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Time allowed: 4 hours

No calculators are to be used.

Each question is worth seven points.

1. For which integers n ≥ 2 is it possible to write the numbers 1, 2, 3, . . . , n in a row in

some order so that any two numbers written next to each other in the row differ by 2

or 3?

2. Given five distinct integers, consider the ten differences formed by pairs of these numbers.

(Note that some of these differences may be equal.)

Determine the largest integer that is certain to divide the product of these ten differences,

regardless of which five integers were originally given.

3. Determine all functions f defined for real numbers and taking real numbers as values

such that

f(x2 + f(y)) = f(xy)

for all real numbers x and y.

4. Suppose that S is a set of 2017 points in the plane that are not all collinear.

Prove that S contains three points that form a triangle whose circumcentre is not a

point in S.
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AUSTRALIAN MATHEMATICAL OLYMPIAD

2017

DAY 2

Wednesday, 15 February 2017

Time allowed: 4 hours

No calculators are to be used.

Each question is worth seven points.

5. Determine the number of positive integers n less than 1 000 000 for which the sum

1

2× �
√
1�+ 1

+
1

2× �
√
2�+ 1

+
1

2× �
√
3�+ 1

+ · · ·+ 1

2× �
√
n�+ 1

is an integer.

(Note that �x� denotes the largest integer that is less than or equal to x.)

6. The circles K1 and K2 intersect at two distinct points A and M . Let the tangent to K1

at A meet K2 again at B, and let the tangent to K2 at A meet K1 again at D. Let C

be the point such that M is the midpoint of AC.

Prove that the quadrilateral ABCD is cyclic.

7. There are 1000 athletes standing equally spaced around a circular track of length

1 kilometre.

(a) How many ways are there to divide the athletes into 500 pairs such that the two

members of each pair are 335 metres apart around the track?

(b) How many ways are there to divide the athletes into 500 pairs such that the two

members of each pair are 336 metres apart around the track?

8. Let f(x) = x2 − 45x+ 2.

Find all integers n ≥ 2 such that exactly one of the numbers

f(1), f(2), . . . , f(n)

is divisible by n.
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1. For which integers n ≥ 2 is it possible to write the numbers 1, 2, 3, . . . , n in a row in some

order so that any two numbers written next to each other in the row differ by 2 or 3?

Solution 1

It is clear that the task is impossible for n = 2 and n = 3. We will proceed to prove that

it is possible for all integers n ≥ 4. Consider the following constructions, which show that

the task is possible for n = 4, 5, 6, 7.

• 2, 4, 1, 3

• 2, 4, 1, 3, 5

• 1, 3, 5, 2, 4, 6

• 1, 3, 6, 4, 2, 5, 7

Suppose now that the task is possible for some n, where the final number is either n−1 or

n. Then the task is possible for n + 4, by extending the sequence with the four numbers

n+ 2, n+ 4, n+ 1, n+ 3. Therefore, the four constructions above can be extended to give

constructions for any integer n ≥ 4.

Solution 2 (Angelo Di Pasquale and Ian Wanless)

For n = 4, 5, 6, we have the following constructions.

• 2,4,1,3

• 5,2,4,1,3

• 5,2,4,1,3,6

Suppose that the task is possible for some n, where the first and last terms are n− 1 and

n in some order. Then the task is possible for n+1 by appending the term n+1 adjacent

to the term n− 1.

Solution 3 (Angelo Di Pasquale)

We have the following sporadic examples for n = 4, 7, 9.

• 2,4,1,3

• 1,3,6,4,7,5,2

• 1,3,5,2,4,7,9,6,8

We also have the following examples for n = 5, 6, 8.

• 1,4,2,5,3

• 1,3,6,4,2,5
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• 1,3,6,8,5,2,4,7

Observe that we can link any number of the above three blocks together because only

the gaps matter and the difference between the last term and the next lowest number not

in the sequence is 2 or 3. For example, to obtain the n = 11 construction, we take the

example for n = 5 (i.e., 1, 4, 2, 5, 3) and the example for n = 6 that has been translated up

by 5 (i.e., 6, 8, 11, 9, 7, 10) to form 1, 4, 2, 5, 3, 6, 8, 11, 9, 7, 10. Valid sequences of length n

may be formed in this way for any n of the form n = 5a + 6b + 8c. Finally, one observes

that all n ≥ 10 can be represented in this way. The reason is because 10, 11, 12, 13, 14 are

all representable in this way, and any larger integer can be represented as a multiple of 5

plus one of these numbers.

(Note that this proves the following stronger result: For n = 5, 6, 8 and n ≥ 10, valid

sequences can be found that start with 1.)
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2. Given five distinct integers, consider the ten differences formed by pairs of these numbers.

(Note that some of these differences may be equal.)

Determine the largest integer that is certain to divide the product of these ten differences,

regardless of which five integers were originally given.

Solution 1

If the five integers are 1, 2, 3, 4, 5, then the product of the ten differences is

1× 1× 1× 1× 2× 2× 2× 3× 3× 4 = 288.

Now suppose that we are given five distinct integers a, b, c, d, e. We will show that 288 is

certain to divide the product P of the ten differences formed by pairs of these numbers.

• First, we will show that 25 is a divisor of P . By the pigeonhole principle, at least three

of the five numbers — without loss of generality, a, b, c — are congruent modulo 2.

By the pigeonhole principle again, at least two of these numbers — without loss of

generality, a and b — are congruent modulo 4. Therefore, the product |a− b| × |a−
c|×|b−c| contributes a factor of 24 to P . If d and e are congruent modulo 2, then the

factor |d − e| contributes an extra factor of 2 to P . Otherwise, d and e are distinct

modulo 2, so at least one of them — without loss of generality, d — is congruent

to a, b, c modulo 2. So the difference |a − d| contributes an extra factor of 2 to P .

Therefore, P is divisible by 25.

• Next, we will show that 32 is a divisor of P . By the pigeonhole principle, at least two

of the five numbers — without loss of generality, a and b — are congruent modulo 3.

Therefore, the difference |a− b| contributes a factor of 3 to P . If the remaining three

numbers are distinct modulo 3, then at least one of them — without loss of generality,

c — is congruent to a and b modulo 3. Therefore, the difference |a − c| contributes
an extra factor of 3 to P . Otherwise, the remaining three numbers are not distinct

modulo 3, so the pigeonhole principle guarantees that two of them — without loss of

generality, c and d — are congruent modulo 3. So the difference |c − d| contributes
an extra factor of 3 to P . Therefore, P is divisible by 32.

Since the product is divisible by both 25 and 32, which are relatively prime, it is divisible

by 25 × 32 = 288.

Solution 2 (Kevin McAvaney)

As in Solution 1, if the five integers are 1, 2, 3, 4, 5, then the product of the ten differences

is

1× 1× 1× 1× 2× 2× 2× 3× 3× 4 = 288.

Now suppose that we are given five distinct integers a, b, c, d, e. We will show that 288 is

guaranteed to divide the product P of the ten differences formed by pairs of these numbers.

The fact that 32 divides P follows from the observations below.

• If four or more of the five numbers are even then at least six of their differences are

even, hence 32 divides P .

3



4

• If four or more of the five numbers are odd then at least six of their differences are

even, hence 32 divides P .

• If three of the five numbers are even and two are odd, then they have the form

2x, 2y, 2z, 2u + 1, 2v + 1. At least two of x, y, z are congruent mod 2, so the corre-

sponding difference is divisible by 4. Hence 32 divides P .

• If three of the five numbers are odd and two are even, then they have the form

2x, 2y, 2u + 1, 2v + 1, 2w + 1. At least two of u, v, w are congruent mod 2, so the

corresponding difference is divisible by 4. Hence 32 divides P .

The fact that 9 divides P follows from the observations below.

• If three or more of the five numbers are congruent mod 3, then at least three of their

differences are divisible by 3, hence 9 divides P .

• If no three of the five numbers have the same remainder when divided by 3, then two

have the same remainder r and two have the same remainder s. The difference of

each pair is divisible by 3, hence 9 divides P .

Since the product is divisible by both 32 and 9, which are relatively prime, it is divisible

by 32× 9 = 288.
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3. Determine all functions f defined for real numbers and taking real numbers as values such

that

f(x2 + f(y)) = f(xy)

for all real numbers x and y.

Solution (Angelo Di Pasquale)

The solutions are given by f(x) = c, where c is any real constant.

Let f(0) = c. Set y = 0 in the functional equation to find f(x2 + c) = c. Since x2 + c

ranges over all real numbers greater than or equal to c, we deduce that

f(x) = c, for all x ≥ c.

Now let u be any real number such that u �= 0 and u ≥ c. Substitute y = u into the

functional equation to find

f(xu) = f(x2 + f(u)) = f(x2 + c) = c.

Since u �= 0, it follows that xu ranges over R as x ranges over R. Hence, f(x) = c for all

x ∈ R. It is easy to verify that all such functions do indeed satisfy the functional equation.

5
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4. Suppose that S is a set of 2017 points in the plane that are not all collinear.

Prove that S contains three points that form a triangle whose circumcentre is not a point

in S.

Solution 1 (Angelo Di Pasquale)

To obtain a contradiction, we assume that the circumcentre of any triangle formed by

three points of S is also a point in S.

There exist two points A,B ∈ S such that all points of S lie on or to the right of the line

AB. (This can be explained by taking a vertical line � which lies to the left of all points

in S and slowly moving to the right until it encounters a point of S, and then rotating it

about that point until it encounters a second point of S. Alternatively, one can appeal to

the convex hull of S.)

Without loss of generality, let A and B have coordinates (0, 1) and (0,−1), respectively.

Construct the sequence of points X1, X2, . . . as follows. Let X1 be the midpoint of AB.

For i = 1, 2, . . ., the point Xi+1 is defined to be the intersection of the circle with centre

Xi and passing through points A and B, with the positive x-axis. We call this circle Ci

and we will prove by induction that no point of S lies in the interior of Ci.

B

A

Xi Xi+1

P

Q

For the base case, C1 is the circle with diameter AB. Remember that no point of S lies to

the left of the line AB. If a point P ∈ S lies in the interior of C1, then since ∠APB > 90◦,

the circumcentre of �ABP would lie to the left of AB, a contradiction.

For the inductive step, suppose that no point of S lies in the interior of Ci−1 for some

i ≥ 1. Suppose that a point P ∈ S lies in the interior of Ci. Then arc APB lies to the

left of arc AXi+1B. Thus, the centre of circle APB, which we will call Q, lies to the left

of the centre Xi of circle Ci. But Q lies on the x-axis. Hence, Q lies in the interior of

Ci−1. But since P ∈ S, we have Q ∈ S, which yields a contradiction. Thus, the induction

is complete.

Let Xi = (xi, 0). Since Xi is the centre of Ci, we know that XiA = XiXi+1 = xi+1 − xi.

Pythagoras’ theorem yields

(xi+1 − xi)
2 = XiA

2 = x2i + 1 ⇒ xi+1 > 2xi.

Hence, the circles Ci grow arbitrarily large. Since they all pass through A and B, it follows

that no point of S can lie to the right of the line AB, which yields the desired contradiction.
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Solution 2 (Angelo Di Pasquale)

To obtain a contradiction, we assume that the circumcentre of any triangle formed by

three points of S is also a point in S.

Let A,B ∈ S be as in the official solution, but with the additional property that no other

point of S lies on the segment AB. Of the remaining points of S that are not on the line

AB, let P be the point such that the anticlockwise oriented angle ∠APB is maximal. Let

Q be the circumcentre of �APB. By assumption Q ∈ S and the anticlockwise oriented

angles ∠APB and ∠AQB do not exceed 180◦. However, ∠AQB = 2∠APB > ∠APB.

This contradicts the maximality of ∠APB.

Solution 3 (Ivan Guo)

We will prove a stronger statement — namely, that S contains three non-collinear points

whose circumcircle does not contain a point of S in its interior. First, we construct a circle

through two points of S that does not contain a point of S in its interior. This can be

achieved in either of the following ways.

• Find a pair of points in S with the smallest distance between them and construct the

circle on which these two points lie diametrically opposite each other.

• Start with a circle of small radius passing through one point of S and dilate about

that point. Keep expanding the circle until it hits a second point of S. If the circle

never hits a second point of S, then we simply make the circle very large and then

rotate it about the centre of dilation until it hits a second point of S.

Now we have a circle through two points A and B of S. Since not all points in S are

collinear, at least one side of the line AB contains at least one point in S. Continuously

expand the circle towards that side, while making sure that it still passes through A and

B. Eventually, it must hit a third point of S. At this stage, the circle meets three points

of S but contains no points of S in its interior.

Solution 4 (Alan Offer)

Amongst all triangles whose vertices are in S, let ABC be one whose circumradius, R, is

smallest. Let D be the circumcentre of triangle ABC. If D is not in S then we are done.

Suppose then that D is in S.

Relabelling if necessary, let ∠BAC = α ≤ 60◦ be the smallest angle in triangle ABC. Let

RA be the circumradius of triangle BCD. By the sine rule, we have 2R = BC
sinα . Also,

since ∠BDC = 2α, we have

2RA =
BC

sin 2α
=

BC

2 sinα cosα
.

Thus R
RA

= 2 cosα. If α < 60◦ then cosα > 1
2 and so R > RA. By the minimality of R, it

follows that the circumcentre of triangle BCD is not in S and we are done.

Suppose then that α = 60◦, in which case triangle ABC is equilateral. Let E be the

reflection of D through the line AB. Then E is the circumcentre of triangle ABD. If E

is not in S then we are done. Otherwise, E is in S and triangle ADE is an equaliteral

triangle smaller than ABC, and so by the minimality of R, the circumcentre of ADE is

not in S.
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5. Determine the number of positive integers n less than one million for which the sum

1

2× �
√
1�+ 1

+
1

2× �
√
2�+ 1

+
1

2× �
√
3�+ 1

+ · · ·+ 1

2× �
√
n�+ 1

is an integer.

(Note that �x� denotes the largest integer that is less than or equal to x.)

Solution

Observe that each term of the sequence is of the form 1
2m+1 for some positive integer m

and that the terms form a non-increasing sequence. The terms equal to 1
2m+1 are

1

2�
√
m2�+ 1

,
1

2�
√
m2 + 1�+ 1

,
1

2�
√
m2 + 2�+ 1

, . . . ,
1

2�
√

(m+ 1)2 − 1�+ 1
.

In particular, there are (m+1)2 −m2 = 2m+1 terms equal to 1
2m+1 . So the first 3 terms

are equal to 1
3 , the next 5 terms are equal to 1

5 , the next 7 terms are equal to 1
7 , and so

on. It follows that the sum of the series is an integer if and only if

n = 3 + 5 + 7 + · · ·+ (2m+ 1) = (m+ 1)2 − 1,

for some positive integer m. Since 10002 − 1 is less than one million while 10012 − 1 is

more than one million, we deduce that the answer is 1000− 1 = 999.
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6. The circles K1 and K2 intersect at two distinct points A and M . Let the tangent to K1

at A meet K2 again at B and let the tangent to K2 at A meet K1 again at D. Let C be

the point such that M is the midpoint of AC.

Prove that the quadrilateral ABCD is cyclic.

Solution 1

Let ∠MAD = x and ∠MAB = y. By the alternate segment theorem, we have ∠ABM =

∠MAD = x and ∠ADM = ∠MAB = y. Therefore, we have �AMD ∼ �BMA and the

equal ratios MA
MD = MB

MA . Since MC = MA, we also have the equal ratios MC
MD = MB

MC .

A

B

C

D

M

Now since ∠CMD is an external angle of�AMD, we have ∠CMD = ∠MAD+∠MDA =

x+y. Similarly, since ∠CMB is an external angle of�AMB, we have ∠CMB = ∠MAB+

∠MBA = x+ y. It follows that �CMD ∼ �BMC.

Therefore,

∠BCD = ∠BCM + ∠MCD = ∠BCM + ∠MBC

= 180◦ − ∠BMC = 180◦ − (x+ y) = 180◦ − ∠BAD.

So ∠BAD + ∠BCD = 180◦, from which conclude that ABCD is a cyclic quadrilateral.

Solution 2 (Angelo Di Pasquale)

Let the line AM intersect the circumcircle of triangle ABD again at the point C ′. It now

suffices to prove that M is the midpoint of AC ′, as this will establish that C = C ′.

9
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A

M

B

D

C ′

E

F

Let C ′D intersect K1 again at E and let C ′B intersect K2 again at F . Using the cyclic

quadrilaterals AMDE, ABC ′D and AFBM , we find that

∠EMA = ∠EDA = ∠C ′BA = 180◦ − ∠ABF = 180◦ −AMF.

Hence E, M and F are collinear. (Alternatively, one can invoke the pivot theorem to

deduce that E, M and F are collinear.)

From this, we have

∠MFA = ∠MBA (AFMB cyclic)

= ∠MAD (alternate segment theorem)

= ∠MED. (AMDE cyclic)

Hence, AF is parallel to ED. Similarly, we find that AE is parallel to FB. Hence, AFC ′E

is a parallelogram. So its diagonals bisect each other and M is the midpoint of AC ′ as

desired.

Solution 3 (Ivan Guo)

Let the midpoints of AD and AB be X and Y , respectively. Since the quadrilaterals

AYMX and ABCD are related by a dilation with centre A, it suffices to prove that

the quadrilateral AYMX is cyclic. Applying the alternate segment theorem as in the

official solution, we know that �AMD is similar to �BMA. By the so-called “similar

switch” argument, they are also similar to �XMY . (This follows from the observation

that the spiral symmetry that maps �AMD to �BMA must map X to Y .) Thus,

∠XYM = ∠DAM = ∠XAM . It now follows that the quadrilateral AYMX is cyclic.

Solution 4 (Ivan Guo)

Construct X so that M is the midpoint of BX. So ABCX is a parallelogram. By the

alternate segment theorem, we have �AMD ∼ �BMA. By construction �ACD ∼
�BXA. Thus ∠ADC = ∠BAX = 180◦ − ∠ABC, as required.

10
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Solution 5 (Dan Mathews)

Let ∠MAD = x and ∠MAB = y. By the alternate segment theorem, ∠ADM = y and

∠ABM = x, so the triangles BAM and ADM are similar. It follows that ∠AMB =

∠DMA.

We now claim that the triangles ABD and MCD are similar. As an exterior angle of

triangle AMD, we have ∠CMD = ∠MAD + ∠MDA = x + y = ∠BAD. Now CM
MD =

AM
MD = sin∠ADM

sin∠DAM = sin y
sinx . On the other hand, BA

DA = BA
MA × MA

DA = sin∠AMB
sin∠MBA × sin∠MDA

sin∠DMA =
sin∠MDA
sin∠MBA = sin y

sinx . So the triangles are similar as claimed.

Hence, ∠ABD = ∠MCD = ∠ACD, so the quadrilateral ABCD is cyclic.

Solution 6 (Alan Offer and Chaitanya Rao)

Apply an inversion with centre A and radius AM , so that M is fixed. Let us indicate

images under this inversion with a dash so, for instance, the image of D is D′.

The lines through A are fixed, so D′ lies on AD and B′ lies on AB. Since K1 is a circle

tangent to AB at A and passing through points D and M , the image K ′
1 is a line parallel

to AB passing through D′ and M . Similarly, K ′
2 is a line parallel to AD passing through

B′ and M . It follows that AB′MD′ is a parallelogram.

Since the fixed point M is the midpoint of AC, the point C ′ is the midpoint of AM . Since

AB′MD′ is a parallelogram, C ′ is then also the midpoint of B′D′. In particular, B′, C ′

and D′ are collinear. Reversing the inversion, the line B′C ′D′ maps to a circle through B,

C, D and the centre A of the involution. Thus, the quadrilateral ABCD is cyclic.
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7. There are 1000 athletes standing equally spaced around a circular track of length 1 kilo-

metre.

(a) How many ways are there to divide the athletes into 500 pairs such that the two

members of each pair are 335 metres apart around the track?

(b) How many ways are there to divide the athletes into 500 pairs such that the two

members of each pair are 336 metres apart around the track?

Solution (Ivan Guo)

More generally, we will prove the following result.

Suppose that there are 2n points equally spaced around the circumference of a

circle so that the arc length between adjacent points is 1. The number of ways

to divide the points into n pairs such that, in each pair, the arc length between

the two points is k is



2gcd(k,n), if k

gcd(k,n) is odd,

0, if k
gcd(k,n) is even.

First, consider the case gcd(k, n) = 1. If k is even, then n must be odd. Colour the points

alternately red and blue around the circle and observe that a pair of points distance k

apart are necessarily the same colour. Since it is impossible for the n blue points to be

paired up, the required pairing is not possible. If k is odd, then we join each point with

the points distance k away from it. Since gcd(k, 2n) = 1, this produces a cycle of length

2n. The required pairing consists of alternate edges from this cycle, so there are two such

required pairings.

More generally, let gcd(k, n) = g. By considering points which are distance k apart, the

problem reduces to g independent problems of the type discussed above, each with 2n
g

points around the circle that need to be divided into pairs of points distance k
g away from

each other. Thus, the required answer is given by the result above.

We may now return to the two specific examples from the problem statement.

(a) Since gcd(335, 500) = 5 and 335
5 = 67 is odd, the answer is 25 = 32.

(b) Since gcd(336, 500) = 4 and 336
4 = 84 is even, the answer is 0.

12
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8. Let f(x) = x2 − 45x+ 2.

Find all integers n ≥ 2 such that exactly one of the numbers

f(1), f(2), . . . , f(n)

is divisible by n.

Solution 1 (Angelo Di Pasquale)

The only answer is n = 2017.

Note that if x ≡ y (mod n), then it follows that f(x) ≡ f(y) (mod n). Therefore, we are

seeking all n such that f(x) ≡ 0 (mod n) has a unique solution modulo n.

Suppose that f(a) = kn for some integer k. Using the quadratic formula, we find that

a =
45±

√
2017 + 4kn

2
. (1)

Hence, 2017 + 4kn is an odd perfect square. So if one root of the quadratic is an integer,

then so is the other. By the condition of the problem, this implies that

45 +
√
2017 + 4kn

2
≡ 45−

√
2017 + 4kn

2
(mod n) ⇒ 2017 ≡ 0 (mod n).

Since 2017 is prime and n ≥ 2, it follows that n = 2017.

Conversely, if n = 2017, then the quadratic formula (1) tells us that for a to be an integer,

we require 1 + 4k = 2017j2 for some odd integer j = 2i + 1. Substituting this into the

equation yields a = 1031 + 2017i or a = −986− 2017i. So the only such value of a in the

required range is a = 1031, which corresponds to i = 0, j = 1 and k = 504.

Solution 2 (Angelo Di Pasquale)

Suppose that f(a) ≡ 0 (mod n) and observe that f(45− a) = f(a). Hence, f(45− a) ≡ 0

(mod n) and it follows that

a ≡ 45− a (mod n) ⇔ 2a ≡ 45 (mod n).

However,

a2 − 45a+ 2 ≡ 0 (mod n)

⇒ 4a2 − 180a+ 8 ≡ 0 (mod n)

⇒ 452 − 90 · 45 + 8 ≡ 0 (mod n)

⇔ 2017 ≡ 0 (mod n).

The third line follows from the second using 2a ≡ 45 (mod n). Since 2017 is prime and

n ≥ 2, it follows that n = 2017.

13



14

Let us verify that n = 2017 is indeed a valid solution. We do this by showing that the

following congruence has exactly one solution modulo 2017.

x2 − 45x+ 2 ≡ 0 (mod 2017)

⇔ 4x2 − 180x+ 8 ≡ 0 (mod 2017)

⇔ (2x− 45)2 ≡ 0 (mod 2017)

⇔ 2x ≡ 45 (mod 2017)

⇔ ≡ 2062 (mod 2017)

⇔ x ≡ 1031 (mod 2017).

The fourth line follows from the third since 2017 is square-free. Thus, x = 1031 is the

unique value in {1, 2, . . . , 2017} such that f(x) is divisible by 2017.

14


	2017 AMO for print.pdf
	2017 AMO Solutions.pdf

