
ISSN 004-8917THE

AUSTRALIAN
COMPUTER
JOURNAL

VOLUME 14, NUMBER 2, MAY 1982

CONTENTS

SPECIAL ISSUE ON SOFTWARE ENGINEERING

42-47 Cobol, Comments and Correctness
B. DWYER

48-55 A Background to Program Generators for Commercial Applications
R. CLARKE

56-61 A Software Engineering View of Files
J.L. KEEDY and I. RICHARDS

62-65 The Input Space Model for Software Testing
N. PARKIN

66-70 Software Science — The Emperor’s New Clothes?
A.M. LISTER

SOFTWARE DEVELOPMENT
71-74 Data Base Interfaces

D.H. SCUSE

SPECIAL FEATURES
75-76 Letters to the Editor

76 Next Special Issue

V

Published for Australian Computer Society Incorporated
Registered by Australia Post, Publication No. NBG 1124

T

BUHMW

- — ««...m!ii

r«t:i*ir
,.WtK . Wife jfffiSL Ha

** *

* * I f

' - ::

MjPWSI

The overall goal: a trtta
availability system will
no single point of fafiul

1 m 1 1 n\\\\\\\\\
V \ VVVVV^

transaction oriented system, fie'inci
sion to provide continuous operation
requires spreading the work acnMKI
multiple processors, immediately,
efficient interprocessor communication
becomes top priority. Any processor in
the system must be able to absorb the

Shared memory has been a popular
answer to the problems of inter
processor communication, but as a

unacceptable tor NonStop" operation

terns could be overcome, contention
tor the shared resource creates an
unacceptable bottleneck, severely
inhibiting performance and limiting
system expansion.
The volume of interprocessor com-

tolerant operation in a transaction
environment is significant. Far too
much to os® typical I/O bus cortnec

bound. Even with Tandem’s high speed
4 M Byte/sec I/O channel.

OYNABUS was the solution:
We took all interprocessor communica
tions off conventional I/O channels and
put them on a unique and extremely
fast interprocessor communications
link, OYNABUS. This is a dedicated,
two path, bidirectional line among all
processors in the system, both paths
running at 13 M Byte/sec. Either path
Is capable of handling ail OYNABUS

As m result,

an agyugate: -toi "mpgrnmm
oonmwmteatiffts Jjandwidt
of over 20 M BytaafMc;
owl in a tuNy configured
16 processor system.
One more reason this system is a
whole generation ahead

Working under its own control,
OYNABUS handles all interprocessor
traffic for program assignments, job/
data routing, priority decisions, health
checks and housekeeping.
The OYNABUS contribution to per
formance is profound. Our multiple
computer system has an effective four
lane, no speed limit "data freeway”
which doesn’t become a bottleneck
as the number of processors in the
system is increased. Built-in buffers
and packet multiplexing support
optimal use of bandwidth.

NonSlop1
Systems

MANAGEMENT INFORMATION SYSTEMS PTY. LTD.TANDEM COMPUTERS
DISTRIBUTED IN
AUSTRALIA BY:

NCAMIS/60

3rd Floor,
151 South Terrace,
Adelaide, S.A. 5000
Telephone: (08)2121110

S.G.I.O. Building,
Cnr. Turbot & Albert Sts,
Brisbane, Queensland 4000
Telephone: (07) 229 3766

22 Atchison Street.
St. Leonards. N.S.W. 2065
Telephone: (02)4384566

3 Bowen Crescent,
Melbourne, Vic. 3004
Telephone: (03) 267 4133

K :fc :* * & ft M *1 ■» * * «: ■; 1 ■k: *: •-••• !, * ' W■fc i *:• m II mBe;- ■* ;•*: a

P: ' *’ 'i •*, * 'tm * » * •

tiiii
t

9

•
, t s|mJ

B *■§I s
ll\b

- *~ J J
If *> » II j* *» yfff |»• • k * I 1»*Smim

imi

Jf-Y I f c1ft. iFvi/

Australia has a new

been around for years.
Onyx Australia.

:;;

Australia’s
only authorised
Onyx distributor.
The unique advances

in microcomputer technology
initiated originally by Onyx and
incorporated within the Onyx
C5000/8000 series 8 and 16 bit micro
computers have been copied but
never equalled.

The lean pricing structure of the
Onyx systems is also accepted as being
unparalleled in the computer industry.

Now, Impact Computers and
Onyx Computers have combined and,
with the formation of Onyx Australia,
the recognised benefits of Onyx micro
computers are reinforced Australia wide
by a network of Onyx specialist hard
ware support and applications advice.

The Onyx service policy.
There are a number of advant

ages to be gained by dealing with the
only specialist Onyx distributor. Onyx
Australia is the only company offering
Australia wide hardware maintenance
and service through STC. Spare parts are
quickly available and down-time can be
restricted to within hours.

More importantly however,
Onyx Australia has a genuine policy of
co-operation and dedicated service in its
association with dealers and customers.

Expert advice, specialised atten
tion and of course, generous dealer
discounts are just a small part of the Onyx
Australia service policy.

Key advantages to dealers also lie
in the uniquely tangible benefits the Onyx
C5000/8000 series provide to users in
industry, business, government and the
professions.

And Onyx Australia has a compre
hensive range of applications programs to
suit virtually every kind of user function.

Application programs.
General ledger, creditors, debtors,

stock control, sales analysis. (With source
available.) Applications suited to Insurance
Brokers, Underwriters, Legal, Medical,
Educational areas. Fashion, Pharmacy,
Electrical retailers, Builders, Developers,
and many more.

Software support.
Onyx Australia support groups

for OASIS, UNIX and PASCAL will enable
dealers to realise the full potential of
Onyx systems. Plus screen editors,COBOL
program generators and a range of DBMs.

Industry compatible versions of
COBOL, PASCAL, BASIC, C BASIC 2,

FORTRAN and C are
available on OASIS, CP/M and
UNIX operating systems.

Hard disk
computer features.
Multi-tasking with up to

8 users. 64K. to 1 MB parity checking
memory. 6MB to 144MB Winchester
Rigid Disk. 12MB Cartridge tape
back-up. Prices are from $7,000

^ plus sales tax.
Onyx. The only choice in

microcomputers.

For a full range of information about Onyx
microcomputers and the Onyx Australia dealer

service policy mail this coupon to:
NSW.

Onyx Australia Pty Ltd.
55 Phillip Street, Parramatta, NSW 2150.

Telephone (02) 6335222.
Other States.

Onyx Australia Pty Ltd.
14 Inman Road, Dee Why, NSW 2099.

Telephone (02) 9827200.

Name
Address

Postcode Phone

OMVX
Onyx Australia Pty Ltd.

Incorporating Impact Computers and
Onyx Systems (Aust) Pty Ltd.

The Australian Computer journal, Vol. 14, No. 2, May 1982

Ians Erisfs from iYi
«ni|DLi!i HJcrll

"News Briefs from the Computer World" is a regular
feature which covers local and overseas developments in
the computer industry including new products, interest
ing techniques, newsworthy projects and other topical
events of interest.

INSURANCE BROKERS BENEFIT FROM
SANYO MBC 3000 SYSTEM AND
LOCAL SOFTWARE

Over thirty users of a system that has been specially
designed for both small and larger insurance brokers
throughout Australia are benefitting through reduced costs,
faster customer service, and are producing invoices, remin
der notices and reports faster than any manual system.

Hunter Computers Pty Ltd has developed the ‘Insur
ance Broker’s System’, designed for use with equipment
from Sydney-based Sanyo Office Machines Pty Ltd.

The Sanyo MBC 3000 with 8” hard disk drives was
chosen for its large memory capacity, Australia-wide service
facilities, simple operation and excellent compatibility with
the software package.

For over two years, a users ‘club’ has provided feed
back to suggest and highlight any modifications to enhance
the effectiveness of the system. This approach has the bene
fit of keeping all users completely up to date with the latest
system programme.

A questionnaire has been designed to assist potential
users of the system in evaluating whether or not the system

would be effective in their particular application.
According to Mr. David O’Neill, Sales Director for

Hunter Computers, “I believe that the Insurance Broker’s
System is the most popular and advanced of its type in
Australia today. Now, by using Sanyo computers, we are
able to install the system throughout Australia, thus leading
to further enhancement of the software and benefitting the
brokers.”

Mr. Roger Daniels, Office Manager for Insurance
Brokers, T.A. Markey <& Co. Pty Ltd, a user of the system
said “Our previous manual system required us to employ
one full time and one part time typist in the preparation of
accounts for new business, renewals and alterations. A
‘day book’ system was used to record payments to us and
to the insurance companies.

Much work was required to check on items such as
overdue accounts. Renewal and customer information was
kept on a card system. With the business we are doing
today, it would have meant an additional full time clerk/
typist resulting in higher wages, office space and
equipment, superannuation, sick leave, holiday pay and
workers compensation premium.

Our computer is capable of producing as many
invoices as we demand, and also sorts and stores relevant
segments of information for later presentation in summaries
and reports. All the salesmen have to do is complete an
‘input sheet’ and the operator is able to key in the basic
information. Often a whole morning’s work can be printed
an hour later and we automatically have the various
accounting checks and balances simultaneously.”

RSC-6 COMPUTER CATALOGUE
Tandy Electronics have just released the most com

prehensive microcomputer catalogue yet produced in
Australia.

The RSC-6 Computer Catalogue, with 48 colour
pages of information on business, personal and educa
tional computer hardware and software, is free at any
Tandy Store or Computer Centre.

WHAT DOES RADIO PAGING DO FOR YOU
GUARANTEES:-
Greater EFFICIENCY Increased PRODUCTIVITY HigherPROFIT

SAVES:-
TIME; MONEY; LABOUR; PETROL; & MECHANICAL MAINTANCE

RENT BUY LEASE

FROM THE SPECIALISTS IN BEEP & VOICE PAGING

958 1266 635 6466
COMMUNICATIONS 680 Willoughby Road

Willoughby
6 Union Street

Parramatta

The Australian Computer Journal, Vol. 14, No. 2, May 1982

cemac

Interiors... Doors... Floors
Access Flooring

For computer rooms, sub-stations,
control rooms or wherever continual
access for maintenance of services is
a requirement.
Partitions, Wall Panelling,
Entrance Screens, Ceilings

Cemac offers a complete range of
products and services to create
functional and beautiful office interiors.
Fire Doors

High technology, 1,2 and 3 hour
rated doors are produced to
Australian standards.

Project Management
Single source responsibility

co-ordinating the entire complex
interaction of all trades involved in
tenancy design and installation.
Renovations

The refurbishing of commercial
buildings is a further highly
specialised service offered by
Cemac.

Sydney 2903788
Melbourne 4198233
Brisbane 2215099
Adelaide 453656
Hobart 295444
Perth 444 7888 ceinc

cemac

The Australian Computer Journal, Vol. 14, No. 2, May 1982 iii

pvstrt,.

PROGRAM
YOURSELF TO SEE THE

LATEST IN COMPUTERS.
The Ninth Australian

Computer Exhibition and
conference. Hobart, 1982.

This major computer event
offers a rare opportunity
to keep up with the latest
advances in computer
technology in the eighties.
Leading Australian and
international companies
will be exhibiting the very
latest in computer
hardware and software,
as well as related products.
See millions of dollars
worth of sophisticated
equipment you may
otherwise only read about.

Computer experts will
be there in force.
Computer experts and
members of the trade will
be flying in from all over
Australia, and the world, to
see and contribute to this
outstanding Exhibition.

The cost of airfare and
accommodation is a small
price to pay for access to
such invaluable expertise
and information.

Don't miss out.
Program the following
information into your
memory banks.

When:
Tuesday August 24,
to Friday August 27,1982.
Where:
Because of its size, the
Exhibition will be held at
two separate venues within
two minutes walking
distance of each other -
the Hobart City Hall,
and the Elizabeth Street
Pier Building.

The conference will be
held at the university of
Tasmania and Wrest
Point Hotel.
Exhibition hours:
Tuesday 10.00 am -6.00 pm.
Wednesday 10.00 am - 6.00 pm.
Thursday 10.00 am-6.00 pm.
Friday 10.00 am - 9.00 pm.
Hosted by:
The Australian Computer
Society and the Acs
Tasmanian Branch.

Arrange your
accommodation and
travel early to avoid
disappointment.
For full details, write to-.
Ninth Australian Computer
Conference,
PO. Box 216,
sandy Bay. Tasmania. 7005.
Phone:(002)231824
Free entrance with
business card or, for free
trade tickets, write to or
telephone.-
Riddell Exhibition
Promotions,
166 Albert Road,
South Melbourne, vie. 3205.
(03)6991066

ANOTHER EXCITING
RIDDELL EXHIBITION

RP520

iv The Australian Computer Journal, Vol. 14, No. 2, May 1982

Guest Editorial
This issue of the Australian Computer Journal is a special one devoted to the topic of Software Engineering. Although the term has been

in use now for more than a decade, there is still no widely accepted definition. Broadly speaking it can be viewed as a discipline concerned with
the development and utilisation of tools and techniques for the production of high quality software within budgeting and scheduling
constraints. When the term was first invented in the late 60’s, it was used in a somewhat provocative manner to indicate that all was not well
with the way software systems were being designed and constructed. The software industry seemed to be plagued with late deliveries, cost
overruns and an extremely low level of reliability of the final products. It was felt that the methodologies developed in other areas of human
endeavour could also be applied to the production of software systems so that they were “well engineered’’ rather than just “programmed”.
Programming is an art that can be taught to most people. We now know that engineering software is an extremely difficult task requiring a great
deal of discipline and skill.

During the last decade, there has been considerable activity in the software engineering field. Many research projects were initiated with
the results being published in one of a number of new journals which came into existence to service the field, for example, IEEE Transactions
on Software Engineering. The first International Conference on Software Engineering was held in Washington in 1975 and was primarily
concerned with self-justification and demonstrations of the existence of Software Engineering as a discipline. Subsequent conferences however
have dealt with every aspect of the software development life cycle. The sixth such conference will be held in Japan, in September this year and
will focus on the general environment for the production of quality and user friendly software. Topics to be discussed include:
— Tools and Techniques of Software Engineering
— Requirements and Specifications
— Theoretical Foundation of Software Engineering
— Computer Aided Design and Production of Software
— Software Project Management and Human Factors
— Software Quality Control and Assurance
— Software Maintenance
— Software Metrics
— Software Engineering for New Computer Architecture, Distributed Systems, and Networks
— Impact of VLSI on Software Engineering
— Practices and Experiences of Software Production
— Education on Software Engineering

Most universities and colleges now offer courses in Software Engineering in an attempt to bridge the gap between their programming
courses and the outside world where software lives on to be used, modified and maintained rather than just being assessed and then discarded.
Project work involving programming teams is an important aspect of such courses. It is interesting to note that many employers are now
advertising for software engineers rather than programmers since they have become aware of the dangers of hiring someone who may not be
familiar with the appropriate tools and techniques to be used for the production of reliable software.

When I was first asked to be the guest editor for the special issue on Software Engineering, I was very pleased to be able to accept the
invitation. Although I realized that it would be a very time consuming and arduous task to select the papers to be published from the many that
would be submitted, nevertheless I felt that it would provide me with an excellent opportunity to obtain an overview of the work going on in
Software Engineering in this country, particularly, in industry. There has been much criticism of the ACJ over the years from practitioners
working in the field that the journal is dominated by the academics who publish incomprehensible papers of little interest to most of the
members of the Austalian Computer Society. There have even been calls from time to time that the Journal be discontinued. I believed this
special issue was a long awaited opportunity for industry to dominate with contributions describing the tools and techniques it employs in
constructing software. This was not to be the case. Although the overall response to the call for papers was poor, the submissions from industry
were almost non-existent. Either the techniques currently in use are so secret that no-one wishes to reveal them in the open literature or
nothing worthwhile writing about is currently being utilized. The fact that there is only one paper in this issue from an author with a
commercial background and then one who is working overseas reflects the state of the submissions and not my own particular bias. In fact, I
had decided to give preference to articles submitted by authors working in industry but was unable to do so since they simply did not appear.
In spite of all the complaints in the past, people did not avail themselves of the opportunity, when it was presented to them, of describing what
they are doing.

In Dwyer’s tutorial paper, an attempt is made to draw together the concept of “disciplined programming” and the COBOL language
which although widely used in industry does not readily lend itself to the writing of correct programs. The paper discusses how a program
might be proved correct in terms which can be readily comprehended by the practising COBOL programmer.

In the only paper included in this issue from an author outside the walls of academia, Clarke surveys the development and use of
program-generators for commercial applications. He suggests that the use of such generators is on the increase and foreshadows a future where
programming languages will be superseded by specification languages which will enable applications to be described in a non-procedural way
and the operational system generated automatically from such a description.

The paper by Keedy and Richards argues that there are many benefits to be gained by treating files as information hiding modules rather
than free-standing data structures. This extends a very important principle of software engineering expounded in the early 70’s that information
about a module should not be generally accessible to other modules irrespective of whether they need to use it or not. The data structures and
procedures which comprises a module can be hidden behind a procedural interface, thereby making the software more understandable and
hence more maintainable.

Parkin’s paper represents a review of the work by Cho on the input space model of software testing. This work is extended to allow test
programs to be generated for languages defined by BNF.

Although I have never been a supporter of Halstead’s software science, i have included Lister’s paper in this special issue as a counter
balance to the last article on this topic published in the ACJ in 1978. This and other publications suggested that software science might be
making significant breakthroughs towards deriving some metrics for software quality. It appears howeverthattheearly promiseshave notbeen
fulfilled and that the foundations of software science are in fact extremely weak.

Peter C. Poole,
Guest Editor,

University of Melbourne

The Australian Computer Journal, Vol. 14, No. 2, May 1982 41

Cobol, Comments and Correctness
B. Dwyer*

A tutorial introduction to 'disciplined programming’, with suggestions for its use in a Cobol
programming environment.

Keywords and phrases: disciplined programming, verification, proof of programs, Cobol,
coinage analysis.

CR Categories: 1.3, 3.50, 5.24.

1. INTRODUCTION
The following shows how ‘disciplined programming’

can be applied to the day-to-day writing of Cobol programs.
The main ideas of disciplined programming are these.
(1) A program can be shown to be correct by proof, but

debugging can never guarantee correctness.
(2) The most easily understood programs are those with

simple proofs.
(3) A proof should not be made retrospectively, but as

part of the act of creating the program.
(4) Making a proof helps the programmer discover a

better program.
(5) Some methods of program construction and some

computer languages lead to easier proofs than others.
These points are demonstrated convincingly in E.W.

Dijkstra’s book, “A Discipline of Programming” (Dijkstra,
1976).

Cobol does not lend itself to formal proof as well as
some other languages, for example Pascal (Wirth and Hoare,
1973). As a result our proofs will be verbal, rather than
algebraic.

2. PRE-CONDITIONS AND POST-CONDITIONS
To ‘prove a program’ is to show that it has certain

desired properties. As a rule, the most important property
is for the program to generate the required output. We may
also wish to know that the program will terminate, that it
can never refer to non-existent array elements, or cause
arithmetic overflow, and so on.

The way to define such requirements is as logical
assertions. These are non-procedural statements about the
final state of key program variables, typically the output
files. They specify the desired relationship between the
output variables and the input data. For some kinds of
proof, they may also refer to hidden variables, such as the
execution time, or the number of iterations of a loop.

The method of proof is to make logical assertions at
various places in the program, and show that they are
properly related. The most important assertions concern
the initial and final values of variables. Assertions about
their intermediate values are included to simplify the proof.
These serve a similar function to theorems or lemmas in a
mathematical argument, enabling a complex proof to be
built from simple steps.

“Copyright © 1982, Australian Computer Society Inc.
General permission to republish, but not for profit, all or part of
this material is granted; provided that ACJ’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Australian Computer Society.”

In a large program, the intermediate assertions serve a
second useful purpose. If the program is best considered at
several conceptual levels, the assertions can be made at
corresponding levels of detail. For example, we may show
that the input-output logic of a large program will correctly
update its flies, where ‘updating’ is as yet an undefined con
cept. We later make more specific assertions to define and
prove the updating procedures. This avoids a clutter of
unnecessary detail at the higher conceptual level.

It is normal to place assertions at the entry and exit
point of each sub-routine, and at the head of each loop
(Alagic and Arbib, 1978). Given this basic set of assertions,
it is possible to derive assertions about any other point in
the program, or to complete a detailed proof, by purely
mechanical reasoning. The basic assertions themselves
cannot be derived mechanically, but rely on a proper under
standing of how the program works. A basic set of asser
tions is therefore a proof in principle: anyone with
sufficient motive could put them to the test. A program
without assertions cannot be checked, because it lacks a
definition of what it should do.

We will adopt a structured subset of Cobol that for
bids GO TO’s and implements all loops by PERFORM . .
UNTIL statements. It will then be enough to make asser
tions about the entry and exit of each procedure (whether
sub-program, section, or paragraph). Because loop bodies
must be written as separate procedures, their entry and exit
conditions will replace those placed at the head of loops.
This slight departure from normal practice is made for the
sake of uniformity.

(If we had adopted a less structured form of Cobol,
the same rule for choosing a basic set of assertions would
apply: one should be placed at each entry and exit point of
a procedure. Since every procedure-name creates a proced
ure entry and every GO TO creates an exit, far more asser
tions would be needed than in an equivalent well-structured
program. This is precisely the reason why structured
programs are easier to understand. However, using GO TO’s
with moderation is acceptable, provided that each is docu
mented by an assertion.)

An assertion made about conditions at the exit from
a procedure is called a ‘goal’, ‘result’, or more commonly a
‘post-condition’. An assertion about the entry to a
procedure is called an ‘assumption’, ‘initial condition’, or
‘pre-condition’.

3. GOOD AND BAD ASSERTIONS
To demonstrate the use of assertions, let us consider

the definition of a procedure, CONVERT-TO-J ULIAN.
This will be as follows.

*Department of Computing Science, The University of Adelaide, Box 498, GPO, Adelaide, South Australia 5001. Manuscript received
January 1982.

42 The Australian Computer Journal, VoL 14, No. 2, May 1982

Cobol, Comments, and Correctness

Pre-condition — DATE-GIVEN should contain a valid
date of the form YYMMDD in the range
00/01/01 to 99/12/31.

Post-condition — JULIAN-DATE contains an integer
in the range 0 to 36524, equal to the number of
calendar days that DATE-GIVEN follows
00/01/01 (1st January 1900).

These assertions may either be written as comments
in the program itself, or kept as supporting documentation.
An advantage of comments is that they are more likely to
be read, and therefore more likely to be kept up-to-date. A
defensive programmer might even write assertions in the
form of debug statements.

By adopting certain conventions, writing assertions
can be less of a chore. We will assume the following conven
tions.
(1) Because DATE-GIVEN is an input, but not an out

put, we assume that it is not modified by the pro
cedure.

(2) Because JULIAN-DATE is an output, but not an in
put, we assume that its initial value is immaterial.
There are further conventions that we may adopt.

CONVERT-TO-J ULIAN might refer to a table giving the
length of each month. This table would then be an input,
and the pre-condition would assume that it had suitable
contents. However, these details are of little immediate
interest to the user of CONVERT-TO-J ULIAN, and are
better documented at a more global level. Likewise, the
procedure might corrupt temporary variables. Again we
have the choice of documenting this at the current level or
more globally. Our decisions should be dictated by the level
of anticipated program maintenance. By reading the text of
CONVERT-TO-J ULIAN we can easily spot which variables
are referred to or modified. If they are not documented
locally, we should expect to find them documented at a
more global level. Every variable used in the procedure
should be documented somewhere, if only to state that it
is a scratch-pad.

The pre-condition for CONVERT-TO-J ULIAN
requires that DATE-GIVEN should be a valid date. The
result when it is not valid is undocumented, so by con
vention is undefined. There is no promise that an invalid
date will not cause CONVERT-TO-J ULIAN to fail. The
onus is on the user of any procedure to ensure that its
assumptions are met. In a similar vein, the post-condition
of a procedure should not document the final values of
temporary variables. Once it has been stated that such
side-effects take place, users of the procedure have a
right to expect that they are features that will be per
manently supported.

We may contrast our assertions with the following
documentation.

“CONVERT-TO-JULIAN converts a date to Julian
form, by reference to MONTH-TABLE. The value of
LEAP-YEAR is set to 1 if it is a leap year.”
This is bad for at least three reasons. First, it does not

specify how a date is to be represented, or what is meant by
a “Julian form”. (Perhaps it is YYDDD.) Second, it would
be trivial to discover that the procedure refers to MONJH-
TABLE. Third, the setting of LEAP-YEAR ought to be of
no interest to anyone.

Pre-conditions and post-conditions should document
every output variable that contains a result, and every input
parameter. They should not concern themselves with the
internal workings of the procedure, or its side-effects. It is

The Australian Computer Journal, Vol. J4, No. 2, May 1982

probably better for them to use problem-oriented language
(Shneiderman, 1980), but they should avoid meaningless
jargon.
4. SEQUENCES OF STATEMENTS

Structured programming allows complex procedures
to be constructed in three ways; sequence, selection, and
iteration. We need to reason about such structures to prove
the properties of complete programs. A sequence of state
ments is particularly easy to check. We need only to show
that the post-condition of each statement matches the pre
condition of the one that follows it. Consider this pro
cedure.

ADD-ONE-WEEK.
PERFORM CONVERT-TO-J ULIAN.
ADD 7 TO JULIAN-DATE.
PERFORM CONVERT-TO-YYMMDD.

To prove its correctness, we must know its pre
condition and post-condition, and also those of its com
ponent statements. Let us assume the following assertions
for ADD-ONE-WEEK.

Pre-condition — DATE-GIVEN should be a valid date
of the form YYMMDD, in the range 00/01/01
to 99/12/31.

Post-condition — RESULT-DATE contains a date in
the format YYMMDD, that follows DATE-
GIVEN by 7 calendar days.

We will assume that CONVERT-TO-J ULIAN is docu
mented as before. The ADD statement is documented by
the Cobol compiler manual (we hope!), and we will assume
that CONVERT-TO-YYMMDD is documented by the foll
owing pair of assertions.

Pre-condition — JULIAN-DATE is an integer in the
range 0 to 36524.

Post-condition — RESULT-DATE is a date in the for
mat YYMMDD, that follows 1st January 1900
(00/01/01) by J ULIAN-DATE calendar days.

To prove the correctness of ADD-ONE-WEEK we
need to show that;
(1) The pre-condition of ADD-ONE-WEEK satisfies the

pre-condition of CONVERT-TO-J ULIAN.
(2) The post-condition of CONVERT-TO-J ULIAN satis

fies the pre-condition of the ADD statement.
(3) The post-condition of the ADD statement satisfies

the pre-condition of CONVERT-TO-YYMMDD.
(4) The post-condition of CONVERT-TO-YYMMDD

satisfies the post-condition of ADD-ONE-WEEK.
The first is true by inspection. The second is true

provided that JULIAN-DATE has been defined with at least
5 digits, guaranteeing that overflow will not occur. The
third test is not met, because after the ADD, JULIAN-
DATE will have the range 7 to 36531. However, the fourth
condition is true by inspection. The attempt at proof re
veals that the stated pre-condition of ADD-ONE-WEEK is
incorrect. The range of DATE-GIVEN should have been
stated as from 1st January 1900 to only the 24th December
1999.

Although many find it less intuitive, it is also possible
to construct proofs working back from the post-condition
of a sequence towards its pre-condition. One advantage of
this method is that we usually have more precise require
ments for goals than for initial conditions. We can then
derive the minimum necessary pre-condition from the goal.

5. CONDITIONAL STATEMENTS
When we have a selection between statements, we can

43

Cobol, Comments, and Correctness

reason back from the post-condition to find the initial con
ditions that apply to each alternative. We can then decide
what conditions need to be evaluated in order to make the
proper choice.

Consider determining the hourly rate of pay for an
employee. The rate depends on two factors, the employee’s
own basic rate, and a penalty rate that may apply to the
job. The hourly rate is given by the following rules.
(1) It is either the basic rate or the penalty rate.
(2) Jobs without a penalty rate are shown by a penalty

rate of zero, in which case the hourly rate is always
the basic rate.

(3) The hourly rate is not less than the penalty rate.
(4) The hourly rate is not less than the basic rate.

From the first rule alone, we can see that the pro
cedure will have the following form.

FIND-HOURLY-RATE.
IF condition-1;

MOVE PENALTY TO HOURLY-RATE
ELSE

MOVE BASIC TO HOURLY-RATE.
It is not hard to guess condition-1, but let us attempt

to derive it by the proof process.
The goal or post-condition is given by the above four

rules. For this problem, it is easy to express the rules as
Cobol conditions, giving our argument more precision. (It
is not always so easy.) The equivalent Cobol conditions
are these
(1) HOURLY-RATE = BASIC OR HOURLY-RATE =

PENALTY
(2) HOURLY-RATE = BASIC OR PENALTY NOT =

ZERO
(3) HOURLY-RATE NOT < PENALTY
(4) HOU RLY-RATE NOT < BASIC.

(Notice how we handle the implication in rule (2). We
can always translate “A implies B” into “B OR NOT A”. If
the hourly rate is not the basic rate, then the penalty rate
must be non-zero.)

To find the conditions under which the statement
MOVE PENALTY TO HOURLY-RATE

is the correct choice, we reason backwards from the goal.
Anything that is true of HOURLY-RATE after this move,
should be true of PENALTY before the move, otherwise
the goal will not be achieved. So we can derive the pre
condition of the move by re-writing the post-condition,
substituting ‘PENALTY’ wherever we see ‘HOURLY-
RATE’. We obtain this pre-condition
(1) PENALTY = BASIC OR PENALTY = PENALTY
(2) PENALTY = BASIC OR PENALTY NOT = ZERO
(3) PENALTY NOT < PENALTY
(4) PENALTY NOT < BASIC.

The first and third conditions will always evaluate as
true, so they can be ignored. The fourth is what we may
have expected to find for condition-1; but what is the
meaning of the second condition? Our derivation has shown
us that condition-1 should be the conjunction of the second
and fourth conditions.

(PENALTY = BASIC OR PENALTY NOT = ZERO)
AND (PENALTY NOT < BASIC)
By separating the cases of equality and inequality, we

can write the same thing in a more enlightening way.
(PENALTY = BASIC)
OR (PENALTY > BASIC AND PENALTY NOT =

ZERO)
This form reveals that the move is correct when both

rates are equal, or when the penalty rate is the greater, pro
vided that it is not zero. The move would be incorrect in
the case that the penalty rate exceeds the basic rate, and is
also zero. This could only arise when the basic rate was
negative. Rule (2) tells us to choose the basic rate, whereas
rule (3) tells us to choose the penalty rate. Either the rules
are inconsistent or they imply that the basic rate can never
be negative. It seems unlikely that we would want to handle
negative rates, so we can make BASIC NOT < ZERO a
pre-condition of the procedure as a whole. Condition-1
then reduces to the expected

PENALTY NOT < BASIC.
Although proof techniques have not produced any

surprises in condition-1, they have alerted us to a hidden
assumption. With a negative basic rate and a zero penalty
rate, it would be impossible to satisfy all the conditions of
the goal.

For completeness, we should now find the correct
pre-condition for the alternative move statement,

MOVE BASIC TO HOURLY-RATE.
This is done in the same way as before, this time re

writing ‘BASIC’ for ‘HOURLY-RATE’ in the post-condit
ion. There are no surprises, and this is left as an exercise for
the reader. The condition we obtain is,

BASIC NOT < PENALTY.
This is not the exact inverse of condition-1, reflecting

the fact that either move will serve when both rates are
equal.

6. ITERATION
Disciplined programming helps the programmer most

in the proper construction of loops. We shall consider two
examples. The first illustrates how assertions are used to
reason about iterative programs. The second shows how
formulating assertions helps us find a solution to a problem.

6.1 Copying a File
Consider the following procedure to copy the records

of IN-FILE to OUT-FILE. (All records are of the same
type.)

COPY-THE-FILE.
OPEN INPUT IN-FILE,

OUTPUT OUT-FILE.
MOVE "N” TO END-OF-FILE.
PERFORM READ-A-RECORD.
PERFORM COPY-A-RECORD

UNTIL END-OF-FILE = “Y”
CLOSE IN-FILE, OUT-FILE.
STOP RUN.

COPY-A-RECORD.
MOVE IN-RECORD TO OUT-RECORD.
WRITE OUT-RECORD.
PERFORM READ-A-RECORD.

READ-A-RECORD.
READ IN-FILE, AT END

MOVE “Y” TO END-OF-FILE.
We focus our attention on the loop body, COPY-A-

RECORD. Since this procedure uses the record in IN
RECORD, it clearly expects that end-of-file has not been
detected. But at the exit from the procedure, a further
READ has been issued, so that end-of-file may have been
detected there. However, the UNTIL condition of the
PERFORM statement ensures that, if there is a further iter
ation, end-of-file was not detected. The pre-condition and
post-condition of a loop body are always related in this

44 The Australian Computer Journal, Vol. 14, No. 2, May 1982

Cobol, Comments, and Correctness

way. The post-condition alone does not guarantee the pre
condition, but the post-condition and the complement of
the UNTIL condition together must guarantee it.

A loop has a number of other properties. Once the
UNTIL condition has been satisfied, the loop should have
achieved its goal. Therefore the post-condition of the loop
body, together with the UNTIL condition itself, must equal
the goal of the whole loop. The initialisation for any loop
can be deduced logically: we have to ensure that either the
pre-condition of the loop body is satisfied, or the goal is
satisfied already.

We will postulate the following pre-condition for the
loop body,COPY-A-RECORD.
(1) Both files are open.
(2) End-of-file has not been detected, and END-OF-FILE

NOT = “Y”.
(3) On the nth iteration, the nth record of IN-FILE is in

IN-RECORD.
(4) On the nth iteration, the first (n—1) records have

been copied to OUT-FILE.
The post-condition is similar.

(1) Both files are open.
(2) END-OF-FILE = “Y” only if the end of file has been

detected.
(3) If the end-of-file was not reached, the (n+1)th record

of IN-FILE is IN-RECORD.
(4) On the nth iteration, the first n records have been

copied on OUT-file.
We see that, provided that the UNTIL condition is

not satisfied, the post-condition for the nth interation satis
fies the pre-condition for the (n+1)th. If the UNTIL con
dition is satisfied, all the records must have been copied.
The loop terminates in just as many iterations as there are
records to copy.

The initialisation for the loop must be chosen to satis
fy the pre-condition of the loop body. Therefore the outer
procedure must open the files and issue the first READ.
Also if the UNTIL condition is initially satisfied, the goal
must have already been reached trivially. This is the case of
copying an empty file.

The argument used to prove a loop is always
inductive. We show that if the pre-condition of the loop
body is satisfied on the nth iteration, it will be satisfied on
the (n+1)th. Hence, provided that it is satisfied on the first,
it will be satisfied on every iteration.

(The treatment of PERFORM with the VARYING
option is similar, provided that we make allowance for the
hidden operations on loop variables.)
6.2 Designing Loops

The disciplined method of constructing a loop is as
follows.
(1) Formulate the goal of the PERFORM . . UNTIL

statement.
(2) Choose a pre-condition and a post-condition for the

loop procedure so that,
(a) The post-condition guarantees the goal, if the

UNTIL condition is satisfied.
(b) The post-condition guarantees the pre-condit

ion otherwise.
(c) The pre-condition can be satisfied trivially by

suitable initialisation.
(3) Choose a loop body that correctly relates the pre

condition and post-condition.
(4) Ensure that this procedure always makes progress to

wards the goal.

(5) Choose appropriate initialisation statements.

6.3 Coinage Analysis
To illustrate how disciplined programming can be

applied to a real problem, we consider ‘coinage analysis’.
The problem is to find how many coins of different
denominations are needed to make a payment in cash. In
practice, the requirements for many such payments would
be added together.

We shall assume that N-COINS different coins (or
notes) are involved. The value of each coin is given by the
array VAL. The objective is to find the value of the array
QTY, which specifies the quantities needed of each coin.
We can formalise the objective as follows.

“The sum of QTY(i) * VAL(i), as i ranges from 1 to
N-COINS, should equal the amount to be paid.”
We must take care: this objective may be difficult or

even impossible to reach. (We have set the task of solving a
Diophantine equation.) One way to be certain that there is
a solution, is to know that the amount to be paid is a whole
multiple of the value of the smallest coin. We shall assume
it as an initial condition.

Having stated the goal, we can suggest a possible post
condition for the loop body.

“The sum of QTY(i) * VAL(i), as i ranges from 1 to
N-COINS, should not exceed the amount to be paid.”
This is a good candidate, because it includes the goal

as a special case. It is also easy to satisfy initially, by setting
all the quantities to zero. The loop body can make progress
by reducing the amount by which the amount payable
exceeds the sum of the products. Therefore, if the loop
body increases the quantity of any coin by at least one, the
loop is bound to terminate. Let us explore the consequen
ces of this choice.

It will be necessary for the loop to keep track of the
sum of the products of QTY and VAL, or it will be impos
sible to test for the goal with a Cobol UNTIL clause. We
will use the variable AMOUNT-PAID for this purpose. We
therefore propose the following post-condition for the loop
body.
(1) AMOUNT-PAID equals the sum of VAL(i) * QTY(i),

as i ranges from 1 to N-COINS. (We need this to be
able to test for the goal.)

(2) AMOUNT-PAID never exceeds AMOUNT-PAYABLE.
(This is how we measure progress towards the goal.)

(3) (AMOUNT-PAYABLE - AMOUNT-PAID) is always
a whole multiple of the value of the smallest coin.
(We include this to ensure that an initially feasible
problem does not turn into an insoluble sub
problem.)
The pre-condition will be similar, except that we may

assume that AMOUNT-PAID is strictly less than AMOUNT-
PAYABLE.

The form of our solution will therefore be as follows.
COINAGE-ANALYSIS.

Set all quantities to zero.
MOVE ZERO TO AMOUNT-PAID.
PERFORM INCREASE-AMOUNT-PAID

UNTIL AMOUNT-PAID = AMOUNT-
PAYABLE.

INCREASE-AMOUNT-PAID.
Choose a coin whose value does not exceed
(AMOUNT-PAYABLE - AMOUNT-PAID).
Increase the quantity of thatcoin by atleastone.
Update the value of AMOUNT-PAID.

The Australian Computer Journal, Vol. 14, No. 2, May 1982 45

Cobol, Comments, and Correctness

(The reason that the loop body must choose a small
enough coin is to preserve the second assertion above. We
do not want to overshoot the goal!)

The proposed loop body is not yet satisfactory. It
does not maintain the third condition above. It must
choose coins of a value that is a multiple of the smallest,
or there is a danger that it will not be able to finish. One
way to make sure that the amount left to pay is a multiple
of the smallest coin, is to insist that all entries in the VAL
array are multiples of the smallest coin. (Of course, if the
smallest coin is 1 cent, this is no problem. However, if the
smallest coin were a 10 cent piece, and the set also included
25 cent coins, the procedure could become blocked.) We
shall add the requirement to our list of initial conditions.

There is nothing in our procedure that prevents it
always choosing the smallest coin. That is always a safe
choice, but also the least efficient! Clearly part of the
goal has not been stated. Is it perhaps to use the fewest
coins? Suppose that we add that to the goal. The corres
ponding post-condition for the loop body would be that
AMOUNT-PAID uses the fewest coins. We must then hope
to prove that if this were true on one iteration, it would
be true on the next. Unfortunately we cannot do so. Imag
ine that the coins available are 25 cent, 10 cent, and 1 cent
pieces. The best way to pay 30 cents is with three 10 cent
pieces; but suppose that the procedure has already chosen
a 25 cent piece. This is certainly the simplest way to pay an
amount of 25 cents. It is also the optimum first choice in
paying 26, 27, 28, or 29 cents, but the procedure would be
blocked from finding the best way of paying 30 cents. To
find the least number of coins from this set requires a back
tracking algorithm, hardly justified by the problem. Let us
say that the goal is to make the payment in a “reasonably
efficient” way.

With these new considerations in mind, we can make
the loop body more specific. At each iteration, it should
choose the largest-valued coin possible. Progress towards
the goal will be most rapid if it then uses as many coins of
that value as it can.

INCREASE-AMOUNT-PAID.
Choose the largest coin whose value does not
exceed (AMOUNT-PAYABLE - AMOUNT
PAID).
Increase the quantity of that coin as much as
possible.
Update the value of AMOUNT-PAID.

It simplifies the choice of the largest coin to have the
VAL array ordered, with the coins decreasing in value from
first to last. We add this further assumption to our list of
initial conditions. We have now derived the following loop
body.

INCREASE-AMOUNT-PAID.
MOVE 1 TO COIN.
PERFORM CHOOSE-COIN

UNTIL VAL (COIN) NOT >
(AMOUNT-PAYABLE - AMOUNT-
PAID).

COMPUTE QTY (COIN) =
(AMOUNT-PAYABLE - AMOUNT-
PAID) /VAL (COIN).

COMPUTE AMOUNT-PAID = AMOUNT-PAID
+ QTY (COIN) * VAL (COIN).

CHOOSE-COIN.
ADD 1 TO COIN.

7. DISCUSSION
There are some improvements that can be made to

this procedure. It is slightly more efficient to keep track of
the difference between AMOUNT-PAYABLE and
AMOUNT-PAID, than of AMOUNT-PAID itself. Also, it is
futile for the loop using CHOOSE-COIN to start with COIN
= 1 each time. It is better to start where the preceding iter
ation left off. It is not hard to modify the assertions to take
these changes into account. (This can be an exercise for the
reader.) But it remains true that our algorithm is certainly
not the same as the standard solution to this problem,
which is as follows.

COINAGE-ANALYSIS.
MOVE 1 TO COIN.
MOVE AMOUNT-PAYABLE TO AMOUNT-

UNPAID.
PERFORM ALLOCATE-A-QUANTITY

UNTIL COIN > N-COINS.
ALLOCATE-A-QUANTITY.

COMPUTE QTY (COIN) =
AMOUNT-UNPAID / VAL (COIN).

COMPUTE AMOUNT-UNPAID = AMOUNT-
UNPAID - QTY (COIN) * VAL (COIN).

ADD 1 TO COIN.
This solution is undoubtedly more attractive in cer

tain respects: it is shorter and more efficient. However, the
test to ensure that AMOUNT-UNPAID reaches zero is mys
teriously absent! How can we prove that the standard solu
tion is correct? The key step must be to discover the post
condition of the loop body, ALLOCATE-A-QUANTITY.
Its assertions seem to be the following.
(1) AMOUNT-UNPAID is less than any VAL (i), as i

ranges from 1 to (COIN — 1).
(2) AMOUNT-UNPAID is not negative.
(3) AMOUNT-UNPAID is a whole multiple of the value

of the smallest coin.
(4) The quantities of all coins preceding COIN have been

chosen in a “reasonably efficient” way.
(5) AMOUNT-UNPAID equals the value of AMOUNT-

PAYABLE, less the sum of QTY (i) * VAL (i), as i
ranges from 1 to (COIN — 1).
The first of these assertions guarantees that the pro

cedure achieves a useful goal. Once the loop is complete,
AMOUNT-UNPAID must be less than the smallest coin, the
best that can be achieved.

Given valid data, the standard solution and our dis
ciplined solution will produce the same result. They rely on
the same set of initial assumptions. But given invalid data,
(e.g. to pay 4 cents in 5 cent pieces), the standard solution
will terminate with an incorrect result, whereas the dis
ciplined solution will fail. (The value of COIN will exceed
N-COINS.) This could be considered a point in favour of
our disciplined solution: it does not ignore its mistakes.
Some might argue that the standard solution puts the cart
of “reasonable efficiency” before the horse of getting a
correct result.

Of course, nothing in the disciplined approach forced
us to obtain the solution that we did. It is possible, that
guided by experience or foresight, we could have reached
the standard solution instead. Or again, we might have
discovered a new and even better solution. Disciplined pro
gramming is not a substitute for experience or common-
sense. Indeed, its very thoroughness can be a fault. By star
ting with a badly chosen set of assertions, it becomes pos
sible to derive a correct, but very messy program. Certainly

46 The Australian Computer Journal, VoL 14, No. 2, May 1982

Cobol, Comments, and Correctness

the converse is true. Messy programs invariably rely on
needlessly complicated assertions. As an illustration,
consider the following solution.

COINAGE-ANALYSIS.
MOVE AMOUNT-PAYABLE TO AMOUNT-

UNPAID.
MOVE 1 TO COIN.
MOVE ZERO TO QUANTITY.
PERFORM CHOOSE-A-COIN

UNTIL COIN > N-COINS.
CHOOSE-A-COIN.

IF VAL (COIN) > AMOUNT-UNPAID
MOVE QUANTITY TO QTY (COIN)
ADD 1 TO COIN
MOVE ZERO TO QUANTITY

ELSE
ADD 1 TO QUANTITY
SUBTRACT VAL (COIN) FROM

AMOUNT-UNPAID.
The number of coins of each value is determined by

repeated subtraction, rather than by division as in the pre
vious solutions. Despite this, the procedure avoids nested
loops. It is not easy to understand the loop that remains,
however. The assertions for the loop body are more com
plicated than for the other solutions. Finding them is left
as an exercise (or challenge) for the reader.

It would be wrong to assume that disciplined pro
gramming in practice is carried out as formally as in these
examples. A programmer would not always formalise the
post-condition before writing a procedure. It is more likely,
especially for trivial problems, that the procedure will come
first and the assertions second. If that is so, an essential
third step is to check that they agree. This reveals errors
when they are cheapest to correct. It was not immediately

The Australian Computer Journal, VoL 14, No. 2, May 1982

obvious that the employee’s hourly rate problem contained
a hidden assumption. Nor was it evident that the standard
coinage analysis procedure does not guarantee to choose
the minimum number of coins. (In practice, the sets of
coins available in Australian, British, or American curren
cies are such that it will. However, it is not easy to find the
general conditions for the procedure to give the optimum
choice.) It is unlikely that these potential bugs would be
revealed by testing. A programmer is likely to bring the
same preconceptions to devising test data as to writing the
procedures.

Disciplined programming provides several advantages.
It helps the programmer to define the problem and find a
solution. Assertions cross-check the program, exposing
latent bugs. They provide superb documentation for future
program maintenance. Any tool cafi be used badly, but a
good tool teaches its user new skills. Disciplined program
ming is an excellent tool.

8. ACKNOWLEDGEMENT
The author wishes to thank Barbara Kidman of the

University of Adelaide, and Ian Watson of the South Aust
ralian Institute of Technology for reviewing this paper, and
offering helpful suggestions for its improvement.

9. REFERENCES
ALAGIC, S. and ARBIB, M.A. (1978), The Design of Well-struc

tured and Correct Programs, Springer Verlag, New York.
DIJKSTRA, E.W. (1976), A Discipline of Programming, Prentice-

Hall, Englewood Cliffs, New Jersey.
SHNEIDERMAN, B. (1980), Software Psychology, Winthrop,

Cambridge, Mass., pp. 67-69.
WIRTH, N. and HOARE, C.A.R. (1973), “An axiomatic definition

of the programming language Pascal", Acta Informatica,
2,4,335-355.

A Background to Program
Generators for Commercial
Applications
Roger Clarke*

The emergence and key features of program generators are explained. Examples are given of the
appearance and use of one particularly advanced product

Keywords and Phrases: application generator, DELTA, macro language, macro processor,
pre-processor, program generator, software portability, specification language, very high level language.

CR Categories: 41.2,4.22.

INTRODUCTION
Since the dawn of programming better methods have

been sought. One major focus has been upon efficiency in
the use of processor and main memory resources, and in
some circumstances these factors remain paramount.

Another focus has been on the manner in which pro
grams are prepared. Varying degrees of maturity have been
reached in the many aspects of languages. Their power has
developed to such an extent in fact, that they offer far
more than that needed by the vast majority of applications.
As a result of this the problems arise of finding sufficient
staff who are sufficiently highly trained to handle such
languages, then constraining them to a narrow (and partly
arbitrary) discipline in its use.

In order to combat such problems new methods of
program preparation are emerging. These depend on param
eter driven utility programs which generate a high level
language program. Sub-problems may still require the
power of the host language; for such cases it is necessary to
be able to insert code into the appropriate location in the
generated program. It is reasonable to view such program
generators as preliminary attempts at future higher level
languages. They are however identifiable products, and have
some characteristics different from existing languages. This
article will deal with them independently from questions of
language design.

After a brief discussion of the reasons which stimula
ted the production of program generators, their emergence
is traced and the concepts central to the theory are presen
ted in stepped form. Examples are given based on one such
product, and brief comments provided on the impact of the
new tools.

THE STIMULUS
Modern theories of system and program development

are poorly served by old languages and programming en
vironments. Yet the enormous investment in software and
in trained software development staff precludes a simple-
minded revolution. One approach to provide a ‘bridging’

“Copyright © 1982, Australian Computer Society Inc.
General permission to republish, but not for profit, all or part of
this material is granted; provided that ACJ’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Australian Computer Society.”

technology between old and new is to install a pre
processor before the compiler, to enable and/or require
programmers to write in structured style, despite the weak
nesses of the host language. In addition other deficiencies in
the language can be catered for. An important product in
this field was MetaCOBOL (see ADR, 1974a, 1974b), a
commercial application of the ‘Stage II’ generator (Waite,
1974). It offered the ability to create additional verbs
(case-construct, in-line PERFORM, initialise-table), to
improve syntax (explicit ENDIF, a quasi-local variable
feature), to recognise multiple alternative short forms, and
to ‘massage’ the layout of the code for consistent presen
tation and indentation — critical factors in making
programs readable and maintainable by persons other than
the author.

The problem with conventional high-level languages,
even when front-ended in this way, is that their power and
complexity demand considerable expertise on the part of
the programmer. Few problems arise in commercial pro
gramming that aren’t capable of appropriate solution; but
there are far too few suitably trained people to do the sol
ving. Given that the vast majority of development groups
work within a fairly small set of (partly consciously chosen)
techniques, the full power of the host language could be
foregone.

An additional problem is the matching of program
ming technology to the system analysis and design tech
nologies that precede it in the application-software produc
tion-line. It is now fairly clearly established that multiple
languages at different levels of abstraction are necessary
(Hawryszkiewycz, 1981) and that therefore language trans
lation problems will occur. In addition these languages can
be expected to require some time yet before they stabilise,
and the likelihood of multiple alternative languages at any
given level of abstraction seems to be quite high. It is there
fore desirable that the interface between the design and the
programming syntaxes be supported by a powerful macro
language. Only in this way can the programmer/coder in all
cases be provided with the means to perform simple, quick
and efficient translation from the design documents/text
files into compilable code.

THE DEVELOPMENT PATH OF
PROGRAM GENERATORS

Progress has been achieved incrementally, and this
*Ueberlandstrasse 465, 8051 Zurich, Switzerland. Manuscript received January 1982.

48 The Australian Computer Journal, Voi. 14, No. 2, May 1982

Program Generators

article proceeds in a similar manner. The first necessary
step was the realisation that commercial application
development involved considerable repetition of effort,
and on the other side of the coin, considerable code redun
dancy. Many functions were coded once per program rather
than once per application, or even once for the entire
installation. Several facilities have been used to overcome
this wastage; for example Copy Libraries and Subprogram
Calls remove localised and small-scale redundancies.

In addition to redundancy in processing code there is
structural repetition. By this I mean that the majority of
program structures are, or could be, formal variants of a set
of models. To combat the wastage resulting from structural
repetition requires a fundamental reorganisation of appli
cations development, and investment in more effective sup
porting software.

The term in common use for such software seems to
be 'program generator’ and that term will be used in this
article. Some more precise phrase such as 'parameter driven
assembly of high level language programs’ would be advan
tageous, but wordy.

PHASE O - REDEPLOYMENT OF STAFF
The prevailing nonsensical EDP convention of com

mencing to count at zero is conformed with by harking
back to the most primitive, and sometimes the most effec
tive manner of knowledge transfer. Experience in the
development of commercial software is exchanged between
projects in a planned manner through the assignment of
staff with relevant ‘know-how’. An even greater amount of
experience sharing is achieved in less planned fashion
thanks to the velocity of staff within the job market.

This method of knowledge transfer is entirely
informal, too heavily reliant on individuals, and unmeas
urable. Given the considerable variation between user appli
cations across the various sectors of large and small
primary, secondary and services industries, government
enterprises and utilities and the public service it is difficult
for tertiary courses to provide entrants to the information
industry with directly useful applications experience.

Since formal education in such matters is difficult to
come by, the interchange of staff between projects and
employers will remain an important factor in knowledge
transfer in all areas of computer applications. The possi
bility of formalising the process is greater in the more
precise field of programming than in system analysis and
design, yet even in this field the first steps were small and
tottering.

PHASE 1 - COPY-A-PROGRAM AND AMEND
Plagiarism began with the selection of a program that

bore some resemblance to the new one and the copying of
the parts that seemed relevant and helpful. The method
comprises Figure 1:
— selection of a model program;
— copying to a new file;
— leaving lines unchanged which are common to both

programs;
— deleting lines particular to the old program;
— amending lines which are common but which con

tain terms particular to the program (such as the
name of the program and the name of the driving
file);

— inserting lines particular to the new one.
This approach can achieve significant gains:

— experience is explicitly transferred;
— it can take less time to prepare the source file;
— it can take less time to achieve a clean program;
— the resulting program is similar in style to its ‘father’.

It would be wrong to overlook the inherent problems.
— how is the program selected as suitable for ‘father

hood’;
— how correct is ‘father’ as regards its original task;
— how relevant is ‘father’ to the new problem. Many

mismatches between the two will be subtle, emerging
only when testing reveals strange anomalies;

— no relationship is maintained between ‘father’ and
‘son’. Subsequent changes in one are not easily asso
ciated with the other.
Nonetheless many organisations have profited from

this technique.

PHASE 2 - COPY-A-SKELETON AND AMEND
A step which overcomes many of the deficiencies of

Phase 1 is the formalisation of the ‘father’. That task can
require considerable investment depending on the suitability
of the models available, the degree of difficulty of the pro
gram type involved, the ambitiousness of the project and
the experience and competence of the staff assigned.

The preparation of the skeleton involves the follow
ing:
— define the program type to be supported;
— identify those parts of the sample program(s) com

mon to the program type;
— define the variants of the program type which are to

be catered for, and which are beyond the scope of
that skeleton;

— assemble a ‘first-cut’ version of the skeleton from the
sample(s);

— identify the variables as such. For example the driv
ing file may have been CUST; it might be replaced
with DFN (for ‘Driving File Name’). In practice it
is beneficial to use a string which is not legal in the
source language;

— since few programs are direct analogues of one
another, build in options which the programmer can
select as appropriate. This might for example be

old
program COPY

temporary

EDITOR

Delete

- Insert

Figure 1. Copy-a-Program-and-Amend.

The Australian Computer Journal, Vol. 14, No. 2, May 1982 49

Program Generators

EDITOR

COPY

- Replace variables
- Select options
- Insert

Figure 2. Copy-a-Skeleton-and-Amend.

achieved by the marking of optional lines as active or
commented out;

— define the points within the skeleton at which pro
grammers will under particular circumstances need to
insert additional code.
The development of a program using such a skeleton

comprises Figure 2:
— selection of the appropriate skeleton;

copying to a new file;
— the replacement of the variables;
— choosing the appropriate options;
— inserting additional lines particular to that program.

The scale of the effort involved varies widely. In the
author’s experience a file handling sub-program requires
about six variables, no additional code, and about five
minutes’ work. For a reasonably flexible on-line master
file maintenance program about 35 variables and 15 options
were needed. The number of insertion lines varied directly
with the amount and complexity of validation — between
50 and 2000 lines — giving a total development time be
tween' two hours and four days. If the average line rate
seems high (600 lines/hour for simple programs, 100 for the
more difficult ones), it should be recalled that this code is
composed almost entirely of editing instructions directly
translated from the specifications and containing virtually no
control structures.

Advantages of this approach as compared with
conventional programming are:
— experience has been invested in the skeleton, and is

directly transferred to each program;
— less time is required to prepare the program;
— the new program requires testing only of the pro

gram-specific code (assuming that the particular com
bination of options was tested as part of the skele
ton’s development), hence less time is required to
achieve a clean program;

— the resulting program’s style is dictated by the skele
ton.
There remain deficiencies:

— the selection of an appropriate skeleton for the task
depends on criteria that are rarely fully understood;

— investment in some amount of abstract theorising
and experimentation is a precondition of success. In
stallations which oppose abstraction per se and limit
their techniques to those taught by their equipment
and software suppliers are therefore ill-served by this
method. It requires confidence on the part of the in
stallation management that they can manage the risks
involved;

— a sufficiently large volume of programs of each type
is necessary to justify the investment. In the author’s
experience a breakpoint was already reached with
three or four programs, but that is sensitive to the
skeleton builder’s experience in and flair for both
skeleton building and the program types;

— an on-line development environment is essential,
with suitable supporting software, in particular a
full-screen editor with string replacement and line
insertion capabilities (Clarke, 1982a);

— no continuing relationship exists between the skele
ton and the programs produced from it. Subsequent
corrections and improvements to the skeleton can
only be included in each of its progeny by pain
staking effort.
Efforts to overcome this last deficiency lead to the

third phase.

PHASE 3 - SIMPLE PROGRAM GENERATORS
Once skeletons have been established it becomes

attractive to have the benefit of the maintenance of those
skeletons flowing more-or-less automatically to its progeny.
The classes of maintenance include error correction (a
skeleton is, like any program, ‘clean’ only until the next
bug is found), efficiency improvement, the adaptation of
existing facilities to new standards and to new run time
environments, and the provision of additional features.

The step required to link programs to their skeleton is
to store the instructions used in their preparation, and
regard these rather than the generated high level language
code as the source program. As Figure 3 depicts, the
instructions to be stored comprise the assignment of values
to variables, the selection of options and the insertion of
additional source lines. A utility program is required to

EDITOR

- Select Skeleton
- Assign Variables
- Select Options
- Insert

Director-File
(permanent)

skeleton GENERATOR

^ program ^

Figure 3. Simple Program-Generator.

The Australian Computer Journal, Vol. 14, No. 2, May 198250

Program Generators

merge the skeleton with the additional source lines, carry
ing out the (global) variable replacement and option setting
as it goes. Such a utility is popularly termed a program
generator; for the input I will use the term ‘director file’.

The development of such a generator requires string
handling capabilities. Nonetheless implementation even in
COBOL requires under 10 days, and installations with
expertise in more suitable languages should require yet less
effort. Assuming that a small collection of 34 skeletons is
created, then the breakeven point will be of the order of
only two or three uses per skeleton — a point reached or
reachable in almost any single new application.

An additional investment involved is the formalisa
tion of the skeletons. A Phase 2 skeleton can contain loose
comments of the form ‘if both options A and B are selec
ted, then datafields X and Y must be OCCURed twice, with
consequent changes in Procedures P and Q’. This may have
been the most cost-effective solution in Phase 2, but cannot
be tolerated once a generator is implemented. Such prob
lems are quite soluble, but require disproportionately high
investment. (The pragmatic solution is to add this condit
ion to the list of variants unsupported by the generator:
‘For Priority Release’ as the sales brochures say.)

When a skeleton is revised, all that is necessary to pass
the revisions to its progeny is to re-run the generator against
the director file. Late amendments in the file handling tech
nique or the user interface no longer justify fears of excess
ive rework costs and delays.

Some limitations must be recognised of course:
— considerable unanimity is required as to what con

stitutes good programming style and appropriate
program structure;

— the preparation of suitable skeletons requires fam
iliarity with a wide range of program types as well as
the ability to abstract;

— machine overhead is incurred by the generation run.
The programs require far less testing, but the net
effect is hard to measure and correspondingly easy to
argue about. On a small software development
installation (Tl 990 with 256kb memory and five
screens) the generator required about three minutes
(elapsed) for a 500 line director file and a 1500 line
skeleton. This compared favourably with the compile
time of the generated program, despite the ineffic
iencies of COBOL string-handling;

— subsequent amendments to a skeleton must be made
with rather more care than with a Phase 2 skeleton. It
is necessary to generate and test first that program
for which the change is required, then a range of sam
ple programs appropriate to the population of the
progeny, then all of the progeny;

— in addition to the normal ‘where used’ capabilities
needed for copyfiles, datafiles and subprograms, the
use of the skeletons themselves must be monitored.
This is most easily achieved if the invocation of the
skeleton is controlled from the director file itself;

— the use of an existing skeleton for a new project often
involves additional investment. (Typically the original
version assumed only one record type per file, while
the new project must handle two or more.) Gener
ally it seems better to allow skeletons to proliferate
rather than invest too much too soon chasing the
chimera of ‘truly general’ master programs;

— the method decreases the creativity involved in appli
cations programming. Other sources of programmer

The Australian Computer Journal, Vol. 14, No. 2, May 1982

Masks, Reports

Figure 4. Sophisticated Program-Generator.

job satisfaction must be substituted for that lost if
low morale and high turnover aren’t to rob the instal
lation of the potential productivity gains;

— a stratification, or at least segmentation, of program
ming staff results, with differentiated education, ex
perience and even psychological profiles. Given that
the existing distinctions between systems and appli
cations programming groups can result in friction,
the addition of a ‘methods programming’ group could
be an unwelcome additional ingredient in the political
cauldron; and yet most systems programming staff
are ill-suited to the work involved because of its
strong applications orientation;

— the method invites the naive application of an inade
quate tool to a different or more subtle problem. It is
essential that in seeking productivity improvement we
do not force development staff into under-investment
in the problem comprehension and design phases and
thereby trivialising their appreciation of the
application.

PHASE 4 - SOPHISTICATED PROGRAM GENERATORS
The ‘merge-and-replace’ type of generator remains

trapped within the conceptual boundaries of its host lang
uage. There are two very important and related limitations
that can be overcome only if the framework of the gener
ation run is changed.

The sequential processing of a single skeleton has the
result that a skeleton must resemble the program that is to
be generated, with the exception that some symbols appear
which would not be valid input to a compiler, some_
denoting locations for insertion, others awaiting replace
ment: the skeleton and the generated program are syn
chronous.

The other limitation is that in a family of skeletons
there will be a considerable amount of redundancy. In par
ticular, file definition and file access routines will appear
not merely in each skeleton, but even several times in each.
It is desirable that code which is common to multiple skele
tons be stored once only, in an independent sub-skeleton.

The instance of file handling is particularly impor-

51

Program Generators

.PROG-DEM01, AUTHOR=ROGER ADD TESTMAC, 5, 2, N

generates: invokes this Macro:

000100 IDENTIFICATION DIVISION. 01000064nnn9nn*************************** n000300 PROGRAM-ID. DEMOI 0I0OOO66

000400 AUTHOR. ROGER. 01000068
000500/ 03000003
000600 ENVIRONMENT DIVISION. 01000081
000700************************* 01000082
000800 CONFIGURATION SECTION. 01000083
000900 SOURCE-COMPUTER. PRIME 550. 01000085
001000 OBJECT-COMPUTER. SVCOR585. 01000086
001100 INPUT-OUTPUT SECTION. 23 DELTA
001200 FILE-CONTROL. 23 DELTA
001300 l-O-CONTROL. 23 DELTA
001400/ 03000005
001500 DATA DIVISION. 23 DELTA
001600 FILE SECTION. 23 DELTA
001700/ 03000007
001800*-- 23 DELTA
001900 WORKING-STORAGE SECTION. 23 DELTA
002000/ 03000028
002100*-- 23 DELTA
002200 PROCEDURE DIVISION. 23 DELTA
002300 DX-MAIN SECTION. 23 DELTA
002400 O-PROG. 23 DELTA
002500 P-PROG. 23 DELTA
002600 C-PROG. 02 DELTA
002700 STOP-RUN. 02 DELTA
002800 STOP RUN. 01000131

Figure 5. The Minimum-Complexity Program.

. PROG-DEM02, AUTHOR= ROGER

. SL=P-PROG
DISPLAY "HELLO, USER! WHAT’S YOUR NAME?”.
ACCEPT WS-NAME.
DISPLAY "CONGRATULATIONS ” WS-NAME ”!!!”.
DISPLAY "YOUR PROGRAM WORKS ALREADY!”.

. SL=WORK01
01 WS-NAME PICX(OB).

Figure 6. A Slightly More Complicated Program.

tant, because yet a further level of abstraction exists. In
order to facilitiate the portability of applications software
between differing machines, compilers, and file handling
environments, it is necessary to store those parts of the
program which are environment-dependent in separate
‘sub-sub-skeletons’ which can be exchanged in order to gen
erate a new version of the application to run on, say, an
interstate branch’s much smaller and perhaps separately
sourced installation. (The same problem occurs in relation
to the handling of on-line terminals, although defining the
interface between the logical and the physical sub
skeletons is made much more difficult by the absence of
de facto standards.) See Clarke (1982b, 1982c) for further
discussion of such matters.

It is not difficult to restructure the simple generator
described in the previous section to include invocations of
sub-skeletons, depending on some condition in the director
file or the main skeleton. The problem is that the syn
chronisation between skeleton (s) and generated program is
destroyed. In the case of a file handling sub-skeleton, the
sub-skeleton will endeavour to insert code in a location (say
the file access routines), while the skeleton still contains
code that must be inserted at an earlier location.

The requirement is, then, that the director file be
read sequentially, resulting in invocations of sub-skeletons,
and the ‘assembling’ of an output file. The output file must

**PDL*8112311159/TESTMAC/02/ TEST-MACRO
. *
. * Converts an alphanumeric field with contents in the form
. * ‘9999.99’ into a numeric field of the form 9999V99
. *
. * The number of digits is freely-choosable.
. *
. * Parameters: 01 — number of whole-digits
. * 02 — number of decimal-digits
. * 03 — whether a subroutine

is to be created (Y/N)
*

SL=WORK01
01 WS-ALPHANUM-#01 #02.

05 WS-AN-#01 #02-WHOLE
05 FILLER
05 WS-AN- #01 #02-DECIMAL

01 WS-NUM- #01 #02.
05 WS-N- #01 #02-WHOLE
05 WS-N- #01 #02-DECIMAL

01 WS-NUM- #01 #02REDEF

PIC 9(#01).
PICX.
PIC 9(#02).

PIC 9(#01).
PIC 9(#02).
REDEFINES WS-NUM-
#01 #02 PIC 9(#01)
V9(#02).

. IF-03. EQ. Y

. SL=SUBROUTINES
CONV-AN- #01 #02.

MOVE WS-AN- #01 #02-WHOLE TOWS-N-#01 #02-
WHOLE.

MOVE WS-AN-#01 #02-DECIMAL TO WS-N- #01 #02-
DECIMAL.

CONV-AN-#01 #02-EXIT. EXIT.

. 1 FEND

to generate this code:

WORKING-STORAGE SECTION.

0l’ WS-ALPHANUM-52.
05 WS-AN-52-WHOLE PIC 9(5).
05 FILLER PIC X.
05 WS-AN-52-DECIM AL PIC 9(2).

01 WS-NUM-52.
05 WS-N-52-WHOLE PIC 9(5).
05 WS-N-5 2-DECIMAL pic 9(2).

01 WS-NUM-52REDEF REDEFINES WS-NUM-52
PIC 9(5)V9(2).

Figure 7. Macro-Calls.

be addressable at multiple points, not merely at the
(current) next record (a partitioned or segmented sequen
tial file as distinct from purely sequential). For flexibility
sub-skeletons should be able to be invoked conditionally,
and iteration, nesting and even recursion should be possible.
In addition parameter passing between different elements
must be facilitated. Such a generator is complex, requiring
modular construction for reliability, maintainability and ex-
tendability, and involving the investment of man-years of
effort. Figure 4 depicts such a generator.

Examples of products which offer at least some of
the requirements are: CPG, an American product of the late
1970’s; CL/1, an Australian product released in 1979,
MANTIS from CINCOM (IBM-specific, 1979); NoCode, an
American product (1980); and the cutely-named ‘The Last
One’, a UK product (1981). ADR’s IDEAL is overdue for
release. Philips’ PET/X1150 development-machine incor
porates generator-elements.

52 The Australian Computer Journal, Vol. 74, No. 2, May 1982

Program Generators

TABLE 1. Properties of Program-Generators.

The Product Provided
— capable of immediate use without initial investment by the user
— based on an interpretative language so as to be portable between

software environments and machines
— includes standard macros for common functions which can serve

as a starting point for the integration of the product into the
user’s particular environment

— is consistent with and capable of operation in parallel with other
development environments, and in particular with the mainten
ance of existing applications by conventional methods

— is suitably documented and the documentation is well indexed
— education and introductory documentation are provided
— maintenance and support are provided
— on-going development of the product is guaranteed
— version control and upwards compatibility are assured

The Macro-Language
— standard macros are under user control
— additional macros can be written by the user
— offers DO-verb, and complex conditionals or decision table
— DO-verb and conditionals are nestable to an adequate depth
— offers computational and string handling capabilities
— capable of passing parameters
— parameters may be local or global, and 'typed’
— simple file reading capabilities
— additional locations can be defined
— all locations are accessible by any macro

Program-structure skeletons
— ability to generate the vast majority of program structures with

simple parameterised invocations
— all control code for level breaks should be generated
— appropriate locations for insertion of program specific code
— the resulting code should be suitably modular and structured

(within the constraints of the generated language)
— ability to specify exotic program structures in a convenient,

auditable, powerful but compilable language

Outputs
— generates an industry standard language(s)
— is sufficiently flexible that variants within the standard, not-

quite-standard and add-on compiler features can be handled
— generates code that is consistent in style with the prevailing

installation standards no matter from which skeletons/macros it
may be generated. This is important during the first years follow
ing its installation, since maintenance may be performed on the
generated programs rather than the original source

— the code generated by all methods is consistent in apppearance
— generates documentation as an integral part of the code
— generates a where-used listing for macros/skeletons
— can generate skeleton JCL for testing and production purposes

Use
— simple to use for simple programs, in particular a simple report

generator syntax such that trainees can quickly become produc
tive and experience early positive feedback

— powerful for larger and more complex programs such that the
productivity of experienced staff is significantly enhanced

— consistency of use for each type of standard program (i.e. the
preparation of simple print programs, simple batch, complex
batch, on-line enquiry,data capture and update programs should
not differ more than is necessary)

— ‘naturalness’ of the language and its syntax, rather than obscure
mathematical script

— completeness of syntax validation
— clarity of error messages
— accessibility of the documentation for reference purposes
— the capability to reflect user modifications and extensions

Mode of Processing
— can access multiple macros, including

many level nesting and perhaps also recursion
— adequately efficient in its usage of machine resources (run time,

file access, main storage)
— written in reentrant code and is actually shareable by many users
— capable of concurrent execution by an effectively unlimited

number of users, e.g. suitably qualified workfile names, macros
accessed in read-only mode

— allows definition of reference libraries and documentation
options at run time

interface to its Environment
— ability to mesh with techniques used within the organisation

(structured analysis, structured design, Relational Analysis,
HIPO, structograms a la Nassi and Schneiderman, decision tables
Jackson or Warnier Program Design Methodology, structured
programming, etc.)

— interface with Data Dictionary software
— interface with formalised system requirements and system design

utilities
— interface with screen definition facilities
— interface with report layout facilities
— interface with project planning and control
— interface with the testing and debugging facilities
— independence from its host machine, i.e. runs on many machines

(and in principle on any machine)
— independence from its target machine(s)
— independence from supplier specific environmental software

(operating system, file handler/database, languages, on-iine
monitor, data communications monitor, etc.)

The author has experience of a Swiss product,
DELTA (see Clarke, 1982b, 1982c), which fulfils the
requirements. It has enjoyed considerable success in
German-speaking areas, and is available in both Britain and
Australia. It had the market to itself following its market
release in 1976, but a small flood of competitors is lining
up to do battle. The generator package comprises an inter
preter, a set of ‘processors’ (providing efficient perfor
mance of the most common facilities such as the basic
program shell, and decision table and pseudo-code inter
pretation), a range of standard macros (providing file
handling, a report generator, etc) and a macro language to
enable the writing of further macros.

The distinction between a skeleton and a macro is
important. A skeleton contains no control structures; the
director file drives the run, but the generator itself performs
all the decision-making. In the case of a macro the stored
code is not just passive, but contains selection and iteration
decisions, based on parameters supplied in the director
file, and additional variables computed during the
generation run.

The Australian Computer Journal, Vol. 14, No. 2, May 1982

This language is available to the software developer,
so that he can go further than merely amending existing
macros: he can also develop his own to match the require
ments of the installation. The following examples of the
use of a Phase 4 Generator are based on DELTA, because
of the author’s familiarity with that product, but also be
cause it embraces all of the important concepts and mech
anisms.

EXAMPLES
Figure 5 depicts the preparation of the minimum

complexity program. The basic Processor is invoked using
the command .PROG; a variety of optional parameters
may be set. The result is a program shell containing the
minimum set of commands consistent with the particular
target compiler. The precise content of the generated shell
is determined by macros supplied by the vendor but fully
under the using organisation’s control.

In addition so-called ‘locations’ are created into
which lines of high level language code can be inserted.
Each location is accessible in ‘open-extend’ mode, i.e. lines

53

Program Generators

. PROG-CUST, AUTHOR ROGER, WRITTEN JUL 81

. SL=REMARKS
*
* ON-LINE DEMONSTRATION-PROGRAM (CUSTOMER

FILE-MAINTENANCE)

*

. * Create program-structure:
*

! ADD OLSTRUC, 1, (DSP, CRE, AMD, DEL),-
(MSKCUST1, MSKCUST2)

. *

. *

. * Validation-code:

. *
SL=VAL-01 -DEL

. *

. * Delete prohibited if current or previous year’s

. * Sales are other then zero:

. *
IF T01-SLSYTC = ZERO
AND T01-SLSYTP = ZERO

NEXT SENTENCE
ELSE

. ADD VALERROR, 905, , SLSYTC

. *

. * Define Customer Logical-Record:

. *
!addlr-cu, UPDATE-ONPLACE, 1
*

The above depends on data definition files (which are the
responsibility of the applications team), about 10 standard
macros, 5 additional macros written and maintained by the
installation standards team, and about 10 macros which
generate the program structure and screen handling.

Figure 8. An On-Line Program Using DELTA.

are loaded successively into that slot. The process is directly
analogous with a box of 80 column cards in which the per
missible insertion points are marked with thick cardboard.
Each new card (including new markers) can be inserted im
mediately before any marker. Figure 5 in itself cleanly
compilable, although its execution would cause little
excitement. Very slightly more interest would be aroused
by the program generated by Figure 6, in which two loca
tions have been used, that for basic processing, and the
basic working storage location.

Figure 7 illustrates the next conceptual step, the in
vocation of macros. Great power can be achieved in the use
of pre-written code through the nesting of macros. For
example the author uses a single line invocation (together
with separately prepared mask definitions) to generate an
on-line update program with inquiry, creation, amendment
and deletion capabilities, any number of masks and some
30 locations into which the more complex validation and
file handling code can be inserted (Figure 8). The addition
al coding is also strongly supported by additional macros.

A hierarchy of self-supplied macros is one of a range
of ways in which the program structure can be generated.
A processor is supplied for normal batch processing pro
grams, another generates structures in a manner consistent
with Jackson’s Program Design Methodology, and an inter
preter is available to generate more exotic forms from a
structured ‘pseudo-code’.

A number of processors are also supplied as part of
the basic product to achieve run time efficiency in the
handling of certain standard functions. Chief among these

is the File Processor which, with the aid of one or more
macros generates all code necessary for definition of and
access to each file. It also includes facilities for integrating
the file processing into the program structure. In COBOL
this involves entries into at least the following locations:
SELECT, FD, RECORD-DESCRIPTION, OPEN, CLOSE,
File handling Subroutines and the calling of the file access
routine(s). Macros for the various file types are supplied,
and can be used in that form or extended to suit the user’s
particular requirements.

A further point of importance about Figure 8 is the
machine-independence of the DELTA source file. It was
written and tested on a PRIME 550, then re-generated on
that machine in the form appropriate for a SYCOR (Data
100) Model 585. Differences between the file definition,
file handling and (very differently conceived) screen
handling methods were catered for with little difficulty.
Implementation of precisely that program on further mach
ines involves the preparation of file and screen macros
appropriate to the new target machine and/or target en
vironment. Clarke (1982b) discusses this example at greater
length.

PROPERTIES OF PROGRAM GENERATORS
Table 1 contains a list of factors to be considered

when assessing alternative products or designing one’s own.
Since this article is tutorial rather than analytical this point
is not discussed further.

IMPACT OF PROGRAM GENERATORS
The benefits brought by a sophisticated program gen

erator include the faster development of cleaner products,
quicker and more reliable maintenance and enhancement,
the opportunity for genuinely portable applications, and
shorter lead times for trainees.

The development process, the organisation of
development teams, and the organisation and operation of
the supporting ‘methods programming’ team are signifi
cantly affected.

TOWARDS APPLICATION GENERATORS
The focus of this article, and indeed of the products

which it discusses, is the generation of independent
programs. The design of a collection of programs to fulfil
a complex of purposes is viewed as a separate exercise. In
order to generate an entire application from an application
specification, a logically complete and precise statement of
the requirements would be needed in a set of consistent
and compilable syntaxes. Implementation parameters (e.g.
the physical allocation of records and the gathering of func
tions into programs) would also be required.

CONCLUSION
In the near future only specialist ‘methods pro

grammers’ will deal at the level of detail of present high
level languages. The vast majority of commercial develop
ment will be done by programmer coders using utilities to
capture the parameters for input to program generators.

In theperiod 1982-1987 many of these generators will
be machine specific, generating a special language code, and
be subject to myriad intended and unintended restrictions.
Later more of them will achieve substantial machine inde
pendence and generate industry standard languages. Avery
few such second generation products are already on the
market.

54 The Australian Computer Journal, Vol. 14, No. 2, May 1982

Program Generators

Somewhat further in the future it seems reasonable
to anticipate effective application generators which will
operate on one or more system design languages to produce
executable code directly.

ACKNOWLEDGEMENT
The assistance of colleagues at Brodmann Software

Systeme AG, and of Herrn Peter Buchmann, Claude Reibel
and Dr. Reinhold Thurner of SODECON AG, the suppliers
of DELTA, in the preparation of this article is gratefully
acknowledged.

REFERENCES
ADR (1974a): Macro-Writing for the MetaCOBOL User, Doc Nr

P502M, Applied Data Research, Princeton, NJ.
ADR (1974b): Macro-Writing for the MetaCOBOL Specialist,

Doc Nr P5S1M, Applied Data Research, Princeton, N J.
CLARKE, R. (1982a): Editors for Software Development, Aust.

Comput. Bull,, 6, Feb 1982, pp. 21-25.
CLARKE, R. (1982b): Generating Self-Contained On-Line Pro

grams Using DELTA; submitted to the Ninth Australian
Computer Conference, Hobart, August 1982.

CLARKE, R. (1982c): Generating Transaction-Oriented On-Line
Programs Using DELTA, submitted to the Aust. Comput.].

HAWRYSZKIEWYCZ, I.T. (1981): ‘Some Trends in System Design
Methodologies', Aust. Comput.)., 13, Feb. 1981, pp. 13-23.

WAITE, W.M. (1974): Implementing Software for Non-Numeric
Applications, Prentice-Hall, NJ.

BIBLIOGRAPHICAL NOTE
The author has been active in commercial data

processing since 1971 in functions ranging from systems
analysis and project-leadership through research into the
privacy implications of the information industry, to the
technology of software development. He has worked for
and with a variety of industrial, commercial and consulting
organisations, including more recently VA years with The
Stock Exchange, London, and three years with a software
house in Zurich. He completed an M.Comm. (Accounting
and Information Systems) in 1975 following nine years'
part-time study at the University of New South Wales.

The Australian Computer journal, Vol. 74, No. 2, May 1982 55

A Software Engineering
View of Files
J. L. Keedy* and I. Richards**

The paper takes a fresh look at files, and argues that many benefits can be derived by treating
them as information-hiding modules rather than free-standing data structures. A case is made for a
hierarchical structure which includes both access routines and semantic routines. A powerful protec
tion mechanism based on semantic routines is discussed.

Keywords and Phrases: Information-hiding, module, modular structure, hierarchical structure,
file system, access methods, software engineering, protection, privacy.

CR Categories: 4.34, 4.35.

1. INTRODUCTION
Files (e.g. in commercial data processing systems)

are normally regarded as free-standing data structures, in so
far as program access and the protection of information are
concerned. In this paper we try to show that such a view of
files is unsatisfactory from the standpoint of the software
engineer, and we propose an alternative view which over
comes the problems inherent in the conventional approach.

The qualities which software engineers aim to achieve
in major software systems include reliability, efficiency,
adaptability, maintainability, and, especially in the case of
files, protection of information. None of these qualities has
been achieved with a high degree of success in systems
which regard files as free-standing data structures, although
the level of success depends on the file system or data base
system available. In current systems we find three basic
levels of support for files.

Minimal support is provided in primitive operating
systems which recognise the existence of files and offers
some assistance in organising their placement on disc (or
other backing-store devices), but little else. In such systems
user programs may have to supply their own routines for
organising files internally. No checks exist to ensure that
the right set of routines is used when the file is accessed,
and no attempt is made to ensure that only authorised users
can access the information in a file.

More advanced operating systems provide a file
system which includes some standard access methods, such
as indexed sequential or hashed random. They also provide
checks to ensure that files are only accessed by authorised
users and in authorised ways, e.g. by ‘read-only’, ‘read/
write’, ‘append’, and similar protection attributes. Usually
there is no check that the right access routines are used.

Some data base systems provide a more sophisticated
view of files. A distinction may be drawn between
‘physical’ file structures and a set of ‘logical’ views of the
file or files. This is usually achieved by means of a data
dictionary which contains extensive information about the
placement, representation and protection attributes of
information in the data base, down to the level of fields
in records. Such systems show an awareness of the main
software engineering objectives mentioned above, but the

“Copyright © 1982, Australian Computer Society Inc.
General permission to republish, but not for profit, all or part of
this material is granted; provided that ACJ’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Australian Computer Society.”

methods which are required to support them are generally
inefficient and costly. Maintenance of the data dictionary
itself can be a difficult task and the frequent accesses which
are made to it can be costly in terms of processor time and
disc channel usage. But the main problem with data base
systems is that they are usually monolithic in nature and
depend on a central administration of some sort, both with
in the computer and off-line in the form of a ‘data base
administrator’. Furthermore, they are usually unsuitable for
controlling all the data in a system. For example, they
rarely handle operating system tables, system or job journal
files, source files, spooling files, etc.

In the view of the authors, it seems that a much
simpler approach to files is needed than that found in data
base systems, an approach which can be used uniformly for
all files and which meets the requirements of a software en
gineering environment. In terms of reliability, for example,
it must be guaranteed that a file is accessed only via
routines which understand its internal organisation. The
efficiency requirement implies that it should be easy to
change the internal structure of a file from an existing
access method to a more optimal one, without having to
modify the programs which use the file. There is a need also
to adapt the file for uses other than those originally envis
aged, for example, because it might hold (or need to hold)
information useful to different parts of an organisation.
Files, like programs, are frquently subject to change in the
costly maintenance phase of a software system, and this
implies that the maintenance programmer should easily be
able to understand the implications of proposed changes.
And finally, protection of the information in a file should
be both flexible (i.e. expressable and controllable in terms
of the user’s real protection needs) and at the same time
complete (i.e. secure against fools and against malicious
users). In the rest of this paper we develop an alternative
approach to file management which attempts to meet these
objectives, and we outline how this might be implemented
in an efficient way.

2. THE INFORMATION-HIDING PRINCIPLE
The basic proposal is that files should not be treated

as free-standing data structures. Instead they should be
regarded as modules organised according to the
information-hiding principle. This structuring principle,
which aims to encapsulate information about the design
and implementation of major data structures and
algorithms in individual modules rather than allow it to

fDepartment of Computer Science, Monash University, Clayton, Victoria 3168, ffDepartment of Computer Science, Melbourne University,
Parkvitie, Victoria 3052. Manuscript received January 1982.

56 The Australian Computer Journal, Vol, 14, No. 2, May 1982

A Software Engineering View of Files

appear at module interfaces, was developed largely in res
ponse to the many problems experienced by designers of
major operating systems and other complex software sys
tems in the 1960s. It was common practice at that time to
decompose systems into modules in such a way that major
data structures of the system (e.g. peripheral tables, job
queues) were free-standing, in the sense that they were
directly accessed by many different modules of the system.
In consequence, detailed information about their contents
and representation had to be known to many programmers
and programmed into many modules, just as in current day
application systems ‘information’ about the contents and
representation of files is reflected in the application pro
grams. This led to at least the following problems:
(i) Programmers had to communicate with each other

extensively about the data interfaces to their
programs (Parnas, 1971).

(ii) Duplication of effort and wastage of space occurred
because each program using a structure had to have
its own ‘access’ routines, e.g. tree traversal routines
if the structure was organised as a tree.

(iii) Even a minor change to a data structure involved
finding and modifying all the modules using the struc
ture.

(iv) There was considerable risk that a module might be
overlooked when a change was made — which largely
created the syndrome of frequent operating system
releases with new bugs.

(v) There was a tendency not to make changes because of
the extensive effort and risks involved.

(vi) Access to data structures had to be synchronised cor
rectly, which was not easy with the many modules
involved.
The basic solution to these problems, which are not

dissimilar to those encountered in application systems
which treat files as free-standing structures, was to hide the
detailed information about data structures behind entirely
procedural interfaces, i.e. to regard a structure and its
access routines as a single module. Other modules requiring
access to information in the structure would do so by
calling these access procedures rather than by directly
reading from or writing into the structure. Thus less com
munication between programmers was necessary (because a
procedural interface contains less information than the
detail required to describe a complex data structure), there
was less duplication of effort and waste of space (because
the access routines were written once only), changes to data
representations to achieve greater efficiency were localised
within a single module, and synchronisation was greatly
simplified.

The information-hiding principle, if used properly,
hides not only data structures but also algorithms (e.g. the
user of a module which sorts a data structure can be
unaware of the sorting algorithm used and his programs are
unaffected if the algorithm is changed) and it can be used
to hide other details such as lower abstract machines, inclu
ding real hardware systems (Rosenberg and Keedy, 1978).
It applies equally to the decomposition of user modules
(Parnas, 1972b) and operating systems (Keedy, 1978). It is,
of course, still important to specify interfaces (Parnas,
1972a), but since these are expressed entirely in procedural
terms it is easier to formalise the specifications using tech
niques which can be understood by programmers (Keedy,
1979).

The technique can also be used hierarchically. For

example, typical operating systems maintain many queues.
A queue access module might be defined along the follow
ing lines:

type queue;
procedure enqueue (x : item);

[This procedure inserts item x at the tail of the
queue]

Procedure dequeue (vary : item);
[This procedure removes the item at the head
of the queue, and returns its value to the caller
as item y]

procedure qlength (var z : integer);
[This procedure returns the integer value z,
which is a count of items on the queue]

This specification does not define how the queue is
organised. It could be an array, a linked list, etc. (Error
conditions, the maximum queue length, etc., have been
omitted for simplicity.) Such a module, represented pictor-
ially in Figure 1, would be useful in many parts of the
system. For example, it could be used by a process schedu
ler to maintain a queue of processes. The process scheduler
itself would be defined as an information-hiding module
with a suitable set of operations for controlling processes,
as the following simplified definition illustrates:

module process scheduler;
procedure create-process (var p : integer);

[This procedure creates a new process and re
turns its identifier in the parameter p]

procedure start-process (p : integer; a : address);
[This procedure causes process p to start execu
ting at address a]

procedure delay-process (p : integer);
[This procedure temporarily halts process p]

procedure resume-process (p : integer);
[This procedure resumes execution of the
delayed process p]

procedure delete-process (p : integer);
[This procedure destroys process p].

enqueue
procedure

dequeue qlength
procedure procedure

Queue Data
Structure

Figure 1. An Information-hiding Module to Organise a Queue.

The Australian Computer Journal, Vol. J4, No. 2, May 1982 57

A Software Engineering View of Files

create-process

delete-start-
Queueprocess process
Module

delay-
process process

Figure 2. A Process Scheduler Module using a Queue Module.

Other parts of the operating system could use this
module to control their processes without needing any
information about how the module works — in principle
without even knowing that the process scheduler needs
queues. In practice the process scheduler would use the
queue module to organise its information (Figure 2). At
the same time other system modules needing queues could
make use of the queue module for their own purposes.
Ideally this would be arranged by using the same reentrant
code in each case, but with separate instances of queue data
structures. Notice that this hierarchical organisation of
modules naturally leads to a separation of access modules
which understand how data structure are organised but not
the use to which they are put, and semantic modules which
provide meaningful operations on the data but are not con
cerned about its detailed organisation.

The information-hiding principle is closely related to
two other concepts. The first of these is the data abstrac
tion technique found in several research programming lang
uages (Wulf, London and Shaw, 1976; Liskov, Snyder,
Atkinson and Schaffert, 1977), and more recently in Ada
(Ichbiah, Barnes, Heliard, Krieg-Brueckner, Roubine and
Wichmann, 1979); it derives from the class construct in
Simula (Dahl, Nyhrhaug and Nygaard, 1968). The second
is the ‘object model’, which relates objects in computer
systems to the operations associated with them (Jones,
1978). 3

3. FILES WITH ACCESS ROUTINES
There is some commonality between the application

of the information-hiding principle and the use of file
access methods in many existing systems, but the latter
often do not keep rigorously to the principle, nor were they
developed with most of the previously mentioned aims in
mind, except to avoid duplication of effort. On the other
hand, the information-hiding principle (like the idea of data
abstraction) has usually been applied only to temporary
data structures in the computational memory. Neverthe-

58

RANDOM
FILE 2

RANDOM ACCESS METHOD

Figure 3. The Conventional View of a File Access Module.

less, it is clear that both ideas can be unified without great
difficulty. The interface definition for a conventional
random access module might be summarised as follows:

type random;
procedure create (...........);
procedure open (............);
procedure close (............);
procedure insert (...........);
procedure delete (...........);
procedure modify (...........);
procedure retrieve (.........);

The parameters to these procedures would identify the
appropriate file and records within the file, etc.

As it stands the definition conforms to the infor
mation-hiding principle. It would not do so if the user
program could also access information within the module,
e.g. a file control block or file definition table. Also,
problems would arise (a) if the module could be used to
access files not created by it; or (b) if other programs or
modules could access files created by it. Ideally, a mech
anism should exist to ensure that these routines only and
always access files created by the create procedure. Such
a mechanism is usually absent in existing systems.

The same reentrant routines could, of course, be
used to access all random files. In conventional systems we
tend to visualise this as shown in Figure 3. However, this
is really a reflection on the poor code-sharing facilities
provided in most computers. A more useful visualisation is
shown in Figure 4. The reasons for this will become evident
as we proceed. At this point suffice it to say that each file
module can more easily be considered to have a single
logically separate identity, which embraces both the data
and the access method (even though the code of the access
routines might physically be shared).

4. FILES WITH COMPLEX INTERNAL STRUCTURES
Some file access methods have a more complex struc

ture than that described in the previous section. The
paradigm for this is an indexed sequential file which has an

Figure 4. An Information-hiding View of File Access Routines.

RANDOM
ACCESS

RANDOM
ACCESS

RANDOM
ACCESS

RANDOM
FILE 3

RANDOM
FILE 2

RANDOM
FILE 1

ROUTINESROUTINESROUTINES

The Australian Computer Journal, Vol. 14, No. 2, May 1982

RANDOM
FILE 1

RANDOM
FILE N

A Software Engineering View of Files

INDEXED SEQUENTIAL

INDEX
ACCESS

PRIME
DATA

INDEX PRIME DATA

ACCESS
ROUTINES

ROUTINES

ACCESS ROUTINES

Figure 5. Information-hiding for the Internal Structures of a
Complex File.

index, a prime data area, and possibly an overflow area
(which we ignore for the sake of simplicity). A program
which uses such a file should not need to know about this
complex internal structure. Instead it will expect to have an
interface similar to, perhaps a superset of, that described
for random files in the previous section. On the other hand
the existence of different major data structures internally
suggests that each such structure should have its own access
routines. This leads to the hierarchical structure shown in
Figure 5. From the software engineering viewpoint this has
the advantages of good structure, in particular that a change
to one structure, say the index, is localised within a small
module. Given a suitable computer architecture it might
also have the further advantage that one group of routines
— say the index access routines — could also be shared inde
pendently, perhaps by some other access method that needs
an index but organises its prime data differently. Again, it is
essential that only the right routines can be used with the
right data.

Access
Routines

File Data
Structure

APPLICATION

PROGRAM 1
ROUTINES

SEMANTIC

APPLICATION

PROGRAM 2 ROUTINES

SEMANTIC

Figure 6. Semantic Routines in the Application Programs.

The Australian Computer Journal, Vol. 14, No. 2, May 7982

Semantic

File

Access
Routines

Routines

File Data

Structure

APPLICATION

PROGRAM 1

PROGRAM 2

APPLICATION

Figure 7. Semantic Routines associated with the File.

5. SEMANTIC ROUTINES
In conventional systems a knowledge of the meaning

of the data held in a file is usually programmed into the
application programs. For example, if the file holds infor
mation about bank accounts the application programs, if
well-structured, will contain subroutines to perform oper
ations such as ‘open an account’, ‘make deposit’, ‘make
withdrawal’, ‘add interest’, 'authorise overdraft’, 'read
account history’, ‘read current balance’, ‘close account’.
We refer to such subroutines as ‘semantic routines’, and it
is these routines which call the file access routines (Figure
6).

In some cases we may find that the same semantic
operation is needed in several programs. For example, ‘read
current balance’ and ‘close account’ might appear both in
a program used by bank tellers and in a program used by
head office auditors. This situation introduces similar
problems to those discussed in relation to access routines,
e.g. duplication of programming effort, wastage of memory
space, and more difficult maintenance. The latter arises,
for example, if the fields in records of the file are changed.
These problems can be solved in the same way, i.e. by
detaching the semantic operations from application pro
grams and associating them in a hierarchical fashion with
the file itself (Figure 7). In this way the application pro
grams become simpler and more intelligible, while the file
module becomes a more meaningful abstract object. But
the main advantage of this approach becomes clear when
we consider the question of information protection.

6. PROTECTION OF INFORMATION
Current methods of file protection are based on cum

bersome software mechanisms which usually treat files as
free-standing structures and therefore can only control
access in terms of operations such as ‘read-only’, ‘read/
write’, ‘append’, etc. In other words, access rights bear no
relationship to the semantics of the file usage. Some data
base systems can improve on this, but only at the expense
of even more cumbersome software.

If, however, we could develop a mechanism which
sees protection in terms of permission to use (i.e. call)
particular semantic operations (as outlined in the previous
section), a much finer grain of protection would be
achieved without the intervention of cumbersome mono
lithic software.

The basis of such a protection scheme would be the
presentation of a ‘capability’ to the call mechanism of the
computer, when the application program calls a semantic

59

A Software Engineering View of Files

Module Identifier Call Rights

Figure 8. A Module Capability.

routine. The capability would consist of two parts, a unique
module identifier and a set of access rights to indicate
which procedures of the module could be called (Figure 8).
These call rights could be represented by a bit string, with
each bit corresponding to one of the semantic routines of
the module, or as an integer representing a defined set of
procedures (Bishop, 1977). The capability itself would need
to be protected in one of the usual ways, i.e. by tagging or
by partitioning (Fabry, 1974), and would be held in a direc
tory equivalent to a file directory in existing systems. An
example showing how semantic operations on files can be
protected using capabilities implemented by a different but
similar technique, used in the Hydra system, has been
described by Wulfet al. (1974).

The power of our mechanism can be illustrated using
the example of the bank account file described in the pre
vious section. We can imagine that various bank employees
would need the right to access bank accounts, but in differ
ent ways. Figure 9 illustrates how they might be
constrained to use only the appropriate semantic routines.
The ticks in each column represent the procedures which
can be called by a particular employee.

It now becomes clear why it is more convenient to
view the file and its associated routines as a single module
with a single identifier. In this example we could envisage
that many such bank account files might exist, typically
one per bank branch of a major banking organisation. The
employees at a particular branch (the first three columns)
would each be given an appropriate capability only for their
own branch’s file, not for all files, so that a capability
simply to call the procedures without identifying the file
instance would be unsatisfactory.

In the proposed scheme the module identifier must
contain enough information to enable the system to

Bank
Agent:

Semantic

Routines

open account

deposit

withdraw

add interest

luthorise overdraft

read account history

read current balance

close account

Figure 9. Access Rights based on Semantic Routines.

identify both the file data segments and the associated
procedures. This can be achieved efficiently by the iden
tifier defining the data only, and by maintaining with the
data a pointer to the code segments of the module.

One question which arises relates to the size of a file.
In the bank account example, it would be possible to treat
each customer’s account as a separate file, to treat all the
accounts at a particular branch as a file, or to treat all
accounts from all branches as a single file. Various trade
offs must be considered. The proliferation of many small
(e.g. single account) files would lead to space management
problems and to a proliferation of capabilities held in each
user’s directory. On the other hand, a single file for all
accounts at all branches would mean that all bank
employees would have some access to all accounts, e.g. at
other branches, which would also be unsatisfactory from
the protection viewpoint. Thus, in this case a reasonable
compromise would be to maintain one account file per
branch, which minimises space management problems and
the proliferation of capabilities, but which provides what
appears to be a reasonable level of security.

A potential problem with identifying a file and its
code in a single identifier occurs if we wish to call a pro
cedure which simultaneously handles two or more files,
e.g. to merge or compare them. However, this is easily over
come by providing a mechanism which allows capabilities
to be used not only as call destinations but also as param
eters to such calls. In such a case information-hiding can be
guaranteed if the mechanism checks that such parameters
are passed only to modules of the same code type.

7. BENEFITS OF UNIFORMITY
The approach to files which we have described has a

further advantage. Since files are now regarded as modules
with code entrypoints they take on an external appearance
which is identical to all other major modules of software in
an information-hiding system. Application programs can
be regarded as modules with (usually) a single interface
procedure. Program modules appear as modules with mul
tiple entrypoints, as also do operating system modules,
subroutine libraries and data abstractions at the program
ming level. This means that uniform mechanisms can be
used to catalogue them, to call theft, to protect them, and
to synchronise them.

Such uniformity of mechanism is greatly enhanced if
the conventional distinction between filestore and compu
tational memory is abandoned in favour of a single homog
eneous virtual memory which contains all modules and
their data, whether temporary or permanent. The feasi
bility of such a memory organisation has already been
demonstrated by Multics (Organick, 1972) and other
research systems, but more notably in the IBM System/38
(Houdek and Mitchell, 1978). None of these systems,
however, enforces information-hiding as described above.

8. FINAL REMARKS
An objection often raised against the scheme des

cribed above, and against other schemes which rely heavily
on procedure calls to create good structure, is that the call
overheads are too high. Consequently there is a temptation
to relax the information-hiding principle, for example by
allowing variables as well as procedures to be ‘exported’
from modules. In our view this temptation should be vigor
ously resisted, and other methods should be used to avoid
such overheads (Keedy, 1980a). It should be remembered

60 The Australian Computer journal, Vol. 14, No. 2, May 1982

A Software Engineering View of Files

also that most modern computers now provide extensive
hardware support for procedure calls.

The first author and his colleagues are currently de
veloping two computer systems which will efficiently im
plement the ideas described in this paper. The first,
MONADS II, is based on a HP2100 16 bit minicomputer
which has been extensively modified to provide a hom
ogeneous paged virtual memory with 29 * * * * * * 16 address spaces
each 216 bytes maximum in length (Abramson, 1981;
Rosenberg and Keedy, 1981), and capability-based
addressing for on-stack and off-stack data as well as capa
bility-based module calling. Because of the limited address
ing range, and for other reasons also, this is regarded as a
pilot system only and a further processor, MONADS III,
is now in the design stage and will be built from standard
components, including bit-slice chips. The homogeneous
virtual memory, based on the model described in (Keedy,
1980b), will have an addressing range of the order 228 x
228 nibbles (4-bit units) with a 32-bit word size. The
microcode of both systems and the operating system
(portable between the two) will together provide full
support for the ideas described in this paper.

It should be noted, however, that while new hard
ware and operating systems will simplify the application
of the principles and techniques described in this paper,
many of the benefits can be gained using existing tools.
For example, if the system designer is constrained to use
COBOL and a conventional operating system, it is pos
sible to design a system along the lines described above,
using existing file access methods and defining semantic
routines as part of the file design phase. Individual appli
cation programs would be designed to use the semantic
routines already defined, but then the COPY facility of
COBOL would be used to insert copies of the semantic
routines into these programs as necessary. Although full
protection could not be achieved in this way (unless some
control could be exercised over the use of the COPY
facility), the remaining software engineering aims could at
least partially be fulfilled.

9. ACKNOWLEDGEMENTS
We would like to thank Tony Montgomery for

suggesting improvements on an earlier draft of this paper.
Thanks are also due to members of the MONADS project
for many conversations on the subject of the paper, espec
ially to David Abramson, John Rosenberg, and David
Rowe, who are heavily involved in the design and imple
mentation of the MONADS II and MONADS III systems.

We also thank the Australian Research Grants Com
mittee for software and hardware grants (F77/15337 and
F80/15191), and the Monash Special Research Grants
Committee for grant SCI 8/79.

The Australian Computer Journal, Vol. 14, No. 2, May 1982

10. REFERENCES

ABRAMSON, D. (1981), Hardware Management of a Large Virtual
Memory. Proc. 4th Australian Computer Science Conference,
Brisbane, pp. 1-13.

BISHOP, P.B. (1977), Computer Systems with a Very Large Address
Space and Garbage Collection. Ph.D. Thesis, MIT, May 1977.

DAHL, O.-J., MYHRHAUG, B. and NYGAAD, K. (1968), The Sim
ula 67 Common Base Language. Norwegian Computer
Centre, Oslo.

FABRY, R.S. (1974), Capability-based Addressing. Comm. ACM,
Vol. 17, No. 7, pp. 408-412.

HOUDEK, M.E. and MITCHELL, G.R. (1978), Translating a Large
Virtual Address. IBM System/38 Technical Developments,
IBM Corporation, pp. 19-21.

ICHBIAH, J.D., BARNES, J.G.P.,HELI ARD, J.C.,KRIEG-BRUECK-
NER, B., ROUBINE, O. and WICHMANN, B.A. (1979),
Preliminary ADA Reference Manual, and Rationale for the
Design of the ADA Programming Language. ACM Sigplan
Notices, Vol. 14, No. 6, Parts A and B.

JONES, A.K. (1978), The Object Model, a Conceptual Tool for
Structuring Software. In: Operating Systems, An Advanced
Course, Ed. R. Bayer, R.M. Graham and G. Seegmuller, Lec
ture Notes in Computer Science, Vol. 60, Springer Verlag,
Berlin, Heidelberg, New York, pp. 7-16.

KEEDY, J.L. (1978), The MONADS Operating System. Proc. 8th
Australian Computer Conference, Canberra, pp. 903-910.

KEEDY, J.L. (1979), On the Specification of Software Subsystems,
Aust. Comput. /., Vol. 11, No. 4, pp. 127-1 32.

KEEDY, J.L. (1980a), On the Exportation of Variables, Aust. Com
put. /., Vol. 12, No. 1, pp. 23-27.

KEEDY, J.L. (1980b), Paging and Small Segments: A Memory Man
agement Model. Proc. 8th World Computer Conference,
North-Holland, pp. 337-342.

LISKOV, B., SNYDER, A., ATKINSON, R. and SCHAFFERT, C.
(1977), Abstraction Mechanisms in CLU. Comm. ACM,
Vol. 20, No. 8, pp. 564-576.

ORGANICK, E.l. (1972), The Muitics System: An Examination of
its Structure, MIT Press, Cambridge, Mass.

PARNAS, D.L. (1971), Information Distribution Aspects of Design
Methodology, Proc. 5th World Computer Conference, North-
Holland, pp. 339-344.

PARNAS, D.L. (1972a), A Technique for Software Module Speci
fication with Examples. Comm. ACM, Vol. 15, No. 5, pp.
330-336.

PARNAS, D.L. (1972b), On the Criteria to be Used in Decompos
ing Systems into Modules,Comm. ACM, Vol.15,No.12,pp.
1053-1058.

ROSENBERG, J. and KEEDY, J.L. (1978), The MONADS Hard
ware Kernel, Proc. 8th Australian Computer Conference,
Canberra, pp. 1542-1552.

ROSENBERG, J. and KEEDY, J.L. (1981), Software Management
of a Large Virtual Memory, Proc. 4th Australian Computer
Science Conference, Brisbane, pp. 173-181.

WULF, W., LONDON, R. and SHAW, M. (1976), An Introduction
to the Construction and Verification of Alphard Programs.
IEEE Transactions on Software Engineering, Vol. SE-2, No.
4, pp. 253-264.

WULF, W., COHEN, E., CORWIN, W., JONES, A., LEVIN, R.,
PIERSON, C„ and POLLACK, F. (1974), HYDRA: The
Kernel of a Multiprogramming Operating System, Comm.
ACM, Vol. 17, No. 6, pp. 337-345.

The Input Space Model for
Software Testing
N. Parkin*

The input space model of software testing as propounded by Cho is reviewed. The limitations
and potential of the model are investigated. The work of Cho is extended to testing of languages de
fined using Backus-Naurform (BNF). An example of a symbolic input attribute decomposition (SI AD)
tree for a PASCAL subset is included to illustrate the method of extension.

Keywords and Phrases: software testing, input space models, statistical quality control, soft
ware failure, reliability.

CR Categories: 4.12,4.2,4.6.

1. INTRODUCTION
As Dijkstra (1972) has remarked “Testing shows the

presence of bugs not their absence”. Clearly there is some
thing profoundly worrying about this statement, particu
larly as software is taking on more and more critical roles
such as patient monitoring, nuclear early warning, space
craft guidance, etc. Yet still the only practical way to find
out whether software is performing to specifications is to
test it. (Of course, very worthwhile and interesting work is
going on in the area of program proving, both manual and
automatic, but we still cannot apply these techniques to
large practical projects.)

A major problem with testing arises when we apply
the technique to large practical systems. The input domain
for such a system, i.e. the set of all valid inputs, is usually
very large and very often it is infinite. This means that we
cannot exhaustively test the system. Furthermore, even if
we could process all of the inputs there would be severe
problems in examining every one of the corresponding out
puts produced. We need some kind of sampling technique
which will enable us to look at a finite subset of inputs and
infer the reliability properties of the software. Cho (1980)
has proposed a technique for the generation of random
samples from the input space and has applied it to the test
ing of FORTRAN and COBOL compilers and to certain
application programs.

In this paper we extend the technique to lang
uages which are defined in BNF.

2. THE INPUT SPACE MODEL AND
QUALITY CONTROL
Kopetz (1980) has proposed the following model of

software. It is influenced by the work of a number of
people including Denning (1971), Dijkstra (1972), Goos
(1973), and Horning and Randell (1973).

A program is an ordered set of statements

SSl'S2,--, S"j

‘‘Copyright © 1982, Australian Computer Society Inc.
General permission to republish, but not for profit, all or part of
this material is granted; provided that ACJ’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Australian Computer Society.1'’

The execution of a single statement is called an action.
Kopetz considers a number of aspects of the model. We are
interested here in the transformational aspect. In the trans
formational model each action is considered as a function.
The function operates on variables xa, x2, . . ., xn which
acquire input values from domains D1; D2, . . ., Dn and
results from ranges R^ R2, . .., Rn. The input space is the
Cartesian product of the D,, i = 1,. .., n. The output space
is the Cartesian product of the Rb i = 1, . . ., n. The vari
ables are called the input variables and output variables of
the action.

In order to apply the model to a whole process rather
than an action the following definitions are introduced. (It
is assumed that the process is embedded in an environ
ment.) A changed variable of the process is any variable
which is an output variable to any one action. A significant
variable of the process is any variable which is an input var
iable to any one action. An input variable of the process is
every variable that is a significant variable of the process
and a changed variable of the -environment. An internal
variable of the process consists of all variables that are used
in any one action of the process and are neither input nor
output variables of the process.

The transformational input space model is obtained
by ignoring the internal variables of the process and dealing
only with the input variables, the output variables and the
data transformation of the process.

Cho (1980) takes the input space model and applies
traditional techniques of statistical quality control. In this
approach a software system is considered as analogous to an
industrial process which produces an infinite number of
outputs. Each output is considered to be a product unit.
The major advantage of the method is that numerical con
fidence levels can be claimed for software quality after
testing. The testing procedure described by Cho involves six
steps:

1. Define the product unit.
2. Define the product unit defectiveness.
3. Determine a sampling plan.
4. Construct test data by a random procedure using a

SI AD tree.
5. Analyse the test results.
6. Perform statistical inference on the test results.

*Department of Computer Science, Massey University, Palmerston North, New Zealand. Manuscript received December 1981.

62 The Australian Computer Journal, Vol. 14, No. 2, May 1982

Software Testing

A sampling plan is organised using traditional quality
control techniques. The inputs to the sampling plan if single
sampling techniques are used are 91; ax, d2, a2, where % is
the producer’s risk at defective rate of 6X and a2 is the
user’s risk at defective rating of d2. Note that ax, the pro
ducer’s risk is the probability of having a good software
unit rejected whereas a2, the user’s risk is the probability of
accepting a bad software unit.

The above four parameters must be agreed between
the producer and the user before the testing starts. At
present there is little case history so agreement may be
difficult. However as the technique becomes established
this difficulty should go away or at least become less of a
problem.

The SIAD (or symbolic input attribute decompo
sition) tree is a representation of the input data of the pro
gram. The relationships between the data components is
shown by the tree. In Cho’s treatment numerical data ele
ments have tree elements indicating the lower and upper
bounds. The provision of lower and upper bounds is of
course applicable to any sequenced data structure so that
this concept can be extended to other data types in a heav
ily typed language such as PASCAL. The technique is illus
trated in the next section by a FORTRAN example.

Tree elements are then selected using a (well-tested!)
pseudo-random number generator. A given element once
selected then has a statement built around it. (This is cur
rently done manually.) If in the example, index 14 were
generated, the corresponding statement(s) might be

READ (5,1) N
1 FORMAT (1X, I/O)

If index 13 were also generated the corresponding state
ments) might be

READ (5,2) Y
2 FORMAT (IX, F10.2)

The test program might then be

READ (5,1) N
1 FORMAT (1X, 110)

READ (5,2) Y
2 FORMAT (1X, F10.2)

WRITE (6,1) N
WRITE (6,2) Y
STOP
END

3. THE SIAD TREE FOR FORTRAN
The following example, which is based on a larger

example in Cho (1980), shows how the SIAD tree for a
FORTRAN compiler is obtained and used to select ran
dom language elements.

I/O

READ

INPUT LOGICAL NO FORMAT
SPECIFICATION

INPUT
LIST

UNFORMATTED
READ

STATEMENT NO. INTEGER REAL INTEGER
OF FORMAT 1-D SINGLE SINGLE

ARRAY VARIABLE VARIABLE
STORING
FORMAT
SPECIFICATION

POSITIVE
INTEGER

INTEGER
VARIABLE

FORMATTE
READ

SINGLE ARRAY
VARIABLE

A linear ordering of the tree elements is obtained and
this is used to give each tree element an index number as
shown in Table 1. (Cho uses the pre-order traversal to give
the ordering shown.)

Note that additional statements had to be added to
make the program acceptable. The additional statements
for FORTRAN are usually DIMENSION, WRITE, STOP,
END, etc. Note also that some elements occur several times
in the tree so that the predecessors of the element are need
ed when producing the appropriate statement.

After the test programs have been run, the results are
examined and a simple accept/reject decision is taken on
each program. This allows the use of standard industrial
quality control tests and experimental designs.

4. EXTENSION TO A BNF DEFINED LANGUAGE
One advantage of languages such as Algol 60,

PASCAL, etc. is that their syntax is defined in terms of
BNF. This section shows how we can use a BNF descrip
tion of a small PASCAL subset to generate a SIAD tree for
use in quality control measurements.

The small subset shown in Table 2 is chosen to keep
the size of the problem within bounds. It illustrates most of
the problems involved in using the BNF definition to pro
duce a SIAD tree. The subset is taken from Calingaert
(1979) with slight amendments. Instead of recursive pro
ductions of the form

TABLE 1.

Index Ref Element

1 X1 I/O
2 X11 READ
3 XI11 INPUT LOGICAL NO.
4 X1111 POSITIVE INTEGER
5 X1112 INTEGER VARIABLE
6 X112 FORMAT SPECIFICATION
7 X1121 FORMATTED READ
8 X11211 STATEMENT NO. OF FORMAT
9 X11212 INTEGER 1-D ARRAY STORING FORMAT

SPECIFICATION
10 X1122 UNFORMATTED READ
11 X113 INPUT LIST
12 X1131 SINGLE VARIABLE
13 X11311 REAL SINGLE VARIABLE
14 X11312 INTEGER SINGLE VARIABLE
15 X1132 ARRAY

stmtlist = stmt | stmt stmtlist

we use the alternative

stmtlist = stmt {;stmt}

where components enclosed in { } are repeated zero or
more times. The aim is to generate random components of
the language and then to compose them into a plausible
program. (We notice here a possible flaw in the logic of the
process. The components are randomly generated but the
program must combine the statements into a reasonable
sequence.)

Besides recursion, another problem in the language
subset considered is that of type and declarations. The
approach adopted is to omit type and declaration from the

The Australian Computer Journal, Vol. 14, No. 2, May 1982 63

TABLE 2. Definition of a PASCAL Subset

Software Testing

TABLE 3. SIAD Tree for the PASCAL Subset

program
decllist
declaration
type
cmpdstmt
stmtlist
stmt
simplestmt
assignstmt
expression
term
factor
iostmt
structstmt
if stmt
whilestmt
co ndition

IDENTIFIER
letter
digit
RELATION

= “VAR" decllist cmpdstmt
= declaration | declaration ""’decllist
= IDENTIFIER type
= “BOOLEAN” | “CHAR” | “INTEGER” | "REAL”
= “BEGIN” stmtlist “END”
= stmt | stmt“;”istmtlisti
= simplestmt | structstmt
= assignstmt | iostmt
= IDENTIFIER “:=” expression
= expression "+” term | term
= term factor | factor
= “(” expression “)” | IDENTIFIER
= ("READ” I “WRITE”) “(” IDENTIFIER “)”
= cmpdstmt | ifstmt | whilestmt
= “I F” condition “THEN” stmt [“ELSE ” stmt]
= “WHILE” condition “DO” stmt
= expression RELATION expression

(a) Syntactic rules

= letter! 1 etter |d igit}
= “A” “B” | ..f“Z”
= “0” "1 ” || “9”
= “<” I “=” I "=A” I I ">’

(b) Lexical rules

SIAD tree proper. Each time an identifier is introduced its
type is generated randomly from the types indicated.
Declarations are then produced afterwards so as to match
the types which have been randomly generated.

The SIAD tree for the PASCAL subset is shown in
Table 3.

The SIAD tree for a given set of BNF productions is
not unique. Arbitrary decisions may have to be taken in
order to keep the tree within reasonable bounds. The SIAD
tree produced for the Pascal subset was obtained by follow
ing closely the approach used by Cho (1980). A refinement
of the approach would take account of the expected fre
quencies of occurrence of language elements.

5. DISCUSSION
Musa (1980) is not entirely convinced of the utility

of the input set approach. He cites two deficiencies of the
approach:
1. The large number of possible input sets for any useful

program makes it impractical.
2. The proportion of input sets that execute successfully

is not particularly meaningful to software engineers;
MTTF (mean time to failure) is more useful since it is
related to costs and other impacts of failure and since
it is compatible with standard reliability theory.
Musa does consider the input space approach as a

valuable concept and feels that it may be useful in under
standing the so-called ‘testing compression factor’. (Musa
introduced the term ‘testing compression factor’ to account
for the removal of redundancy inherent in testing of the
operational environment. For example, if one hour of test
represents 10 hours of operation then the testing compres
sion factor is 10.)

The approach of Cho goes some way towards dealing
with the first of Musa’s objections cited above. The second
deficiency suggests a possible extension of the input space
approach to determining mean-time-to-failure of software.
In fact there are two ways of reconciling Musa’s objections
with the technique proposed by Cho. We may call these the
complementary approach and the extensional approach. In

index element symbol

1 cmpdstmt X1
2 begin stmtlist end X11
3 stmt {; stmt} XI11
4 simplestmt X1111
5 assignstmt X11111
6 identifier := expression XI11111
7 term {+ term } X1111111
8 factor {* factor} X11111111
9 (expression) X111111111

10 identifier X111111112
11 iostmt XI1112
12 READ (identifier) X111121
13 WRITE (identifier) X111122
14 structstmt X1112
15 cmpdstmt XI1121
16 ifstmt XI1122
17 if condition then stmt XI11221
18 else stmt X1112211
19 expression X1112212
20 term {+ term } XI1122121
21 factor}* factor} XI11221211
22 (expression) XI112212111
23 identifier X1112212112
24 relation XI112213
25 < XI1122131
26 < XI1122132
27 = XI1122133
28 XI1122134
29 > XI1122135
30 > XI1122136
31 expression XI112214
32 term} + term} XI1122141
33 factor {* factor} X111221411
34 (expression) X1112214111
35 identifier X1112214112
36 whilestmt X11123
37 while condition do stmt XI11231
38 expression X1112311
39 term {+ term} XI1123111
40 factor {* factor} X111231111
41 (expression) X1112311111
42 identifier XI112311112
43 relation X1112312
44 < X11123121
45 < X11123122
46 = X11123123
47 XI1123124
48 > X11123125
49 > X11123126
50 expression XI112313
51 term {+ term } XI1123131
52 factor {* factor} X111231311
53 (expression) X111231 3111
54 identifier X1112313112

the complementary approach we see Cho’s SIAD tree and
quality control technique as allowing a completely differ
ent approach to software testing. The ability of the method
to draw on well-tried and tested (sic) results from statistical
quality control is a strong advantage of Cho’s approach.
Musa’s model of software reliability is a well-known and
important one. In the extensional approach the software
quality control technique of Cho may be refined and used
to give information on mean time to failure and on the
‘testing compression factor’.

6. CONCLUSION
The author believes that the SIAD tree approach of

Cho is a valuable first step towards software quality control
particularly as it has been demonstrated that languages
defined in terms of BNF are amenable to the approach. The

64 The Australian Computer Journal, Vol. 14, No. 2, May 1982

Software Testing

method will also be applicable in connection with the data-
oriented software development techniques of Jackson
(1975) and Warnier (1976). However it is felt that the
method needs refinement and that more data on expected
frequencies of occurrence of data elements needs to be
available.

Software quality control is an appealing technique. It
is still in its infancy but as more sophisticated methods of
sampling based on knowledge of properties are developed
the technique will produce more valid results.

It does not provide a measure of MTTF but it does in
volve the user in a formal acceptance methodology and this
is a valuable aspect of the technique.

7. REFERENCES
CALINGAERT, P. (1979): Assemblers, compilers and program

translation, Computer Science Press, Potomac.

CHO, C.K. (1980): An Introduction to Software Quality Control,
Wiley, New York.

DENNING, P.J. (1971): Third Generation Computer Systems,
Comput. Surv., 3, No. 4, pp. 175-216.

DIJKSTRA, E.W. (1972): Notes on Structured Programming, in
Structured Programming, ed. E.W. Dijkstra, O.J. Dahl and
C.A.R. Hoare, Academic Press, London, pp. 1-82.

GOOS, G. (1973): Hierarchies, in Advanced Course on Software
Engineering, ed. F.L. Bauer, Springer-Verlag, Heidelberg,
pp. 29-46.

HORNING, J.J. and RANDELL, B., (1973): Process Structuring,
Comput. Surv., 5, No. 1, pp. 177-193.

JACKSON, M.A. (1975): Principles of program design, Academic
Press, London.

KOPETZ, H. (1978): Software reliability, MacMillan, London.
MUSA, J.D. (1980): The Measurement and Management of Soft

ware Reliability, Proc. IEEE, 68, No. 9, September 1980,
pp. 1131-1143.

WARNIER, J.D. (1976): Logical Construction of Programs, Van
Nostrand Reinhold, New York.

The Australian Computer journal, Vol. 14, No. 2, May 1982 65

Software Science —
The Emperor's New Clothes?
A. M. Lister*

The emergent field of software science has recently received so much publicity that it seems
appropriate to pose the question above. This paper attempts to provide an answer by examining the
methodology of software science, and by pointing out apparent anomalies in three major areas: the
length equation, the notion of potential volume, and the notion of language level. The paper concludes
that the emperor is in urgent need of a good tailor.

Keywords and Phrases: Software science, programming language, length equation, potential
volume, language level.

CR Categories: 4.6, 5.2.

1. INTRODUCTION
In the last three years software science (Halstead,

1977) has received a great deal of publicity (e.g. Fitz
simmons and Love, 1978; van der Knijff, 1978; IEEE,
1979). The flood of literature has been so voluminous that
the passive spectator may have been persuaded that here in
deed is a significant breakthrough, or wonder, if of more
cynical disposition, whether enthusiasm has outrun discret
ion. The situation is reminiscent of that in the fairytale,
where courtiers outbid each other to exclaim over the mag
nificence of the emperor’s new clothes; it was left to a small
child to point out that the emperor was in fact naked. This
paper is written from the child’s point of view, in the belief
that critical appraisal is currently appropriate.

Section 2 of the paper outlines the notation and ter
minology of software science. Its purpose is not to
summarise the theory (see, for example, Fitzsimmons and
Love, 1978, or van der Knijff, 1978) but to introduce the
notation used later. Section 3 discusses some aspects of the
methodology of software science, while the following
sections detail apparent deficiencies in three specific major
areas; the length equation, the potential volume of an algor
ithm, and language level. Section 7 contains a summary and
some concluding remarks.

2. SOFTWARE SCIENCE MEASURES
The fundamental measures of software science, from

which all others are derived, are (for any program)
n1 — number of distinct operators used
n2 — number of distinct operands used
Nl — number of operator occurrences
N2 — number of operand occurrences.

The vocabulary of the program is

n = nl + n2

and the program length is

N = N1 +N2

“Copyright © 1982, Australian Computer Society Inc.
General permission to republish, but not for profit, all or part of
this material is granted; provided that ACJ’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Australian Computer Society.’’

The volume of a program, which is the minimum number of
bits required to hold it, is

V= Nlog2n

The potential volume V* of an algorithm is the volume of
the minimal program required to express it. V* is a
property of an algorithm, and is independent of the pro
gramming language used.

The ratio

L = V*/V

is the level of a program, and measures the degree of
compaction which would be achieved if the language used
allowed the algorithm to be expressed in its minimal form.
The effort

E = V/L

is held to be a measure of the effort (and hence time) re
quired to write or understand a program.

The final measure of software science is the language
level of a programming language, given by the product

\=L V*

which is asserted to be the quantitative measure which
corresponds to intuitive ideas of the level of a programming
language.

Calculation of the quantities above for a particular
program requires the measurement of nt, n2, Nl, and N2
for the program, together with a knowledge of V* for the
corresponding algorithm. If Nl or N2 are not available the
length equation

N = nt log2 nl + n2 log2 n2 (=N)

is claimed to yield a good approximation to the length N. If
V* is unknown then

L = (2 x n2)j(n! x N2)

can be used as an approximation to the program level L
(which can in turn be used to compute approximations E
and X for E and X).

fDepartment of Computer Science, University of Queensland, St. Lucia, Qld. 4067. Manuscript received 20 February 1982.

66 The Australian Computer Journal, Voi. 14, No. 2, May 1982

Software Science

3. THE METHODOLOGY OF SOFTWARE SCIENCE
In principle there are two ways in which to validate

the hypotheses of software science (which would then
become “laws”). The first is by deduction from known
properties of algorithms and programs; the second is by
inference from repeated observation. At present our know
ledge about algorithms and programs is insufficient for the
deductive approach to be viable, though some attempts
(e.g. Halstead, 1977; Gordon, 1979) have been made. These
attempts have provided plausibility arguments about why
the hypotheses may be true, but they fall far short of
deductive proofs that they are true. For example, Halstead
(1977, pp. 9-11) derived the length equation by an
argument about the information content of different strings
of symbols, but the argument rests on questionable assump
tions, and at one point erroneously equates two different
sets. As Fitzsimmons and Love (1978, p. 6) admit, “no
rigorous mathematical derivation for this equation is cur
rently known”.

In the absence of deductive proofs software science
must rely for its validity on empirical evidence that it
works. On the face of it that evidence is impressive: Fitz
simmons and Love, for example, summarise twenty-two
experiments which appear to have achieved good results.
However, closer examination reveals that the evidence is
not so conclusive as it seems, for reasons discussed below.

Since all software science measures are derived from
counts of operators and operands in program? it is
important that the counting scheme be clearly defined and
consistent across experiments. For example, it should be
clear which symbols are to be classed as operators and
which as operands, whether I/O statements and declarative
text are to be included, and whether a symbol which is used
(overloaded) with different meanings is to be counted
separately for each meaning. Moreover, since software
science hypothesises about the influence of language on
programming, the counting scheme should be applicable to
programs written in any of a wide class of languages. Hal
stead’s original counting scheme (Balut, Halstead, and
Bayer, 1974) was devised for Fortran programs; it forms
the basis of an analysis program (Ottenstein, 1976) used
extensively at Purdue University, the home of most
software science research. Unfortunately, the scheme is
difficult to apply to more modern languages, particularly
those with structured data types (e.g. Pascal’s records) and
less primitive control constructs. These difficulties can of
course be resolved, since they are largely a matter of def
inition: the problem is that they have been resolved in
different ways by different researchers, so that no consis
tent counting scheme has been used for experiments on
non-Fortran programs. The consequences are serious, since
it has been shown (Elshoff, 1978) that small variations in a
counting scheme for PL/1 programs can affect certain meas
ures by as much as 50 per cent. One can conjecture that the
effects of inconsistency over different languages might be
even greater. (It is interesting, too, that none of Elshoff’s
variants was obviously the “right” one to use: he remarks
[p. 44] that “the merits of any of the methods can be sup
ported depending on one’s point of view”.) Until consistent
counting schemes are devised and adopted it would be rash
to pin too much faith on some experimental results.

Another area which merits caution is the interpre
tation of the results themselves. Many workers have repor
ted their results in the form of a correlation coefficient
between two measures, the first as predicted by the theory

and the second as observed in the experiment. A high cor
relation is usually held up as evidence that the hypothesis in
question is true. Correlation coefficients are, of course,
notoriously subject to abuse: some reasons for cautious
interpretation in this context are —
(1) A correlation coefficient is a measure of linear depen

dence between two random variables. None of the
reported experiments attempts to show that the var
iables in question are indeed random.

(2) Given that the two variables are random, a high
correlation coefficient indicates that there is a strong
linear relationship between them, but it does not indi
cate what that relationship is. For example, a high
correlation between N and N does not show, as some
workers have suggested, that N = N, but only that/V
and N are related. Linear regression analysis, which
would establish what the relationship is, has not been
performed in most reported experiments, and is not
even mentioned in the comprehensive survey of
results given by Fitzsimmons and Love (1978).

(3) In many reported experiments the sample size is too
small for great significance to be attached to the
results. For example, of the twenty-two experiments
summarised by Fitzsimmons and Love fourteen have
sample size less than 15 and only two have a sample
greater than 50 (the sample size for one experiment is
not given).

(4) The effect of small sample size is sometimes
compounded by the extreme dependence of the
results on one or two particular observations. A
notable example arises in an experiment on students’
programs (Shen, 1979), where the results are so heav
ily dependent on the worst student that his elimina
tion from the sample (of 31) reduces a reported
correlation coefficient from 0.46 to 0.20. The extent
to which this effect pervades software science results
is impossible to gauge since not all reports provide the
necessary raw data. It is however evident in some of
Halstead’s work on the length equation (Halstead,
1977), where it is inadvertently disguised by the use
of a logarithmic scale and the “averaging” of sets of
data points.
Of course these reservations do not apply to all repor

ted results. The purpose of listing them is not to discredit
all the experimental evidence in one fell swoop, but to
point out that it is not so substantial as might first appear.
Since, as mentioned earlier, the quality of evidence is vital,
it is unfortunate that the rather cavalier methods of some
researchers (and the undocumented methods of others)
make it difficult to know which results can be treated with
confidence. It was lack of confidence in some results,
increased by failure to reproduce them in independent
experiments, which led to the analysis reported in the next
three sections.

4. THE LENGTH EQUATION
In this section we suggest that the software science

length equation is not as well established as is often
claimed, and that it may not hold for programs written in
“structured” languages (such as Pascal) unless a counter
intuitive counting scheme is adopted.

The length equation (see section 2) states that the
length A of a program may be closely approximated by the
estimator N defined by

N = n1 log2 nl + n2log2 n2

The Australian Computer Journal, Vol. 14, No. 2, May 1982 67

Software Science

TABLE 1. Performance of the length estimator for large
Pascal programs (1) repeated control structures as single operators

(2) repeated control structures as distinct operators.

Program

N/N

(D (2)

1 2.28 1.37
2 2.41 1.36
3 1.48 0.822
4 1.12 0.655
5 1.72 1.06
6 1.20 0.895
7 1.64 0.779
8 1.61 1.08
9 1.57 0.863

Mean 1.67 0.987
Std. Dev. 0.408 0.208

provided that the program is well-written in the sense of
containing few impurities (Halstead, 1977). The signifi
cance of the length equation is that the length of a
program, and hence the volume and effort measures, can be
estimated before the program is written (provided the dis
tinct operators and operands required can be enumerated).

Empirical evidence supporting the length equation
has been provided by several researchers, and has been con
veniently summarised by Fitzsimmons and Love (1978). It
is noteworthy that all the evidence reported by Fitz
simmons and Love stems from Fortran or PL/1 programs.
Further measurements (johnston and Lister, 1979) on
small Pascal programs have also provided some evidence to
support the length equation, despite the fact that the pro
grams, being written by students, probably contain an
unusually high proportion of impurities. However, similar
measurements on nine large professionally written Pascal
programs (including the Pascal compiler itself) show some
large discrepancies between the values of TV and N. The
radio of N/N for each program is shown in the centre
column of Table 1. Although the sample is small, the dis
crepancies are large enough to provoke further analysis.

The centre column of Table 1 shows that TV consis
tently underestimates N for the programs considered.
Examination of the measurements on these programs
shows that nl is considerably less than n2, whereas for
small programs nl and n2 are of comparable magni
tude. This observation suggests that for large Pascal pro
grams TV falls short of N because the contribution from
nl is too small.

In the counting scheme used to produce Table 1 (and
in all schemes published elsewhere) nl is derived from —
(1) The built-in operators, procedures and functions of

the language.
(2) User-defined procedures and functions.
(3) Labels which are the target of a control transfer.

Halstead (1977, p. 8) remarks that “the ability to
define labeled points, like the ability to define new func
tions, removes any limitation on the growth of nl that
might otherwise be imposed by . . . the design of a lang
uage.” However, programs written in Pascal, or any other
language with “structured” control constructs, contain very
few operators of class 3. This means that once such
programs are large enough to contain most of the built-in
operators the growth of nl with program size is constrained
by the number of user-defined procedures and functions.
Analysis of the sample of large Pascal programs indicates

68

that there are simply not enough of these user-defined oper
ators to give a value of/77 large enough to satisfy the length
equation.

The situation with Fortran programs, which have pro
vided most of the empirical support for the length
equation, is quite different. Since nearly all transfers of
control in Fortran are effected by jumping to a label, oper
ators of class 3 make a significant contribution to nl. More
over, the ubiquity of such operators removes any a priori
constraint on the growth of nl with program size. Thus the
fact that large Fortran programs reportedly obey the
length equation while large Pascal ones do not is apparent
ly due to the differences in control constructs between the
two languages.

Support for this hypothesis comes from the right
most column of Table 1, which shows the result of altering
the Pascal counting scheme so that each occurrence of a
control construct (e.g. while .. . do) is counted as a distinct
operator, irrespective of how many times it is used. This
counting scheme, which reflects a crude mapping from
Pascal control constructs to Fortran control constructs, can
be seen to give much closer adherence to the length
equation than shown previously. Such a counting scheme,
however, is most unappealing. One of the beauties of Pascal
is its economy of control structure: it seems counter
intuitive to wilfully disregard this economy in the counting
scheme used.

Results which might be thought to cast doubt on the
analysis above are those reported by Elshoff (1978) for
“structured” PL/1 programs. Since PL/1 possesses control
constructs similar to those of Pascal (if not quite as elegant),
it might be expected that large PL/1 programs would
diverge from the length equation in the same way as large
Pascal programs. This expectation is apparently confoun
ded by Elshoff’s results, which are claimed to support the
length equation over a large range of program sizes.
However, closer examination of Elshoff’s experiments
reveals that -
(a) despite their “structured” nature the sample pro

grams contain a significant number of GOTO state
ments, as is evidenced by the reported effect on nl
when the method of counting GOTO’s was changed.

(b) adherence to the length equation is due in part to a
counting scheme for constants which was tuned spec
ifically to achieve such adherence.
It is interesting to note that despite optimisation of

the counting scheme Elshoffs measurements give no better
support to nl log2 nl + n2 log2 n2 as an estimator for TV
than they do to a number of other arbitrary functions. For
example, Table 2 shows the correlation between N and TV,
and the root mean square distance of measured points from
the line N = TV, for various definitions of TV. The correla
tions are almost uniformly high, and N = 10/72 in fact gives
a better fit than N = nl log2 nl + n2 log2 n2. (Incidentally,
10n2 also gives a better fit for the sample of 31 Fortran
programs used by Shen (1979), though we do not propose
it as a new length estimator!) Table 2 illustrates the danger,
referred to in Section 3, of putting too much faith in corre
lation coefficients.

In the absence of a deductive proof the length
equation must stand or fall on the empirical evidence provi
ded, which to date has come solely from Fortran and PL/1
programs. The above analysis suggests that the evidence
from PL/1 programs is inconclusive, and that evidence from
Fortran programs depends heavily on that language’s prim-

The Australian Computer Journal, Vol. 14, No. 2, May 7982

Software Science

TABLE 2. Performance of various length estimators on Elshoff’s
PL/1 programs.

Definition of N
Correlation
between.
N and N

RMS Distance
from

N = N

nllog2 nl + n2 Ioq2 n2 0.985 497
n2 0.987 3427

10/72 0.987 432
nl +n2 0.985 3388

nl2 +n2? 0.942 222939

itive control constructs. It also suggests that evidence from
languages with structured control constructs will support
the length equation only if a counter-intuitive and unjusti
fiable counting scheme is adopted.

5. POTENTIAL VOLUME
We recall from Section 2 that the potential volume

V* of an algorithm is the volume of the minimal program
required to express it. This minimal program is in fact a call
to a procedure which embodies the algorithm: certainly no
algorithm can be expressed in less than a procedure call. A
procedure call is conventionally regarded in software
science as having two operators (the procedure name and a
grouping symbol) and as many operands as there are con
ceptually distinct input or output parameters. Since each
symbol is used only once, the volume of the procedure call,
and hence V*, is given by

l/*= {2+n2*) log2 (2 + n2*)

where n2* is the number of parameters (Halstead, 1977).
Thus the calculation of V* is straightforward, provided the
parameters can be readily enumerated.

Unfortunately, this is the case in only the simplest
examples, such as algorithms which compute mathemati
cal functions of a specified number of variables. In general
it is extremely difficult to determine how many concep
tually distinct parameters an algorithm has. For example,
an algorithm which operates on English text (perhaps to
generate an index) may be regarded as having a single
input parameter which is the entire text, or a number of
parameters equal to the number of characters in the text.
The effect of these different views on the value of V* is
significant. A perhaps more convincing example is a com
piler, where it is difficult to formulate a plausible argument
in favour of any particular number of parameters. It is
interesting to note that in the author’s measurement of a
Pascal compiler the value of V* (calculatecl indirectly from
the relation V* = LV with the estimator L substituted for
L) was 369, implying that the compiler has approximately
61 parameters. It is difficult to imagine what these 61
parameters are.

There is little guidance in the literature to the evalu
ation of n2* in non-trivial cases: all the accessible examples
are of algorithms which transform readily identifiable
inputs into equally identifiable results. Moreover, the input
and output parameters in these examples are atomic data
items such as integers, whereas in many real-life cases of
interest the input and output are structured in some way. It
seems important that this structure be taken into account
when determining the minimum number of symbols in
which an algorithm can be expressed: an ad hoc method of
doing this has been used in one particular experiment

(Johnston and Lister, 1979), but other methods, which give
different results, are equally plausible.

Of course, the number of parameters of an algorithm
is a matter of one’s point of view or, more technically,
one’s level of abstraction. In the limit, any number of
parameters can be reduced to one by suitable encoding:
examples are the incorporation of the parameters into a
single record, or (more esoterically) their encoding into a
single integer by some Godel numbering scheme. Thus at a
high enough level of abstraction all algorithms can be regar
ded as having a single parameter, a point of view which
would render the definition of V* vacuous. Such a view is
technically compatible with Halstead’s definition of n2* as
the number of “conceptually distinct” parameters though it
is clearly not in the spirit of that definition. “Conceptually
distinct” is a term which acquires meaning only if the level
of abstraction is defined; until this is done the evaluation of
V* will remain an arbitrary and ill-defined exercise.

The implications are serious, since the measures L, E,
and X are all derived from V*. In practice many researchers
avoid V* by using the estimator L in place of L, hence
deriving estimates of E and X. The validity of this practice
depends on the accuracy of L as an estimator for L. As with
other software science relations, no deductive proof that
L = L has been offered, and the relation therefore relies on
empirical evidence. Since such evidence can come only
from experiments in which L is computed from V* it seems
reasonable to treat it with caution.

6. LANGUAGE LEVEL
The language level X is an attempt to formulate a

qualitative measure which corresponds to intuitive notions
about the level (“high” or “low”) of a language. Halstead
(1977) has tabulated mean values of X for six languages,
and these values do indeed reflect general consensus about
the levels of the languages concerned. However, the current
author’s attempts to establish a similar value for Pascal led
to two results which deserved further analysis. First, there
was a wide variation in the values of X obtained for
different programs, and second, the mean value of X for
Pascal was lower than that reported by Halstead for
assembly language. (The programs used in these experi
ments were those described in section 4 and the sample
described by Johnston and Lister [19-79].)

The variations in X seem disturbing in view of Hal
stead’s assertion that “the product L times V* [=X]
remains constant for any one language” (Halstead, 1977,
p. 62). In fact, despite Halstead’s assertion, the variations
are not surprising, since the following argument shows that
X cannot be constant over all algorithms expressed in a
given language. Since X = LV* and L = V*/V we have X =
(V*p/V; thus for X to be constant it is necessary for V to
vary with the square of V*. Now V* depends on the num
ber of parameters of the algorithm (however that is
defined), while V is a measure of the bulk of the algorithm
when expressed in the language concerned (and the bulk
depends on the algorithm’s complexity). It is most unlikely
that the complexity of an algorithm is in any mathematical
sense related to the number of parameters, least of all by a
square law. Indeed, to take a single example, there is an
infinite number of algorithms of widely varying complexity
(and hence widely varying V when implemented in the
same language) which all compute a function of a single
variable and which all therefore have V* = 4log2 4.

The Australian Computer Journal, Vol. 14, No. 2, May 1982 69

Software Science

Another anomaly which casts doubt on the constancy
of X arises from consideration of the effort measure E.
Since E = VjL and X = LV* we have £ = (V*J3/X2. This
relation implies that in a particular language all algorithms
with the same potential volume (e.g. all functions of a
single variable) can be programmed with equal effort. If
that were true, life would be easy indeed!

These arguments indicate that contrary to Halstead’s
assertion X is not a constant for a particular language. How
ever, it is conceivable that the mean value of X, taken over
a number of different programs may (despite a large
variance) be a measure of the expressive power of a
language. If this is so then any published value of X should
indicate the set of programs from which it is derived, which
in turn should be justified as being in some sense represen
tative. Furthermore, the levels of different languages should
be compared only if they are obtained by programming the
same set of algorithms. Regrettably this has not been the
case.

If one accepts the arguments above, the role of X is at
best reduced from an absolute to a comparative measure of
language level. Its importance even in this reduced role is
debatable. For a particular algorithm expressed in languages
A and B, the ratio X/i/Xg is the same as the ratio l/g/l/q.
The value of X as a measure distinct from V is therefore
questionable.

7. CONCLUSIONS
This paper has argued that without deductive proofs

the validity of software science must rest on the quality of
evidence provided. This evidence is superficially impressive,
but close inspection reveals methodological flaws which
generate considerable unease. Furthermore, arguments have
been advanced to suggest that
(1) The length equation may hold only for languages

with primitive control constructs.
(2) The notion of potential volume is ill-defined.
(3) The validity of the language level measure is suspect.

These arguments threaten three major areas of soft
ware science; although they are not conclusive they are
forceful enough to suggest that the foundations of soft
ware science are perilously weak. If software science is to

70

be convincing it needs a clearer definition of its assump
tions, goals, and domain of application. It also needs a
methodology which is seen to be rigorous. It is possible that
software science will indeed develop in these ways, provid
ing useful and worthwhile results. At present, however, an
interim judgement is that the emperor may not be quite
naked, but he is so raggedly dressed as to be almost
indecent.

8. ACKNOWLEDGEMENTS
Dan Johnston supplied many of the measurements

which motivated this paper, and the University of South
ern California provided hospitality while it was being
written. Both are gratefully acknowledged.

9. REFERENCES
BALUT, N., HALSTEAD, M.H., and BAYER, R. (1974), The

experimental verification of a structural property of FOR
TRAN programs. Proc. ACM Annual Conf., ACM, New York,
pp. 207-211.

ELSHOFF, J.L. (1978), An investigation to the effects of counting
methods used on software science measurements, ACM
SiGPLAN Notices, Vol. 1 3, No. 2, Feb. 1978, pp. 3045.

FITZSIMMONS, A., and LOVE, T. (1978), A review and evaluation
of software science, Computing Surveys, Vol. 10, No. 1,
March 1978, pp. 3-18.

GORDON, R.D. (1979), A qualitative justification for a measure of
program clarity, IEEE Trans, on Software Engineering, Vol.
5, No. 2, March 1979.

HALSTEAD, M.H. (1977), Elements of Software Science, Elsevier
North-Holland, New York.

IEEE (1979) IEEE Transactions on Software Engineering (special
issue on software science), Vol. 5, No. 2, March 1979.

JOHNSTON, D.B., and LISTER, A.M. (1979), An experiment in
software science, Proc. Symposium on Language Design and
Programming Methodology, Sydney, September 1979. Re
printed in Lecture Notes in Computer Science, No. 79,
Springer-Verlag, pp. 195-215.

OTTENSTEIN, K.J. (1976), A program to count operators and
operands for ANSI Fortran modules, Report CSD-TR 196,
Department of Computer Science, Purdue University.

SHEN, V.Y. (1979), The relationship between student grades and
software science parameters. Proc. 3rd Int. Conf. on Com
puter Software and its Applications, Chicago, Nov. 1979.

VAN DER KNIJFF, D.J.J. (1978), Software physics and pro
gram analysis. Aust. Comput. j., Vol. 10, No. 3, August,
1978, pp. 82-86.

The Australian Computer Journal, Vol. 14, No. 2, May 1982

Data Base Interfaces
D. H. Scuse*

This paper describes how the dependence of systems of application programs on data base
management systems can be lessened by placing a software interface between the application system
and the data base management system. The interface makes the design and implementation of the
application system easier by supporting more sophisticated data models and more complex data
manipulation than are normally supported by the data base management system, and can also be used
to increase the control that the data base administrator has on the data base environment.

Keywords and phrases: data base, DBA, data model, interface.
CR category: 4.33.

1. INTRODUCTION
If a software program product (such as a data base

management system) does not provide all of the facilities
that are required by the users of the product, the group
supporting the product at an installation normally must
either modify the program product or modify the applica
tion programs that use the program product so that the
application programs perform the extra processing that is
required. Modifying a program product is difficult because
the support group does not necessarily have personnel
sufficiently skilled to be able to locate and modify the
appropriate modules in the program product. If the modi
fications can be made, the changes must be reapplied each
time a new version of the product becomes available, and
a change in the logic of the program product may force the
support group to start over again in determining where
and how to apply the changes. Even if the program product
was developed at the same installation, the support group
will not necessarily want to modify a stable product. Thus,
the users are normally forced to modify the application
programs that use the program product. If the require
ments or the program product itself change, then the appli
cation programs must be modified again so that the new
circumstances are taken into consideration. In a large system
involving several hundred application programs, making
even a small modification to the programs is a very time-
consuming process, especially when each application pro
gram must be tested before the modified system can be put
into production.

Fortunately, the capabilities of a program product
can be extended without modifying either the product
itself or the application programs that use the product.
The solution to the problem involves placing a software
interface between the application programs and the
program product. Instead of invoking the program product
directly, the application programs invoke the interface
which then invokes the program product. The use of such an
interface with a data base management system makes the
design, implementation, and maintenance of the application
system much easier by concentrating the low-level details
of the data base manipulation in the interface instead of
in the application programs.

“Copyright © 1982, Australian Computer Society Inc.
General permission to republish, but not for profit, all or part of
this material is granted; provided that ACJ’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Australian Computer Society.”

The remainder of this paper examines some of the
benefits of using such an interface in a data base environ
ment. The effect that a data base interface has had on a
major research project is also described.

2. ABSTRACT DATA MODEL
There are three levels of data models that can be used

in the design of a data base. The highest level model is an
abstract data model such as the third or fourth normal form
of the relational model (Date, 1981) or the entry-relation
ship data model (Chen, 1980). An abstract data model is
used to define the information to be stored in a data base
without regard for how the data will actually be organised
in the data base. The next lower level of model is the data
base management system model, the model of data suppor
ted by a particular data base management system. The data
base management system model normally requires that the
information in a data base be defined with a specific struc
ture, such as a hierarchy or a network, and may impose
restrictions on the order in which information may be
accessed. Related pieces of information are normally
grouped together and referred to as a segment. The
lowest level of data model is the storage model which
defines how the data base management system model is
to be implemented, that is, it defines the access paths to
be used to link segments together and the access methods
to be used to manipulate the data base segments.

During the design of a system, the data base admin
istrator (DBA) should define the information to be inclu
ded in the data base using an abstract data model. This
model allows the DBA to concentrate on the logical organ
isation of the information instead of on the details of how
the information is to be stored in the data base. Once the
basic design of the data base is complete, the DBA restruc
tures the information in the abstract model so that it
conforms to the structure of the data base management
system model being used. It is this data base management
system model that is used in the remainder of the design
and in the implementation of the system. However, if a
data base interface is placed between the application pro
grams and the data base management system, the interface
can support the abstract model of the data base by trans
lating requests defined in terms of the abstract model into
the equivalent requests for the data base management
system model. Thus, it becomes possible to use the
abstract model throughout the system, not just during a
portion of the design phase. The use of an abstract data
model makes the design of the system significantly easier

* Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada. Manuscript received October 1981.

The Australian Computer journal, Vol. 14, No. 2, May 1982 77

Data Base Interfaces

since the analysts concentrate on the manipulation of the
information instead of the manipulation of the information
as it would be stored in a specific data base.

The use of an abstract data model decreases the de
pendence of the application programs on the data base
management system being used: should it become neces
sary, the data base management system model could be
changed and the data base reorganised without affecting
the application programs. Such changes should require
only a modification of the interface, not of the application
programs.

The data base interface can be used to support dif
ferent views of the abstract data model if the associated
data base management system does not support such views.
For example, segments that are not required by certain
application programs would not be included in their views
of the data base. The view of the data model could also
include field-level independence if this feature is not sup
ported by the data base management system. With field-
level independence, the fields to be returned and the order
of those fields are defined in each view, if this ordering is
not the same as the ordering supported by the data base
management system, the interface rearranges the fields so
that the application program retains its independence of
the data base.

The abstract data model is particularly useful when
a system must be maintained on several machines with
different data base management systems. For example, in
a health-information environment, hospitals may use dif
ferent machines and data base management systems but
perform the same processing on the same type of infor
mation. A common data model could be used by each
hospital if the appropriate data base interface is written
for each data base management system. A common model
makes the interchanging of information between machines
much easier. If a common application programming lang
uage is supported on some or all of the machines, it may
even be possible to transfer application programs from one
installation to another even though the underlying data
base management systems are not the same. Supporting a
common data model on different machines by using a data
base interface is much easier than attempting to design a
machine-independent data base management system that
would run on each machine being used or attempting to
find one data base management system that is supported on
each machine but that provides the required data base
facilities. As networks of machines become more common,
the ability to share information will become increasingly
important.

3. SYSTEM IMPLEMENTATION
The use of an abstract data model, supported by a

data base interface, makes the implementation as well as
the design of a system easier. When an abstract model is
used, the application programmers who implement a system
can concentrate on the algorithms required to manipulate
the information instead of being concerned with the mech
anics of manipulating a particular data base. For example,
some data base management systems require the application
programmers to be aware of and to manipulate the access
paths that link segments together. This low-level processing
can easily be performed in the data base interface instead of
in the application program. As the complexity of the appli
cation programs is reduced, not only is the time required
to write the application programs reduced, but the number

72

of errors in the application programs should also be
reduced.

The data base interface can also be used to extend the
data manipulation facilities supported by the data base
management system. Some data base management systems
do not permit qualification statements to be included with
a request to the data base management system, forcing the
application programmer to include the logic to examine
each segment returned until the desired segment is found.
If this processing is moved into the interface, the number of
statements required to implement the application program
is again reduced.

The amount of exception-handling logic required in
the application programs can also be reduced by using a
data base interface. Moving some of the exception check
ing into the interface frees the application programs from
having to compare the status code returned with a large list
of possible codes. The interface can analyse the status code
and determine whether or not the condition is serious
enough to cause processing to terminate. Moving status
code checking into the interface also makes it easier to
adapt a system to new status codes returned by a new
version of the data base management system since only the
interface need be modified.

The data base interface can also compress the fields
within segments if compression (removing trailing blanks,
etcetera) is not supported automatically by the data base
management system. The extra CPU time required to
support compression can normally be justified as the size of
data bases increases and the cost of CPU cycles decreases. If
necessary, the interface could also change the representa
tion of numeric fields by storing numeric values in the most
efficient internal representation.

The interface can be used to enforce certain types of
integrity constraints if they are not already supported by
the data base management system.'Integrity constraints
define the relationships that must exist before a new seg
ment can be inserted or an existing segment can be modi
fied or deleted. The constraints may consist of the list of
values that a particular field may take on, the relationships
that must exist among fields within a segment, and the
relationships that must exist among segments. In a system
where only one application program inserts, modifies, and
deletes segments, the integrity constraints can be included
in that program; however, if many application programs are
permitted to modify the data base, the checking of the
integrity constraints could be performed in the interface in
order to ensure that the checking is carried out correctly
and completely.

While most data base management systems support at
least a basic security system, the data base interface can be
used to extend the security constraints provided by the
data base management system. A basic level of security is
already provided by the interface if it supports multiple
views and field-level independence. This security can be
improved if the interface maintains a profile for each user
of the system. The profile of a user contains a list of the
data base views that the user is permitted to access and a
list of the access rights (read, update, etcetera) that the user
has to those views. A simple extension to the user’s profile
would permit the interface to accept or reject access to a
view based on field values. For example, in a personnel data
base, each manager would be permitted to access only the
segments of employees in his section and would be denied
access to the segments of employees in other sections.

The Australian Computer Journal, Vol. 14, No. 2, May 1982

Data Base Interfaces

4. SYSTEM TESTING AND TUNING
The data base interface makes the testing of a new

system much easier because all requests to the data base
management system are passed through the interface, mak
ing it possible to trace the activity of each application pro
gram as it executes. It is even possible to test a system for
which the associated data base has not yet been created by
having the interface return dummy segments which have
the same format as the segments that will eventually be
stored in the data base.

A data base interface can be useful during the test
ing of a new version of the data base management system
itself. Some data base management systems have bugs in
new versions and must be tested extensively before being
placed in production. One method of testing a new version
of the data base management system is to create a copy of
an existing data base using the new version of the system;
then, as changes are made to the production version of the
data base, the interface saves a copy of each change request;
these, changes are applied at a later time to the test data
base using the new version of the data base management
system. The test data base can then be compared with the
production data base to ensure that they both contain the
same data.

The data base interface is a useful tool for the DBA
when he is evaluating and tuning a data base. Since all data
base requests are passed through the interface, the inter
face can gather statistics on the types of requests being
issued, the users who are accessing the data base, the areas
of the data base being manipulated, etcetera. (These statis
tics would be used to supplement the statistics generated by
the data base management system itself.) The statistics pro
vide the DBA with some of the information required to
evaluate the efficiency of a data base storage model.

The DBA can also use the interface to change the
method used to process a particular type of request. For
example, a request that is issued infrequently could be
processed by the interface as a sequential search (of a reas
onably small area of the data base), while, if the request is
issued frequently, an appropriate index could be maintain
ed by the data base management system and the interface
could generate requests that take advantage of this index.
Thus, the DBA has sufficient control of the system to be
able to adapt the storage model of the data base to meet
the changing needs of the users. The DBA can also use the
interface to restrict certain types of processing based on the
time of day: during periods of high use, the interface could
reject expensive requests but during periods of medium to
low use, the same request would be accepted.

For a system that is large and must be available 24
hours each day, a data base interface could be used to sup
port a differential data base (Severence and Lohman, 1976)
even though such a data base is not supported by the host
data base management system. A differential data base
contains all changes that are made to another, static data
base. When a change is made to the data base, the inter
face stores the modified segment in the differential data
base; the static data base is not modified once it has been
created. When a segment is retrieved from the data base, the
interface first searches the differential data base for the seg
ment; if the segment is not found, the interface searches the
static data base. (Severence, 1976, has shown how hashing
can be used to eliminate most accesses to the differential
data base when the desired segment is actually in the static
data base.) The differential data base reduces many of the

The Australian Computer journal, Vol. 14, No. 2, May 1982

problems inherent in managing a large data base to the
equivalent, but simpler problems for a small data base.

5. FISHERIES INFORMATION SYSTEM
A data base interface has been used very successfully

in a research project being carried out by A.N. Arnason of
the Department of Computer Science, University of Mani
toba (Arnason et al., 1981). The project involves the devel
opment of an integrated management information system
(MIS) and deterministic simulator system. The MIS
manages the information generated by an experimental fish
hatchery in Manitoba. The hatchery records information
concerning the size of the fish and the conditions under
which the fish are raised (water temperature, feeding levels,
etcetera). The MIS receives, edits, and stores the informa
tion generated by the hatchery. Information is then extrac
ted from the system quite easily using a specially-developed
language; the information is normally presented in
time-date order with the various pieces of information
having been correlated automatically by the MIS. The simu
lator system is being used to test growth strategies at the
fish hatchery. The user of the simulator system carries on a
dialogue with the simulator, specifying the conditions to be
used during an experiment, and the simulator prints the size
of the fish at specified intervals during the experiment. The
use of the simulator to test management strategies is
obviously cheaper and faster than experimenting with the
real hatchery since a bad strategy does not cause fish to be
lost and good strategies can be refined quite quickly.

The integrated system is being run on the University
of Manitoba’s AMDAHL 470/V7 computer, and IBM’s
Information Management System (IMS) is the data base
management system used by the MIS. The IMS data base
required to store the hatcheries information and the simu
lated information is reasonably complex, involving several
logical relationships and special indicators in the segments.
However, only the DBA for the system is aware of the
structure or contents of the IMS data base; all applica
tion programmers view the data base using the relational
data model. Each type of segment in the data base is
viewed as a separate relation, the segments (or tuples) of
which can be accessed both sequentially and randomly.
The translation of the relational data model into the IMS
data model is performed by a data base interface. The inter
face also performs processing that is not provided by IMS.

All information that is required to issue a request to
the interface is included in a data structure that the appli
cation programmer copies into the application program
from a system library. This data structure defines the
format of the segments that can be accessed and also
contains command and key fields that are set in the appli
cation program and status fields that are interrogated by
the application program. The application programmer sets
the command field for each type of segment to be
processed (more than one segment type can be processed
with each request), and, if a particular segment is to be
retrieved randomly, sets the key field of the segment.
Special commands were defined to permit the application
programmer to retrieve the first segment with a key greater
than, or the first segment with a key less than, the specified
key since much of the processing is in time-date order and
the application programmer may not know the exact star
ting time of an experiment.

Among the features provided by the interface but not
supported by IMS is backwards processing. The segments in

73

Data Base Interfaces

the IMS data base are stored in chronological order since
the application programs normally access segments chrono
logically. However, some application programs require
access to segments in reverse-chronological order. Since this
type of processing is not supported by IMS and is reason
ably complex, the logic required to access segments in
reverse order was added to the interface instead of to the
application programs. Thus, the application programs re
main free of intricate data base processing and can be
implemented much faster.

An additional advantage of using the data base inter
face is that several random-access files that are not stored
in the data base can be accessed by the application pro
gram as though they were in the data base. The applica
tion programmer views the information in these files with
the same model as he views the data base; however, when a
request involving this information is issued, the interface
accesses the appropriate random-access file instead of the
data base. Thus it is not necessary for the user to be aware
of the actual location of the information being processed.
With this organisation of information, a change in the loca
tion of information requires a modification only to the
interface, not to the application programs. (The informa
tion was stored in the random-access files in order to per
mit the DBA to modify the information more easily; as a
result of storing the information in these files, the com
plexity of the IMS data base was reduced since the infor
mation in the files could not have been stored in the data
base without a significant amount of redundancy.)

The data base interface has made the development
and the integration of the management information system
and the simulator system much easier because application
programmers have been able to concentrate on the infor
mation being manipulated without having to know the
details of how the information is stored. (In fact, the
application programmers were quite happy not to have to
fight with IMS in order to get their programs running.)
The interface has also made it possible to change the for
mat of the data base (and this was done twice) when
dictated by new circumstances without having to modify
any of the application programs.

6. CONCLUSIONS
The two major reasons for using an interface are first,

to simplify the design of application systems by support

74

ing a higher level data model than is supported by the data
base management system being used, and secondly, to sim
plify the implementation of application systems by moving
the low-level data base manipulation out of the applica
tion programs. The overall effect of the interface is to
reduce the time required to implement a system and to
ensure that it is functioning correctly.

The major disadvantage of a data base interface is the
extra CPU time required at program execution time by the
interface to translate the abstract model requests into data
base requests. An equivalent translation could be perfor
med at compile time instead of at execution time by
writing a preprocessor that translates the abstract requests
into in-line data base requests. However, the use of a pre
processor does not preserve program isolatioruto the same
degree as the interface: changes to the preprocessor force
the recompilation of the application programs while
changes to an interface require the recompilation of only
the interface. Also, a preprocessor can not support the same
level of complexity of extra data manipulation that the
interface can because the extra statements are generated in
the application programs each time that they are used
instead of only once in the interface. A careful design of
the abstract data model used with the interface should
minimise the translation overhead but still maintain
program/data base independence.

The data base interface will be useful as long as the
production-oriented data base management systems force
application programmers to be aware of internal storage
models and fail to support the high-level data manipulation
facilities that are required in many application systems.

REFERENCES
ARNASON, A.N., SCHWARZ, C.J., and SCUSE, D.H. (1981):

“An On-line Simulator and Database System for the Man
agement of a Commercial Fish Farm”, Presented at the
Winter Simulation Conference, Atlanta, Georgia, December,
1981.

CHEN, P. (ed.) (1980): Entity-Relationship Approach to Systems
Analysis and Design, Proceedings of the international Con
ference on the Entity-Relationship Approach to Systems
Analysis and Design, Los Angeles, 1979, North-Holland
Publishing Company, Amsterdam.

DATE, C.J. (1981): An Introduction to Data Base Systems, Third
Edition. Addison Wesley Publishing Company, pp. 237-264.

SEVERENCE, D.G. and LOHMAN, G.M. (1976): Differential
Files: Their Application to the Maintenance of Large Data
Bases, ACM Trans, on Data Base Systems, 1,3, pp. 256-267.

The Australian Computer Journal, Vol. 14, No. 2, May 1982

Letters to the Editor

COMMENT ON QUERY LANGUAGE ARTICLE
I was intrigued to read an article in the November

1981 issue of your journal entitled “A Review of Data Base
Languages” by M.A. Robinson. In it the author refers to
some twenty-seven query languages, many of which are
either for specific purposes or out of date with current
technology.

My greatest concern though regarding the article is
that the author failed to mention our product EASY-
TRIEVE which has almost 150 users in Australia and New
Zealand alone. This figure is almost more than the number
of users of all the packages mentioned in the article in the
same territory. It is difficult therefore to accept the validity
of the article as a whole when one of the most popular
query languages in the world is not mentioned.

/./. Farrell,
Pansopbic Systems AI si a,

North Sydney, NS W 2060

AUTHOR’S REPLY
In response to the letter by I.J. Farrell, I should point

out that my primary aim was to outline what features
should exist in a generalised query language. The inclusion
of details about various languages was to illustrate that
these features do, in fact, exist in some languages. The
decision as to which languages to include and which ones to
omit was difficult. In general, languages were included be
cause of the availability of information, and more impor
tantly, because I believed that their inclusion contributed
to my article.

The number of users in Australia or New Zealand was
not one of my criteria. If it had been then languages such as
GPLAN or RENDEZVOUS which have no users in either
Australia or New Zealand and very few throughout the
world, would not have been included. As both GPLAN and
RENDEZVOUS contribute to the state of the art, I view
their inclusion as mandatory. On the other hand, EASY-
TRIEVE, which I believe to be a report generator for a file
management system rather than a data base query language,
could be omitted because of its similarity to other lang
uages which are included.

It is of interest that the British Computer Society
recently published a monograph on “Query Languages”.
This monograph lists about 140 languages, 16 of which are
included in my article, but EASYTRIEVE is not included.

I have also received a letter from Mr. George Nichols
of Computer Sciences of Australia who has expressed
interest in seeing a further review at a future date. Compu
ter Sciences of Australia is the Australian distributor for
SYSTEM 2000, and Mr. Nichols has helpfully supplied
details of the latest improvements to the system. I would be
pleased to hear from any other persons or organisations
who feel that they can help me with additional infor
mation.

M.A. Robinson,
Chisholm institute of Technology,

(formerly Caulfield Institute of Technology),
Caulfield East, Vic. 3145

PROCEDURE FOR PROVIDING A SINGULAR VALUE
DECOMPOSITION OF A LARGE MATRIX, ON A
MINICOMPUTER FORSPECTROPHOTOMETRIC
ANALYSIS

The singular value decomposition of matrix D may be
given as D = U2V (see for example, Golub and Rein-
isch, 1970) where U consists of orthonormalised eigenvec
tors associated with the eigenvalues of DDT and the matrix
VT consists of orthonormalised eigenvectors associated
with the eigenvalues of DTD. The elements of the diagonal
matrix 2 are the positive square roots of the eigenvalues of
DtD.

A data matrix D of M rows of N readings may be par
titioned

D - (DjDa . .. Ds .. . Dr)

such that Ns < M where Ns is the number of columns for
the sth partition. We have

DS=US
% o
0 0

Because of the high correlation of spectrophoto-
metric data, the number of terms which are nonzero in the
diagonal matrix are relatively few. Letting the superscript
define the step, the factorising of the data becomes in the
first step:

D = (umum u^ s;2)x

VI 0............... 0

0 VI............... 0

0 0 V1,
_ r

If we iterate the process by repartitioning the left
hand side of the product and factorise that repeatedly,
since the basis of the component waveforms in the spectra
is sufficiently small, partitioning is eventually not needed.
Thus we arrive after k steps_at

Vk-1 o 0

0 V^1

9
■Vj 0 ... 0 -

.... 0 V* 0

o 6 v1.
- r _

Rather than save and bother to multiply the V trans
form it is easily computed from

The Australian Computer journal, Vol. 14, No. 2, May 1982 75

Letters to the Editor

v = (sr1 utd

This algorithm has been used to factorise a spectral
matrix from 143 samples each having 700 readings; scores
for calibration were reduced to a matrix of 143 by 30 un
correlated scores on a Data General Eclipse S140 with 256k
bytes of memory. The procedure takes a number of hours
but makes it possible for one to envisage its incorporation
in software on mini-spectrocomputer systems, because it
requires little program space in addition to the well tried
procedure by Golub.

REFERENCE
GOLUB, G.H. and REINSCH, C., (1970): Singular value decom

position and least squares solutions, Numer. Math., 14,
pp.403420.

A.E. Stearn,
CSIRO Division of Textile Physics,

Ryde, NSW 2112

PROCEDURE FORMATION NOTATION
We refer to the paper “Procedure Formation — Deri

vation of Procedures for Users by Users” by Clive Finkel-
stein in the November 1981 issue of this Journal.

On page 132 under the heading “Stage 4: Procedure
Derivation” is a reference to figure 4, and the statement:

“This figure indicates that event A is executed first,
followed by event B then C” (emphasis added).

The implication here is that event C must follow B,
hence that the procedure has a tree structure and cannot
be exited from other than the root event, event A.

This is an interesting idea. It appears, however, to be
in contradiction to figure 7, shown on page 134, wherein
the exit from the procedure occurs from event E40, which
is not the root event. It also appears to be in contradiction
to the statement:

“Figure 2 indicates that event A is executed first.
Either event B or C is executed after event A”
(emphasis added).
This statement appears in Finkelstein (1981) (figure

2 in this publication is the same as figure 4 in the ACJ
article).

Two conflicting notations for procedure maps have
apparently been suggested: one involving a tree from which
an exit can only be made from the root event after evalu
ating all branches; the other involving a network of events
from which different exits are possible.

S.A Vitlin,
A. McBurnie,

University Library,
University of New South Wales

Reference:
FIN KELSTEIN, C. (1981): Series of articles published in the United

States edition of Computerworld, issues dated 11 May 1981,
25 May 1981,1 June 1981,8June 1981 and 15 June 1981.

SPECIAL ISSUE

ON PROGRAMMING LANGUAGES

The Australian Computer Journal will publish a special issue on “Programming Languages” in Feburary,
1983. Research papers, tutorial articles and industry case studies on all aspects of the subject will be welcome,
and both full papers and short communications will be considered.

Prospective authors should write as soon as possible to:

Professor J.B. Hext,
ACJ Guest Editor,

School of Mathematics and Physics,
Macquarie University,

North Ryde, NSW 2113

to notify him of their intention to submit material for the issue and provide a brief summary of their intended
contribution.

In order to allow adequate time for refereeing and editorial review, complete manuscripts will be required
no later than 15 September 1982.

Papers should be prepared in accordance with the guidelines published in the May 1980 issue of the
Journal. Authors are requested to pay particular regard to the Journal’s prefered style for references.

76 The Australian Computer Journal, Vol. 14, No. 2, May 1982

CORPORATE ADVERTISING SCHEME
FOR VIDEOTEX

A service announced recently now makes it easier and
cheaper to use videotex as a public relations/advertising
medium in Australia.

The new service is being offered by llmar Taimre Pty
Ltd, a Melbourne-based public relations firm, and will be
marketed under the name “Profiles”. It will operate on the
national videotex system launched a few months ago by
Computer Power.

Until now, an organisation wishing to publish its
material on videotex had to register directly with Com
puter Power as an “information provider (IP)”. However,
the minimum space allocation of 100 frames, the initial
registration fee of $12,000, and the need to invest in an
editing terminal, has tended to discourage individual adver
tisers whose space requirements are usually small.

In the Profiles scheme, advertisers and other infor
mation providers will be able to rent space on the videotex
database in multiples of 10 frames, without the require
ment to register directly as an IP. In effect, llmar Taimre
Pty Ltd will act as an “umbrella publisher” for a number
of different sub-IPs, as well as providing editorial, frame
design, indexing and updating services.

The initial cost of renting a 10 frame section in
Profiles is $2,500 per annum, which includes the complete
design and creation of the section. Additional lots of 10
frames will cost $2,000 per annum. In other words, Profiles
offers potential IPs a relatively inexpensive, low-risk, fast
and easy way to disseminate information on videotex.

At this stage, Profiles will cater for three main cate
gories of information provider — business, government, and
non-profit organisations. Because the main users of video
tex are in the business and government sectors, information
such as the latest press releases, financial results, chairman’s
statement and corporate background is particularly suited
to the Profiles/videotex combination.

Further details of the Profiles service are included in a
report “Corporate Advertising Opportunities on Videotex”
published by llmar Taimre Pty Ltd. The report is available
on request — telephone (03) 876-3950.

OTC UPGRADES MIDAS
In April 1982 the Overseas Telecommunications

Commission replaced its original Midas node located in
Sydney with a new Tymnet ‘Engine’ which will enable new
features to be added to the service with relatively small
effort.

OTC believes it will be able to respond more quickly
to market demands in a field where technological develop
ments demand adaptability.

The original processor was installed three years ago
using equipment also manufactured by Tymnet. But
technological developments and market demands have
meant that the existing processor cannot provide all the
facilities that existing and potential users of Midas, OTC’s
packet switching data transmission service, now require.

A major limitation of the present Midas Service is the
inability of Australian Data Bases (Hosts) to be accessed
from overseas data networks. The consequence of this
limitation has been a one-way flow of information into
Australia, and an inability of Australian information ven
ders to offer services internationally.

By mid-1982 the Midas service will be able to connect
Australian synchronous data terminal equipment (DTE) by
tie-line using the CCITT X25 LAP B interface at speeds of
up to 9600bps thus enabling the establishment of calls from
overseas to Australian host computers.

Facilities will also be provided to connect hose com
puters to Midas via tie-lines operating asynchronously at
speeds up to 1200bps thus enabling calls to be directed to
these computers. Further development will enable calls to
be estabished both into and from Australian asynchronous
DTE’s at speeds up to 1200bps.

MANAGE YOUR PRACTICE WITH CARE!
“Within five years 80 per cent of the 25,000 medical

practices in Australia will be equipped with computers.”
This is the prediction of Maurie Stang, the Marketing
Director of Regional Data Systems who last October
released Care, a powerful computerised system for medical
practice management.

Already installed in a number of practices, Care offers
a unique total solution to the requirements of practice
management. It features full open-item accounting that
includes instant or deferred billing and the production of
monthly accounts, daily banking and the production of
bank deposit slips and comprehensive practice management
reports. For patient management it provides a powerful
patient detail retrieval, the history of all previous services
given to the patient and patient registration for private
patients, pensioners, repatriation patients and those for

Pinpoint power
problems ...

fast!

Portable Model 3600 Powerline Disturbance
Monitor can track three AC phases and one
DC Channel simultaneously, for fluctuations
likely tocause problems in sensitive equip
ment. Push button keyboard for programming
parameters . . LED display .. Large thermal
print out tape.. RS232 interface .. alfmounted
in shock protected briefcase.

<$> Franklin Electric
Victoria Tel: (03) 792 9431. Telex: 37416

N.S.W. Tel: (02) 439 6633 Qld. Tel: (07) 524 059 FE 002

The Australian Computer Journal, Vol. 14, No. 2, May 1982 v

NOW! FROM SANYO

CRX1000: ONLY $979

9 5ANVO

• High-resolution display of up to 1920 (8x 12 dot) characters, 80 per line
in 24 lines, on a 12” screen.

• Extra simplicity, extra low cost with incorporation of a microprocessor and
LSI modules.

• ASCII keyboard with typewriter-style shift and shift-lock keys for capital
letters and blocktype arrangement for easy operation.
Teletypewriter key format for alphanumerics, separate numeric pad.

• External interface employs EIA RS-232C interface and 20mA current
loop.

• Hard copy interface on RS-232C ACJX port output enables print-out of
data from host computer.

• Designed for easy servicing with function-related modular construction
and keyboard check system for memories and data transfer functions.

• Audible alarm when control is received or 72nd character of a line. Also
warns of depletion of paper supply when optional printer is employed.

8 Compact unit measures 410 (W) x 555 (D) x 320 (H) mm and weighs only
17.5 kg including keyboard.

EMULATIONS: ADDS RANGE ** VISUAL 100,
Dealer enquiries welcome

200 ETC.

SANYO OFFICE MACHINES PTY. LTD.
1 27 Walker St., North Sydney 2000. Tel: 929 4644
VIC: 67 5501; SA: 51 3946; ACT: 80 5854; BRIS: 36 7588;
DARWIN: 81 5794.

•Plus tax if applicable. * * Additional $ 120 per chip. SOM-229

vi The Australian Computer Journal, Vol. 14, No. 2, May 1982

The Care computerised system for medical practice management.

whom accounts are sent to employers, insurance companies
or the Health Department. Care has the ability to have one
or more users billing, receipting, enquiring or processing
reports at one time.

Regional Data Systems was formed in 1981 by the
joining together of Dalton Sallis and Associates, a firm of
leading consultants in the Computer and Management field,
and the Regional Medical Group, an Australia-wide organi
sation specialising in health care. The company employs
seven top people all selected for their knowledge and years
of experience and the technical team is headed by David
Dalton and Dr. Philip Sallis. Dr. Sallis is a well-known con
sultant and lecturer in Management Information Systems
and David Dalton was until recently National Software
Manager for Prime Computers and has had more than ten
years experience in the industry.

Care is written in Cobol and runs on the Onyx range
of computers. Onyx was chosen because the computers will
run in a reasonable office environment, because they have
built a Winchester sealed fixed disk and a built in tape for
back up and because they can be expanded to allow the
system to be upgraded as the practice grows and the
number of doctors increases.

In the future the company sees its computers hooked
up to a national data network in which a central data bank
will provide in-depth medical data to the General Prac
titioner and the Practitioner through his computer will pro
vide to the data bank information on such matters as the
prevalence in his area of specific illnesses or allergies.

Maurie Stang is excited by the prospect of these
developments and believes the day will soon come when it
will be commonplace for a doctor to have a computer.

Maurie says, “in future years a major part of the
Regional Group of activities will be in the growing areas of
practice management systems and installation of the inte
grated electronic office concept into health care.”

CONTROL DATA HOSTS CHINESE
DELEGATION

Recent visitors to Australia were members of the
Computer Application and Management Study Group of
the State Scientific and Technological Commission of the
People’s Republic of China.

The group, pictured here outside Control Data’s
Australian Computing Centre at Knox, Victoria, was head
ed by Mr. Su Zhengwu (centre). They were hosted on a tour
of the Australian Computing Centre by Mr. Rob Hain
(right), CDA’s Regional Manager for Computer Systems.

The party met with various organisations, including
ACS, during their study tour, which was planned to assist
their investigations into applications, networks, software
development, computer centre management and training
for technical personnel, and were especially interested in
/-- ---------------------------\

TECHNICIANS
$15,722 to $18,644

OEGB GLADSTONE POWER STATION

Applications are invited from suitably qualified and experienced
persons for appointment to the above positions located at the
Gladstone Power Station.
RESPONSIBILITIES: The appointees will be responsible for:—
• Fault finding and maintenance of boiler and turbine in

strumentation and controls.
• Fault finding and maintenance of computer systems.
• Repair of electronic control cards and modules.
QUALIFICATIONS: Applicants must hold a Queensland Elec
trical Workers’ and Contractors' Board Certificate of Competency
as an Electrical Fitter Mechanic and a Certificate, Associate
Diploma or Diploma in Electrical Engineering or equivalent
from a College of Advanced Education or other technical
qualifications which, in the opinion of the Board, are equivalent
in standard or a combination of experience and qualifications
which the Board deems to be acceptable.
Experience in instrumentation, analogue and digital controls
and computers would be an advantage.
CONDITIONS: Salary will be negotiable up to $18,644 de
pending on qualifications and experience. Relocation expenses
and housing assistance where applicable will be discussed at
interview. General conditions are progressive and include a
nine day fortnight.
TO APPLY: Application Forms and further information may be
obtained by contacting the Personnel Office (079) 761203.
Applications should be lodged with The Personnel Officer,
Gladstone Power Station, P.O. Box 1108, Gladstone, Q. 4680.

V________________ ,_______________________/

The Australian Computer Journal, Vol. 14, No. 2, May 1982 vii

the centralised facilities and equipment displayed at the
Knox centre.

The group was also provided with a demonstration of
the Plato system for a computer-based education (CBE) at
Knox, and expressed a keen interest in the possibilities for
such a system in China.

AUSTRALIAN MARKET EAGER FOR ITT
COLOUR TERMINALS

A new four-colour visual display terminal supplied
by STC’s Computer Product Division, has been released in
the Australian market.

Designed for compatibility with the larger IBM com

puters, the 2790 first landed here in December. By the end
of March, close to 200 units had been sold.

The four-colour display presents data more clearly
and concisely on the screen, and so makes it easier for
operators to absorb information.

Colour is generated by the existing field attribute
byte, and makes no demand on mainframe computer
memory.

The ITT Courier system operates through advanced
terminal controllers (ACTs) in two sizes — for up to
sixteen, or up to 32 attached terminals. Models of the larger
controllers offer 100 per cent redundancy.

The 2790-2A terminals offer 1920-character display
on a 20cm by 27cm high-resolution screen.

CSIRO
RESEARCH & DEVELOPMENT

GROUP LEADER
COMPUTER SYSTEMS DEVELOPMENT

$39,850 — $45,500 p.a.
DIVISION OF COMPUTING RESEARCH, CANBERRA ACT

V

The Division of Computing Research operates an Australia-wide computer network to provide a
computing service to CSIRO, government and other users throughout the country. Major host
computers include a CDC Cyber 76, a CDC 730, a FACOM M-190, two FACOM M-150’sandatwo Pi
V32, and services are offered using the CDC operating systems SCOPE 2 and NOS/BE. FACOM
OSIV/54 and IBM VM370/CMS. Host computers are connected to each other and to the long
distance packet-switched network by a local high speed contention network using NSC’s
HYPERchannel.
In addition to its service role, the Division undertakes innovative research and development in:
Operating Systems, Communications, Image Processing and Graphics, Systems Modelling, Data
Base Systems and VLSI architecture.
As leader of a Research & Development Group, the appointee will assist the Chief in the guidance
and co-ordination of various research and development projects. The appointee will be expected to
take a leading role in the formulation, initiation and conduct of research within selected projects.
Applicants should have a PhD degree or equivalent in computing science or a related field, a
substantial record of research achievement and the ability to provide scientific leadership to a
number of research groups. Extensive experience in communications and systems software
development would be an advantage.
This is an indefinite appointment which carries Australian Government superannuation benefits,
subject to normal conditions.
Dr. P. J. Claringbold, Chief, Division of Computing Research would be pleased to discuss the
position with potential applicants and receive advice concerning this appointment from people
with a particular interest in it.
Applications in writing and stating full personal and professional details with the names of at least
three referees, quoting reference No. A1977 should reach:

The Chief
Division of Computing Research
CSIRO
PO Box 1800
CANBERRA CITY ACT 2601

by two weeks after publication date.

viii

J

The Australian Computer Journal, Vol. 14, No. 2, May 1982

\jjy

iapBimm

Isoreg power line
conditioning
modules...
.. . can eliminate costly down-time and
errors caused by mains disturbances.

Put these power problems
behind you by contacting the
sales staff of Electrical
Equipment’s Industrial Division
for details.

POOR POWER
LINE
QUALITY...
how much
does it
cost you?
When the quality of mains power
deteriorates, so does system performance.
Sags, surges, drifts and spikes can cause
errors, loss of data, equipment damage
and system shutdowns. Often, the
diagnosis is wrong and the system is
thought to be faulty.
The Dranetz Power Line Disturbance
Analyser detects and records power line
conditions and tells you what you need to
know to select the right power
conditioning for your installation.

Electrical
ment

Limited
Industrial Division Sydney 597-1155 Melbourne 555-1611 Brisbane 44-4801 Perth 381-2866

Agents: Adelaide 51-6718 Hobart 34-2233

The Australian Computer Journal is an official publication of the
Australian Computer Society Incorporated.

OFFICE BEARERS: President: A.W. Goldsworthy, Vice-Presidents:
B.M. Hannelly, M.G. Jackson; immediate past president: G.E.
Wastie; National treasurer: R.A. Hamilton; Chief executive
officer: R. Shelley, PO Box N26, Grosvenor Street, Sydney, 2000
telephone (02) 267-5725.

EDITORIAL COMMITTEE: Editor: J. Lions, University of New
South Wales. Associate Editors: J.M. Bennett, T. Pearcey, P.C.
Poole, A.Y. Montgomery, C.K. Yuen.

SUBSCRIPTIONS: The annual subscription is $20.00. All subscrip
tions to the Journal are payable in advance and should be sent
(in Australian currency) to the Australian Computer Society Inc.,
PO Box N26, Grosvenor Street, Sydney, 2000. A subscription form
may be found below.

PRICE TO NON-MEMBERS: There are now four issues per annum.
The price of individual copies of back issues still available is $2.00.
Some already out of print. Issues for the current year are available
at $5.00 per copy. All of these may be obtained from the National
Secretariat, PO Box N26, Grosvenor Street, Sydney, 2000. No trade
discounts are given, and agents should recover their own handling
charges.

MEMBERS: The current issue of the Journal is supplied to personal
members and to Corresponding Institutions. A member joining part
way through a calendar year is entitled to receive one copy of each
issue of the Journal published earlier in that calendar year. Back
numbers are supplied to members while supplies last, for a charge of
$2.00 per copy. To ensure receipt of all issues, members should
advise the Branch Honorary Secretary concerned, or the National
Secretariat, promptly of any change of address.

MEMBERSHIP: Membership of the Society is via a Branch.
Branches are autonomous in local matters, and may charge dif
ferent membership subscriptions. Information may be obtained
from the following Branch Honorary Secretaries. Canberra: PO Box
446, Canberra City, ACT, 2601. NSW: Science House, 35-43
Clarence St, Sydney, NSW, 2000. Old: Box 1484, GPO, Brisbane,
Qld, 4001. SA: Box 2423, GPO, Adelaide, SA, 5001. WA: Box
F320, GPO, Perth, WA, 6001. Vic: PO Box 98, East Melbourne,
Vic, 3002. Tas: PO Box 216, Sandy Bay, Tas, 7005.

AUSTRALIAN COMPUTER
JOURNAL

Subscription/Change of Address Form

Name..

Current Address...

□ Please enrol me as subscriber for 1982, I enclose $20.00.

□ Please record my new address as shown above. I attach
below the mailing label for the last received issue.

ATTACH LABEL HERE

Send all correspondence regarding subscriptions to PO Box
N26, Grosvenor Street, Sydney, 2000, Australia. Photocopies
of this form acceptable.

CONTRIBUTIONS: All material for publication should be sent to:
Editor, Australian Computer Journal, PO Box N26, Grosvenor
Street, Sydney, 2000. Prospective authors may wish to consult man
uscript preparation guidelines published in the May 1980 issue. The
paragraphs below briefly summarise the essential details.

Types of Material: Four regular categories of material are published:
Papers, Short Communications, Letters to the Editor and Book
Reviews. Generally speaking, a paper will discuss significant new
results of computing research and development, or provide a com
prehensive summary of existing computing knowledge with the aim
of broadening the outlook of journal readers, or describe impor
tant computing experience or insight. Short Communications are
concise discussions of computing research or application. A letter to
the Editor will briefly comment on material previously appearing in
the Journal or discuss a computing topic of current interest. Des
criptions of new software packages are also published to facilitate
free distribution.

Refereeing: Papers and Short Communications are accepted if
recommended by anonymous referees, Letters are published at the
discretion of the Editor, and Book Reviews are written at the
Editor’s invitation upon receipt of review copies of published books.
All accepted contributions may be subject to minor modifications
to ensure uniformity of style. Referees may suggest major revisions
to be performed by the author.

Proofs and Reprints: Page proofs of Papers and Short Communi
cations are sent to the authors for correction prior to publication.
Fifty copies of reprints will be supplied to authors without charge.
Reprints of individual papers may be purchased from Associated
Business Publications, PO Box 440, Broadway, NSW, 2007. Micro
film reprints are available from University Microfilms International,
Ann Arbor/London.

Format: Papers, Short Communications and Book Reviews should
be typed in double spacing on A4 size paper, with 2.5cm margins
on all four sides. The original, plus two clear bond-paper copies,
should be submitted. References should be cited in standard
Journal form, and generally diagrams should be ink-drawn on
tracing paper or board with stencil or Letraset lettering. Papers and
Short Communications should have a brief Abstract, Keyword list
and CR categories on the leading page, with authors’ affiliations as a
footnote. The authors of an accepted paper will be asked to supply
a brief biographical note for publication with the paper.

This Journal is Abstracted or Reviewed by the following
services:

Publisher Service
ACM

ACM
AMS
CSA

Bibliography and Subject Index of Current
Computing Literature.
Computing Reviews.
Mathematical Reviews.
Computer and Information Systems Abstracts.
Data Processing Digest.

ENGINEERING
INDEX INC.
INSPEC
INSPEC

Engineering Index.
Computer and Control Abstracts.
Electrical and Electronic Abstracts.

ISI
ISI

Current Contents/CompuMath
CompuMath Citation Index.

SPRINGER- Zentralblatt fur Mathematick und ihre Grenz-
VERLAG gebiete.

Copyright © 1982. Australian Computer Society Inc.

Production Management: Associated Business Publications, Room
104, 3 Smail Street, Ultimo, NSW 2007 (PO Box 440, Broadway,
NSW 2007). Tel: 212-2780, 212-3780.
AH advertising enquiries should be referred to the above address.

Printed by: Publicity Press (NSW) Pty Ltd, 66 O’Riordan Street,
Alexandria, NSW 2015.

