer
overflows and two type confusion vulnerabilities that previous
work fails to account for. We show that AURORA reliably
allows identifying the root cause even for complex binaries.
For example, we analyzed a type confusion bug in mruby
where an exception handler fails to raise a proper exception
type. It took an expert multiple days to identify the actual
fault. Using our technique, the root cause was pinpointed
automatically.

In summary, our key contributions are threefold:

• We present the design of AURORA, a generic approach
to automatically pinpoint the location of the root cause
and provide a semantic explanation of the crash.

• We propose a method to synthesize domain-specific pred-
icates for binary programs, tailored to the observed be-
havior of the program. These predicates allow accurate
predictions on whether a given input will crash or not.

236 29th USENIX Security Symposium USENIX Association

• We implement a prototype of AURORA and demonstrate
that it can automatically and precisely identify the root
cause for a diverse set of 25 software faults.

To foster research on this topic, we release the implemen-
tation of AURORA at https://github.com/RUB-SysSec/
aurora.

2 Challenges in Root Cause Analysis

Despite various proposed techniques, root cause identification
and explanation are still complex problems. Thus, we now
explore different techniques and discuss their limitations.

2.1 Running Example
The following code snippet shows a minimized example of
Ruby code that leads to a type confusion bug in the mruby
interpreter [16] found by a fuzzer:

1 No t Im p le m en t ed E r r o r = S t r i n g
2 Module . c o n s t a n t s

In the first line, the exception type NotImplementedError
is modified to be an alias of type String. As a consequence,
each instance of NotImplementedError created in the fu-
ture will be a String rather than the expected exception. In
the second line, we call the constants function of Module.
This function does not exist, provoking mruby to raise a
NotImplementedError. Raising the exception causes a crash
in the mruby interpreter.

To understand why the crash occurs, we need to dive
into the C code base of the mruby interpreter. Note
that mruby types are implemented as structs on the in-
terpreter level. When we re-assign the exception type
NotImplementedError to String, this is realized on C
level by modifying the pointer such that it points to a
struct representing the mruby String type. The method
Module.constants is only a stub that creates and raises
an exception. When the exception is raised in the second
line, a new instance of NotImplementedError is constructed
(which now actually results in a String object) and passed to
mruby’s custom exception handling function. This function
assumes that the passed object has an exception type without
checking this further. It proceeds to successfully attach some
error message—here “Module.constants not implemented”
(length 0x20)—to the presumed exception object. Then, the
function continues to fill the presumable exception with de-
bug information available. During this process, it attempts to
dereference a pointer to a table that is contained within all
exception objects. However, as we have replaced the excep-
tion type by the string type, the layout of the underlying struct
is different: At the accessed offset, the String struct stores
the length of the contained string instead of a pointer as it
would be the case for the exception struct. As a result, we do

not dereference the pointer but interpret the length field as an
address, resulting in an attempt to dereference 0x20. Since
this leads to an illegal memory access, the program crashes.

To sum up, redefining an exception type with a string leads
to a type confusion vulnerability, resulting in a crash when
this exception is raised. The developer fix introduces a type
check, thus preventing this bug from provoking a crash.

2.2 Crash Triaging

Assume our goal is to triage the previously explained bug,
given only the crashing input (obtained from a fuzzing run)
as a starting point. In the following, we discuss different
approaches to solve this task and explain their challenges.

Debugger. Starting at the crashing location, we can man-
ually inspect the last few instructions executed, the registers
at crashing point and the call stack leading to this situation.
Therefore, we can see that 0x20 is first loaded to some register
and then dereferenced, resulting in the crash. Our goal then
is to identify why the code attempts to dereference this value
and how this value ended up there. We might turn towards
the call stack, which indicates that the problem arises during
some helper function that is called while raising an exception.
From this point on, we can start investigating by manually
following the flow of execution backward from the crashing
cause up to the root cause. Given that the code of the mruby
interpreter is non-trivial and the bug is somewhat complex,
this takes a lot of time. Thus, we may take another angle
and use some tool dedicated to detecting memory errors, for
example, sanitizers.

Sanitizer. Sanitizers are a class of tools that often use
compile-time instrumentation to detect a wide range of soft-
ware faults. There are various kinds of sanitizers, such as
MSAN [52] to detect usage of uninitialized memory or
ASAN [51] to detect heap- and stack-based buffer overflows,
use-after-free (UAF) errors and other faults. Sanitizers usu-
ally rely on the usage of shadow memory to track whether
specific memory can be accessed or not. ASAN guards allo-
cated memory (e. g., stack and heap) by marking neighboring
memory as non-accessible. As a consequence, it detects out-
of-bounds accesses. By further marking freed memory as
non-accessible (as long as other free memory is available
for allocation), temporal bugs can be detected. MSAN uses
shadow memory to track for each bit, whether it is initialized
or not, thereby preventing unintended use of uninitialized
memory.

Using such tools, we can identify invalid memory accesses
even if they are not causing the program to crash immediately.
This situation may occur when other operations do not access
the overwritten memory. Additionally, sanitizers provide more
detailed information on crashing cause and location. As a
consequence, sanitizers are more precise and pinpoint issues
closer to the root cause of a bug.

USENIX Association 29th USENIX Security Symposium 237

https://github.com/RUB-SysSec/aurora
https://github.com/RUB-SysSec/aurora

Unfortunately, this is not the case for our example: re-
compiling the binary with ASAN provides no new insights
because the type confusion does not provoke any memory
errors that can be detected by sanitizers. Consequently, we
are stuck at the same crashing location as before.

Backward Taint Analysis. To deepen our understand-
ing of the bug, we could use automated root cause analysis
tools [32,33,57] that are based on reverse execution and back-
ward taint tracking to increase the precision further. However,
in our example, there is no direct data flow between the crash
site and the actual root cause. The data flow ends in the con-
structor of a new String that is unrelated to the actual root
cause. As taint tracking does not provide interesting informa-
tion, we try to obtain related inputs that trigger the same bug
in different crashing locations. Finding such inputs would
give us a different perspective on the bug’s behavior.

Crash Exploration. To achieve this goal, we can use the
so-called crash exploration mode [58] that fuzzers such as
AFL [59] provide. This mode takes a crashing input as a
seed and mutates it to generate new inputs. From the newly
generated inputs, the fuzzer only keeps those in the fuzzing
queue that still result in a crash. Consequently, the fuzzer
creates a diverse set of inputs that mostly lead to the same
crash but exhibited new code coverage by exercising new
paths. These inputs are likely to trigger the same bug via
different code paths.

To gain new insights into the root cause of our bug, we need
the crash exploration mode to trigger new behavior related to
the type confusion. In theory, to achieve this, the fuzzer could
assign another type than String to NotImplementedError.
However, fuzzers such as AFL are more likely to modify the
input to something like “Stringgg” or “Strr” than assigning
different, valid types. This is due to the way its mutations
work [30]. Still, AFL manages to find various crashing inputs
by adding new mruby code unrelated to the bug.

To further strengthen the analysis, a fuzzer with access to
domain knowledge, such as grammar-based fuzzers [28, 35,
48], can be used. Such a fuzzer recognizes that String is a
grammatically valid element for Ruby which can be replaced
by other grammar elements. For example, String can be
replaced by Hash, Array or Float. Assume that the fuzzer
chooses Hash; the newly derived input crashes the binary at
a later point of execution than our original input. This result
benefits the analyst as comparing the two inputs indicates that
the crash could be related to NotImplementedError’s type.
As a consequence, the analyst might start focusing on code
parts related to the object type, reducing the scope of analysis.
Still, this leaves the human analyst with an additional input to
analyze, which means more time spent on debugging.

Overall, this process of investigating the root cause of a
given bug is not easy and—depending on the bug type and
its complexity—may take a significant amount of time and
domain knowledge. Even though various methods and tools
exist, the demanding tasks still have to be accomplished by a

human. In the following, we present our approach to automate
the process of identifying and explaining the root cause for a
given crashing input.

3 Design Overview

Given a crashing input and a binary program, our goal is to
find an explanation of the underlying software fault’s root
cause. We do so by locating behavioral differences between
crashing and non-crashing inputs. In its core, our method
conducts a statistical analysis of differences between a set
of crashing and non-crashing inputs. Thus, we first create a
dataset of diverse program behaviors related to the crash, then
monitor relevant input behavior and, finally, comparatively
analyze them. This is motivated by the insight that crashing
inputs must—at some point—semantically deviate from non-
crashing inputs. Intuitively, the first relevant behavior during
program execution that causes the deviation is the root cause.

In a first step, we create two sets of related but diverse
inputs, one with crashing and one with non-crashing inputs.
Ideally, we only include crashing inputs caused by the same
root cause. The set of non-crashing inputs has no such restric-
tions, as they are effectively used as counterexamples in our
method. To obtain these sets, we perform crash exploration
fuzzing on one initial crashing input (a so-called seed).

Given the two sets of inputs, we observe and monitor (i. e.,
trace) the program behavior for each input. These traces al-
low us to correlate differences in the observations with the
outcome of the execution. Using this statistical reasoning,
we can identify differences that predict whether a program
execution will crash or not. To formalize these differences, we
synthesize predicates that state whether a bug was triggered.
Intuitively, the first predicate that can successfully predict the
outcome of all (or most) executions also explains the root
cause. As the final result, we provide the analyst with a list
of relevant explanations and addresses, ordered by the quality
of their prediction and time of execution. That is, we prefer
explanations that predict the outcome well. Amongst good
explanations, we prefer these that are able to predict the crash
as early as possible.

On a high-level view, our design consist of three individual
components: (1) input diversification to derive two diverse
sets of inputs (crashing and non-crashing), (2) monitoring
input behavior to track how inputs behave and (3) explana-
tion synthesis to synthesize descriptive predicates that distin-
guish crashing from non-crashing inputs. In the following, we
present each of these components.

3.1 Input Diversification
As stated before, we need to create a diverse but similar set
of inputs for the single crashing seed given as input to our
approach. On the one hand, the inputs should be diverse such
that statistical analysis reveals measurable differences. On the

238 29th USENIX Security Symposium USENIX Association

other hand, the inputs should share a similar basic structure
such that they explore states similar to the root cause. This
allows for a comparative analysis of how crashes and non-
crashes behave on the buggy path.

To efficiently generate such inputs, we can use the crash
exploration mode bundled with fuzzers such as AFL. As de-
scribed previously, this mode applies mutations to inputs as
long as they keep crashing. Inputs not crashing the binary
are discarded from the queue and saved to the non-crashing
set; all inputs remaining within the fuzzing queue constitute
the crashing set. In general, the more diversified inputs crash
exploration produces, the more precise the statistical analysis
becomes. Fewer inputs are produced in less time but cause
more false positives within the subsequent analysis. Once the
input sets have been created, they are passed to the analysis
component.

3.2 Monitoring Input Behavior

Given the two sets of inputs—crashing and non-crashing—we
are interested in collecting data allowing semantic insights
into an input’s behavior. To accommodate our binary-only
approach, we monitor the runtime execution of each input,
collecting the values of various expressions. For each instruc-
tion executed, we record the minimum and maximum value of
all modified registers (this includes general-purpose registers
and the flag register). Similarly, we record the maximum and
minimum value stored for each memory write access. Notably
and perhaps surprisingly, we did not observe any benefit in
tracing the memory addresses used; therefore, we do not ag-
gregate information on the target addresses. It seems that the
resulting information is too noisy and all relevant information
is already found in observed registers. We only trace the mini-
mum and maximum of each value to limit the amount of data
produced by loops. This loss of information is justified by the
insight that values causing a crash usually surface as either
a minimum or maximum value. Our evaluation empirically
supports this thesis. This optimization greatly increases the
performance, as the amount of information stored per instruc-
tion is constant. At the same time, it is precise enough to allow
statistical identification of differences. Besides register and
memory values, we store information on control-flow edges.
This allows us to reconstruct a coarse control-flow graph for
a specific input’s execution. Control flow is interesting behav-
ior, as it may reveal code that is only executed for crashing
inputs. Furthermore, we collect the address ranges of stack
and heap to test whether certain pointers are valid heap or
stack pointers.

We do not trace any code outside of the main executable,
i. e., shared libraries. This decreases overhead significantly
while removing tracing of code that—empirically—is not
interesting for finding bugs within a given binary program.
For each input, we store this information within a trace file
that is passed on to the statistical analysis.

3.3 Explanation Synthesis

Based on the monitoring, explanation synthesis is provided
with two sets of trace files that describe intrinsic behaviors
of crashing and non-crashing inputs. Our goal is to isolate
behavior in the form of predicates that correlate to differences
between crashing and non-crashing runs. Any such predi-
cate pointing to an instruction indicates that this particular
instruction is related to a bug. Our predicates are Boolean
expressions describing concrete program behavior, e. g., “the
maximum value of rax at this position is less than 2”. A pred-
icate is a triple consisting of a semantic description (i. e., the
Boolean expression), the instruction’s address at which it is
evaluated and a score indicating the ability to differentiate
crashes from non-crashes. In other words, the score expresses
the probability that an input crashes for which the predicate
evaluates to true. Consequently, predicates with high scores
identify code locations somewhere on the path between root
cause and crashing location. In the last step, we sort these
predicates first by score, then by the order in which they were
executed. Given this sorted list of predicates, a human analyst
can then manually analyze the bug. Since these predicates
and the calculation of the score are the core of our approach,
we present more details in the following section.

4 Predicate-based Root Cause Analysis

Given the trace information for all inputs in both sets, we
can reason about potential root cause locations and deter-
mine predicates that explain the root cause. To this end, we
construct predicates capable of discriminating crashing and
non-crashing runs, effectively pinpointing conditions within
the program that are met only when encountering the crash.
Through the means of various heuristics described in Sec-
tion 4.4, we filter the conditions and deduce a set of locations
close to the root cause of a bug, aiding a developer in the
tedious task of finding and fixing the root cause. This step po-
tentially outputs a large number of predicates, each of which
partitions the two sets. In order to determine the predicate
explaining the root cause, we set conditional breakpoints that
represent the predicate semantics. We then proceed to exe-
cute the binary for each input in the crashing set, recording
the order in which predicates are triggered. As a result, we
obtain for each input the order in which the predicates were
encountered during execution. Given this information and the
predicates’ scores, we can define a ranking over all predicates.
In the following, we present this approach in detail.

The first step is to read the results obtained by tracing the
inputs’ behavior. Given these traces, we collect all control-
flow transitions observed in crashing and non-crashing inputs
and construct a joined control-flow graph that is later used to
synthesize control-flow predicates. Afterward, we compute
the set of instructions identified by their addresses that are rel-
evant for our predicate-based analysis. Since we are interested

USENIX Association 29th USENIX Security Symposium 239

in behavioral differences between crashes and non-crashes,
we only consider addresses that have been visited by at least
one crashing and one non-crashing input. Note that—as a
consequence—some addresses are discarded if they are vis-
ited in crashes but not in non-crashes. However, in such a
situation, we would observe control-flow transitions to these
discarded addresses from addresses that are visited by inputs
from both sets. Consequently, we do not lose any precision
by removing these addresses.

Based on the trace information, we generate many predi-
cates for each address (i. e., each instruction). Then, we test
all generated predicates and store only the predicate with
the highest score. In the following, we describe the types of
predicates we use, how these predicates can be evaluated and
present our ranking algorithm. Note that by assumption a
predicate forecasts a non-crash, if it is based on an instruction
that was never executed. This is motivated by the fact that
not-executed code cannot be the cause of a crash.

4.1 Predicate Types

To capture a wide array of possible explanations of a software
fault’s root cause, we generate three different categories of
predicates, namely (1) control-flow predicates, (2) register and
memory predicates, as well as (3) flag predicates. In detail,
we use the following types of predicates:

Control-flow Predicates. Based on the reconstructed
control-flow graph, we synthesize edge predicates that eval-
uate whether crashes and non-crashes differ in execution
flow. Given a control-flow edge from x to y, the predicate
has_edge_to indicates that we observed at least one transi-
tion from x to y. Contrary, always_taken_to expresses that
every outgoing edge from x has been taken to y. Finally, we
evaluate predicates that check if the number of successors is
greater than or equal to n ∈ {0,1,2}.

Register and Memory Predicates. For each instruction,
we generate predicates based on various expressions: the
minimum and the maximum of all values written to a register
or memory, respectively. For each such expression (e. g., r =
max(rax)) we introduce a predicate r < c. We synthesize
constants for c such that the predicate is a good predictor for
crashing and non-crashing inputs. The synthesis is described
in Section 4.3. Additionally, we have two fixed predicates
testing whether expressions are valid heap or stack pointers,
respectively: is_heap_ptr(r) and is_stack_ptr(r).

Flag Predicates. On the x86 and x86-64 architecture, the
flag register tracks how binary comparisons are evaluated and
whether an overflow occurred, making it an interesting target
for analysis. We use flag predicates that each check one of the
flag bits, including the carry, zero and overflow flag.

4.2 Predicate Evaluation
For each address, we generate and test predicates of all types
and store the predicate with the highest score. In the following,
we detail how to evaluate and score an individual predicate.
Generally speaking, we are interested in measuring the quality
of a predicate, i. e., how well it predicts the actual behavior
of the target application. Thus, it is a simple binary classifica-
tion. If the target application crashes on a given input—also
referred to as test case in the following—the predicate should
evaluate to true. Otherwise, it should evaluate to false. We
call a predicate perfect if it correctly predicts the outcome
of all test cases. In other words, such a predicate perfectly
separates crashing and non-crashing inputs.

Unfortunately, there are many situations in which we can-
not find a perfect predicate; consequently, we assign each
predicate a probability on how well it predicts the program’s
behavior given the test cases. For example, if there are multi-
ple distinct bugs within the input set, no predicate will explain
all crashes. This can occur if the crash exploration happens to
modify a crashing input in such a way that it triggers one or
multiple other bug(s). Alternatively, the actual best predicate
might be more complex than predicates that could be synthe-
sized automatically; consequently, it cannot predict all cases
perfectly.

To handle such instances, we model the program behavior
as a noisy evaluation of the given predicate. In this model,
the final outcome of the test case is the result of the predicate
XORed with some random variable. More precisely, we define
a predicate p as a mapping from an input trace to a Boolean
variable (p : trace 7→ {0, 1}) that predicts whether the exe-
cution crashes. Using this predicate, we build a statistical
model O(input) = p(input)⊕R to approximate the observed
behavior. The random variable R is drawn from a Bernoulli
distribution (R ∼ Bernoulli(θ)) and denotes the noise intro-
duced by insufficiently precise predicates. Whenever R = 0,
the predicate p(input) correctly predicts the outcome. When
R = 1, the predicate mispredicts the outcome. Our stochastic
model has a single parameter θ that represents the probability
that the predicate mispredicts the actual outcome of the test
case. We cannot know the real value of θ without simulating
every possible behavior of a program. Instead, we perform
maximum likelihood estimation using the sample of actual
test inputs to approximate a θ̂. This value encodes the un-
certainty of the predictions made by the predicate. We later
employ this uncertainty to rank the different predicates:

θ̂ =
C f +N f

C f +Ct +N f +Nt

We count the number of both mispredicted crashes (C f)
and mispredicted non-crashes (N f) divided by the number of
all predictions, i. e., the number of all mispredicted inputs as
well as the number of all correctly predicted crashed (Ct) and
non-crashes (Nt).

240 29th USENIX Security Symposium USENIX Association

As we demonstrate in Section 6.3, using crash exploration
to obtain samples can cause a significant class imbalance, i. e.,
we may find considerably more non-crashing than crashing in-
puts. To avoid biasing our scoring scheme towards the bigger
class, we normalize each class by its size:

θ̂ =
1
2
∗
(

C f

C f +Ct
+

N f

N f +Nt

)
If θ̂ = 0, the predicate is perfect. If θ̂ = 1, the negation of

the predicate is perfect. The closer θ̂ is to 0.5, the worse our
predicate performs in predicting the actual outcome.

Finally, we calculate a score using θ̂. To obtain a score in
the range of [0, 1], where 0 is the worst and 1 the best possible
score, we calculate 2∗abs(θ̂−0.5). We use this score to pick
the best predicate for each instruction that has been visited by
at least one crashing and one non-crashing input. While the
score is used to rank predicates, θ̂ indicates whether p or its
negation ¬p is the better predictor. Intuitively, if θ̂ > 0.5, p
is a good predictor for non-crashing inputs. As our goal is to
predict crashes, we use the negated predicate in these cases.

Example 1. Assume that we have 1,013 crashing and 2,412
non-crashing inputs. Furthermore, consider a predicate p1,
with p1 := min(rax) < 0xff. Then, we count C f := 1013,
Ct = 0, N f = 2000 and Nt = 412. Therefore, we estimate
θ̂1 =

1
2 ·

(1013
1013 +

2000
2000+412

)
≈ 0.9146). The predicate score is

s1 = 2 · abs(0.9146− 0.5) ≈ 0.8292, indicating that the in-
put is quite likely to crash the program. Even though θ̂ is
large and the majority of the outcomes is mispredicted, this
high score is explained by the fact that—as θ̂1 > 0.5—we in-
vert the predicate p1. Thus, true and false positives/negatives
are switched, resulting in a large amount of true positives
(Ct = 1013) and true negatives (Nt = 2000) for the inverted
predicate: ¬p1 := min(rax)≥ 0xff

Testing another predicate p2 for the same instruction with
θ̂2 = 0.01, we calculate the score s2 = 2 · abs(0.01−0.5) =
0.98. Since s2 > s1, consequently we only store p2 as best
predicate for this instruction.

4.3 Synthesis of Constant Values
When computing our register and memory predicates of type
r < c, we want to derive a constant c that splits the test inputs
into crashing and non-crashing inputs based on all values
observed for r during testing. These predicates can only be
evaluated once a value for c is fixed. Since c can be any 64-bit
value, it is prohibitively expensive to try all possible values.
However, c splits the inputs into exactly two sets: Those where
r is observed to be smaller than c and the rest. The only way
to change the quality of the predicate is to choose a value
of c that flips the prediction of at least one value of r. All
constants c between two different observations of r perform
the exact same split of the test inputs. Consequently, the only
values that change the behavior of the predicate are exactly

the observed values of r. We exploit this fact to find the best
value(s) for c using only O(n ∗ log(n)) steps where n is the
number of test cases.

To implement this, we proceed as follows: In a preprocess-
ing step, we collect all values for an expression r at the given
instruction and sort them. Then, we test each value observed
for r as a candidate for c. We then want to evaluate our can-
didate for c on all inputs reaching the address. Naively, we
would recompute the score for each value of c; however, this
would yield a quadratic runtime. To increase the performance,
we exploit the fact that we only need Ct ,C f , Nt , N f to calcu-
late the score. This property of our scoring scheme allows us
to update the score in constant time when checking the next
candidate value of c.

To calculate the score for any candidate value ci, we start at
the smallest candidate c0 and calculate the predicate’s score
by evaluating the predicate on all inputs and counting the
number of correctly predicted outcomes. After calculating the
score of the ith possible candidate ci, we can update the score
for the candidate ci+1 by tracking the number of correctly
predicted crashes and non-crashes. Since using ci+1 instead
of ci only flips a single prediction, we can efficiently update
Ct ,C f , Nt , N f in constant time. When using ci resulted in a
correctly predicted crash for the ith observation, we decrement
Ct . Likewise, if the old prediction was an incorrectly predicted
non-crash, we decrement N f . The other cases are handled
accordingly. Afterward, we increment the number of observed
outcomes based on the results of the new predicate in the same
fashion. This allows us to track Ct ,C f , Nt , N f while trying
all values of c to determine the value which maximizes the
score. Finally, we might have dropped some inputs that did
not reach the given instruction; thus, we then perform one
re-evaluation of the score on the whole dataset to determine
the final score for this predicate.

Note that the predicate is constructed involving all ad-
dresses reaching that instruction. Consequently, it is perfect
with respect to the whole dataset: all data not yet evaluated
does not reach this address and thus cannot affect the syn-
thesized value. Another consequence of this fact is that our
synthesis works both for ranges and single values.

Example 2. Consider that we want to synthesize a value
c that maximizes the score of the predicate p(r) = r < c.
Assume that we have four inputs reaching the address where
the predicate is evaluated and we observed the following
data:

outcome crash crash non-crash non-crash

values of r 0x08 0x0f 0x400254 0x400274

In this example, the values are already sorted. Remember that
we are interested in locating the cutoff value, i. e., the value
of c that separates crashing and non-crashing inputs best.
Hence, we proceed to calculate the score for each candidate,
starting with the smallest c = 0x8. Since r < 0x8 is never true

USENIX Association 29th USENIX Security Symposium 241

for our four inputs, they are all predicted to be non-crashing.
Therefore, we obtain C f = 2, Ct = 0, N f = 0,Nt = 2. This
results in θ̂ = 1

2

(2
2+0 +

0
0+2

)
= 0.5 and, consequently, in a

score = 2∗abs(θ̂−0.5) = 0, indicating that this is not a good
candidate for c. Using the next candidate c = 0x0f, we now
predict that the first input is crashing. Since the first input
triggered a crash, we update C f and Ct by incrementing Ct
and decrementing C f . Consequently, we obtain C f = 1, Ct = 1,
N f = 0 and Nt = 2, resulting in θ̂ = 0.75 and a final score
of 0.5. Repeating this for the next step, we obtain a perfect
score for the next value 0x400254 as both crashing values are
smaller. This yields the final predicate p(r) = x < 0x400254
that will be re-evaluated on the whole dataset.

We observed that if all recorded constants are either valid
stack or heap addresses (i. e., pointers), we receive a high
number of false positives since these addresses are too noisy
for statistical analysis. Accordingly, we do not synthesize
predicates other than is_heap_ptr and is_stack_ptr for
these cases.

4.4 Ranking
Once all steps of our statistical analysis are completed, we
obtain the best predicate for each instruction. A predicate’s
score indicates how well a predicate separates crashing and
non-crashing inputs. Since we synthesize one predicate for
each instruction, we obtain a large number of predicates. Note
that most of them are independent of the bug; thus, we discard
predicates with a score lower than the empirically determined
threshold of 0.9. Consequently, the remaining predicates iden-
tify locations that are related to the bug.

Still, we do not know in which order relevant predicates are
executed; therefore, we cannot distinguish whether a predicate
is related to the root cause or occurs later on the path to the
crash site. As predicates early in the program trace are more
likely to correspond to the root cause, we introduce a new
metric called the execution rank. To calculate the execution
rank, we determine the temporal order in which predicates are
executed. To do so, we add a conditional breakpoint for each
relevant predicate p. This breakpoint triggers if the predicate
evaluates to true. For each crashing input, we can execute
the program, recording the order in which breakpoints are
triggered. If some predicate p is at program position i and we
observed n predicates in total, p’s execution rank is i

n . If some
predicate is not observed for a specific run, we set its execution
rank to 2 as a penalty. Since a predicate’s execution rank may
differ for each crashing input due to different program paths
taken, we average over all executions.

However, the primary metric is still its prediction score.
Thus, we sort predicates by their prediction score and resolve
ties by sorting according to the execution rank.

Example 3. Consider three predicates p1, p2 and p3 with
their respective scores 1, 0.99 and 0.99. Furthermore, assume

that we have the crashing inputs i1 and i2. Let the observed
predicate order be (p1, p3) for i1 and (p1, p3, p2) for i2. Then,
we obtain the execution ranks:

p1: 1
2 ·

(1
2 +

1
3

)
≈ 0.41

p2: 1
2 ·

(
2+ 3

3

)
= 1.5

p3: 1
2 ·

(2
2 +

2
3

)
≈ 0.83

Since we sort first by score and then by execution rank, we
obtain the final predicate order (p1, p3, p2).

5 Implementation

To demonstrate the practical feasibility of the proposed ap-
proach, we implemented a prototype of AURORA. We briefly
explain important implementation aspects in the following,
the full source code is available at https://github.com/
RUB-SysSec/aurora.

Input Diversification. For the purpose of exploring inputs
close to the original crash, we use AFL’s crash exploration
mode [58]. Given a crashing input, it finds similar inputs that
still crash the binary. Inputs not crashing the program are not
fuzzed any further. We modified AFL (version 2.52b) to save
these inputs to the non-crashing set before discarding them
from the queue.

Monitoring Input Behavior. To monitor the input behav-
ior, we implemented a pintool for Intel PIN [40] (version 3.7).
Relying on Intel’s generic and architecture-specific inspection
APIs, we can reliably extract relevant information.

Explanation Synthesis. The explanation synthesis is writ-
ten in Rust. It takes two folders containing traces of crashes
and non-crashes as input. Then, it reconstructs the joined
control-flow graph and then synthesizes and evaluates all
predicates. Finally, it monitors and ranks the predicates as de-
scribed before. To monitor the execution of the predicates, we
set conditional breakpoints using the ptrace syscall. In a final
step, we use binutils’ addr2line [36] to infer the source
file, function name and line for each predicate. If possible, all
subsequent analysis parts are performed in parallel. Overall,
about 5,000 lines of code were written for this component.

6 Experimental Evaluation

Based on the prototype implementation of AURORA, we now
answer the following research questions:
RQ 1: Is AURORA able to identify and explain the root cause

of complex and highly exploitable bug classes such as
type confusions, use-after-free vulnerabilities and heap
buffer overflows?

RQ 2: How close is the automatically identified explanation
to the patch implemented by the developers?

RQ 3: How many predicates are related to the fault?
To answer these research questions, we devise a set of ex-

periments where we analyze various types of software faults.
For each fault, we have manually analyzed and identified the

242 29th USENIX Security Symposium USENIX Association

https://github.com/RUB-SysSec/aurora
https://github.com/RUB-SysSec/aurora

root cause; furthermore, we considered the patches provided
by the developers.

6.1 Setup

All of our experiments are conducted within a cloud VM with
32 cores (based on Intel Xeon Silver 4114, 2.20 GHz) and
224 GiB RAM. We use the Ubuntu 18.04 operating system.
To facilitate deterministic analysis, we disable address space
layout randomization (ASLR).

We selected 25 software faults in different well-known ap-
plications, covering a wide range of fault types. In particular,
we picked the following bugs:

• ten heap buffer overflows, caused by an integer overflow
(#1 mruby [1]), a logic flaw (#2 Lua [2], #3 Perl [3]
and #4 screen [4]) or a missing check (#5 readelf [5],
#6 mruby [6], #7 objdump [7], #8 patch [8]), #9 Python
2.7/3.6 [9] and #10 tcpdump [10])

• one null pointer dereference caused by a logic flaw
(#11 NASM [11])

• three segmentation faults due to integer overflows
(#12 Bash [12] and #13 Bash [13]) or a race condition
(#14 Python 2.7 [14])

• one stack-based buffer overflow (#15 nm [15])
• two type confusions caused by missing checks

(#16 mruby [16] and #17 Python 3.6 [17])
• three uninitialized variables caused by a logic flaw

(#18 Xpdf [18]) or missing checks (#19 mruby [19] and
#20 PHP [20])

• five use-after-frees, caused by a double free
(#21 libzip [21]), logic flaws (#22 mruby [22],
#23 NASM [23] and #24 Sleuthkit [24]) or a missing
check (#25 Lua [25])

These bugs have been uncovered during recent fuzzing runs or
found in the bug tracking systems of well-known applications.
Our general selection criteria are (i) the presence of a proof-
of-concept file crashing the application and (ii) a developer-
provided fix. The former is required as a starting point for
our analysis, while the latter serves as ground truth for the
evaluation.

For each target, we compile two binaries: One instrumented
with AFL that is used for crash exploration and one non-
instrumented binary for tracing purposes. Note that some of
the selected targets (e. g., #1, #5 or #19) are compiled with
sanitizers, ASAN or MSAN, because the bug only manifests
when using a sanitizer. The targets compiled without any san-
itizer are used to demonstrate that we are not relying on any
sanitizers or requiring source code access. The binary used
for tracing is always built with debug symbols and without
sanitizers. For the sake of the evaluation, we need to mea-
sure the quality of our explanations, as stated in the RQ 1
and RQ 2. Therefore, we use debug symbols and the applica-
tion’s source code to compare the identified root cause with
the developer fix. To further simplify this process, we derive

source line, function name and source file for each predicate
via addr2line. This does not imply that our approach by
any means requires source code: all our analysis steps run on
the binary level regardless of available source code. Experi-
ments using a binary-only fuzzer would work the exact same
way. However, establishing the ground truth would be more
complex and hence we use source code strictly for evaluation
purposes.

For our evaluation, we resort to the well-known AFL fuzzer
and run its crash exploration mode for two hours with the
proof-of-concept file as seed input. We found that this is
enough time to produce a sufficiently large set of diverse in-
puts for most targets. However, due to the highly structured
nature of the input languages for mruby, Lua, nm, libzip,
Python (only #17) and PHP, AFL found less than 100 in-
puts within two hours. Thus, we repeat the crash exploration
with 12 hours instead of 2 hours. Each input found during
exploration is subsequently traced. Since some inputs do not
properly terminate, we set a timeout of five minutes after
which tracing is aborted. Consequently, we do lose a few in-
puts, see Table 4 for details. Similarly, our predicate ranking
component may encounter timeouts. As monitoring inputs
with conditional breakpoints is faster than tracing an input,
we empirically set the default timeout to 60 seconds.

6.2 Experiment Design

An overview of all analysis results can be found in Table 1.
Recall that in practice the crashing cause and root cause of a
bug differ. Thus, for each bug, we first denote its root cause as
identified by AURORA and verified by the developers’ patches.
Subsequently, we present the crashing cause, i. e., the reason
reported by ASAN or identified manually. For each target,
we record the best predicate score observed. Furthermore, we
investigate each developer fix, comparing it to the root cause
identified by our automated analysis. We report the number
of predicates an analyst has to investigate before finding the
location of the developers’ fix as Steps to Dev. Fix. We ad-
ditionally provide the number of source code lines (column
SLOC) a human analyst needs to inspect before arriving at the
location of the developer fix since these fixes are applied on
the source code level. Note that this number may be smaller
than the number of predicates as one line of source code usu-
ally translates to multiple assembly instructions. Up to this
day, no developer fix was provided for bug #23 (NASM). Hence,
we manually inspected the root cause, identifying a reason-
able location for a fix. Bug #11 has no unique root cause; the
bug was fixed during a major rewrite of program logic (20
files and 500 lines changed). Thus, we excluded it from our
analysis.

To obtain insights into whether our approach is actually
capable of identifying the root cause even when it is sepa-
rated from the crashing location by the order of thousands
of instructions, we design an experiment to measure the dis-

USENIX Association 29th USENIX Security Symposium 243

Table 1: Results of our root cause explanations. For 25 different bugs, we note the target, root and crashing cause as well as whether the target has been compiled
using a sanitizer. Furthermore, we provide the number of predicates and source lines (SLOC) a human analyst has to examine until the location is reached where
the developers applied the bug fix (denoted as Steps to Dev. Fix). Finally, the number of true and false positives (denoted as TP and FP) of the top 50 predicates
are shown. * describes targets where no top 50 predicates with a score above or equal to 0.9 exist.

Target Root Cause Crash Cause Sanitizer Best Score Steps to Dev. Fix Top 50

#Predicates #SLOC TP FP

#1 mruby int overflow heap buffer overflow ASAN 0.998 1 1 50 0
#2 Lua logic flaw heap buffer overflow ASAN 1.000 1 1 50 0
#3 Perl logic flaw heap buffer overflow - 1.000 13 10 43 7
#4 screen * logic flaw heap buffer overflow - 0.999 26 16 30 0
#5 readelf missing check heap buffer overflow ASAN 1.000 7 5 50 0
#6 mruby missing check heap buffer overflow ASAN 1.000 1 1 12 38
#7 objdump missing check heap buffer overflow ASAN 0.981 3 3 48 2
#8 patch missing check heap buffer overflow ASAN 0.997 1 1 50 0
#9 Python missing check heap buffer overflow - 1.000 46 28 44 6

#10 tcpdump missing check heap buffer overflow - 0.994 1 1 50 0
#11 NASM logic flaw nullptr dereference - 1.000 - - 50 0
#12 Bash int overflow segmentation fault - 0.992 10 6 28 22
#13 Bash int overflow segmentation fault - 0.999 9 6 35 15
#14 Python race condition segmentation fault - 1.000 13 13 27 23
#15 nm * missing check stack buffer overflow ASAN 0.980 1 1 35 0
#16 mruby missing check type confusion - 1.000 33 15 50 0
#17 Python missing check type confusion - 1.000 215 141 7 43
#18 Xpdf logic flaw uninitialized variable ASAN 0.997 16 11 50 0
#19 mruby missing check uninitialized variable MSAN 1.000 16 5 50 0
#20 PHP missing check uninitialized variable MSAN 1.000 42 19 29 21
#21 libzip * double free use-after-free ASAN 1.000 1 1 39 0
#22 mruby logic flaw use-after-free ASAN 1.000 9 6 42 8
#23 NASM * logic flaw use-after-free - 0.957 1 1 14 9
#24 Sleuthkit logic flaw use-after-free - 1.000 2 2 48 2
#25 Lua missing check use-after-free ASAN 1.000 3 3 50 0

tance between developer fix and crashing location in terms of
executed assembly instructions. More specifically, for each
target, we determine the maximum distance, the average dis-
tance over all crashing inputs and—to put this number in
relation—the average of total instructions executed during a
program run. Each metric is given in the number of assembly
instructions executed and unique assembly instructions exe-
cuted, where each instruction is counted at most once. Note
that some bugs only crash in the presence of a sanitizer (as
indicated by ASAN or MSAN in Table 1) and that our tracing
binaries are never instrumented to avoid sanitizer artifacts
disturbing our analysis. As a consequence, our distance mea-
surement would run until normal program termination rather
than program crash for such targets. Since this would distort
the experiment, we exclude such bugs from the comparison.

Finally, to provide an intuition of how well our approach
performs, we analyze the top 50 predicates (if available) pro-
duced for each target, stating whether they are related to the
bug or unrelated false positives. We consider predicates as
related to the bug when they pinpoint a location on the path

from root cause to crashing location and separate crashing and
non-crashing inputs. For false positives, we evaluate various
heuristics that allow to identify them and thereby reduce the
amount of manual effort required.

6.3 Results

Following AURORA’s results, the developer fix will be cov-
ered by the first few explanations. Typically, an analyst would
have to inspect less than ten source code lines to identify
the root cause. Exceptions are larger targets, such as Python
(13 MiB) and PHP (31 MiB), or particularly challenging bugs
such as type confusions (#16 and #17). Still, the number of
source code lines to inspect is below 28 for all but the Python
type confusion (#17), which contains a large amount of false
positives. Despite the increased number of source code lines
to investigate, the information provided by AURORA is still
useful: for instance, for bug #16—where 15 lines are needed—
most of the lines are within the same function and only six
functions are identified as candidates for containing the root

244 29th USENIX Security Symposium USENIX Association

Table 2: Maximum and average distance between developer fix and crashing location in both all and unique executed assembly instructions. For reference, the
average amount of instructions executed between program start and crash is also provided.

Target Maximum #Instructions Average #Instructions Average Total #Instructions
all unique all unique all unique

#3 Perl 845,689 7,321 435,873 5,697 1,355,013 32,259
#4 screen 28,289,736 3,441 127,459 1,932 397,595 9,456
#9 Python 3,759,699 9,330 743,216 5,445 34,914,300 60,508

#10 tcpdump 6,727 1,567 2,263 546 103,655 3,622
#11 NASM 22,678,105 8,256 1,940,592 4,383 2,546,740 9,729
#12 Bash 450,428 3,549 11,965 116 1,053,498 19,221
#13 Bash 2,584,606 1,094 178,873 612 1,100,495 16,817
#14 Python 3,923,167 13,028 58,990 835 29,226,209 60,917
#16 mruby 253,173 840 2,154 533 14,926,707 26,982
#17 Python 800 428 498 407 46,112,224 74,590
#23 NASM 7,401,732 4,842 184,036 2,919 2,885,104 8,244
#24 Sleuthkit 199 156 197 155 25,780 5,960

cause. We explain the increased number of false positives
found for these targets at the end of this section in detail.

Another aspect of a bug’s complexity is the distance be-
tween the root cause and crashing location. As Table 2 in-
dicates, AURORA is capable of both identifying root causes
when the distance is small (a few hundred instructions, e. g.,
197 for Sleuthkit) and significant (millions of instructions,
e. g., roughly 28 million for screen). Overall, we conclude
RQ 1 and RQ 2 by finding that AURORA is generally able
to provide automated root cause explanations close to the
root cause—less than 30 source code lines and less than 50
predicates—for diverse bugs of varying complexity.

The high quality of the explanations generated by AURORA
is also reflected by its high precision (i. e., the ratio of true
positives to all positives). Among the top 50 predicates, there
are significantly more true positives than negatives. More
precisely, for 18 out of 25 bugs, we have a precision ≥ 0.84,
including 12 bugs with a precision of 1.0 (no false positives).
Only for two bugs, the precision is less than 0.5—0.14 for #17
and 0.24 for #6. Note that for #6, the predicate pinpointing
the developer fix is at the top of the list, rendering all these
false positives irrelevant to triaging the root cause.

Despite the high precision, some false positives are gener-
ated. During our evaluation, we observed that they are mostly
related to (1) (de-)allocation operations as well as garbage
collectors, (2) control-flow, i. e., predicates which indicate that
non-crashes executed the pinpointed code in diverse program
contexts (e. g., different function calls or more loop iterations),
(3) operations on (complex) data structures such as hash maps,
arrays or locks, (4) environment, e. g., parsing command-line
arguments or environment variables (5) error handling, e. g.,
signals or stack unwinding. Such superficial features may
differentiate crashes and non-crashes but are generally not
related to the actual bug (excluding potential edge cases like
bugs in the garbage collector). Many of these false positives

occur due to insufficient code coverage achieved during crash
exploration, causing the sets of crashing and non-crashing
inputs to be not diverse enough.

To detect such false positives during our evaluation, we
employed various heuristics: First, we use the predicate’s
annotations to identify functions related to one of the five
categories of false positives and discard them. Then, for each
predicate, we inspect concrete values that crashes and non-
crashes exhibit during execution. This allows us to compare
actual values to the predicate’s explanation and—together
with the source code line—recognize semantic features such
as loop counters or constants based on timers. Once a false
positive is identified, we discard any propagation of the predi-
cate’s explanation and thereby subsequent related predicates.
In our personal experience, these heuristics allow us to reli-
ably detect many false positives without considering data-flow
dependencies or other program context. This is supported by
our results detailed in Table 3. Based on the five categories,
we evaluate how many false positives within the top 50 predi-
cates can be identified heuristically. Additionally, we denote
the number of propagations as well as the number of false
positives that must be analyzed in-depth. Note that an analyst
had to conduct such an analysis for only half of the targets
with false positives. We note that this may differ for other
bugs or other target applications, especially edge cases such
as bugs in the allocator or garbage collector.

Since we use a statistical model, false positives are a natural
side effect, yet, precisely this noisy model is indispensable.
For 15 of the analyzed bugs, we could find a perfect predicate
(with a score of 1.0), i. e., predicates that perfectly distinguish
crashes and non-crashes. In the remaining ten cases, some
noise has been introduced by crash exploration. However, as
our results indicate, small amounts of noise do not impair our
analysis. Therefore, we answer RQ 3, concluding that nearly

USENIX Association 29th USENIX Security Symposium 245

Table 3: Analysis results of false positives within the top 50 predicates. For each target, we classify its false positives into the categories they are related to:
allocation or garbage collector (Alloc), control flow (CF), data structure (DS), environment (Env) or error handling (Error). Additionally, we track the number of
predicates an analyst has to inspect in more detail (In-depth Analysis) as well as propagations of false positives that can be discarded easily.

Target False Positive Categories Propagations In-depth AnalysisAlloc CF DS Env Error

#3 Perl - - 7 - - - -
#6 mruby - - 38 - - - -
#7 objdump - 2 - - - - -
#9 Python - 1 - 2 3 - -

#12 Bash 1 1 - 1 4 8 7
#13 Bash 1 1 - - 4 5 4
#14 Python - - - 3 - 15 5
#17 Python 40 - 2 - - - 1
#20 PHP - - - 21 - - -
#22 mruby - 1 - - - 4 3
#23 NASM 3 - - - 2 2 2
#24 Sleuthkit - 2 - - - - -

all predicates found by AURORA are strongly related to the
actual root cause.

Since the statistical model is only as good as the data it
operates on, we also investigate the crash exploration and
tracing phases. The results are presented in Table 4. Most
traces produced by crash exploration could be traced success-
fully. The only exception being Bash, which caused many
non-terminating runs that we excluded from subsequent anal-
ysis. Note that we were still able to identify the root cause.

We also investigate the time required for tracing, predicate
analysis and ranking. We present the results in Table 5. On av-
erage, AURORA takes about 50 minutes for tracing, while the
predicate analysis takes roughly 18 minutes and ranking four
minutes. While these numbers might seem high, remember
that the analysis is fully automated. In comparison, an ana-
lyst triaging these bugs might spend multiple days debugging
specific bugs and identifying why the program crashes.

6.4 Case Studies

In the following, we conduct in-depth case studies of various
software faults to illustrate different aspects of our approach.

6.4.1 Case Study: Type Confusion in mruby

First, we analyze the results of our automated analysis for the
example given in Section 2.1 (Bug #16). As described, the
NotImplementedError type is aliased to the String type,
leading to a type confusion that is hard to spot manually.
Consequently, it is particularly interesting to see whether our
automated analysis can spot this elusive bug. As exploring
the behavior of mruby was challenging for AFL, we ran the
initial crash exploration step for 12 hours in order to get more
than 100 diversified crashes and non-crashes. Running our

subsequent analysis on the best 50 predicates reported by
AURORA, we manually found that all of the 50 predicates are
related to the bug and provide insight into some aspects of
the root cause.

The line with the predicate describing the location of the
developers’ fix is ranked 15th. This means that an analyst
has to inspect 14 lines of code that are related to the bug
but do not point to the developer fix. In terms of predicates,
the 33rd predicate explains the root cause. This discrepancy
results from the fact that one source code line may translate
to multiple assembly instructions. Thus, multiple predicates
may refer to values used in the same source code line.

The root cause predicate itself conditions on the fact that the
minimal value in register rax is smaller than 17. Remember
that the root cause is the missing type check. Types in mruby
are implemented as enum, as visible in the following snippet
of mruby’s source code (mruby/value.h):

112 MRB_TT_STRING , / * 16 * /
113 MRB_TT_RANGE, / * 17 * /
114 MRB_TT_EXCEPTION , / * 18 * /

Our identified root cause pinpoints the location where the
developers insert their fix and semantically states that the type
of the presumed exception object is smaller than 17. In other
words, the predicate distinguishes crashes and non-crashes
according to their type. As can be seen, the String type has
a value of 16; thus, it is identified as crashing input, while
the exception type is assigned 18. This explains the type
confusion’s underlying fault.

The other predicates allow tracing the path from the root
cause to the crashing location. For example, the predicates
rated best describe the freeing of an object within the garbage
collector. This is because the garbage collector spots that
NotImplemenetedError is changed to point to String in-

246 29th USENIX Security Symposium USENIX Association

Table 4: Number of crashing (#c) and non-crashing (#nc) inputs found by
crash exploration (Exploration) as well as the percentage of how many could
be successfully traced (Tracing).

Target Exploration Tracing
#c #nc #c #nc

#1 mruby 120 2708 100% 99.9%
#2 Lua 398 1482 100% 100%
#3 Perl 1591 6037 100% 99.9%
#4 screen 858 2164 100% 100%
#5 readelf 687 1803 100% 100%
#6 mruby 809 3914 100% 99.9%
#7 objdump 27 122 100% 100%
#8 patch 266 886 74.8% 89.7%
#9 Python 211 1546 100% 100%

#10 tcpdump 161 619 100% 100%
#11 NASM 2476 2138 100% 100%
#12 Bash 842 5483 7.1% 15.9%
#13 Bash 213 2102 50.7% 55.5%
#14 Python 253 1695 98.0% 98.2%
#15 nm 111 468 100% 100%
#16 mruby 1928 4063 100% 100%
#17 Python 705 2536 99.7% 99.8%
#18 Xpdf 779 545 100% 100%
#19 mruby 1128 2327 99.7% 99.9%
#20 PHP 800 2081 100% 100%
#21 libzip 36 286 100% 100%
#22 mruby 1629 3557 100% 99.9%
#23 NASM 590 1787 99.8% 100%
#24 Sleuthkit 108 175 100% 100%
#25 Lua 579 1948 100% 100%

stead of the original class. As a consequence, the garbage
collector decides to free the struct containing the original
class NotImplementedError, a very uncommon event. Sub-
sequent predicates point to locations where the string is at-
tached to the presumed exception object during the raising of
the exception. Additionally, predicates pinpoint the crashing
location by stating that a crash will occur if the dereferenced
value is smaller than a byte.

6.4.2 Case Study: Heap Buffer Overflow in readelf

GNU Binutils’ readelf application may crash as a result
of a heap buffer overflow when parsing a corrupted MIPS
option section [5]. This bug (Bug #5) was assigned CVE-
2019-9077. Note that this bug only crashes when ASAN is
used. Consequently, we use a binary compiled with ASAN
for crash exploration but run subsequent tracing on a non-
ASAN binary. The bug is triggered when parsing a binary
input where a field indicates that the size is set to 1 despite the
actual size being larger. This value is then processed further,
amongst others, by an integer division where it is divided

Table 5: Time spent on tracing, predicate analysis (PA) and ranking of each
target (in hours:minutes).

Target Tracing PA Ranking

#1 mruby 01:08 00:19 00:04
#2 Lua 00:09 00:03 < 1 min
#3 Perl 00:53 01:52 00:17
#4 screen 00:11 00:04 < 1 min
#5 readelf 00:05 00:02 < 1 min
#6 mruby 01:44 00:42 00:16
#7 objdump < 1 min < 1 min < 1 min
#8 patch 00:36 < 1 min < 1 min
#9 Python 01:20 00:15 00:05

#10 tcpdump 00:01 < 1 min < 1 min
#11 NASM 00:20 00:12 00:07
#12 Bash 00:49 00:01 00:03
#13 Bash 00:26 00:02 00:01
#14 Python 01:23 00:14 00:08
#15 nm 00:01 < 1 min < 1 min
#16 mruby 01:47 00:49 00:02
#17 Python 04:03 00:55 00:03
#18 Xpdf 00:19 00:01 00:03
#19 mruby 01:58 00:21 00:22
#20 PHP 01:16 00:47 00:03
#21 libzip < 1 min < 1 min < 1 min
#22 mruby 01:57 00:49 00:16
#23 NASM 00:10 00:03 00:02
#24 Sleuthkit < 1 min < 1 min < 1 min
#25 Lua 00:11 00:07 < 1 min

by 0x10, resulting in a value of 0. The 0 is then used as
size for allocating memory for some struct. More specifically,
it is passed to the cmalloc function that delegates the call
to xmalloc. In this function, the size of 0 is treated as a
special case where one byte should be allocated and returned.
Subsequently, writing any data larger than one byte—which
is the case for the struct the memory is intended for—is an
out-of-bounds write. As no crucial data is overwritten, the
program flow continues as normal unless it was compiled
with ASAN, which spots the out-of-bounds write.

To prevent this bug, the developers introduced a fix where
they check whether the allocated memory’s size is sufficient
to hold the struct. Analyzing the top 50 predicates, we observe
that each of these predicates is assigned a score larger than or
equal 0.99. Our seventh predicate pinpoints the fix by making
the case that an input crashes if the value in rcx is smaller than
7. The other predicates allow us to follow the propagation
until the crashing location. For instance, two predicates exist
that point to the integer division by 0x10, which causes the
0. The first predicate states that crashes have a value smaller
than 0x7 after the division. The second predicate indicates
that the zero flag is set, demonstrating a use case for our flag
predicates. We further see an edge predicate, which indicates

USENIX Association 29th USENIX Security Symposium 247

that only crashes enter the special case, which is triggered
when xmalloc is called with a size of 0.

6.4.3 Case Study: Use-after-free in Lua

In version 5.3.5, a use-after-free bug (#25, CVE-2019-6706)
was found in the Lua interpreter [25]. Lua uses so-called up-
values to implement closures. More precisely, upvalues are
used to store a function’s local variables that have to be ac-
cessed after returning from the function [39]. Two upvalues
can be joined by calling lua_upvaluejoin. The function first
decreases the first upvalue’s reference count and, critically,
frees it if it is not referenced anymore, before then setting
the reference to the second upvalue. The function does not
check whether the two passed parameters are equal, which se-
mantically has no meaning. However, in practice, the upvalue
will be freed before setting the reference, thus provoking a
use-after-free. ASAN detects the crash immediately while
regular builds crash with a segmentation fault a few lines later.

Our approach manages to create three predicates with a
score of 1. All of these three predicates are edge predicates,
i. e., detecting that for crashes, another path was taken. More
precisely, for the very first predicate, we see the return from
the function where the second upvalue’s index was retrieved.
Note that this is before the developers’ fix, but the first point
in the program where things go wrong. The second predicate
describes the function call where the upvalue references are
fetched, which are then compared for equality in the devel-
oper fix, i. e., it is located closely before the fix. The third
predicate is located right after the developer fix; thus, we have
to inspect three predicates or three source lines until we locate
the developer fix. It describes the return from the function
decreasing the reference count. All other predicates follow
the path from the root cause to the crashing location.

6.4.4 Case Study: Uninitialized Variable in mruby

The mruby interpreter contains a bug where uninitialized
memory is accessed (Bug #19). This happens in the unpack_m
function when unpacking a base64 encoded value from a
packed string. A local char array of size four is declared
without initialization. Then, a state machine implemented as
a while loop iterates over the packed string, processing it.
The local char array is initialized in two states during this
processing step. However, crafting a specific packed string
allows to avoid entering these two states. Thereby, the local
array is never properly initialized and MSAN aborts program
execution upon the use of the uninitialized memory.

When analyzing the top 50 predicates, we find that they
are are all related to the bug. The 16th predicate pinpoints the
location where the developer fix is inserted. It describes that
crashes fail to pass the condition of the while loop and—as
a consequence—leave the loop with the local variable being
uninitialized. Another predicate we identify pinpoints if the

condition allows skipping the initialization steps, stating that
this is a characteristic inherent to crashing inputs. All other
predicates highlight locations during or after the state machine.
Note that the crash only occurs within MSAN; thus, the
binary we trace does not crash. However, this does not pose
a problem for our analysis, which efficiently pinpoints root
cause and propagation until the crashing and non-crashing
runs no longer differ. In this particular case, the uninitialized
memory is used to calculate a value that is then returned. For
instance, we see that the minimal memory value written is
less than 0x1c at some address. Consequently, our analysis
pinpoints locations between the root cause and the usage of
the uninitialized value.

6.4.5 Case Study: Null Pointer Dereference in NASM

For NASM (#11, CVE-2018-16517), we analyze a logic flaw
which results in a null pointer dereference that crashes the
program. This happens because a pointer to a label is not
properly initialized but set to NULL. The program logic as-
sumes a later initialization within a state machine. However,
this does not happen because of a non-trivial logic flaw. The
developers fix this problem by a significant rewrite, chang-
ing most of the implementation handling labels (in total, 500
lines of code were changed). Therefore, we conclude that no
particular line can be determined as the root cause; never-
theless, we investigate how our approach performs in such a
scenario. This is a good example to demonstrate that some-
times defining the root cause can be a hard challenge even for
a human.

Analyzing the top 50 predicates reported, we find that
AURORA generates predicates pointing to various hotspots,
which show that the label is not initialized correctly. More
precisely, we identify a perfect edge predicate stating that
the pointer is initially set to NULL for crashes. Subsequent
predicates inform us that some function is called, which takes
a pointer to the label as a parameter. They identify that for
crashes the minimal value for rdi (the first function parameter
in the calling convention) is smaller than 0xff. Immediately
before the function attempts to dereference the pointer, we
see that the minimal value of rax is smaller than 0xff, which
indicates that the value was propagated. Afterward, a seg-
mentation fault occurs as accessing the address 0 is illegal.
In summary, we conclude that AURORA is useful to narrow
down the scope even if no definite root cause exists.

7 Discussion

As our evaluation shows, our approach is capable of identify-
ing and explaining even complex root causes where no direct
correlation between crashing cause and root cause exists. Nev-
ertheless, our approach is no silver bullet: It still reports some
predicates that are not related to the root cause. Typically,

248 29th USENIX Security Symposium USENIX Association

this is caused by the crash exploration producing an insuf-
ficiently diverse set of test cases. This applies particularly
to any input that was originally found by a grammar-based
fuzzer since AFL’s type of mutations may fail to produce suf-
ficiently diverse inputs for such targets [30]. We expect that
better fuzzing techniques will improve the ability to generate
more suitable corpora. Yet, no matter how good the fuzzer
is, in the end, pinpointing a single root cause will remain an
elusive target for automated approaches: even a human expert
often fails to identify a single location responsible for a bug.

Relying on a fuzzer illustrates another pitfall: We require
that bugs can be reproduced within a fuzzing setup. Therefore,
bugs in distributed or heavily concurrent systems currently
cannot be analyzed properly by our approach. However, this is
a limitation of the underlying fuzzer rather than AURORA: Our
analysis would scale to complex systems spanning multiple
processes and interacting components; our statistical model
can easily deal with systems where critical data is passed and
serialized by various means, including networks or databases,
where traditional analysis techniques like taint tracking fail.

In some cases, the predicates that we generate might not
be precise enough. While this situation did not happen during
our evaluation, hypothetically, there may exist bugs that can
only be explained by predicates spanning multiple locations.
For example, one could imagine a bug caused by using an
uninitialized value, which is only triggered if two particular
conditions are met: The program avoids taking a path ini-
tializing the value and later takes a path where the value is
accessed. Our single-location predicates fail to capture that
the bug behavior is reliant on two locations. We leave extend-
ing our approach to more complex and compound predicates
as an interesting question for future work.

Last, our system requires a certain computation time to
identify and explain root causes. In some cases, AURORA ran
for up to 17 hours (including 12 hours for crash exploration).
We argue that this is not a problem, as our system is used
in combination with normal fuzzing. Thus, an additional 17
hours of fuzzing will hardly incur a significant cost for typ-
ical testing setups. Since it took us multiple person-days to
pinpoint the root cause for some of the bugs we analyzed,
making the integration of our fully automated approach into
the fuzzing pipeline seems feasible.

An integration to fuzzing could benefit the fuzzer: Success-
ful fuzzing runs often produce a large number of crashing
inputs, many of which trigger the same crash. To save an
analyst from being overwhelmed, various heuristics are de-
ployed to identify equivalent inputs. Most rely on the input’s
coverage profile or stack hashing where the last n entries of
the call stack are hashed [42]. Unfortunately, both techniques
have been shown to be imprecise, i. e., to report far too many
distinct bugs, while sometimes even joining distinct bugs into
one equivalence class [42]. Given an automated approach ca-
pable of identifying the root cause such as ours, it is possible
to bucket crashing inputs according to their root cause. To

this end, one could pick some random crashing input, iden-
tify its root cause and then check for all remaining crashing
inputs whether the predicate holds true. Each crashing input
for which the predicate is evaluated to true is then collected
in one bucket. For the remaining inputs, the process could be
repeated until all crashing inputs have been sorted into their
respective equivalence classes.

In some cases, such as closed-source binaries or a limited
amount of developer time, manually implementing fixes may
be impossible. An automated approach to providing (tem-
porary) patches may be desirable. Our approach could be
extended to patch the root cause predicate into the binary
such that—at the point of the root cause—any input crashing
the binary leads to a graceful exit rather than a potentially
exploitable crash.

8 Related Work

In the following, we focus on works related closest to ours,
primarily statistical and automated approaches.

Spectrum-based Fault Localization. Closest related to
our work are so-called spectrum-based, i. e., code coverage-
based, fault localization techniques [34]. In other words, these
approaches attempt to pinpoint program elements (on dif-
ferent levels, e. g., single statements, basic blocks or func-
tions) that cause bugs. To this end, they require multiple in-
puts for the program, some of which must crash while others
may not. Often, they use test suites provided by developers
and depend on the source code being available. For instance,
Zhang et. al. [60] describe an approach to root cause identi-
fication targeting the Java Virtual Machine: first, they locate
the non-crashing input from provided test suite whose con-
trol flow paths beginning overlaps the most with the one of
the crashing input under investigation. Then, they determine
the location of the first deviation, which they report as the
root cause. Overall, most approaches either use some met-
ric [26,27,41,54,55] to identify and rank possible root causes
or rely on statistical techniques [43, 44, 46].

As a sub-category of spectrum-based fault localization,
techniques based on statistical approaches use predicates to
reason about provided inputs. Predicate-based techniques are
used to isolate bugs [43] or to pinpoint the root cause of
bugs [44, 46, 60]. These approaches typically require source
code and mostly rely on inputs provided by test suites.

While our work is similar to such approaches with re-
spect to sampling predicates and statistically isolating the
root cause, our approach does not require access to source
code since it solely works on the binary level. Furthermore,
our analysis synthesizes domain-specific predicates tailored to
the observed behavior of a program. Also, we do not require
any test suite but rely on a fuzzer to generate test cases. This
provides our approach with a more diversified set of inputs,
allowing for more fine-grained analysis.

USENIX Association 29th USENIX Security Symposium 249

Reverse Execution. A large number of works [32, 33, 38,
45, 57] investigate the problem of analyzing a crash, typi-
cally starting from a core dump. To this end, they reverse-
execute the program, reconstructing the data flow leading to
the crash. To achieve this, CREDAL [56] uses a program’s
source code to automatically enrich the core dump analysis
with information aiding an analyst in finding memory cor-
ruption vulnerabilities. Further reducing the manual effort
needed, POMP requires a control-flow trace and crash dump,
then uses backward taint analysis [57] to reverse the data
flow, identifying program statements contributing to a crash.
In a similar vein but for a different application scenario—
core dumps sampled on an OS level—RETRACER [33] uses
backward taint analysis without a trace to reconstruct func-
tions on the stack contributing to a crash. Improving upon
RETRACER, Cui et. al. [32] developed REPT, an reverse
debugger that introduces an error correction mechanism to
reconstruct execution history, thereby recovering data flow
leading to a crash. To overcome inaccuracies, Guo et. al. [38]
propose a deep-learning-based approach based on value-set
analysis to address the problem of memory aliasing.

While sharing the goal of identifying instructions causing
a crash, AURORA differs from these approaches by design.
Reverse execution starts from a crash dump, reversing the
data-flow, thereby providing an analyst with concrete assem-
bly instructions contributing to a bug. While these approaches
are useful in scenarios where a crash is not reproducible, we
argue that most of them are limited to correctly identify bugs
that exhibit a direct data dependency between root cause and
crashing location. While REPT does not rely on such a de-
pendency, it integrates into an interactive debugging session
rather than providing a list of potential root cause predicates;
thus, it is orthogonal to our approach. Moreover, AURORA
uses a statistical analysis to generate predicates that not only
pinpoint the root cause but also add an explanation describing
how crashing inputs behave at these code locations. Further-
more, since we do not perform a concrete analysis of the
underlying code, AURORA can spot vulnerabilities with no
direct data dependencies.

9 Conclusion

In this paper, we introduced and evaluated a novel binary-only
approach to automated root cause explanation. In contrast to
other approaches that identify program instructions related
to a program crash, we additionally provide semantic expla-
nations of how these locations differ in crashing runs from
non-crashing runs. Our evaluation shows that we are able to
spot root causes for complex bugs such as type confusions
where previous approaches failed. Given debug information,
our approach is capable of enriching the analysis’ results
with additional information. We conclude that AURORA is a
helpful addition to identify and understand the root cause of
diverse bugs.

Acknowledgements

We would like to thank our shepherd Trent Jaeger and the
anonymous reviewers for their valuable comments and sug-
gestions. We also thank Nils Bars, Thorsten Eisenhofer and
Tobias Scharnowski for their helpful feedback. Additionally,
we thank Julius Basler and Marcel Bathke for their valuable
support during the evaluation. This work was supported by
the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy –
EXC-2092 CASA – 390781972. In addition, this project has
received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No
786669 (ReAct). This paper reflects only the authors’ view.
The Research Executive Agency is not responsible for any
use that may be made of the information it contains.

References

[1] mruby heap buffer overflow (CVE-2018-10191). https:
//github.com/mruby/mruby/issues/3995.

[2] Lua heap buffer overflow. https://www.lua.org/
bugs.html#5.0-2.

[3] Perl heap buffer overflow. https://github.com/Perl/
perl5/issues/17384.

[4] screen heap buffer overflow. https://seclists.org/
oss-sec/2020/q1/65.

[5] readelf heap buffer overflow (CVE-2019-9077). https:
//sourceware.org/bugzilla/show_bug.cgi?id=
24243.

[6] mruby heap buffer overflow (CVE-2018-12248). https:
//github.com/mruby/mruby/issues/4038.

[7] objdump heap over flow (CVE-2017-9746). https:
//sourceware.org/bugzilla/show_bug.cgi?id=
21580.

[8] patch heap buffer overflow. https:
//savannah.gnu.org/bugs/?func=
detailitem&item_id=54558.

[9] Python heap buffer overflow (CVE-2016-5636). https:
//bugs.python.org/issue26171.

[10] tcpdump heap buffer overflow (CVE-2017-16808).
https://github.com/the-tcpdump-group/
tcpdump/issues/645.

[11] NASM nullpointer dereference (CVE-2018-16517).
https://nafiez.github.io/security/2018/09/
18/nasm-null.html.

250 29th USENIX Security Symposium USENIX Association

https://github.com/mruby/mruby/issues/3995
https://github.com/mruby/mruby/issues/3995
https://www.lua.org/bugs.html#5.0-2
https://www.lua.org/bugs.html#5.0-2
https://github.com/Perl/perl5/issues/17384
https://github.com/Perl/perl5/issues/17384
https://seclists.org/oss-sec/2020/q1/65
https://seclists.org/oss-sec/2020/q1/65
https://sourceware.org/bugzilla/show_bug.cgi?id=24243
https://sourceware.org/bugzilla/show_bug.cgi?id=24243
https://sourceware.org/bugzilla/show_bug.cgi?id=24243
https://github.com/mruby/mruby/issues/4038
https://github.com/mruby/mruby/issues/4038
https://sourceware.org/bugzilla/show_bug.cgi?id=21580
https://sourceware.org/bugzilla/show_bug.cgi?id=21580
https://sourceware.org/bugzilla/show_bug.cgi?id=21580
https://savannah.gnu.org/bugs/?func=detailitem&item_id=54558
https://savannah.gnu.org/bugs/?func=detailitem&item_id=54558
https://savannah.gnu.org/bugs/?func=detailitem&item_id=54558
https://bugs.python.org/issue26171
https://bugs.python.org/issue26171
https://github.com/the-tcpdump-group/tcpdump/issues/645
https://github.com/the-tcpdump-group/tcpdump/issues/645
https://nafiez.github.io/security/2018/09/18/nasm-null.html
https://nafiez.github.io/security/2018/09/18/nasm-null.html

[12] Bash segmentation fault. https://lists.gnu.org/
archive/html/bug-bash/2018-07/msg00044.html.

[13] Bash segmentation fault. https://lists.gnu.org/
archive/html/bug-bash/2018-07/msg00042.html.

[14] Python segmentation fault. https://
bugs.python.org/issue31530.

[15] nm stack buffer overflow. https://sourceware.org/
bugzilla/show_bug.cgi?id=21670.

[16] mruby type confusion. https://hackerone.com/
reports/185041.

[17] Python type confusion. https://hackerone.com/
reports/116286.

[18] Xpdf uninitialized variable. https://
forum.xpdfreader.com/viewtopic.php?f=3&t=
41890.

[19] mruby uninitialized variable. https://github.com/
mruby/mruby/issues/3947.

[20] PHP uninitialized variable (CVE-2019-11038). https:
//bugs.php.net/bug.php?id=77973.

[21] libzip use-after-free (CVE-2017-12858). https:
//blogs.gentoo.org/ago/2017/09/01/libzip-use-
after-free-in-_zip_buffer_free-zip_buffer-
c/.

[22] mruby use-after-free (CVE-2018-10199). https://
github.com/mruby/mruby/issues/4001.

[23] NASM use-after-free. https://bugzilla.nasm.us/
show_bug.cgi?id=3392556.

[24] Sleuthkit use-after-free. https://github.com/
sleuthkit/sleuthkit/issues/905.

[25] Lua use-after-free (CVE-2019-6706). https:
//security-tracker.debian.org/tracker/CVE-
2019-6706.

[26] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan
J. C. van Gemund. A practical evaluation of spectrum-
based fault localization. Journal of Systems and Soft-
ware, 82(11):1780–1792, 2009.

[27] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund.
Localizing software faults simultaneously. In Interna-
tional Conference on Quality Software, 2009.

[28] Cornelius Aschermann, Tommaso Frassetto, Thorsten
Holz, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Daniel Teuchert. Nautilus: Fishing for deep bugs with
grammars. In Symposium on Network and Distributed
System Security (NDSS), 2019.

[29] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. REDQUEEN:
Fuzzing with input-to-state correspondence. In Sym-
posium on Network and Distributed System Security
(NDSS), 2019.

[30] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel,
Ali Abbasi, Sergej Schumilo, Simon Wörner, and
Thorsten Holz. GRIMOIRE: Synthesizing structure
while fuzzing. In USENIX Security Symposium, 2019.

[31] Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In IEEE Symposium on Security and
Privacy, 2018.

[32] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upa-
manyu Sharma, Ruoyu Wang, and Insu Yun. REPT:
Reverse debugging of failures in deployed software. In
Symposium on Operating Systems Design and Imple-
mentation (OSDI). USENIX Association, 2018.

[33] Weidong Cui, Marcus Peinado, Sang Kil Cha, Yanick
Fratantonio, and Vasileios P. Kemerlis. RETracer: Triag-
ing crashes by reverse execution from partial memory
dumps. In International Conference on Software Engi-
neering (ICSE), 2016.

[34] Higor Amario de Souza, Marcos Lordello Chaim, and
Fabio Kon. Spectrum-based software fault localization:
A survey of techniques, advances, and challenges. CoRR,
abs/1607.04347, 2016.

[35] Michael Eddington. Peach fuzzer: Discover unknown
vulnerabilities. https://www.peach.tech/.

[36] Free Software Foundation. GNU Binutils. https://
www.gnu.org/software/binutils/.

[37] Google. Announcing OSS-Fuzz: Continu-
ous fuzzing for open source software. https:
//testing.googleblog.com/2016/12/announcing-
oss-fuzz-continuous-fuzzing.html.

[38] Wenbo Guo, Dongliang Mu, Xinyu Xing, Min Du, and
Dawn Song. DEEPVSA: Facilitating value-set analysis
with deep learning for postmortem program analysis. In
USENIX Security Symposium, 2019.

[39] Roberto Ierusalimschy, Luiz Henrique De Figueiredo,
and Waldemar Celes Filho. The implementation of Lua
5.0. J. UCS, 11(7):1159–1176, 2005.

[40] Intel Corporation. Pin – a dynamic binary instru-
mentation tool. https://software.intel.com/
en-us/articles/pin-a-dynamic-binary-
instrumentation-tool.

USENIX Association 29th USENIX Security Symposium 251

https://lists.gnu.org/archive/html/bug-bash/2018-07/msg00044.html
https://lists.gnu.org/archive/html/bug-bash/2018-07/msg00044.html
https://lists.gnu.org/archive/html/bug-bash/2018-07/msg00042.html
https://lists.gnu.org/archive/html/bug-bash/2018-07/msg00042.html
https://bugs.python.org/issue31530
https://bugs.python.org/issue31530
https://sourceware.org/bugzilla/show_bug.cgi?id=21670
https://sourceware.org/bugzilla/show_bug.cgi?id=21670
https://hackerone.com/reports/185041
https://hackerone.com/reports/185041
https://hackerone.com/reports/116286
https://hackerone.com/reports/116286
https://forum.xpdfreader.com/viewtopic.php?f=3&t=41890
https://forum.xpdfreader.com/viewtopic.php?f=3&t=41890
https://forum.xpdfreader.com/viewtopic.php?f=3&t=41890
https://github.com/mruby/mruby/issues/3947
https://github.com/mruby/mruby/issues/3947
https://bugs.php.net/bug.php?id=77973
https://bugs.php.net/bug.php?id=77973
https://blogs.gentoo.org/ago/2017/09/01/libzip-use-after-free-in-_zip_buffer_free-zip_buffer-c/
https://blogs.gentoo.org/ago/2017/09/01/libzip-use-after-free-in-_zip_buffer_free-zip_buffer-c/
https://blogs.gentoo.org/ago/2017/09/01/libzip-use-after-free-in-_zip_buffer_free-zip_buffer-c/
https://blogs.gentoo.org/ago/2017/09/01/libzip-use-after-free-in-_zip_buffer_free-zip_buffer-c/
https://github.com/mruby/mruby/issues/4001
https://github.com/mruby/mruby/issues/4001
https://bugzilla.nasm.us/show_bug.cgi?id=3392556
https://bugzilla.nasm.us/show_bug.cgi?id=3392556
https://github.com/sleuthkit/sleuthkit/issues/905
https://github.com/sleuthkit/sleuthkit/issues/905
https://security-tracker.debian.org/tracker/CVE-2019-6706
https://security-tracker.debian.org/tracker/CVE-2019-6706
https://security-tracker.debian.org/tracker/CVE-2019-6706
https://www.peach.tech/
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/binutils/
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

[41] James A. Jones and Mary Jean Harrold. Empirical
evaluation of the tarantula automatic fault-localization
technique. In IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2005.

[42] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In ACM
Conference on Computer and Communications Security
(CCS), 2018.

[43] Ben Liblit, Mayur Naik, Alice X. Zheng, Alexander
Aiken, and Michael I. Jordan. Scalable statistical bug
isolation. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
2005.

[44] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and
Samuel P. Midkiff. SOBER: statistical model-based
bug localization. In Proceedings of the 10th European
Software Engineering Conference held jointly with 13th
ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, 2005.

[45] Dongliang Mu, Yunlan Du, Jianhao Xu, Jun Xu, Xinyu
Xing, Bing Mao, and Peng Liu. POMP++: Facilitating
postmortem program diagnosis with value-set analysis.
IEEE Transactions on Software Engineering, 2019.

[46] Piramanayagam Arumuga Nainar, Ting Chen, Jake
Rosin, and Ben Liblit. Statistical debugging using com-
pound boolean predicates. In International Symposium
on Software Testing and Analysis (ISSTA), 2007.

[47] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
Fuzz: fuzzing by program transformation. In IEEE
Symposium on Security and Privacy, 2018.

[48] Van-Thuan Pham, Marcel Böhme, Andrew E Santosa,
Alexandru Răzvan Căciulescu, and Abhik Roychoud-
hury. Smart greybox fuzzing, 2018.

[49] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. VUzzer:
Application-aware evolutionary fuzzing. In Symposium
on Network and Distributed System Security (NDSS),
February 2017.

[50] Jukka Ruohonen and Kalle Rindell. Empirical notes on
the interaction between continuous kernel fuzzing and
development. arXiv preprint arXiv:1909.02441, 2019.

[51] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer: A
fast address sanity checker. In USENIX Annual Techni-
cal Conference, 2012.

[52] Evgeniy Stepanov and Konstantin Serebryany. Memo-
rySanitizer: fast detector of uninitialized memory use in
C++. In IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2015.

[53] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In Symposium on Network and Distributed
System Security (NDSS), 2016.

[54] Xiaoyuan Xie, Tsong Yueh Chen, and Baowen Xu. Iso-
lating suspiciousness from spectrum-based fault local-
ization techniques. In International Conference on Qual-
ity Software, 2010.

[55] Jian Xu, Zhenyu Zhang, W. K. Chan, T. H. Tse, and
Shanping Li. A general noise-reduction framework
for fault localization of Java programs. Information &
Software Technology, 55(5), 2013.

[56] Jun Xu, Dongliang Mu, Ping Chen, Xinyu Xing, Pei
Wang, and Peng Liu. CREDAL: towards locating a
memory corruption vulnerability with your core dump.
In ACM Conference on Computer and Communications
Security (CCS), 2016.

[57] Jun Xu, Dongliang Mu, Xinyu Xing, Peng Liu, Ping
Chen, and Bing Mao. Postmortem program analy-
sis with hardware-enhanced post-crash artifacts. In
USENIX Security Symposium, 2017.

[58] Michael Zalewski. afl-fuzz: crash exploration
mode. https://lcamtuf.blogspot.com/2014/11/
afl-fuzz-crash-exploration-mode.html.

[59] Michał Zalewski. american fuzzy lop. http://
lcamtuf.coredump.cx/afl/.

[60] Yongle Zhang, Kirk Rodrigues, Yu Luo, Michael Stumm,
and Ding Yuan. The inflection point hypothesis: a prin-
cipled debugging approach for locating the root cause
of a failure. In ACM Symposium on Operating Systems
Principles (SOSP), 2019.

252 29th USENIX Security Symposium USENIX Association

https://lcamtuf.blogspot.com/2014/11/afl-fuzz-crash-exploration-mode.html
https://lcamtuf.blogspot.com/2014/11/afl-fuzz-crash-exploration-mode.html
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Introduction
	Challenges in Root Cause Analysis
	Running Example
	Crash Triaging

	Design Overview
	Input Diversification
	Monitoring Input Behavior
	Explanation Synthesis

	Predicate-based Root Cause Analysis
	Predicate Types
	Predicate Evaluation
	Synthesis of Constant Values
	Ranking

	Implementation
	Experimental Evaluation
	Setup
	Experiment Design
	Results
	Case Studies
	Case Study: Type Confusion in mruby
	Case Study: Heap Buffer Overflow in readelf
	Case Study: Use-after-free in Lua
	Case Study: Uninitialized Variable in mruby
	Case Study: Null Pointer Dereference in NASM

	Discussion
	Related Work
	Conclusion

