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KURT GODEL 

28 April 1906-14 January 1978 

Elected For. Mem. R.S. 1968 

BY G. KREISEL, F.R.S. 

KURT G6DEL did not invent mathematical logic; his famous work in the 
thirties settled questions which had been clearly formulated in the preceding 
quarter of this century. Despite sensational presentations by crackpots, 
philosophers and journalists (or even in poems, for example, by H. M. 
Enzensberger, set to music by H. W. Henze), G6del's results have not revo- 
lutionized the silent majority's conception of mathematics, let alone its practice; 
much less so than the internal development of the subject since then. Certainly, 
those results refuted most elegantly each of the grand foundational 'theories' 
current at the time, of which Hilbert's, on the place of formal rules in mathe- 
matical reasoning, and those associated with Frege and Russell, on its reduction 
to universal systems like set theory, were most popular. (G6del's own and 
related results also deflate the particular 'anti-formalist' foundations of the time, 
Poincare's and Brouwer's constructivist and Zermelo's infinitistic schemes 
being extreme examples; they are taken up in the last sections of parts II-IV.) 
For obvious reasons, in his original publications G6del made a point of 
formulating his work in terms acceptable to the theories mentioned, and to 
stress its bearing on them. But it is fair to say that they were suspect anyway, 
and-less trivially-that they can be refuted more convincingly by simple 
constatations rather than by (his) mathematical theorems as explained in more 
detail in part II. Further, as so often with very grand schemes, the refutations 
put nothing comparable in the place of the discredited foundational views 
which are, quite properly, simply ignored in current practice. 

The first principal aim of this memoir is to restate G6del's main results in 
the light of present knowledge, and hence independently of those foundational 
views. This is done in parts II and III by reference to two classes of axiomatic 
definitions, first discovered about a century ago, and familiar to anybody with 
an up-to-date elementary background in mathematics. Peano's and Dedekind's 
set-theoretic axioms for the natural and real numbers are typical of the broad 
class, elementary algebra and, for that matter, computer programmes of the 
narrow class. The relation to the foundational theories is simple: each of the 
latter wildly overemphasizes the role of one of the two classes of definitions, 
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Biographical Memoirs 

and so completely misjudges both classes. Godel's results establish the different 
potentialities of the two classes of definitions much more dramatically than had 
been done before. He did not go on to study just where those potentialities are 
actually useful. This was done by many others who, over the last fifty years, 
developed and, occasionally, applied the more successful branches of logic: 
model theory, recursion theory, and set theory (the latter not as a foundational 
system, but as a specialized part of mathematics).-Readers interested in the 
reaction of the logical community in the thirties to Godel's results can find a 
most faithful description in Kleene (1976), and some of Godel's comments on 
it in Kleene (1978). 

The second principal aim of this memoir is to substantiate Godel's own 
view of the essential ingredient in his early successes, which solved problems 
directly relevant to principal interests of some of the most eminent mathe- 
maticians of this century, including Poincare, Hilbert, Brouwer and Hermann 

Weyl. His view differs sharply from the impressions of many mathematical 

logicians who, over more than forty years, have looked in Godel's work for the 

germs of some exceptionally novel mathematical constructions or for previously 
unheard-of subtle distinctions, but not very convincingly. Without losing sight 
of the permanent interest of his work, Godel repeatedly stressed-at least, 
during the second half of his life-how little novel mathematics was needed; 
only attention to some quite commonplace (philosophical) distinctions; in 
the case of his most famous result: between arithmetic truth on the one 
hand and derivability by (any given) formal rules on the other. Far from 

being uncomfortable about so to speak getting something for nothing, he 
saw his early successes as special cases of a fruitful general, but neglected 
scheme: 

By attention to or, equivalently, analysis of suitable traditional philosophical 
notions and issues, adding possibly a touch of precision, one arrives painlessly 
at appropriate concepts, correct conjectures, and generally easy proofs-to be 

compared to the use of physical reasoning for developing mathematics or, on a 
smaller scale, to the use of geometry in algebra. 

In terms used by Kant (A 713)-philosophy analyses and mathematics builds 
up concepts-Godel looked for a combination (where Kant saw only a 

distinction): for a given problem one may have the choice between a solution 

by means of philosophical analysis and easy mathematics and one by elaborate 
or otherwise subtle constructions. The simplest example is a solution by new 
axioms, discovered and justified by means of philosophical analysis. (Part IV 
describes a specific proposal under the slogan: axioms of infinity.) Evidently, 
Godel's scheme goes counter to the wide-spread ideal of Methodenreinheit 
(purity of methods) in mathematics, made famous by Hilbert's successful use 
of it in geometry. With great determination and much imagination Godel 
looked for other areas of knowledge where this kind of analysis would be 
rewarding, including the natural sciences (where, after all, Einstein had used 
such analysis so successfully that it remained a kind of ideal of theoretical 
science for decades). Part V covers this material. 
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It is clearly beyond the scope of this memoir to assess the value of G6del's 
scheme in the arsenal of scientific methods or even to compare it with the 
opposite (heuristic) view expressed in the motto of the Royal Society. But 
enough will be said of the singular state of foundations 50 years ago, heated up 
by dramatic 'controversies' over almost half a century, and of alternatives in 
the recent literature, to limit one's expectations. 

Readers are warned that it has not been possible to take full account of the 
many papers, ranging from over 80 scientific notebooks to some exercise books 
from his schooldays, which Godel left to the Institute of Advanced Study at 
Princeton. The latter, with the support of the N.S.F., made available micro- 
films of almost 5000 pages (partly in old-fashioned Gabelsberger shorthand), 
mainly from the very productive years 1938-1945. As a result it was possible to 
document most of the points I remembered from our conversations over more 
than 20 years. But even the small part of his Nachlass that I have seen has 
altered completely my picture of his extraordinarily methodical working habits, 
about which he had been very reticent; for example, he has left a stack of 
envelopes full of library chits for books he borrowed, and, presumably, read. 
(Another surprising discovery was a bundle of drafts for lectures both on 
elementary and on advanced logic, written with love and care and relaxed 
precision, in a style different not only from his publications, but also from his 
letters and conversations.) Godel himself was equally reticent about his 
personal history, but his wife talked more freely about it, usually in his presence. 
Part I of this memoir, which covers such matters, also uses material from a 
family history of Godel's mother, written in 1967 by Dr Rudolf G6del, his only 
sibling, a year after her death, and supplemented in 1978. Some points of detail 
were cleared up by letters from Godel to his mother, which his brother put at 
my disposal, and by documents from the Archives of the University of Vienna 
which Professor E. Hlawka obtained for me (and which will be available to the 
public in 1989). Evidently, the sections of part I which are based primarily 
on the memories of members of the family or of myself, will have to be cross- 
checked; not so much because of exaggerated discretion but because of 'the 
influence of the observer on the observation', close observers tending to have 
a lopsided view. 

I. LIFE AND CAREER 

Family background 

Godel was born on 28 April 1906 at Briinn in Moravia, then called the 
Manchester of the Austro-Hungarian Empire, and now Brno (since it became 
part of Czechoslovakia after World War I). Gbdel's father Rudolf, whose 
family had come from Vienna, was an early 'drop-out', but practical and 
energetic. He became managing director and part-owner of one of the leading 
textile firms. He was 14 years older than his wife Marianne, whose father, 
Gustav Handschuh, had come from the Rhineland, where he had been a poor 
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Biographical Memoirs 

weaver, to find success at Briinn, also in textiles. The mother had a broad 
literary education, partly in France. But she was also a competent and imagina- 
tive Hausfrau, to whom both her children were very much attached. She was 
brought up as a Protestant, her husband was only formally Catholic, and the 
children received no religious training. G6del's older brother has remained 
unmoved by religion. Godel himself developed quite early unorthodox 
theological interests, had a life-long dislike of the Catholic Church, and a soft 
spot for new sects, in the New World, of which he spoke often in conversation, 
and also wrote at some length to his mother, for example in a letter dated 18 
March 1961. 

Godel's family cultivated its German national heritage; a bit self-consciously 
as was usual among German-speaking minorities of the multi-racial Austro- 
Hungarian monarchy. Naturally, this continued after World War I, and is 
beautifully reflected in one of Godel's essays, written during 1920/21 at the 
Staatsrealgymnasium in Brunn mit deutscher Unterrichtssprache, on the superiority 
of the austere life led by Teutonic warriors over the decadent habits of civilized 
Rome. Most of the family friends were later very enthusiastic about the 
successes of Germany under Hitler. Godel's mother, who apparently had 
happy memories of her school days in France, is said to have been sceptical, 
almost alone among her friends and neighbours. 

Growing up in Brunn and Brno, 1906-1923 

Godel is remembered as a generally happy, but rather timid and touchy 
child, unusually troubled when his mother left the house or when he lost a 

game. Around 1914, at the age of eight, concern for his health began to take 

up more and more of his daily life; the next paragraph gives only a bare 
outline. 

At the age of six G6del had a painful bout of rheumatic fever, but resumed 
a normal life after he got better. At eight-pretty evidently after reading about 

possible complications of the disease, in some medical book or other-he 
became convinced he had a weak heart. The conviction remained to the end of 
his life. Occasionally he developed some of the appropriate symptoms, for 

example, at the end of the sixties, more than 50 years later. He saw a well 
known heart specialist in New York. When the e.c.g. and other tests were 
normal, Godel felt frustrated-having overlooked that his particular symptoms 
were perfectly normal for anybody who worried about having a weak heart. 
This kind of oversight was by no means exceptional in his medical history. 
Some of Godel's exaggerated reactions in later life, though surely going back 
to a natural predisposition, must have been reinforced by the peculiar diffi- 
culties of ill health in childhood. Examples of those reactions, ranging from 
excessive caution both in everyday life and in the presentation of his work, to 
distrust of the views of others, especially in medical matters, are sprinkled 
throughout this memoir. The caution and its frustrations go with the childhood 
coddling and the vicious circle to which the latter leads. The distrust goes with 
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the logical trauma of listening to explanations by doctors and other healthy 
people, for example, of that vicious circle, especially for a very inquisitive 
child like little Godel whom the family called 'Mr Why', der Herr Warum. Be 
that as it may, the distrust was there, and delayed appropriate treatment of an 
ulcer in the forties when his life had to be saved by several blood transfusions; 
in his final years it aggravated the prostate trouble which he called 'weakness 
of the bladder', well known to be desperately depressing at best. 

But most of his life he managed well enough. If preoccupation with his 
health limited his energies, he was also careful not to waste them, as his 
diaries show. His powers of concentrated work and sustained interest were 
evident already at school (as shown by his home work on geometry in one of 
the exercise books he kept or his reputation never to have made a mistake in 
Latin grammar), and continued into the sixties when his wife still spoke of him, 
affectionately, as a strammer Bursche. Incidentally, he came upon his first 
romantic interest without much waste of time: she was the daughter of family 
friends who were frequent visitors. She was regarded as an eccentric beauty. 
Because she was ten years older his parents objected strongly and successfully, 
apparently unimpressed by the neat balance between her age and his valetudi- 
narian habits. 

Vienna, with two interludes at Princeton, 1923-1938 

As Godel mentioned in conversation he was originally undecided between 
mathematics and theoretical physics. The elegance of the three-year lecture 
cycle by the number theorist P. Furtwangler, a pupil of Hilbert and one of the 
founders of class field theory, tipped the balance. Another singular aspect of 
those lectures (which Godel did not mention, possibly because of the medical 

history involved) may have had equal weight. Furtwangler was paralysed from 
the neck down; and lectured from his wheel chair without notes, while a scribe 
wrote the proofs on the board. This virtuoso performance was all the more 

spectacular because Furtwangler, like his cousin the famous conductor, had 
an exceptionally fine head. 

But G6del's principal teacher was the analyst H. Hahn, who was actively 
interested in foundations, and a member of the Wiener Kreis (Viennese Circle), 
a band of positivist philosophers around M. Schlick, who was shot and killed 

during a lecture in 1936. The meetings of the Kreis were held in a seminar 
room, off a corridor that led to the department of mathematics-and mathe- 
maticians tended to drift in and out of the meetings. Godel attended more 

regularly. By a lucky chance it is possible to document what he later remem- 
bered as his (negative) reaction; by reference to the record (3)*of a meeting on 
foundations organised by the Kreis, a few months before he discovered the 

incompleteness theorem. On pp. 147-148 he gives a brilliantly succinct and 

precise analysis of the inadequacy of consistency as a sufficient condition for 
sound mathematics-contrary to formalist positivist doctrine. His analysis uses 

* The numbers in parentheses refer to the Bibliography, pp. 223-224. 
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freely, almost ostentatiously just those concepts which are anathema to the 
doctrine-without a word about the latter, as if it were not worth mentioning. 
A year later, still only 25, he used similarly elegant tactics in a letter to Zermelo 
(of 12.10 1931) reprinted in Grattan-Guinness (1979), after Zermelo's criticism 
of the incompleteness theorem at the 1931 meeting of the German Mathe- 
matical Society, cf. Zermelo (1932). 

Godel's paper on incompleteness was accepted as Habilitationsschrift (on 
1.12.32, by Hahn, as being well above the norm). In March 1933 G6del was 
made Privatdozent, unpaid lecturer, a title which was abolished in 1938 when 
Austria became part of Germany. A candidate was required to have either 
independent means (which was called reich) or a job, quaintly reminiscent of 
the rules for retiring officers of the Austro-Hungarian army (a genuinely rich 
wife would do). G6del's father had left the family comfortably off when he died 
in 1929 at the age of 54 from a painful abscess on the prostate. The mother 
moved to Vienna, took a large flat, and shared it with her two sons till 1937 
when she returned to her villa in provincial Brno. Rudolf, the elder son, was 
already an active and successful radiologist without being wholly absorbed in 
his profession. The mother was enchanted by the theatre in Vienna where her 
long-standing literary interests were brought to life, and the sons went with 
her. And if Godel preferred musicals, as he did all his life, he was very willing 
to form opinions on Art and Literature, and to defend them energetically, 
especially when they were unorthodox.-Though his work was quickly 
recognized in Austria and abroad, at home among his family he always 
went out of his way to 'hide his light under a bushel' as his brother put 
it. 

After Godel's first visit to Princeton (1933/34) he had a nervous breakdown. 
It began with severe anxiety when he got off the boat. (He telephoned his 
brother from Paris, who almost went to meet him there.) Wagner-Jauregg was 
called in, a Nobel Prize winner, and at the time perhaps even more famous than 
Freud, at least in Austria. No indications of psychosis were found. But there 
were two frustrations, each perhaps sufficient to trigger a breakdown in 
someone of Godel's personality. More than twenty years later he still spoke of 
the frustrations of-tacitly-his bachelor life in Princeton where he had just 
spent a year. The second stress awaited him in Vienna. 

At 21, a couple of years before his father died, he met Adele Porkert at a 
Viennese night spot, Der Nachtfalter. She had been briefly married before, 
and was six years older than Godel. Once again his parents, especially the 
father objected. In fact, G6del did not marry Adele till 1938.-I visited them 
quite often in the fifties and sixties. It was a revelation to see him relax in her 
company. She had little formal education, but a real flair for the mot juste, 
which her somewhat critical mother-in-law eventually noticed too, and a 
knack for amusing and apparently quite spontaneous twists on a familiar ploy: 
to invent-at least, at the time-far-fetched grounds for jealousy. On one 
occasion she painted the I.A.S., which she usually called Altersversorgungsheim 
(home for old-age pensioners), as teeming with pretty girl students who 
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queued up at the office doors of permanent professors. Godel was very much 
at ease with her style. But this is not all: in a sense the principal logical theme 
of this memoir goes back to her banter. She would make fun of his reading 
matter, for example, on ghosts or demons (but never of pages of logical formulae 
which have their funny side too if she only knew). Quite often, the topics she 
mentioned explicitly, fitted perfectly what I had read between the lines in his 
publications without paying much attention, for example, to ghosts and 
universes with cyclic time considered in (21) and (22), and further discussed in 
part V below. Since I had noticed the connection spontaneously, presumably 
showing the pleasure which goes with this kind of Aha-Erlebnis, he found it 
worthwhile expanding on it; in a totally natural style, fully and freely-very 
much in contrast to his almost staggering responses, logical slaps in the face as 
it were, when he felt in duty bound to have an opinion on uncongenial matters. 
As already mentioned on p. 151, his wife's conversations also shed light on his 

personal life or, at least, suggested how to find out more about it. 

Breaking the Austrian connection (1938-1939) 

Godel, by and large, had the political views which were standard in his youth, 
in his immediate surroundings and in large parts of Central Europe. America 
was the land of opportunity, Germany was efficient, Austria schlampig. But 
granted all this, his aversion, after World War II, to Austrian academic 
institutions seems out of all proportion, and remained a total puzzle to his 

family, as documented, for example, by his mother's letter of 28 January 1963 
to her brother Karl. He was offered, and refused, sometimes for mind-boggling 
reasons, membership and later honorary membership of the Academy of 
Sciences in Vienna, and the highest national medal for science and the arts. 
(He had no chance to refuse an honorary doctorate of the University of Vienna, 
since it was awarded posthumously.) He had accepted other honours, and was 
to accept more; for example, he was delighted to be a Foreign Member of the 
Royal Society although England remained Perfidious Albion for him. (He was 
also made an Honorary Member of the London Mathematical Society in 1967, 
and a Corresponding Fellow of the British Academy in 1972.) And if the 
Academy of Sciences of Vienna is not of quite the same level, neither is the 
American Academy of Arts and Sciences, and he was a member. 

The story is not heroic, but it is beautifully coherent. G6del was a most 
remarkable logician, he never pretended to be a dashing hero; nor was he 
impressed by heroes. (He admired General Eisenhower while his wife was 
a great fan of General McArthur.) 

When Austria became part of Germany in March 1938, he was not made 
Dozent neuer Ordnung, (paid) lecturer of the New Order, in contrast to most 
university lecturers who had held the title of Privatdozent. He was thought 
to be Jewish. (For the same reason he was once attacked in the street by some 
rowdies whom his wife chased off with her handbag.) He was convinced that 
nowhere except in Austria could there be such a Schlamperei, such a careless 
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error. As he told me, he left Austria for Princeton, crossing Russia on the 
Trans-Siberian Railway, at the end of 1939 because he did not wish to be 
conscripted into the German army. Of course he felt he was not physically fit 
for military service; but given the evidence he had of Schlamperei, the risk was 
too great. 

However, by and large, life went on smoothly for him in Austria during the 
spring and the summer of 1938: according to his diaries, he worked actively, 
read widely, and travelled to G6ttingen to lecture on his work in set theory. In 
autumn, after the Munich agreement, he married. He spent the first term of 
1938/39 at the Institute (for Advanced Study) at Princeton, the second at 
Notre Dame, where he prepared some beautiful lectures. He returned to Austria 
in spring 1939. In short, his misfortunes in 1938-39 were minor compared not 
only to what went on more or less quietly around him but also to the much 
publicized hardships during popular uprisings (Volkserhebungen) of the past, 
like the French or Russian revolutions. 

The fact is that he was bitterly frustrated. Once again, despite great care he 
had not escaped trouble. Specifically in the words of the Dozentenbundsfiihrer, 
in a letter of 30 September 1939 concerning Godel's application of 25 Septem- 
ber (1939) for a Dozentur neuer Ordnung, Godel was not known ever to have 
uttered a single word in favour or against the National Socialist movement 
although he himself moved in Jewish-liberal circles (and though the letter 
acknowledges mitigating circumstances, it neither supports nor rejects Gidel's 
application, which was accepted on 28 June 1940). Incidentally, the Schlamperei 
may have added a touch of insult to injury, if something was still left of the 
views in his essay on Teutonic warriors mentioned on p. 152: certainly, most 
of the essays already reflect perfectly the views he held all his life. 

A bit more courage or highmindedness might have reduced Godel's bitter- 
ness about his particular predicament. But, as the fate of his mother shows, 
even those commodities were not enough to ensure a cool head at the time. 
Till 1944 she stayed in her villa in Brno, openly critical, losing most of her 
former friends, and worrying her son, Rudolf, who was running the X-ray 
department of a hospital in Vienna. By 1944 both expected the defeat of 

Germany. She had had a good offer for her villa, toyed with it, but did nothing 
despite her almost daily criticisms (of the National Socialist regime): in effect, 
she did not expect reprisals by the Czechs after the war, not even confiscation 
of German property, let alone the deportations. Fortunately, she herself 
moved to Vienna, but not by calculation. She happened to be there with her 
son, there was a heavy raid, and they simply wanted to stay together. After the 
war the Austrian government negotiated with the Czechs, and according to the 
treaty the mother got the usual, inadequate compensation for her villa, one 
tenth of its assessed value. The fact that the same rate was almost universally 
applied to confiscation by the Germans was quite irrelevant for G6del since, 
logically, two wrongs do not make a right-and he never got over the injustice 
to his family. He himself was always most punctilious, and incidentally helped 
his mother as soon as possible. 
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The New World: the first 30 years, 1939-1969 

Godel was well prepared to like America, given his general views and his 

particular resentment against Austria and its bureaucracy (in particular, the 
academic bureaucracy, which he knew well). Almost every letter to his mother 
between 1946 and 1963 which I have seen contains some variation on this 
theme. He became a U.S. citizen in 1948. He was especially attached to the 
I.A.S., of which he was an ordinary member till 1946, and a permanent 
member till 1953 when, at the age of 47, he was made professor. In a touching 
letter, of 25 March, he tells his mother that he would not have any lecturing 
duties though the salary was even higher than at universities. (He had the 
illusion that he was expected to have opinions on all details of I.A.S. business.) 
He saw a good deal of von Neumann who is said to have astonished his first 
wife on their honeymoon in Vienna, in the early thirties, by the long hours he 

spent with Godel talking about mathematical logic and foundations. 
In the forties, except while weakened by an ulcer (and his own treatment of 

it, as mentioned on p. 153), G6del worked with great intensity. A turning 
point was his wide-ranging essay (19) on Russell's mathematical logic. It 
collects together a number of incisive points, most of which are formulated in a 
more relaxed style in his unpublished notes from the thirties mentioned on 

p. 151 (and used below). There are also some quite different, and much better 
known points, reviewed at the end of part IV, for instance those that have led to 
the label: G6del's platonism. He could use (19) to take stock of his whole logical 
experience without the slightest trace of self-indulgence: Russell's writings 
touched on every issue that could conceivably cross anybody's mind. Having 
thus arrived at his mature (heuristic) views sketched on p. 150, the time was 
ripe for G6del to apply them outside the narrow area of mathematical logic 
too. 

The place, the I.A.S., was right for an excursion into the general theory of 

relativity. Einstein was there, and Godel, perhaps more than most, was 

impressed by Einstein's singular success in using philosophical analysis for- 

presenting-his special theory of relativity; with a bit of luck, 'singular' would 
allow for repetitions. Einstein was enchanted by Godel's combination of 

elegance and precision, and they saw each other constantly till the death of 
Einstein. It may be difficult to decide how Godel's work on general relativity 
(described in part V) was influenced by their conversations, as so often when a 
decision has few consequences, and so, practically speaking, does not matter. 
At any rate one can be sure that Godel would not have brought up the subject 
before he had something new to say. G6del's mother was overawed when she 
heard of the friendship, and began to read about Einstein. In a letter of 8 

January 1951, G6del recommends her not to be afraid of abstractions in 
Einstein's expositions, and not to try to understand everything at a first reading, 
but to go about it as she would read a novel. 

In the early fifties Godel's achievements began to be formally recognized: 
by honorary doctorates at Yale (D.Litt.) and Harvard (D.Sc.), the Einstein 
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Award split with Schwinger, the Gibbs Lectureship of the American Mathe- 
matical Society. In 1955 he was elected to the National Academy of Sciences. 
As far as the next 15 years or so are concerned, it is doubtful-and certainly 
impossible for me to decide-whether my picture is representative of his 

principal interests; I met him in autumn 1955, and remained in close contact 
with him till his illness at the end of the sixties. But what I know is sufficient to 
correct two widespread impressions: (i) though courteous he lacked sensibi- 
lity and warmth, and (ii) his conduct of I.A.S. business was impenetrable. 

In connection with (i) I myself witnessed a degree of understanding, whether 
intuitive or as a result of reflection, which is exceptional by any standards. 
Before I met Godel I was of course impressed by the clarity of purpose shining 
through every line of his, but not carried away, mainly because it seemed to 
me-and to Godel in 1930-31 as he told me later-that at the time it was a 
matter of months before somebody would stumble on the completeness and 

incompleteness theorems, his most famous results; cf. part II. (For specialists: 
In those days I was more impressed by the 'broad sweep' of Hilbert's pro- 
gramme, and especially by Herbrand's originality in logic whose theorem was 
a much subtler business: it was not even properly understood or used for 

many years.) Worse still, I was simply put off by his general essays (19) and 

(20), particularly by the most widely quoted passages, mentioned on p. 157, 
and I made no secret of the fact. With patience and unerring judgment Godel 
led the conversation to points of common interest. In no time I saw for myself 
the many civilized passages of (19) and (20), which are hardly ever quoted. In 
due course I even went back to the offensive passages, and saw them in a 
different light, particularly in connection with so-called intuitionistic notions 
(described in more detail on p. 185). Later, a different obstacle appeared, as so 
often when things are going too well. Given common logical interests, and, 
as readers may have guessed on p. 153, a touch of hypochondria also on my 
part, there were exchanges on those minute reactions, to bugs or drugs, to 
which doctors will not even pretend to listen. In the after-glow, the conversa- 
tion occasionally strayed to Godel's general views on men and events and his all- 

pervading distrust. Another set of impatient questions: Did he expect me to 
find, behind his actions, the kind of devious motives he saw in others ? Was he 
not frustrated to let others govern the world since he knew so well what was good 
for it ? (and almost in the same breath) How well did he know the world since he 
was constantly surprised by what happened ? Again he-and he alone-helped: 
apparently without a trace of resentment or even irritation, he avoided general 
topics-until his illness. At the same time he continued to ask me about my own 
doings and preferences, with a convincing mix of curiosity and personal sym- 
pathy. I remember only one occasion when I reciprocated, one evening when 
both he and his wife were in particularly good form. Since they so clearly liked 
being hospitable, why did they not have (other) guests more often ? G6del had 
noticed that most people showed more excitement in company than they felt, 
and he found this very tiring. Clearly, at times he needed very few data to reach, 
painlessly, a very sound conclusion. 

158 

This content downloaded from 193.61.13.36 on Thu, 21 May 2015 09:18:54 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


In connection with (ii), especially in his selection of logicians for temporary 
membership at the I.A.S., his practice followed quite simply from his general 
heuristic principles explained at the beginning of the memoir: he gave 
preference to applicants whose work used at least implicitly or was likely to 
use philosophical analysis. He tried to judge this by reading their publications 
repeatedly, but generally not carefully. He seems to have been pretty success- 
ful. Besides this 'long-shot', of philosophical analysis, he also encouraged 
others, for example, the filigree work classifying sets of natural numbers by 
so-called Turing degrees: he thought it might suggest new ideas in cardinal 
arithmetic. In the fifties he looked, in vain, for logicians interested in the 
partition calculus of Erdos and Rado. (Given that the mathematical interest of 
logic, especially of its elaborations, is marginal, his encouragement of a few 
long-shots was reasonable anyway, and Godel never pressed for having a horde 
of logicians at the I.A.S.) Once he had made a selection he avoided contact with 

people who were not temperamentally congenial to him; particularly intro- 
verted, tongue-tied, and generally affected personalities made him uncomfort- 
able. He was fond of keeping pests at a distance by means of ambiguous 
remarks reminiscent of de Gaulle (Messieurs, je vous ai compris); for example, 
it would be interesting to see the work in print. He never edited any journal. 
Presumably, he did not usually give his simple reasons for his selections. After 
all, he always stressed the conflict between his views and the Zeitgeist, to which, 
naturally without empirical checks, he supposed his colleagues at the I.A.S. to 
be subject. He was more disappointed than he let on by his occasional failures 
to persuade them; but not nearly as much as he would have been had he 
realized that he was battling a Zeitgeist from another time, the early thirties; 
and then not what it was, but what the Wiener Kreis would have wanted it to 
be. 

The final years, 1969-1978 

The events during this period would have unsettled Godel at his best. His 
wife suffered two strokes and a major operation. There were-obviously 
interrelated-changes for the worse in America and at the I.A.S., the country 
and the institution to which he was so much attached. For example, student 
radicals were making headlines, and-admittedly, less charismatic-professors 
at the I.A.S. could hope to make, at least, the correspondence columns of the 
N.Y. Times: an issue was bound to present itself, and did. (This appeal to the 

Zeitgeist was not congenial to Gbdel.) More subtly, there was a general air of 

despondency among the large number of able but jobless young mathematicians 
who were herded together at the I.A.S., constantly talking to each other, and 
so reinforcing each other's illusions about clever tactics for getting a job. 

But the decisive factor was his own illness, mentioned already on several 
occasions. This is not the place to give a detailed medical history which, 
however, will be essential for a correct interpretation of what he said or wrote 

during those years. The particular character of the self-doubts which go with 
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even mild prostate trouble are well known: usually there is a grain of truth, 
but magnified out of all proportion. This spoils completely the victim's 
perspective of his work over the years. (Except for p. 197 and p. 209, G6del's 
views in the seventies quoted below, correspond to earlier publications, notes 
or conversations.) Superficially, at least in the early seventies, the changes 
appeared minor to those who had not known him well. After all, his mind 
remained nimble; only his exquisite sense of discretion had obviously gone. 
Perhaps as a result he was more gregarious than before; less formidable, as a 

perceptive secretary at the I.A.S. recently said. Even if this brought him some 
solace, it did not seem to me to go very deep-and accounts of his close family 
since his death have more than confirmed this impression. Actually, several 
of us who knew him well were alarmed already at the end of the sixties: his 
efforts not to show his depressions were evident, and soon became too much 
for me to watch. There were some bright spots: the U.S. National Medal of 
Science in 1974, after an honorary doctorate, in 1972, from Rockefeller 
University which gave him pleasure. In 1967 he had received one from 
Amherst College. 

Godel died, sitting in a chair in his hospital room at Princeton, in the 
afternoon of 14 January 1978. 

II. AXIOMATIZATION AND FORMALIZATION 

Godel's first two famous results, which appeared in (1) and (4) about 50 
years ago, concernformal rules or, as we should now say, computer programmes. 
Put simply, (1) establishes the 'positive' result that Frege's rules for elementary 
logic, of truth functions and quantifiers, proposed some 50 years earlier, 
generate exactly the logical truths in the precise mathematical sense corres- 
ponding to Leibniz's truths in all possible worlds. Paper (4) shows that the 
rules of Principia Mathematica, P.M. for short, and in fact those of a large 
class of 'related' systems, do not generate exactly the true arithmetic theorems 

(built up logically from polynomial equations with integral variables and 
coefficients, among the formulae of P.M. expressing such theorems). Even 
without going into refinements of the statements and proofs and leaving more 
ethereal foundational schemes for later, readers will imagine easily the striking 
implications of these simple, memorable results. 

Thus, 100 years ago, (1) would have had the glamour: simple mechanical 
rules can be proved mathematically to replace logical reasoning, at least, its 
results, not necessarily the details of the process-and logic is about all 
possible worlds, so to speak, the height of abstraction! At that time, (4) would 
merely have ratified the general impression that arithmetic is too difficult to be 
formalized, another word for 'mechanized'; after all, the diophantine equation 
x2 = y3 + k is hard enough. 

Today, Frege's rules, even without (1), still stand out as the first convincing 
example of non-numerical data processing by mechanical means. Examples of 
simple mathematical proofs, as in (1) and (4), showing what can or cannot be 
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done 'in principle' by such means, are obviously essential for orientation, and, 
at least occasionally, useful in practice, provided they are used with discretion 
and imagination. For realistic expectations this should be compared to the use 
of whole numbers in place of formal rules and of elementary theorems about 
them, where much skill is needed to find properties studied in higher number 
theory which are really significant for the bulk of scientific or other uses of 
whole numbers. It would not be hard to work up a parallel between (4) and the 
irrationality of /2 in the uses of formal rules and of whole numbers respectively. 

But in between, at the time of (1) and (4), the latter had all the glamour. 
For one thing, P.M. had claimed to provide great weight of empirical evidence, 
in three heavy volumes, for the possibility of formalizing 'all' of mathematics, 
and certainly arithmetic. What is more, the claim was widely accepted including 
even Russell's contention that only empirical evidence, taken from mathe- 
matical practice (as codified in texts, etc.), was relevant. (4) was shocking, 
especially if one glanced at the proof. P.M. had left out an obvious type of 

argument which reflects on its own rules (and implies in a simple way a 
certain true arithmetic statement that cannot be derived in P.M. at all): P.M. 
had proposed a mathematical model of a certain phenomenon, mathematical 
practice, and had forgotten to look at the mathematical properties of the model 
itself! A moment's thought makes (1) almost as disturbing as (4) for Russell's 
doctrine of empirical evidence. What was the difference in the 'degree of 
confirmation' of the claims of P.M. as far as logic and arithmetic were con- 
cerned ? Anyhow, what was the claim ? To describe-and perhaps to perpetuate 
-the defects of current practice or to find out something about the potentiali- 
ties of mathematics and the mathematical imagination? And was P.M. any 
worse than what, for example, is done in studies of non-mathematical reasoning, 
by linguists and the like ? Incidentally, in part V several examples will be 

given how reflection on (4) and on its development in mathematics throws 

light on various arguments in the natural sciences too, the kind of thing one 

expects from a useful philosophy of science. 
Returning to the aims of P.M., mathematicians had lapped up the idea of 

beginning with a formalization of all of mathematics; for example, Bourbaki's 
treatise starts with a chapter on set theory-not exactly P.M., but (4) applies 
too. In their manifesto, Bourbaki (1948), they get round to asking themselves 
about the point of this enterprise-and conclude on pp. 37-38 that it is 'the 
least interesting side of the matter' or that formal rules of inference serve for 

'logical hygiene' (rarely applied since the rules are barely quoted later-more 
like ritual ablutions). If anything, (1) serves as logical hygiene in giving a 

logical justification for the choice of the formal rules! Obviously, the notion of 
set is here to stay; but there is not a shred of evidence in Bourbaki (1948) that 
the ritual of giving formal axioms and rules for sets is of effective use in the 
later development-more effective than a description of the intended notion, 
for example, as in part III below. 

To anticipate: since 1948, modest, but sound answers have been supplied 
by mathematical logic to the questions implicit in Bourbaki (1948). The 
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possibility of defining many mathematical notions and problems in elementary 
terms has found uses, foreshadowed in (1) by the so-called finiteness theorem; 
and derivations built up by elementary rules are easy to unwind; cf. p. 182 
for details. As to (4), incompleteness results explain quite well why certain 
questions, for example, about groups, have not been settled yet, though more 
difficult arguments than those of (4) are needed. More positively, just because 
of incompleteness, we know more if a theorem can be formally derived by given 
rules than if it is merely true, and, perhaps less obviously, we know more if a 

(true) theorem can be derived by given rules, but not by a subset of those 
rules. As always, the discovery of the terms in which this additional knowledge 
is to be expressed is a principal part of research; successful examples are to be 
found on p. 174 or p. 175. In short, slowly, the early ritual is becoming a 
scientific tool. 

But also-and this is much more striking-the tools found are pitiful 
compared to the original expectations associated with mathematical logic. 
Specifically, Boole (1854) looked for the laws of thought in propositional 
algebra, and Hilbert (1930, p. 9) thought that he had found the laws in his own 
favourite rules-a mind boggling exaggeration since, as already mentioned, 
even the positive result in (1) concerned only results, not the details of reason- 

ing, treating the latter as a matter of black boxes. Then there was the retreat 
to logic as providing a standard of rigour, an 'ultimate' criterion for checking 
proofs, the 'hygiene' which is not applied-in fact, one applies more often 
interpretations, clever cross checks, to verify formal derivations. The develop- 
ment of logic since (1) and (4) has moved away from the aims mentioned; in 
particular, soon after (4), the emphasis on formal rules for the special purpose 
of building up derivations and representing proofs was quietly dropped, as 
reflected in the terminological change from 

formal undecidability of a particular problem Pr, 

depending on the formal system Y under consideration, used in (4), to 

recursive undecidability of a class of problems (including Ps). 

A readable account of this matter is in the article on Hilbert's tenth problem 
in Browder (1976). More about the whole matter of representing proofs is to 
be found at the end of parts II-IV. 

We leave this disturbing side of (1) and (4) with the few snippets above. Of 
course the latter do not convey even approximately the bearing of (1) and 
(4) on the ideas current at the time, let alone on the principal people active in 
logic. Russell, Hilbert and Brouwer were not narrow specialists: they were 
fascinated by the turmoil of ideas current during the first three decades of this 
century, a very special period in the development of science. There was an 
unbounded confidence in high theory, as already mentioned in part I in 
connection with Einstein. There was progress with understanding phenomena 
where, previously, one just did not even know where to begin-and so Kant's 
odd question how this or that experience was possible at all (iiberhaupt moglich, 
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instead of the ordinary scientific question, what things are like) seemed 

appealing. And last but not least, there were extraordinary successes of building 
up the physical world or, at least, matter from a few particles-so why not 
mathematics and mathematical reasoning from a few primitives, set and 
membership, and a few rules of inference ? Nothing remotely like existing 
logic is even a candidate for an analysis of mathematics or mathematical 
reasoning comparable in scope to those successes in the natural sciences. 

Accentuating the positive: a piece of forgotten history 

Godel's results and even Hilbert's conjectures which were refuted so simply 
that they have been described as 'blind spots', appear in a totally different 
light if we go back to the last century, to what even now are Aha-Erlebnisse. 
Two of them were already mentioned, namely set-theoretic (or: broad 
axiomatic) definitions of familiar structures by Peano's and Dedekind's 
axioms, and Frege's formal rules for elementary logic (in the precise sense 

explained on p. 165). The third is the exposition of geometry in Hilbert (1899) 
with striking examples of a mathematical scheme for choosing a formalization 
-in contrast to the business about empirical evidence in P.M. Today the 
principle of choice is better illustrated by considering the ordered field of the 
real numbers instead of geometry, passing from arbitrary Dedekind cuts to 
those defined by elementary formulae (about ordered fields), and thus to a 
natural if not very well-known axiomatization of so-called maximal ordered 
fields. In the context considered, the reference to arbitrary sets or cuts could 
really be described (by Hilbert) without exaggeration as a mere fafon de parler 
because, as far as results-and, at least at the time, also proofs-were con- 
cerned, Dedekind's arbitrary cuts gave no more than those defined by elemen- 

tary means. Hilbert was quite conscious of the obvious relation between this 

discovery and an age-old ideal of Methodenreinheit, as he stressed in the 

peroration to Hilbert (1899); 'age-old' in that it goes back to the time of the 
Greeks when Archimedes was criticized for using properties of space to prove 
theorems about the plane; cf. Knorr (1978). For elementary theorems, you use 

elementary cuts. Number theorists will think of heated but inarticulate 
arguments about impure methods, analytic number theory at one time, 
1-adic cohomology now. Incidentally, though this was not stressed by Hilbert 
himself, his later, much more famous consistency programme is also a par- 
ticular case of this search for pure methods: so-called finitist theorems should 
have finitist proofs (of which old-fashioned school mathematics is typical). A 
neat, but purely technical observation of Hilbert was that this aim is assured 
under suitable conditions if the formal consistency of a system Y is proved 
finitistically, the aim being now restricted to finitist theorems derived in S 

itself; cf. p. 172 or, for a more pedantic exposition, the section on Hilbert's 
second problem in Browder (1976). 

From this point of view, G6del's paper (1) establishes that logical purity can 
be achieved in principle, and (4) that arithmetic purity cannot be achieved; in 
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fact, the result (4) is so general that it is quite insensitive to any genuine 
ambiguities in the notion of purity of method. 

Legalistically, G6del's papers only settle questions about the possibility of 
purity of method. But inspection of the arguments suggests quite strongly that 
the whole ideal of purity of method is suspect, even when it can be achieved. (As 
will be seen in part IV, Godel turned the ideal upside down, wanting to prove 
finite combinatorial theorems by use of properties of very large infinite 
cardinals.) In any case, today there are plenty of examples in ordinary mathe- 
matics where impure methods are employed: the restriction to pure methods 
has to be 'justified' (when it is appropriate at all), at least as much as the use of 
impure methods. The most familiar reason for restricting methods of proof is 
the greater generality of the theorems proved, their validity for more cases (of 
interest). Trivially, where purity can be achieved, the essential difference 
between pure and impure proofs cannot be analysed in terms of validity. But 

the validity of a theorem, in fact, the validity of a proof, is only a small 

part of the significant knowledge contained in the proof: it just 
happens to be the part which is most easily put into words. 

And if that part is regarded as the specifically logical aspect of proofs, then 
logic is marginal for understanding the actual phenomena of proofs. As already 
anticipated on p. 162, in practice if not in rhetoric, this conclusion has been 

accepted, and new aims, mentioned there are pursued. 
The remainder of part II consists of more technical material with special 

emphasis on warnings, including Godel's own about the consistency criteria 
in (3) or the significance of the second incompleteness theorem, which have 
made little impression. It did not seem appropriate to include standard proofs 
of (1) and (4) since very efficient expositions are available in the literature, for 

example, Barwise (1977). At the end of part II, the general observations on 
foundational schemes made on p. 162 are sharpened, with a summary on the 

passage from foundations to technology. 

Axiomatizations andformalizations: some reminders 

Although the axiomatic tradition goes back to Euclid, it was changed 
radically about 100 years ago by two new methods (and aims). 

First, by use of the notion of set, which had just become prominent through 
the work of Cantor, familiar objects together with-what are regarded as- 
their principal features, could be defined axiomatically, as one says: up to 

isomorphism. The still most famous examples are Peano's axioms for the 
natural numbers with the successor relation as principal feature, and Dedekind's 
for the (ordered field of) real numbers; but cf. also Zermelo's axioms in part 
III for segments of the so-called cumulative hierarchy of sets. This use of 
axioms (as definitions) distinguishes them from Euclid's, which were not 
intended to be, and are not definitions unique up to isomorphism, since they 
are satisfied both by the full (uncountable) plane and by the part consisting of 
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points constructible from two points by means of ruler and compass. In 
modern terms, the new axioms use a richer, so-called non-elementary language; 
in contrast to Euclid, arbitrary subsets of the sets (of numbers) involved are 
used to state induction and completeness (for Dedekind cuts) in Peano's, resp. 
Dedekind's axioms. 

The second new element was introduced by Frege, his famous formal rules 
(of inference). They were intended as an analysis or 'definition' of logical 
deduction from axioms, more precisely (as we realize now), from elementary 
axioms, built up from relations (between the objects of some domain D) by 
means of the logical operations 

- 
(not), & (and), v (or), => (implies), Vx(for 

all elements of D), 3x(for some elements of D). In particular, such elementary 
axioms do not use the new non-elementary quantifier: for all subsets of D, 
needed for the definitions in the last paragraph. Systems of elementary axioms 
together with Frege's rules are called formalizations. 

Realistically speaking, neither the new definitions nor the new rules were 
needed for mathematical practice at the time (nor before: the Disquisitiones of 
Gauss would not be improved by starting with Peano's axioms or by writing 
the proofs of the law of quadratic reciprocity in Frege's formalism.) But 

clearly there was a raw interest to the two enrichments of the axiomatic 
tradition. It fired the imagination of mathematicians and philosophers. Readers 
can well imagine how the surprisingly compact definitions (in the language of 
sets and logic) of Peano and Dedekind made them into ideals for all definitions 
in mathematics, and how Frege's simple rules led to wild exaggerations about 
the laws of thought, mentioned on p. 162. For all we know, these exaggerations 
served as a useful body guard, protecting the new interesting methods until 
their significance was discovered too. 

One of the first convincing indications of significant uses is to be found in 
Hilbert (1899): the use of non-elementary axiomatizations for a systematic 
choice of formalizations, already alluded to on p. 163. To be precise, the passage 
involved was not explicitly formulated by Hilbert, but fits very well his work 
on the foundations of geometry, where Dedekind cuts turn up as non-elemen- 
tary axioms of continuity, which explains the connection between Hilbert 

(1899) and the exposition below. 

From non-elementary axiomatizations to formalizations 

The passage is best illustrated by the step from Dedekind's axioms to a 

very natural formalization of elementary real algebra, known in the trade as the 

theory of ordered real closed fields. The principle, elaborated on pp. 101-103 
of Browder (1976), is to restrict cuts to those defined by elementary formulae 
about ordered fields, instead of arbitrary cuts; this is expressed by an infinite 
axiom schema corresponding to each formula. No other change is made since 
the rest of Dedekind's axioms are elementary anyway. Incidentally, real closed 
fields were not considered by Hilbert himself, but were stumbled on 'empiri- 
cally' in the twenties by Artin and Schreier. 
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Though there are many real closed fields, for example, of all the real 
numbers and of the algebraic real numbers, every elementary proposition which 
is true in one such field is true in all the others. This was established by several 
logicians around 1930, including Tarski and Herbrand, but also G6del who, 
as he mentioned in conversation, did not publish the result when he learnt that 
Tarski had found it independently. They showed that all elementary formulae 
F (without free variables) about those fields are decided, that is, either F or 
~-F is derivable from the axioms by means of Frege's rules. In fact, for each 
F, a finite subset 9Y of the infinitely many axioms is determined which is 
sufficient to decide F. Equivalently, if F is true for the field of real numbers 
then F follows logically from /F: the formalization is complete (in this sense). 

Remarks for specialists. First, logically less complicated cuts are sufficient, 
namely those defined by (the least zero of) polynomials of odd degree and the 
(lesser) square root of positive elements. Secondly, the famous result, in 
Milnor (1958), on division algebras over R conveys the flavour of the impli- 
cations of the facts above. Thus the result of Milnor (1958) is true for all real 
closed fields. But nobody has developed K-theory in that context sufficiently, 
and the only known proof of the general result uses the transfer principle 
mentioned above. Again, the fact that there is no division algebra of dimension 
16, is expressed by an elementary formula, say F16. By the finiteness principle, 
for suitable N16, F16 holds automatically for all fields in which all polynomials 
of odd degree < 2N16 + 1 have a zero, and positive elements have square roots; 
incidentally the least N16 is not known. (A bound for N16 is part of any pure 
derivation of F16 from the formal axioms.) 

Peano's axioms also illustrate the passage to formalizations, but with an 
added twist on the choice of 'principal features' of the structure considered. 
Apart from equality, Peano's axioms mention only one relation, say S, for the 
successor. So, taken literally, the passage leads to the successor axioms and 
induction restricted to (elementary) properties defined from S alone. Again, 
this formalization decides every elementary formula (about S); but precious 
little can be expressed about the natural numbers in this way. Substantially 
more is expressed by elementary formulae about addition, for example, 
about congruences. Here the passage starts with Peano's non-elementary 
axioms together with the usual recursion equations for + (in terms of S and =), 
which define addition implicitly. Again, the resulting formalization decides all 
its formulae. Unquestionably, Hilbert expected similar complete formalizations 
for additional number-theoretic functions defined by recursion equations, for 
example, multiplication. Now the expressive power of the formalism is con- 
siderable: every diophantine problem can be stated. 

Methodenreinheit: how to test philosophical ideals 

The three formalizations in the last subsection for ordered real closed fields 
and for arithmetic of the successor relation and of addition, fit perfectly 
Hilbert's ideal of purity (on p. 150): to settle elementary problems, one does 

166 

This content downloaded from 193.61.13.36 on Thu, 21 May 2015 09:18:54 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


not need arbitrary cuts or sets, but only cuts defined by elementary formulae, 
and only elementary instances of induction, built up logically from the relations 
used to state the problems. 

The logical question is to settle to what extent purity of methods can be 
achieved-in all of mathematics, parts of mathematics, in fact, in logic or 
metamathematics itself. But this leaves open the philosophical question 
whether purity of methods is at all basic, in the sense of fundamental, to 
mathematical knowledge, the sort of thing one cannot know too much about. 

If purity is not basic then work done with this ideal as principal aim will 
have to be reexamined under the maxim: degager les hypotheses utiles, appro- 
priate to the assessment of tools. The discovery of good uses (as in the remarks 
for specialists on p. 166) becomes a major problem in contrast to the study of 
fundamental laws, which can be relied upon to have applications. 

Defects of ideals are generally seen most clearly in areas where they have 
been realized, and so the results can be compared both with earlier expecta- 
tions and with alternatives (which violate the ideal in question). In the cases 
under discussion, algebraic and number-theoretic purity, plenty of comparisons 
are available since, with time, impure proofs have become more common in 

practice, not less. Moreover-and this is often neglected-(i) their actual 

reliability or 'security' is obviously unaffected by the possibility of pure proofs 
if that possibility has not been realized, and (ii) impure methods are not only 
used heuristically, for discovering conjectures and proofs, but have turned out 
to be essential for checking proofs. 

Far from being a mere aberration, the neglect of (i) and (ii) is typical of what 

happens in the kind of intellectual void left by the two omissions mentioned 

already on pp. 161-162. First of all, the unproblematic uses of formalization 

(or, generally, purity of methods) have not become widely known; so there is a 

tendency to thrash about for some uses, and the easiest thing is to cling to 
dubious doubts which are to be removed by formalization, as in the business 
of logical hygiene. But also there is the void created by simply not saying out 
loud what (knowledge) is gained by impure proofs, for example by analytic 
proofs in number theory: knowledge of relations between the natural numbers 
and the complex plane or, more fully, between arithmetic and geometric 
properties. It is precisely this knowledge which provides effective new means 
of checking proofs: if this conflicts with some ideal of rigour, so much the worse 
for the ideal (which is being tested). 

In short, the whole matter of formalization and purity of method is just 
much subtler than suggested by generalities about mathematical rigour 
(however persuasive the latter may be at first glance; cf. part VI). A corollary 
to this observation is of course that the significance of Godel's incompleteness 
theorem is a subtle business too. For if we do not restrict ourselves to complete 
systems even when they are available (as in the examples of algebraically or 

number-theoretically pure methods on pp. 165-166), then incompleteness has 
lost its apparent philosophical sting: since its raw interest is clear, it is a 

problem to analyse its interest(s), philosophical or otherwise. 
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Below, reversing the historical order, Godel's work in (4) on incompleteness, 
in particular, of any (pure) formalization of the elementary theory of + and x 
on the natural numbers, mentioned on p. 166, will be presented first, because 
it requires less background on 'abstract nonsense' about logical validity, 
needed for (1). Applications of (4) and (1) are summarised on pp. 174-176 and 

pp. 180-183, followed by a broad discussion of their bearing on the most 
popular foundational schemes. 

Formalization and numerical computation: generalities 

Ever since the introduction of Frege's rules, it was evident that numerical 

computation was a particular case, and in some ways, even typical of all formal 
deduction. Thus computations of polynomials with integral coefficients and 

arguments (> 0) are formal deductions from the (elementary) axioms: 

n + 0 = n, n + m' = (n + m)' where ' means the successor, 

n 0=0, n (m') = (n m)+ n, 

where the rules are substitution, and equating equals to equals (a computation 
evaluates an expression without variables as a numeral, 0,0', 0"...). Compu- 
tations can be checked mechanically, and so the formalization above is complete 
for equations between numerical expressions, say t1 and t2: 

If tl = t2 is true (for the usual interpretations of 0,', +, ) then 

ti = t2 can be derived by the rules above. 

If, further, the usual formal rule for existential quantifiers is added, and a 

diophantine equation, say P =Q in the variables xl, ... x,, has integral solutions 
then 3x ... 3xn(P = Q) can be formally derived by the rules mentioned: the 
latter are complete for solvability of diophantine equations. More generally, one 

expects some sort of parallel between 

formal derivability and solvability of diophantine equations, 

stressed early in the century by Hilbert who saw here a unity between school 
boy arithmetic and all of (formalized) mathematics. Taken literally, the 
parallel equates Hilbert's tenth problem-to give a general method for 
deciding whether any diophantine equation has a solution-with deciding 
whether any formula F has a derivation by means of given formal rules F. 
This remained, in fact, the source of Hilbert's later conjectures: the pay-off 
for replacing the allegedly difficult abstract notion of truth by the apparently 
wholly manageable notion of formal derivability, was to have been the effective 
decidability of derivability in properly formalized branches of mathematics- 
as in the case of real closed ordered fields. 

Today we know that the parallel above holds literally in that there is one 
diophantine equation (in just 9 variables!) with a parameter p and an effective 
way of finding a value of p corresponding to any pair (F, S). Hilbert's tenth 

168 

This content downloaded from 193.61.13.36 on Thu, 21 May 2015 09:18:54 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


problem has a negative solution, and his conjectures about the decidability of 
formal derivability were false. 

But at the turn of the century, in fact, up to (4), weaker variants of the parallel 
had not been excluded, for example, that no one formal system 'coded' all 
formal procedures (for each set of rules Y, derivability in Y is formally 
decidable, but not by a method adequately represented in Y). But the price for 
this possibility would have been high since the obviously elementary character 
of (verifying) formal derivability would not be reflected in an adequate 
definition, D,, for: derivability by means of Y. Part of the work in (4) 
established the definitional 'adequacy'-technically, completeness for formal 
derivability-of a general class of formal systems including (Hilbert's) pure 
number theory, the system derived by the passage on pp. 165-166 from Peano's 
axioms together with the recursion equation for + and *. 

As a final preliminary, a curious blind spot has to be mentioned. In all the 
discussions of decidability and completeness (of formalizations) in the first 
three decades of this century, an obvious connexion was not noticed; com- 
pleteness, for example, of pure number theory would yield the following 
decision method in a 'finite number of steps' for formal derivability, in par- 
ticular, for Hilbert's tenth problem. Given a diophantine equation P = Q in 
n variables, it is enough to lay out the formal derivations in some w order, try 
them out one by one, until a derivation of either 3x ... 3x, (P = Q) or of 
Vxl... Vx (P #= Q) is reached. Completeness ensures that this process 
terminates. This blind spot is a glaring oversight if one means 'finite number of 

steps' literally, without consideration for the practical value of such a method 

by trial and error. 

Incompleteness of formal systems for number theory and beyond 

To fix ideas, the reader may wish to think of pure number theory. In any 
case no details of the system will be used in the simple sketch below, which 

supports G6del's claim, on p. 150, that (4) did not need new mathematics. In 
fact, the sketch uses only (i) Cantor's diagonal argument (the class of all sets 
of natural numbers is not enumerable), here applied to sets and enumerations 
defined by restricted means, and (ii) the particularly elementary character 
of the set of formally derivable formulae (compared above to the set of 
solvable diophantine equations), so to speak, the raison d' etre of formalization 
itself.* 

* As already mentioned on p. 164, more efficient expositions are available in the literature. 
The interest of the proof below is that it follows Godel's presentation in his letter to Zermelo, 
already mentioned on p. 154, rather than his publication (4), where a relation to the so-called liar 
paradox is prominent. (In conversation G6del could not resist the temptation of paradoxical 
formulations. In publications he dramatized the trauma of ever having been taken in himself 
by a paradox.) Zermelo's criticism, though clumsily worded, was closely related to (i), the 
inadequacy of any formal language for defining (all) sets of natural numbers, but failed to stress 
(ii). So, in particular, it fails to pin-point the difference between the formal systems (of number 
theory) involved in the incompleteness theorem and those on pp. 165-166 for the field of real 
numbers or the semi-additive group of natural numbers, which do decide every formula. 
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(i) Let W be a class of (formulae defining) number-theoretic predicates with 
one and two arguments, closed under identification of variables and negation; 
thus if F(n, m) is in if, so is -i F(n, n). Then there is no (binary) predicate in 
W which enumerates all (monadic) predicates in f. This means, as usual, that 
no formula F(n, m) in W has the property: 

for each formula G(m) of W there is a number g: V m[F(g, m) > G(m)]. 

A counter example is obtained by taking -i F(m, m) for G(m), and putting 
m =g. 

Warning: In contrast, there is in general no obstacle to enumerating all 
formulae G by giving them numbers in such a way that simple syntactic 
operations are defined by formulae in W, for example, substitution a: 

a(g,n) is the number of the formula (without variables) obtained 
when the variable in G with (one variable and) number g is replaced 
by the nth numeral (in some standard notation, like 0,1,1 + 1, 
(1 + 1)+ 1,... or 0,0', O" on p. 168). 

Far from being subtle, the difference is so crude that in ordinary mathematics 
it would hardly be mentioned; for example, in the case of polynomials xn + a, 
say, with numerical a, the defining expressions are numbered by an enumera- 
tion of the pairs (n,a) which can certainly be done polynomially by: 

(n + a + 1) (n + a) + n. But an enumeration of the functions xn + a defined by 
these expressions, which is a function of triples (x, n, a), cannot be done 
polynomially. (Here, in the case of functions, we have =, where in the case of 
predicates above we had o.) Incidentally, contrary to a widespread mis- 
understanding, there was nothing particularly novel in Godel's numbering of 
formulae or derivations, that is, finite sequences of formulae: this was implicit 
in Cantor's well-known enumeration of finite sequences of elements taken 
from an enumerated set. 

(ii) Let S be a formal system, given with a numbering of its formulae with 
one or no free variable, where (the value of the numeral) n is the number of the 
formula N. Then J is incomplete, provided some formula D of Y (called DI 
above) defines derivability (in J), and - is sound, that is, for formulae N 
without free variables 

(=) if N is derivable then N is true. 

For if J were complete, D[a(n,m)] would define an enumeration of the 
monadic predicates of J, which, by (i), must fail at D[a(g,g)] where g is the 
number of -~ D[a(m, m)] with variable m: 

neither D[a(g,g)] nor - 
D[a(g,g)] is derivable. 

The false one is not derivable by (>), the other (true) one is not derivable 
because of (i). Now, a(g,g) is the number of - 

D[a(g,g)], and the latter is not 
derivable, but D is assumed to define derivability. So -m D[a(g,g)] is true, but 
not derivable. 
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At the time there was great interest in weakening the conditions on y and 

D, especially (=>), that is, to avoid the reference to truth (of N) in favour of 

derivability. Inspection of the argument above leads to: 

(*) if D(n) is derivable, so is N, 

(**) if -i D(n) is derivable, then N is not derivable, and 

(=) if g' is the numerical value of u(g,g), then D(g') and D[a(g,g)] (and 
their negations) are jointly derivable. 

(a) Derivability of -i D(g') and so, by (=), of -i D[a(g,g)], contradicts (**) for 
n = g' since G' is - 

D[a(g,g)] itself. (b) Derivability of D(g') implies, by (*), 
that G' be derivable, contrary to (a). On p. 173 the conditions above will be 
further weakened. In particular, in accordance with the basic parallel on p. 168, 
between (checking) computations and derivations, the converse of (*) will be 
used (for relevant N: the completeness of 

' 
for derivability in . expressed 

by D. 
Godel (4) gave a detailed verification of (*) and (**) for a specific definition 

Ds, his Y being (an improved formulation of) the system of Principia 
Mathematica, which claimed to give a 'complete' formalization of mathematics. 
But (4), p. 190, gave also general conditions on systems ~ to which the 

argument applies, and soon afterwards the analysis of Turing showed that 

arbitrary formal systems containing a certain minimum of number theory (or 
of the theory of finite sets) satisfied those general conditions. 

By p. 168, today D(g') can be replaced by the assertion that a certain 

diophantine equation has a solution. But technically it was certainly much 
easier to find D(g'), an assertion about formal derivability in P.M. which is 
undecided in P.M. (than one in familiar mathematical terms). 

Godel's strategy for going into details, further elaborated in Kleene (1978) 
and its review, avoided controversy. But even without those details, the proof 
given here, on the assumptions (*) and (**), establishes beyond a shadow of 
doubt the following inadequacy of (any) formal systems y for elementary 
number theory, already raised on p. 168: 

Either such a simple notion as formal derivability cannot be defined 
in F in the sense of (*) and (**) in Y is incomplete (in the sense 
that a true formula, namely 

- 
D(g'), cannot be derived in Y). 

For specialists: an even more general argument of the same type applies to 
the case of set theory for any set / of axioms, not only for formal systems. 
Suppose o can be justified at all for the intended meaning, set out in Zermelo 

(1930) and on pp. 190-191 below, that is, for appropriate segments of the 
cumulative hierarchy, including the segment o. Then either ox cannot be defined 
in set-theoretic language or if D, is a definition then 3x Da(x) is not decided by 
d/. Of course, 3x D(x) is about the 'abstract nonsense' of sets while Dv(g') 
above is about the 'formal nonsense' of derivability. 
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Actually, Godel's own proof, in terms of definability, is so simple that it can 
be applied to situations which have little in common with formal systems; to 
sets of axioms which are not recursively enumerated or 'listable', to languages 
with infinitely long formulae or so-called infinitary rules, and the like; cf. the 
sections on such matters in Barwise (1977). Some of these generalizations are 
in fact needed in connection with the new questions, on p. 174, which involve 
a rethinking of the role of-necessarily incomplete-formal systems in mathe- 
matics. But first it is appropriate to go into a reformulation of ~ D(g'), which 
attracted great attention in the first decade after (4), called 'Godel's second 
incompleteness theorem'; it comes under the heading: 

Consistency and consistency proofs 

Consistency (of o~, for short: Con Y) means that there is no formula F for 
which both F and - F can be derived in -. Since - is intended to mean: 
not, . had better be consistent. This is not at issue. Rather, 

What use is (mere) consistency? 

Once again, diophantine problems are typical. Let P be a polynomial with 
integral coefficients and (n, ..., nk), for short: n, a list of its variables. In the 
technical jargon of p. 168, 3. is to be complete for computation (and hence 
for computability: if 3n (P = 0) is true, it is formally derivable in Y; the 
analogue for derivability, D(g'), came up on p. 171). 

Significance of Con o: If Vn(P = 0) is derivable in Y, then it is true (that 
P has no solution in integers). For, by completeness for computations, if 
(n, ..., nk) were a solution, P = 0 and hence - Vn (P = 0) could be derived 
in S. So - ConS, when Vn (P 7 0) is the formula F in the definition of 
Con Y. This 'significance' of Con ' is also relevant to the matter of number- 
theoretic purity, already referred to on p. 167. Suppose ConY and the 
completeness of S for computation are both proved by 'pure' methods, for 
example, in Hilbert's pure number theory. Then if Vn (P : 0) is derivable in 
S-, it also has a pure proof (with an obvious extension to other preferred 
methods of proof). 

Warning. The consequences above of Con ~ 
obviously do not extend to 

formulae 3n (P = 0) since, if Vn (P - 0) is formally undecided in Y, the false 
formula 3n (P= 0) can be added consistently. (Thus, (*) on p. 171 is not 
assured by Con .) As mentioned earlier, Godel gave that warning in (3) in 
the clearest possible terms, actually before the discovery of incompleteness. 
But (3) made much less of an impression than such conneries as: 

In mathematics, consistency ensures existence (of what ?). 
An inconsistent system would be dull because every formula, G, 
could be derived in it, by use of - F = (F = G). 

In later 'popular' writings, Godel always treated such conneries respectfully. 
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Godel's second incompleteness theorem (described by him, on p. 196 of (4), 
as merkwiirdig: a curiosity). Inspection of the proof of (a) on p. 171 shows that 
Con = G' is derivable (in Y-) provided F is demonstrably complete for 
derivability (defined by D) since then condition (**) follows from Con . So 
ConY is not derivable (since G' is not). A looser formulation says: Con9 
cannot be proved (in Y) if Con Y can be proved to be significant in the sense 
above. 

Examples of formal systems which do prove their own consistency. Given 
formal rules Y, and a numbering of their derivations, we pass to new rules 
oj by adding the following requirement on derivations (with number d and 
end formula Fd): 

For all pairs of (the finitely many) preceding derivations in F, that is, 
d' < d and d" < d, the end formula of one is not the formal negation of the 
other (Fd, is not the formula - 

Fd). 
Evidently, Con '. is proved in the most elementary way: we stop before an 

inconsistency turns up. But also: if F is consistent then 

Y and 9j have not only the same theorems but the same derivations! 

only the procedure for checking derivations is more elaborate in E1. Also-and 
this is philosophically interesting-though logical texts rarely consider systems 
like e, the latter mirror quite well, albeit crudely, an essential method used 
in practice for checking proofs: comparison with background knowledge (here 
represented by d': d'< d). 

As a corollary, Y is seen to be incomplete provided (i) Y is consistent and 

(ii) demonstrably complete for derivability (in y and ^, defined by D and 
D1, resp.). This improvement was mentioned on p. 171. In the notation used 
there, if gl is the number of - 

Dj[a(m, m)], 

neither D(g') nor ~D(g)) is derivable 

(in Y or, equivalently by (i), in E#). N.B. There are F satisfying (i) and (ii), 
in which D(g') is derivable!-As on p. 171, (a) 

- 
Dj(gl), and hence - 

D(g)) is 
not derivable because condition (**) is ensured by (i) and (ii), as mentioned 
above. (b) If g2 is the number of Dj(g'), and hence G[ is the formula - G2 
then, by Con, (derivable in J1) 

D(g2) => D,(g') 

is derivable in .1. So if G2 were derivable, by (ii), D1(g2) would be, and so 
-1 DN(g) would be derivable, contrary to (a). Specialists will find further 
references to the literature on pp. 113-114 of Browder (1976); specifically, 
there is the matter of so-called canonical numberings of formulae and deriva- 
tions (unique up to formal equivalence), which are perfectly analogous to 

coding finite sequences of sets by sets (unique up to appropriate equivalences), 
but also-and this is much more interesting-novel questions arise concerning 
the second incompleteness theorem for systems which were not known at the 
time of (4), for example, so-called cut-free rules. 
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Consistency proofs. As Godel himself stressed, back in 1931 on p. 197 of 
(4), his second theorem is irrelevant to any sensible consistency problem. In 
any case, if Con, is in doubt, why should it be proved in F (and not in an 
incomparable system)? G6del's practice followed his theory. His last self- 
contained publication, (24) in 1958 which goes back to (11), was presented as 
a consistency proof. Between 1931 and 1958, as his notebooks at Princeton 
show, he studied other such proofs, especially one discovered around 1935, 
but published posthumously in Gentzen (1969), pp. 201-213; cf. p. 262 of its 
review for its checkered history, now more fully documented by the corres- 
pondence between Gentzen and P. Bernays, left by the latter to the E.T.H. at 
Ziirich.* Very much in contrast to the break with traditional aims, advocated 
throughout this memoir, Godel continued to use traditional terminology. For 
example, the original title of Spector (1962), extending (24)*, did not contain 
the word 'consistency'; it was added for the posthumous publication at Godel's 
insistence. He knew only too well the publicity value of this catchword, which 
-contrary to his own view of the matter-had made his second incompleteness 
theorem more spectacular than the first. 

Some lessons from the incompleteness theorems 

(a) As far as the first theorem is concerned, there are two lessons (independent 
of the foundational schemes which, as already mentioned, are left for the end 
of part II). The first and principal lesson is related to the questions on p. 162: 

What more can we expect to know from a proof of a theorem by means of 

(incomplete) rules for, say, number theory or set theory than if we merely 
know that the theorem is true ? And, of course, as a corollary: 

What do we know about a problem if it is not decided by given rules? 
At least at the present time, it is not so much the general incompleteness 
theorem for formal systems that has found uses, but incompleteness tied to 
specific objects, like (size of) ordinals in the easy argument (for specialists) on 
p. 171 or rate of growth on number-theoretic functions in the examples below. 

The second, subsidiary lesson is that, in the cases mentioned, incomplete- 
ness of suitable informal systems is needed for the most rewarding results; in 
other words, the generalizations mentioned on p. 172. 

The points above are illustrated by theorems of the form: some diophantine 
equation, D, in say 9 variables (by p. 170, the typical case), has infinitely many 
solutions 

(*) V n 3 ml ... 3 mg9[m + . + > n& D(ml, , mg9) = 0]. 
If (*) is true, then for each n, such m, ..., m9 can be computed by a programme 
which tries out each 9-tuple, in short, recursively. But if (*) is proved by 

* For specialists. Gentzen used functionals of lowest type, defined by unfamiliar equations, 
intended to operate on so-called choice sequences; in other words, with special emphasis on 
continuity. Godel's (24) used functionals of all finite types, defined more elegantly, but intended 
to operate on rules (except that the last sentence of (24) does not fit the intention). Spector 
used so-called bar recursion, again for all finite types, for which continuity (in a suitable sense) 
is again essential. 
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restricted means, o, bounds for m2 + ... + m2 (in terms of n) can be specified. 
The literature speaks of demonstrably recursive functions, defined by the 
class 9t1 of programmes which can be proved (in f) to terminate. A signifi- 
cant part of proof theory describes the functions defined by 9t1 in familiar 
mathematical terms. (This was the aspect stressed in the original title of 

Spector (1962) before Godel insisted on adding 'consistency'; cf. p. 174.) 
An obvious conclusion is that even if (*) is true, but the least m2 + ... + m 

grows too rapidly with n, then (*) cannot be proved by means of S. The 
converse is not true because, for some N, 

(t) V 
ml 

... V 
m9[m2 + ...m2 

> N => D(m, ..., m9) -7 0] 

may be true, but not derivable in S. A very simple piece of logic shows that 
the converse does hold if all true propositions of the form (t) are added to F. 

(The resulting system is not formal! but needed.) If Y+ is the new system, the 
class 91t of programmes is greater than 9^, but not the class of functions 
defined. Thus metamathematical knowledge of 

underivability of (*) in Y+ gives information about bounds for (*), 

of ordinary mathematical interest. Though this connection had been publicized 
for more than 20 years, the first convincing use was made only recently; cf. 
the chapter by Paris and Harrington in Barwise (1977) on a problem in 

(combinatorial) partition theory. For logically more complex assertions than 

(*), a more sophisticated connection by means of so-called functional interpre- 
tations is used; cf. p. 111 of Browder (1976). 

Without exaggeration: the answers above totally reverse the unsophisticated 
aims of using formal systems for an overview of mathematics, for example, for 

arranging problems according to the means needed for their solution. The 
new aim is to start with a problem P (one wants to know about), and to look for 
a bunch 5p of relevant systems (in the arsenal of systems with manageable 
metamathematical properties). The metamathematical study, proof-theoretic 
or model-theoretic, of particular systems F is here only a preliminary, for 
example, to get some idea of the sort of problems P' for which S'e 3 p. As on 
p. 167, a different strategy would apply if ever genuinely fundamental systems 
turned up, for example, related to the laws of thought (on p. 162). 

(b) As to uses of the second incompleteness theorem, above all, it provided 
the first, much needed cross check on proposed consistency proofs. The early 
literature on the subject-supposed to 'secure' mathematics!-had a particu- 
larly high density of errors. The most famous are in Ackermann (1924), 
pointed out on pp. 44-46 of von Neumann (1927), and in Herbrand (1930), 
corrected in Dreben et al. (1963), also discovered, but not quite corrected by 
Godel in the early forties; cf. his Arbeitshefte IV and V at Princeton. (Though 
in the meantime others have also observed the points of detail made there by 
G6del, his sure touch remains exceptional.) Another good use of the second 
theorem, which however always requires some imagination, can be seen as 
follows, by reference to the basic significance of ConF (on p. 172): if 
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V n (P 0 0) is derived in y from the false formula - Con ., V n (P 0) 
is still true, simply because ConY is not derivable, and so F together with 
- Con Y is consistent. An easy exercise shows that V n (P : 0) is then 
derivable in F itself (but such a derivation may be more difficult to find). An 
even better use relies on the details of consistency proofs which derive Con y 
from some 'mathematical', manageable principle, say P. So the false formula 
n- P is consistent with y too. For suitably complex P 

F can be derived in Y itself if F can be derived from - P, 

even for certain F which are (logically) much more complicated than 
V n (P : 0); cf. pp. 116-117 of Browder (1976) and p. 197 of part III below 
(on consequences of the continuum hypothesis) for examples. 

The next topic is the completeness theorem for elementary logic in the sense 

explained on p. 165. 

Elementary logic in the twenties: background to (1) 

Evidently, to document Godel's own view (p. 150) on his good use of 
traditional philosophical notions in (1), a word on the knowledge about 

elementary logic which had accumulated before (1), is needed. For balance, 
other interesting consequences of that early knowledge, which its authors did 
not recognize, will be used to illustrate negative effects of (ill digested) tradi- 
tional philosophical aims. 

Remark. An at least comparably important obstacle to progress in the 
twenties was the emphasis on the false conjecture that logical validity or formal 

derivability by means of Frege's rules was mechanically decidable. As a result 
a fair number of partial, and certainly not very memorable results cluttered up 
the literature of the twenties. As on p. 169, before (4) it was not realized that 
a proof of the conjecture would have solved Hilbert's tenth problem (and more, 
as G6del stressed on p. 194 of (4) in his discussion of the matter); for the 

diophantine equation P = Q has a solution if and only if 3 x1 ... 3 x, (P = Q) 
follows purely logically from the usual axioms for successor, addition, and 

multiplication; cf. p 168 above. 
(a) Non-categoricity of elementary axioms. One of the best known results 

had been realized before 1920-by Loewenheim, and proved very simply by 
Skolem. The existence of non-isomorphic models of Euclid's axioms, or of 
real-closed ordered fields, mentioned on p. 164 and p. 166, is typical of all 

elementary axioms. In particular, if each of a countable collection of such 
axioms is true for some structure S, there is a countable (or finite) part of S, 
say S0, in which they are all true too. The idea of the proof, which incidentally 
is the clue to G6del's work in part III, is perfectly illustrated by means of the 
formula V x3y V zR (x,y, z) where R does not contain quantifiers (V, 3). For 
if V x 3yV z R (x,y,z) holds in S, so does V x V z R [x, Y(x), z] for some 
function Y with arguments and values in S. For any element a of S, the set So 
generated from a by Y will do (where a e So and if b e So also Y(b) e So); thus 
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So = {a, Y(a), Y[Y(a)],...}. (If there are also operation, not only relation 
symbols in R, So is required to be closed for the corresponding operations.) 
Evidently, S0 is countable or finite. So if S is uncountable, then 

Vx3yVzR (x,y,z) 

is not categorical; this is generalized on p. 180. 
Readers probably know-and certainly can easily imagine-the thoughtless 

conclusions which were drawn from the simple results above. At one extreme, 
differences between infinite cardinalities were rejected as 'meaningless' because 
such cardinalities cannot be distinguished by elementary properties. At the 
other extreme the elementary formalism or 'language' was rejected as hope- 
lessly inadequate because it cannot be used to express even such brutal 

properties as differences in cardinality. 
What was overlooked for a remarkably long time, was the positive aspect of 

the results above: from the validity of an elementary formula in all countable 
structures follows its validity in all uncountable structures too. Without 

exaggeration: some result of this kind is needed to make the 'abstract nonsense' 
about validity in arbitrary structures (called 'truth in all possible worlds' on 

p. 160) useful at all; not because of any illegitimacy of the notions involved but 
because a formula might fail to be logically valid only because it is false in 
some odd structure that nobody wants to know about. Specialists can think 
of examples in so-called second order classical logic, and to some extent in 
intuitionistic propositional logic where propositions about so-called lawless 

sequences are needed; cf. p. 186 below. 
Bibliographical remark. Skolem (1922) went even further in reducing the 

'abstract nonsense'. Suppose F is an elementary formula with relation symbols 
R, ..., Rm. Then relations Rf, ..., RF can be (quite explicitly) defined in pure 
number theory with the property: if F, is obtained from F by replacing the 

symbols Ri by RF, and if the quantifiers in F, range over the natural numbers 

(+ and * in RF having their usual number-theoretic meaning) then: 

if F is true in any structure at all, or, as one says, 

if F has a model then F, is true (for the natural numbers). 

In other words, logical validity is not only equivalent to validity in countable 
structures, but to validity in structures defined in this restricted way. Skolem 
himself did not state this result: he noticed only the very marginal improve- 
ment that, in contrast to his earlier proof of Loewenheim's theorem, the proof 
of the refined result did not use the axiom of choice. 

(b) Two formulations of completeness (for logical validity). One formulation 
occurs in Hilbert-Ackermann (1928), obviously written by the second co- 
author. It says just what one would expect. A system of rules, say -S (for 
'logic'), formulated in terms of elementary logic is complete if, for every 
elementary formula F, 

F is derivable in S provided F is logically valid 
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that is, true in all structures (in which the relation symbols of F are interpreted). 
Pedantically, one can also consider the converse, called soundness of ', which 
is usually verified by inspection. 

There is an obvious analogous notion of completeness for logical consequence 
(of F from a set Y of formulae); in the case of a finite set e, say, {F1, ..., Fn) 
this reduces to validity of (F1 & ... Fn) = F. It will not have escaped the reader's 
notice that the matter of completeness is neatly by-passed in the formalizations 
on pp. 165-166, which were Hilbert's principal interest, since they decide 
every proposition: no set of sound rules can do more! (in the sense of genera- 
ting more theorems). Further-and this certainly did not escape Hilbert's 
notice!-the completeness in question is formulated purely formally: for every 
elementary formula F (about the structure considered) either F or - F is 

formally derivable. Sure, the reason for being interested in this formal property 
is that it ensures that all true F are derivable in the formalization. But the 
wording respects the ideal of Methodenreinheit (here applied to formal deriv- 
ability), and the formulation in Hilbert-Ackermann (1928) violates it. 

Soon afterwards, despite the handicap of a recent stroke, Hilbert (1930) tried 
to correct this violation by a pure version of: 

Completeness of 6Y modulo a formal system, say iT, for pure number theory: 
(F is derivable in Y) or (-i F, is derivable in S), 

where F, is obtained from F when the relation symbols, say R, of F are replaced 
by suitable expressions of -, for example, the definitions RF supplied by the 
improvement in Skolem (1922), mentioned in (a). Once again the blindspot 
(cf. p. 169) intervened. Hilbert and others overlooked the fact that complete- 
ness in his pure sense would prove the (false) conjecture on p. 176, providing 
a method for deciding in a finite number of steps whether F is derivable in Y 

(provided of course that i is sound). As on p. 169, one lays out the formal 
derivations of the systems Sf and 3f in linear order and tries them out alter- 
nately. After a finite number of steps one arrives either at a derivation in Y 
of F or at one in 3 of a formula of the form - F,,. Since the conjecture is 
false, so is Hilbert's pure version of completeness: for any (sound) rules oS' 
and if' for logic and (extensions of) number theory resp. 

(c) Before (1) a good deal of formally pure work, concerning transformations 
of formal derivations, had been done, particularly, the very original work of 
Herbrand (1930), already mentioned on p. 158. Without exaggeration: as we 
see things now, part of the interest of this kind of work comes from the fact 
that it does not presuppose completeness of the formal rules, since, for example, 
a transformation may be particularly efficient if applied to derivations that 
happen to be built up by an incomplete subset of given, possibly complete 
rules. But it was hard to see this highly positive side of the matter. For one 
thing, there was no hint of it in Herbrand (1930). In addition, there were the 
formal errors mentioned on p. 175. Last but not least, there was the terribly 
complicated though correct formulation of his Theordme fondamental, again 
without a hint of possible uses in ordinary mathematics. (The irony of the 
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matter is that even the simplest case of the Theoreme, applied to purely 
existential formulae, has turned out to be at least as useful as the completeness 
theorem, especially if one is interested in explicit bounds.) Instead, Herbrand 
used the Theoreme to get some not at all memorable, partial results on the 
ill-fated decision problem for elementary logic (on p. 176). Concerning 
completeness, Remarque 2 of ?6.4 refers to (the possibility of) a proof but 
rejects the matter out of hand because the abstract so-called semantic 
notion of logical validity was not precise enough for Herbrand (to deserve 
attention). 

In short, though the completeness problem solved in (1) had been stated 
in the twenties, there were mixed feelings about it. By (b) it certainly did not 
fit in with the ideal of purity of method. By (c), at least one formal counterpart 
to completeness, in Herbrand (1930), simply had more mathematical content. 
What Herbrand overlooked was that another step was needed before the 
average logician or mathematician had enough confidence in the subject to 
want to look at a monster like the Theoreme fondamental. In contrast, almost 

anybody could understand completeness (or misunderstand it, thinking of it 
as a confirmation of Hilbert's aim). Being simple and memorable, it helped to 

put elementary logic 'on the map'. 

Elementary logic: completeness and finiteness theorems 

In (1) Gbdel established the impure version of the completeness of Frege's 
rules in the sense explained in (b) above. Translated into the notation used in 

(a), (1) shows that, for every elementary formula F, 

(*) (either F is derivable by Frege's rules) or (-i F, is true). 

A comparison with Skolem (1922) documents beyond a shadow of doubt-for 
anybody prepared to look at the proof of Skolem's dull result-Godel's view 
that all ingredients needed for the proof of the completeness theorem were 
available in the twenties. 

At this point it is worth recalling Hilbert's pure version of completeness 
which was seen to be false (on p. 178). If differs from (*) in one place: 

derivable in 3; in place of true; 

yet, the difference is quite essential. (Derivability of - 
F, can be mechanically 

verified whenever it holds, truth of ~ F,, in general cannot, in contrast to 
Hilbert's expectations on p. 168.)-Warning. Inspection of (1) shows that 

(either F is derivable by Frege's rules or -m F,) is derivable in S. 

But this replacement of 'true' by 'derivable in T' is of no obvious consequence 
-if anything, it hides the essential differences between the pure and impure 
versions. A moment's thought shows that it is typical of the ritual of formali- 
zation. 
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To return to (1), G6del noted on p. 358 in Satz X, more or less, another fact 
which is much more often used (in the sense of being directly appealed to) in 
applications of elementary logic. 

Finiteness theorem (for infinite sets o of formulae). If each finite subset of 
' 

has a model so does Y itself. As a corollary, the non-categoricity result on 
p. 176 extends to all sets Y with infinite models as follows: for an arbitrary 
set I (of new constants), Y u {i : j: for distinct i,j e I } has a model of cardi- 
nality > card I. 

Actually, G6del stated the theorem only for countable S although it holds 
for arbitrary Y", and although he himself formulated corresponding results for 
uncountable sets of propositional formulae in (8). But applications in mathe- 
matics where the unrestricted formulation is actually required, were discovered 

only later as the subject of model theory (of elementary logic) developed. 
Incidentally, G6del stated the finiteness theorem in impure terms first, in 
Satz IX on p. 357 of (1), mixing in formal derivability: Y has a model or else 
some finite subset, say (F, ..., Fn), is formally inconsistent, that is, 

-- 
(F1 & ...Fn) 

can be formally derived. (To use this form in model theory, the completeness 
theorem is needed.) 

In retrospect the finiteness theorem is seen to fit in well with the only obvious 
sense of a formal derivation from an infinite set Y~, namely, that only a finite 
subset of f be used. When asked whether this aspect had led him to the 
finiteness theorem, Godel could not remember having been conscious of it at 
the time; and about (8) he remembered stating the result first for countable 
sets, and noting afterwards that the proof nowhere used countability. 
Realistically speaking, it is of little interest what one is not conscious of; in any 
case, Godel never claimed to have followed consciously his heuristic principles, 
on p. 150, at the time of (1) and (4), but to have discovered later that they 
apply. (In contrast, his ideas in part IV and part V were developed after that 

discovery.) Be that as it may, there is no doubt that G6del's views fit the later 

development of logic. 

Elementary logic: its needfor non-elementary notions 

Before knowledge of elementary logic-either of elementary definitions or 
of formal rules-can become an effective part of our intellectual reflexes, one 
needs some general orientation on the kind of questions where this knowledge 
is likely to be relevant; this is easiest by contrast (with non-elementary notions). 

Elementary formulae. Obviously, one needs to know results which hold for 
elementary, but not for all axioms; for example, the finiteness theorem above 
certainly does not apply to Peano's non-elementary axioms together 
with the infinite set of formulae a : n: n E w (every finite subset of the latter is 
satisfied by some a in models of Peano's axioms). Again, non-categoricity, on 
p. 176, puts a premium on non-isomorphic structures, say S and S', which 
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share the same elementary properties, but one of them, say S', is more manage- 
able. For then, with some imagination, one may find an elementary problem 
which is difficult for S' but not for S, as in the transfer results on real closed 
fields (p. 166). A more delicate strategy, discovered in the last 25 years, 
involves general operations on structures which preserve elementary properties. 
With a bit of luck, such operations, suitably applied to S and S', may produce 
isomorphic structures, thereby showing that S and S' have the same elementary 
properties. The (still) best-known application establishes relations between the 
p-adic fields and the fields of formal power series with integral coefficients 
modulo p. As long as only very simple questions about p-adics were treated, 
mathematicians got by with a vague perception of some relation between such 
fields (and exploited their knowledge of formal power series; cf. for example, 
Chevalley (1936) in the thirties). For more difficult problems, some 30 years 
later, the precise relation of elementary equivalence was needed; cf. pp. 132- 
133 of Barwise (1977) on the work of Ax-Kochen and Ershov. 

Bibliographical remarks. Ershov's teacher was the first to state the finiteness 
theorem for uncountable sets of formulae, and used it for interesting results 
in group theory, cf. Malcev (1936) and (1941). Ax-Kochen make use of 
ultraproduct constructions, which preserve elementary properties, a fact first 
exploited, albeit inadvertently, in Skolem (1934) to establish the existence of a 
non-standard model of (all true statements about + and * over) the natural 
numbers; Godel's review dismissed this result, actually an immediate con- 
sequence of his finiteness theorem, but for formally incorrect reasons; cf. the 
review of Kleene (1976). 

Secondly, it must be easy to recognize notions which have elementary 
definitions. This is a delicate matter, especially for the logically perceptive 
mathematician who has been sold on the idea that all of mathematics is forma- 
lized, say, in some universal system of set theory. Though, of course, elemen- 
tary formulae (in the sense of p. 165) can be formally separated from the others 
in the universal system, the separation seems artificial, and is less easy to 
remember than if, following Godel, non-elementary definitions are understood 
too, and so can serve for contrast. At the other extreme, less perceptive 
mathematicians or logicians, are led to apply their knowledge of elementary 
logic indiscriminately, for example, to the universal system itself-generally 
with disappointing results (according to the principle already quoted on 
several occasions about what is true in general). Specialists will easily think of 
such results for those non-standard models which are defined by mere use of 
the finiteness theorem; others can guess the kind of disappointment involved 
from the ritual formalization of the impure completeness theorem on p. 179. 

In short, as a general rule elementary logic is most rewarding mathematically 
when applied to structures defined by (sets of) formulae which are elementary 
as they stand, not merely because they are thought of as expressions in a 
universal formal system. This includes of course non-elementary notions 
which are demonstrably equivalent to elementary ones, for example, the 
notions of orderable and formally real fields. Up-to-date texts on model theory 
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give general conditions for such equivalences (covering the standard example 
above). One of the rare exceptions to the general rule is elaborated on p. 199, 
where it is useful to go back to the definition of a non-elementary notion (free 
basis of a group) in the universal system, and to apply formal incompleteness 
properties of that system. 

Logical inference. Readers have already a sufficiently good general idea of the 
difference between pure and impure proofs from the examples in real algebra 
on p. 166. (To be pedantic, a logically impure proof of an elementary formula 
F proves the validity of F, Val(F), not F itself.) 

On the banal side-and contrary to the false impression mentioned re- 
peatedly-the advantage of a logically pure proof hardly ever lies in greater 
certainty, the usually shorter impure proof being used for checking (by p. 167). 
But there is an advantage in additional information, for example, bounds 
(N16 on p. 166), which can be read off more easily from pure proofs. In 
contrast, unwinding of impure proofs, even if it is theoretically possible, tends 
to pass the point of diminishing returns; for more detail, cf. p. 111 of Browder 
(1976). Warning (against another widespread misunderstanding). Though 
bounds are more easily read off from pure proofs, better bounds are liable to be 
established by means of impure proofs. There is an obvious potential conflict 
here in restricting both definitions of objects and methods of proof (as is done 
in so-called doctrinaire constructivism): a given problem may have a very 
simple solution or bound, but this fact cannot be established by the restricted 
methods of proof. All this is plain horse sense. 

The place of pure logical inference within impure proofs is more delicate. 
The issue is general, but most dramatic in the case of purely logical theorems. 
Modern mathematics provides many examples. Thus the notion of ordered 
field has an elementary definition, say 0, and so an elementary theorem T 
about such fields is a logical truth: O => T. But the latter, or rather Val (O => T), 
is often established by impure proofs, involving the embedding of ordered 
fields in particular real closed fields, and applying set-theoretic and topological 
operations to the latter. The heart of the proof is to spot relevant (set-theoretic 
or topological) properties P of the structures so obtained; only the implication 

(*) P =Val(O => T) 

is derived purely logically (often this part of the argument is not mentioned 
at all; in the phrase of Bourbaki (1948), the derivation of (*) is the least 
interesting side of the matter). Seeing those properties P makes many mathe- 
matical proofs, as has often been said, more like perception (with all its prob- 
lems) than a sequence of formal steps. 

Reminders (on the use of scientific experience). Though the examples just 
given of logically impure proofs are commonplace today, they were not known 
100 years ago-and still are not known to many authors of logical texts, in 
whose own experience logically pure proofs have a much greater relative 
significance (frequency). Thus, except for those with uncommon philosophical 
talent, their limited experience is not sufficient for a correct sense of proportion 
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on pure and impure proofs in possible mathematical reasoning. At the other 
extreme, some of the reservations by philosophers and mathematicians about 
logic depend equally on defective knowledge of this subject, but with a 
difference: impure proofs have not been widely advertised, while the best- 
known (and, often, only known) claims for the interest of logic are the pre- 
tensions about laws of thought or formal rigour mentioned on p. 162. They are 
considered next, in a partial review, which sharpens the general picture painted 
at the beginning of part II. 

Foundational schemes: Russell, Hilbert, Brouwer 

In each case, the logical properties of the schemes themselves will be recalled 
first, and then they are tested by inspection of scientific experience in the 
style of pp. 166-168. In (a) and (b) below the famous foundational schemes of 
Russell and Hilbert are reviewed briefly. In (c) Brouwer's less famous 'anti- 
formalist' views are explained and examined. The schemes of the 'anti- 
formalists' Poincare and Zermelo are more conveniently discussed at the end 
of parts III and IV. 

(a) Russell's aim of a universal system for all of mathematics has a clear 
logical or mathematical sense and a less obvious empirical sense. By the first 
incompleteness theorem the logical aim cannot be achieved. The philosophical 
significance of the logical aim is problematic, for reasons given already in the 
discussion on pp. 168-168 of Hilbert's 'universal' (complete) systems for 
branches of mathematics, which he favoured for the sake of Methodenreinheit. 

Russell's empirical aim has been achieved, at least for existing mathematical 
practice (by use of current set theory in place of P.M.)-partly by the simple 
device of restricting practice to a given system. The second incomplete- 
ness theorem, in particular, footnote 48a of (4) on the restriction to finite types 
(in P.M.), shows up a defect, a kind of blind spot, of this practice. As mentioned 
repeatedly, formal independence from such a universal system explains 
(empirically) why certain well-defined problems have not yet been settled, for 
example, in odd corners of group theory. But-and these are empirical facts 
too-(i) such problems are relatively rare, (ii) by p. 161, in contrast to formal 
definitions of, say, Bourbaki's basic structures, the specifically formal axioms 
and rules of the universal system are barely mentioned in the later development, 
and, last but not least, (iii) those structures can be applied perfectly well to 
familiar objects like the natural numbers, which are normally not thought of as 
defined set-theoretically at all. By (ii) and (iii), the two properties characterizing 
Russell's ideal, of a system which is both formal and universal, are hardly used 
in practice. 

It seems plain-in accordance with p. 182 on the use of scientific experience 
for refuting foundational schemes-that the conclusions above would be less 
convincing without our experience with universal systems. 

(b) Hilbert's scheme is a kind of opposite extreme to Russell's empirical 
aim and, especially, to the doctrine mentioned on p. 161 that only empirical 
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case studies can support universal systems. (As a matter of historical curiosity, 
neither Hilbert nor Russell ever stressed that particular difference between 

them.) 
The difference is very well expressed by Hilbert's favourite slogan, in 

Hilbert (1931), which eventually replaced the modest business of purity of 
method: his aim was a final solution of all foundational problems by purely 
mathematical means. (Outside mathematics Hilbert liked big words like 'final 
solution', or 'world formula' in relativity theory rather than little things, like 
the perihelion of Mercury.) Actually, his aim is more modest than it sounds 
because of the tacit assumption (which alone makes the aim even remotely 
plausible) that only those foundational problems which concern proofs of 
finitist theorems are 'real'. (By p. 168, the latter are of the same general 
character as theorems asserting that some diophantine equation is insoluble.) 
The 'final solution' was to establish the autonomy 'in principle' of the subject- 
exactly in the same sense as pp. 165-166 establish the autonomy of real algebra. 

Despite Hilbert's severe restriction, eloquently criticized in Godel's (3), the 
first incompleteness theorem is enough to exclude a final solution. To be final, 
it would have to provide a method which decides every finitist problem, so to 

speak: here and now (and certainly every diophantine inequality; equivalently 
by p. 172, its consistency with some formal system which is complete for 
numerical computation). Otherwise, if that system leaves the problem un- 
decided, tomorrow we might think of another system which settles it. The 
new system would have to be justified, and so on ad nauseum. 

The second incompleteness theorem is also relevant to Hilbert's scheme, 
but-by p. 174, and contrary to an almost universal misunderstanding-in a 
much more subtle way, involving the following fact of experience: (i) For any 
formal rules or axioms actually used in mathematical practice (in contrast to 
those experimented with in foundational studies), somebody has an abstract 

interpretation in mind which establishes their consistency instantaneously. 
The second incompleteness theorem refutes an additional conviction (apart 
from the business of a 'final solution'), formulated by Hilbert, but widely 
current at the turn of the century: (ii) Set-theoretic and other abstract notions 
constitute a merefafon de parler, and thus can be eliminated straightforwardly. 
The second theorem pinpoints a particular class of counter examples to (ii) 
since the specific use of abstract notions in the instantaneous consistency 
proofs of (i) cannot be so eliminated. (For systems which prove their own 

consistency, the corresponding abstract notions cannot be eliminated from the 

proof of the equivalence between Y and 9; on p. 173.) 
Though the use above of the second incompleteness theorem has un- 

questionable elegance and charm, detailed inspection of scientific experience 
establishes more. As to (i), abstract notions are essential not only for con- 
sistency proofs (which constitute a kind of singularity in mathematical 
reasoning), but, generally, in algebra and number theory. Moreover-and this 
is a philosophical defect of the aim of eliminating abstract notions from proofs 
-when this can be done, essential knowledge contained in the proof is liable 
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to be lost. As to (ii), by the turn of the century, there had hardly been time to 
learn to use set-theoretic methods efficiently: Hilbert's conviction was quite 
consistent with the 'empirical evidence'-which is not the same thing as being 
supported by the evidence! In fact, those methods were used particularly 
cautiously, even though, including the paradoxes, less mistakes had been 
made with sets than in finitist consistency proofs in the twenties; cf. p. 175 
and, for a more scholarly documentation on these and similar points, pp. 
114-116 of Browder (1976). 

Finally, at least as a matter of common sense, the foundational problems 
about the 'certainty' or 'security' of mathematical knowledge which Hilbert 
had in mind, do not seem at all promising. After all, though surely not the only 
reliable means of knowledge, mathematical proofs have long stood out by their 

certainty. Further analysis of that certainty, in terms of anything remotely 
resembling existing ideas, is therefore at best a calculated risk, and the more 

specific aim of increasing that certainty still further, assumes that the certainty 
already achieved is not 100%. Here it should be recalled from p. 182 that the 
unwinding of impure proofs into pure ones, originally presented as eliminating 
dubious abstract principles, simply yields other information. More generally, 
preoccupation with certainty is liable to draw attention away from other 

possibly genuinely problematic and therefore less sterile aspects of proofs. 
Remark (for readers accustomed to the traditional foundational literature). 

The preceding paragraph obviously conflicts with several old ideas; for ex- 

ample, (i) contrary to the tradition going back to Descartes, doubts and asser- 
tions, including restrictions and extensions of principles of proof, are here 
treated symmetrically, or (ii) contrary to the opening paragraph of (19), here 

logic is not expected to set general norms prior to all science-not even to all 
mathematics. Of course, having survived, these old ideas sound plausible 
enough in the abstract. But they evidently conflict with scientific experience, 
and inspection of the latter shows up their obvious oversights; for example, in 
the case of (i), doubts can be dubious too, and, in the case of (ii), norms valid 
for literally all imaginable experience are liable to be useless for any particular 
domain. (This last point is illustrated in (a) above too by the weakness of 
universal systems). The price for dropping the simple-minded ideas (i) and (ii), 
about the nature of knowledge as one says, is high; cf. (c) below on the prob- 
lems involved in a useful representation of proofs. 

(c) Brouwer's intuitionistic doctrine is best known for its polemical side, 
about defects of set-theoretic definitions, and of (Hilbert's problems about) 
formal rules. The corresponding positive side is Brouwer's aim of doing what 
Russell and Hilbert neglected: to make the mental activity of proofs, not only 
formal derivations, into the principal subject of foundational studies. An 
essential, though by no means well known element of that positive side is a new 

interpretation of the logical operations, as maps from proofs to proofs. 
(Readers familiar with the intellectual climate of the first quarter of this 

century, mentioned already on p. 162, will recognise here the then-privileged 
place of mind in nature.) Naturally, for this different interpretation, some of 
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the familiar formal laws of logic fail; what is less well known is that new ones 
hold. 

This positive side was not much stressed by Brouwer himself, whose 
polemics insisted on a reform of mathematics (or at least of its exposition). 
Moreover, he never presented so charmingly simple a scheme as those of 
Russell and Hilbert or, for that matter, as (i) and (ii) in the Remark at the end 
of (b) above. Nevertheless, what he said is clear enough to be examined in the 
style of (a) and (b). Once again, results by G6del and by others profiting from 
his work, correct wide-spread first impressions-both of intuitionistic doc- 
trinaires and their critics-about the logical properties of Brouwer's scheme. 

(i) Since Brouwer's doctrine stressed inadequacies of formal systems, the 
doctrinaires could be expected to err in the opposite direction-not seeing 
what formal systems could do. For example, p. 102 of Heyting (1956) says that 
no such system can embrace all valid methods of proof. This is true, and in 
fact made quite specific by G6del's second theorem: no system 'embraces' 
methods which use its own validity. (Actually, the idea of 'embracing' the 
totality of proofs is mind-boggling even when specialized to proofs of the one 
'theorem': 0 = 0). But this leaves the question whether a formal system 
'embraces' all its valid theorems, in other words, its completeness, naturally, 
for the intended intuitionistic interpretation. In the fifties and sixties such 
matters were taken up, and several positive results were obtained; as on p. 177, 
with special care to reduce the (intuitionistic) 'abstract nonsense': not, however, 
down to arithmetic, but to the subject of so-called lawless sequences; a compact 
exposition of that material is given in Troelstra (1977). Again, though Brouwer 
repeatedly objected to formal consistency as a sufficient criterion of soundness, 
he neither saw its significance (on p. 172) nor pin-pointed its limitations as 
exactly as Gbdel did in (3). 

(ii) On the other side of the fence, the critics, perhaps encouraged by 
Brouwer's dramatic 'contradictions' with ordinary logic-'contradictions' with 
a different interpretation of the logical operations!-objected to (his) sup- 
posedly paralysing restrictions on mathematical practice. Godel was one of 
the first to expose in (11) the triviality of these particular, still widely believed 
objections. Since then we have learnt, slowly, to set out the bulk of mathe- 
matics quite elegantly by efficient use of intuitionistic methods-to be com- 
pared to p. 185 (and especially part IV) on the slow exploitation of specifically 
set-theoretic methods. Godel was also one of the first to recognize genuine 
defects, as in (iii) below. 

(iii) Specifically, in his early notes on (24) preserved at Princeton, he 
pin-pointed a principal defect of Brouwer's logic (which is also not yet widely 
known). In terms of this memoir: provided the comparison applies, the 
unwinding of derivations built up by intuitionistic formal rules is of about the 
same order of complexity as for the corresponding 'usual' systems; for example, 
in the case of theorems (on p. 175) which show that some diophantine equation 
has infinitely many solutions, the 'unwinding' consists in computing the nth 
solution of the equation (in some given ordering). 
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In short, by (i)-(iii), the original impressions (of all concerned) about the 
logical properties of Brouwer's scheme were about as wrong as those of 
Russell and Hilbert about their schemes. (Naturally, the corrections of the 
more famous errors have also become more famous.) But given (1) and (4), 
which show how easy it is to correct that kind of error, it was a foregone 
conclusion that the logical properties of Brouwer's scheme would be 
straightened out sooner or later. 

In contrast, a philosophical assessment of Brouwer's scheme is more 
delicate. Since he proposed a reform (not analysis) of ordinary mathematics, 
experience of the latter is not enough. Instead it is necessary to apply a basic 
lesson from general scientific experience, on the choice of data needed to 
represent relevant features of the principal objects of study. As already men- 
tioned, Brouwer's scheme was to study the mental activity of proofs. His 
polemics certainly show up the superficial character of known representations 
-not only in formal systems, but in ordinary texts with diagrams and all the 

rest. But he has no satisfactory answer to the question: 

What better scheme is there than the known representations of proofs ? 

According to p. 480 of Brouwer (1977), he proposed to explore (his) deepest 
consciousness, presumably to arrive at ultimate reasons, as others have chased 
final causes. This sort of pretentiousness is of course suspect because it 
generally goes with simple-mindedness. But here it is possible to be more 

precise. The proposal errs by ignoring the basic lesson alluded to above, as 
follows. Reports from (his) deepest consciousness may be quite enough for us to 
recognize the (mental) object involved, but useless for its theoretical study- 
perhaps to be compared to reports on the shape and colour of minerals or 
plants in natural history. (Going into 'deepest' consciousness then corresponds 
to a meticulous description of nuances in shape, and shades of colour). True, 
such data are amply sufficient for recognizing the-mental or physical- 
object meant; but they are not adequate for a theory. Thus, in the case of 
minerals, rough knowledge of the molecular structure tells us much more 
about their physically significant properties than do very precise superficial 
data. In the case of proofs, a similar improvement would be expected from 
even a crude idea(lization) of the memory structures involved. As matters 
stand today, Brouwer's aim was shortsighted; for though the others neglected 
the potentially interesting topic of (actual) proofs altogether, what he had to 
add to the subject added too little, and stopped him from looking for results 
which are independent of our ignorance (about proofs). 

Evidently, this ignorance concerns a theoretical analysis since, practically 
speaking, we know a great deal about proofs, using them constantly as tools. 
It is precisely in such circumstances that only a really substantial theoretical 
advance has a chance of competing with unanalysed practical knowledge or 

perceptive aperCus; as a corollary, simple-minded schemes are then intellec- 

tually especially unsatisfactory. But though unsatisfactory-and this is a 

general lesson of part II-a study of such schemes can be fruitful; the 

Kurt Godel 187 

This content downloaded from 193.61.13.36 on Thu, 21 May 2015 09:18:54 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Biographical Memoirs 

(mathematical) uses of incompleteness properties on pp. 174-176, or of ele- 
mentary formulae and their model theory on pp. 180-183 developed from 
Godel's studies of Russell's and Hilbert's simple-minded schemes. A price paid 
for the philosophical weakness of these schemes was the imagination needed 
to find the reinterpretations which lead to applications of Godel's results. 

From foundations to technology 

The need for such reinterpretations is not particularly unusual in the 
sciences, especially if the work in question was originally used to refute a 
theory. But the frequency can be expected to be particularly high in the case 
of those foundational schemes or theories which, in line with Kant's view 
mentioned on p. 162, make 'possibilities in principle' their primary object. For 
given that preoccupation they will be satisfied with answers that simulate 

striking properties of the (mathematical) phenomena under study. This 
cannot be expected to tell us much about the phenomena themselves. But it 
will lead to technological progress, provided-as is natural-the answers are 
formulated in familiar, say mechanical terms. For then there is a chance that 
the effects which originally struck us can be achieved by those familiar means 
too, perhaps even more economically than by the things originally considered. 
Achieving a given effect-rather than understanding a given (natural) pheno- 
menon-distinguishes technology (from science). Evidently, the word 

'technology' is suggested by the relation (on p. 160) between Frege's rules for 
logic which had the ethereal purpose of analysing deduction, and the applica- 
tion of computers to non-numerical data. But the word also applies quite well 
to the mathematical uses of Godel's results. 

The parallel with technology applies also to the relative difficulty of dis- 

covering foundational results (which usually correspond to first impressions) 
and effective uses which, by above, require imagination. In contrast, by p. 167, 
in the case of what are normally called fundamental sciences, the applications 
look after themselves. Incidentally, the relative difficulty of those two kinds 
of discoveries is badly obscured by the slogan of 'pre-established harmony', so 

popular among logicians from Leibniz to Hilbert. 

III. GOOD QUESTIONS ABOUT SETS 

Older readers may still remember the embarrassing level of traditional 
'debates' about sets and their properties. At one extreme there was the fixation 
on the paradoxes despite the fact that, for example, the most famous version, 
due to Russell, has a perfect parallel in arithmetic if one assumes that there is a 
greatest integer; cf. pp. 597-600 in volume 19 of the present series. Even more 
thoughtless were the sweeping generalities stirred up by those paradoxes. The 
most innocent connerie was the idea that, somehow, axiomatization would be a 
safeguard, as if there were no inconsistent formal systems (like Frege's). The 
most pretentious was the appeal to a general theory of knowledge, along the 
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general lines familiar from part II, for example, p. 161, p. 162, and, especially, 
p. 187 on the matter of proofs. In the particular case of sets, the stress was on 
definitions (rather than proofs) from which sets were supposed to be 'con- 
structed'-to be compared to the then-current business of sense data from 
which physical objects are 'constructed'; all this despite the fact that- 
corresponding to p. 186 on proofs of 0 = 0-any one set has a truly mind- 
boggling 'totality' of definitions, and that sense data tend to fall to pieces on a 
closer look while (most) objects do not. 

By the end of the twenties, at least some mathematicians had become 
sufficiently familiar with the vague mixture of things called 'sets' to decide 
which objects they wanted to talk about-instead of relying on accepted usage 
or on its (premature) codification in formal axioms. Some basic distinctions 
had been made, to be compared to distinctions between natural, rational, real 
or complex numbers: without such distinctions, properties of + and x, which 
are common to all of those numbers, are trivial for any one kind (and 'paradoxes' 
result if one puts together properties which are of interest for different kinds). 
In particular, in Zermelo (1930) there is a lucid description of what is nowadays 
called the cumulative hierarchy of sets, that is, sets generated by iterating the 
power set operation $3: 

3x is the collection of all subsets of x; 

more precisely, iterating $3 transfinitely up to some stage a. Zermelo (1930) 
contains also the non-elementary axiomatization, mentioned on p. 164, for all 
segments of that hierarchy up to so-called Grenzzahlen o, also called 'inaccess- 
ible' cardinals. Thus, in contrast to Peano's or Dedekind's axioms, Zermelo's 
are not categorical, but determine a family. A trivial modification yields 
categorical axioms for such specific segments as the first (where o = co) or the 
next (the first uncountable inaccessible). As an immediate pay-off the familiar 
axioms are seen to be valid by inspection; the more 'elementary' the axiom, the 
more segments a satisfy it. Secondly-a point which Godel liked to stress, for 

example, in (20)-Frege's formulation 

3 xVy[y Ex P(y)] 

is obviously false for all x when P(y) is y = y; for example, for the segment up 
to w (of hereditarily finite sets), all the-infinitely many-objects y in that 
segment satisfy P(y), but every set x in the segment is finite. 

Godel was the first to find really striking differences between the non- 
elementary axiomatizations in Zermelo (1930) and their formalization obtained 

by the passage on pp. 165-166. The latter is nothing else but the formal axiom 
schema familiar from current texts on logic or from introductions to mathe- 
matical texts. With one proviso, those differences are very well illustrated by 
the differences between the full Euclidean plane or, more simply, our geo- 
metric imagination, and its 'thinned' part constructible by use of ruler and 
compass, already mentioned on p. 165; both the full and the thin plane satisfy 
Euclid's elementary axioms, but only the former satisfies the non-elementary 
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continuity axiom. By and large, the geometrically most obvious properties are 
easier to verify for the Euclidean plane, even when they hold for the thin part 
too, for example, the existence of a regular polygon of 17 sides. Also, Euclid's 
axioms do not decide every elementary formula since already the Greeks asked 
questions which have a different answer for the full plane and its thin part. 
The proviso is connected with the logical form of questions common in 
geometry and in set theory. The former are often purely existential, and so a 
solution for the thin plane is automatically a (refined) solution for the full 
plane, as in the case of a regular polygon of 17 sides. In set theory the logical 
form is more complicated, and so solutions to formally the same problem will 
be incomparable; in the case of the plane, the set {(x, 0): (x3-2)x = 0} 
consists of one point in the thin part (x = 0), but of two points in the full 

plane. The much more heavily publicized comparison with the parallel axiom 
is wholly irrelevant to Godel's contribution since it has nothing to do with the 
difference between elementary and non-elementary axioms (the parallel axiom 
is undecided by the remaining axioms of Euclid together with full continuity). 
For specialists: The business of the parallel axiom corresponds quite well to 
relatively easy analyses of the non-elementary axioms in Zermelo (1930), 
sufficiently illustrated by the easy incompleteness argument for set theory 
on p. 171. 

Except for their last sections (pp. 201-204 and pp. 209-213), parts III and 
IV are meant for specialists, either mathematicians or historians of mathe- 
matics. The reason was given already on p. 150: modern set theory, in par- 
ticular, the material of parts III and IV, has turned out to be of some interest 
when regarded as a specialized branch of mathematics; but its original appeal 
as a foundational system has turned out to be deceptive, as argued in Bourbaki 
(1948), with a few exceptions (in corners of advanced mathematics) discussed 
in part II and illustrated on p. 199 below. 

Background: fat hierarchies of sets 

The simplest particular cases of the hierarchies of sets described in Zermelo 

(1930) are C,, and C,+, where 

Co = i, the empty set; C,+1 = 13C, and 

C, = U Cn: new; C+ = U C+.+n 
n n 

C, or, more pedantically, the structure (C,,E,) satisfies the familiar axioms 
of set theory without the axiom of infinity, C,,+, satisfies those of Zermelo 
(1908), from which the formal system called 'Zermelo's axioms' in the current 
literature, is derived. (Interested readers are advised to stop a moment, and 
actually verify a couple of axioms, remembering that C, is the collection of 
hereditarily finite sets by p. 189, and that, for n> 1, C,,, is the closure 
of C,,+ under power set and subset formation.) More simply, also for ca 
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beyond o + cw, 

%ce= u s3% 
p<a 

without distinguishing between successor and limit ordinals a. 
Zermelo (1930) introduced an additional parameter, an arbitrary collection 

U (for Urelemente) of distinct atoms without any elements, and a corresponding 
hierarchy Ca(U) with Co(U) = U. This is useful, and used in practice; for 

example, in number theory the natural numbers are thought of as atoms. But 
the C(0O), called C, above, are good enough for the present purpose. 

Background: non-elementary axiomatizations 

In terms of p. 164 the 'principal feature' of the hierarchies in Zermelo (1930) 
is the (binary) membership relation e. There are three non-elementary axioms. 

Well-foundedness of E for arbitrary predicates P: 

3 uP(u) => 3 x[P(x) & (Vy e x) -i P(y)]. 

(Its contrapositive is called: e-induction.) This holds for all C, since they are 
'built up from below', and so, if u e C., there is a least P3 < , for which some 
xe Cp and P(x). 
Comprehension, again for arbitrary predicates P: 

Vx 3 y V z(z ey [z x & P(z)]). 
This too holds for all Cc. For if x E C,, x c Cf for some / < ac, and hence also 

y c CB. But since C, =) 3Cfl, y C, too. 

Replacement for arbitrary functional relations R (or, equivalently, predicates of 
ordered pairs): If the domain of R is restricted to a set E C., so is the range. 

This holds for x = wo and, if one wishes to be pedantic, also for a = 2. It 
does not hold for a = w + c, etc. A principal result of Zermelo (1930) is this: 

Granted the rest of the axioms (which are elementary anyway), replacement 
holds only for the family C. where a is strongly inaccessible, that is, in terms of 
Cantor's cardinal arithmetic: for /, y, (all < a) 

/jy<a and 52/38<a. 
8<y 

Equivalently, card C, = card a. 
Moreover, and this is the non-elementary axiomatization of the family of 

strongly inaccessible C,: if any structure (D, E) with domain D and the binary 
relation E on D, satisfies the axioms of Zermelo (1930), then (D,E) is iso- 

morphic to some (C,, e) in that family. 
Digression on the passage to formalizations of set theory (which, in contrast to 

those derived from Peano's or Dedekind's axioms, are better known than the 

non-elementary axiomatizations). As always, the (three)-infinite-schemata* 
* Such schemata can be finitely generated by introducing a second type of variable, for 

predicates usually denoted by capitals X, a new binary relation symbol / (x 71 X: X applies to x), 
and axioms for the X corresponding to the (finitely many) syntactic rules for building up 
formulae. In the particular case of set theory, those X are called 'classes', and, as Godel observed 
in (18), e can be conflated with ] in a natural way. 
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of formal axioms arise from the (three) non-elementary axioms. But there are 
some curiosities. For example, non-elementary comprehension implies not 
only the schema for formulae F with a single free variable, z, but also 

V ul ... V u V/ x 3 y V z(z ey :> [z E x & F(z, ul, ..., u.)]). 

This schema, with 'parameters' u, is not formally derivable from the other one. 

(This has a parallel in the case of Dedekind's axioms, but not, as an easy 
exercise shows, in the case of Peano's.) 

More interestingly, the formalizations are satisfied by C, for suitable 
accessible o too. The proof is similar to the one of p. 176 for Loewenheim's 
theorem, but the result is incomparable: (i) the structures CO involved are not 
countable, since already C,,+ has the cardinal of the continuum, (ii) not only 
the (elementary) logical symbols retain their standard meaning; for example, 
3 does too. Typically, these simple facts were mentioned relatively late, in 
?5 of Montague and Vaught (1959), and are still not prominent in the litera- 
ture. We now return to the principal topic. 

Consequences of the non-elementary axioms. One of the easiest is the axiom of 
choice, for example, in the form: for any set x of disjoint (unordered) pairs 
{u, v}, there is a set y intersecting each pair in exactly one element. This is true 
for each o. For if x e C,, all the {u, v}, and hence u and v E Cp for some / < o. 
So y c C, and hence y E C,. In other words, for the fat (or 'full') hierarchy, the 
axiom of choice is quite evident. The fact that this axiom was used tacitly till 
Zermelo (1904) should be compared to similar uses in geometry of axioms for 
order which were not listed by Euclid: such tacit uses do not cast doubt on the 
soundness of the axioms (for the intended meaning) though possibly on the 
competence of the axiomatizers. 

Cantor's continuum hypothesis CH asserts, in effect, that any subset of 
C,+1 (which is in 1-1 correspondence with the real numbers), is either in 
1-1 correspondence with C,+ itself or with a member of C,,+ (equivalently, 
countable or finite). CH therefore concerns only elements of C,+4. Now, for 
the natural definition, say fw+4 of C,+4, the non-elementary axioms are 
obviously categorical (even without replacement), that is, if the formula 
',,+4 (c) holds in any model (D, E) of the axioms for an object c in D, then 
(c, Ec) is isomorphic to (C,+4, E6+4) where E, = En(c x c). So 

CH is decided by the non-elementary axioms, 

just as, say, the prime pair conjecture is decided by Peano's axioms; only we 
don't know which way. (Being purely universal, Fermat's conjecture is a less 
suitable analogue because, by p. 172, if the conjecture were proved consistent 
with number theory, the same methods would prove the conjecture itself.) A 
moment's reflection on GCH, the so-called generalized continuum hypothesis, 
conveys a feeling for the content of non-elementary decidability. (GCH is 
obtained from CH when w is replaced by arbitrary infinite o; the restriction to 
infinite a is needed since c = 0 and oz = 1 are the only finite oz for which C, 
satisfies GCH.) Thus GCH is not obviously decided by the non-elementary 
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axioms; it is not if, for example, GCH is true for all infinite a less than the 
first uncountable strongly inaccessible cardinal, but not for all. Then GCH is 
true in the smallest segment C, which satisfies those axioms, but not in all 
such segments. 

Bibliographical remarks. Zermelo (1930) has made little impression. For 
one thing, though the non-elementary character of the axioms is prominent 
enough, there is no hint of such easy, but memorable consequences as those 
listed in the last paragraph. Perhaps more significantly, two basic points were 
slurred over. First of all, the reader was not prepared for the striking effect of 
adding the replacement axiom (on the ordinals co for which the axioms are 
satisfied by C,). As early as 1931, Godel alluded to some reservations, evidently 
on this score, in his correspondence with Zermelo who did not take them up, 
and Godel repeated them throughout the thirties in his notes for lectures and 
courses. Those reservations go well with the fact that the axiom was a late- 
comer, having been introduced in the twenties by Fraenkel (in a restricted 
form, for definition by transfinite recursion) and in Skolem (1922) for formal 
reasons, but was first properly used only by von Neumann (1928). There it 
replaces the power set axiom for developing a good part of then-current set 
theory. But, above all, it is used for a canonical well ordering-by e, of what are 
now the standard (set theoretic) 'numerals' for ordinal numbers-in which all 
well orderings can be embedded. As we see things now, von Neumann's work 

suggests a thinning of the hierarchy C^. For any so-called regular cardinal p, 
for example, NK (in Cantor's notation for the first uncountable), let 

CP= UPCP C, 
<Or 

where 3Px is the set of all those subsets of x which have cardinal < p. Then, 
for a > p, CP = CP, and CP satisfies the non-elementary axiom of replacement 
(but generally not the power set axiom). Familiarity with such CP is a useful 

preliminary for really effective use of replacement. In this way one also comes 
to see the principal open problem presented by the hierarchy Cs: not the 
innocuous power set operation, but the number of its iterations; incidentally, 
this is quite parallel to the 'problem' presented by C, if one 'believes' only in 
finite sets x: for each such x, 3x is not problematic, but the notion of 'arbitrary' 
(finite) iteration is. In fact, the problem remains open; it is a principal subject 
of part IV. 

But for the majority of potential readers of Zermelo (1930) at the time, the 

operation 3 was problematic, the key words being 'vicious circle principle' or 

'impredicativity'. Consequently, quantification over arbitrary predicates, so 
essential to non-elementary axioms, seemed to be an evasion of the problem on 
the part of Zermelo. Perhaps it was; in any case, all he did was to repeat his 
would-be telling terminology of definite Eigenschaften (predicates) which had 
been ineffective since Zermelo (1908) where it was first introduced. The irony 
is that he never seems to have spotted the crucial ambiguity between (i) 
definite in the sense of well-defined, perhaps even: decidable (as in (4): 
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entscheidungsdefinit) and (ii) having a definite extension (as is implicit in 
Cantor's explanation of sets as: varieties which can be grasped as a unity, 
varieties being defined by predicates). As to (ii), this is ensured by the restric- 
tion of the comprehension axiom to: z e x; in Godel's terms in (20), sets y are 
sets-of-something: of x's. But for the majority of readers hung up on the 
business of definitions, or on predicativity in the jargon of the day, only sense 
(i) was natural. Certainly, Zermelo himself had made great progress in the 
twenty five odd years before Zermelo (1930) appeared, but not enough to find 
the mot juste sufficient to remove that hang-up. 

A much easier method towards this end would have been to look at the 
alternatives which predicativist critics had offered, specifically, what have 
come to be known as 'ramified hierarchies'. (Of course, they were originally 
intended as hierarchies of definitions, while nowadays we look at the sets so 
defined). The literature ranged from Poincare's reflections on the matter to 
hoary details in Principia, and to particular examples in Weyl (1918). Zermelo 
himself may have had too little confidence in Poincare's predicativist philo- 
sophy to look at those alternatives; for one thing, he had had bad experience of 
Poincare's reflections on the mechanical theory of heat, which are criticized in 
Zermelo (1896). Incidentally, that paper has also made little impression on 
mathematicians, although it contains the first really elegant proof of the 
recurrence theorem for dynamical systems. 

Background: a few steps towards a thin hierarchy 

The thinning meant here is Godel's formal variant of the predicativist 
ramifications in the last paragraph. Earlier attempts were much clumsier; as 
so often, but perhaps exceptionally so here (or, on p. 186, in Brouwer's logic) 
since, by p. 189, it goes against the grain to think of definitions instead of the 
objects defined (or of proofs instead of the theorems proved). Even so, in 
retrospect the complications appear pretty marginal, mainly because of point- 
less restrictions: to sets of integers (instead of abstract sets) or to so-called 
simple (instead of cumulative) types. 

In any case, if the original intentions of ramified definitions were to be 
formalized after Zermelo (1930), the natural scheme was to use as definitions: 
formulae of the elementary language of set theory with (the usual meaning of) 
its one principal symbol e, and to let quantifiers range over a given-in 
applications: 'previously' defined-set x. Then a formula 

F(z, u, ..., u,) defines the subset {z: F(z, u, ..., un)} of x 

where the u mean elements of x. One writes 

9-x for the collection of all sets defined in this way. 

L, = U $P-L~ defines the ramified hierarchy (by ordinal recursion). 
f<a 

For a < w, La = CO. In sharp contrast: for cx > co, L.+, has the same cardinal as 
L, (and if the parameters u, in the terminology of p. 192 were omitted, 
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9-x would even be countable for any x). By the footnote on p. 191, it is clear 
how to replace 3- by a finite number of operations with a more algebraic look, 
at the price of slowing up the growth of the hierarchy. This was done by Gbdel 
in (18), using seven operations, but below, following his original exposition in 
(16), 3- itself will be used. The hierarchy is ramified in the sense that (at each 
stage new definitions of any one set are introduced, but also) new subsets of 
L, appear beyond co + 1, in contrast to C,; for example, when c = co, new sets 
of integers appear in L,, +1- L,,+ for each n < w. An immediate consequence 
is that, in general, the comprehension schema is not satisfied by the sets eLa, 
certainly not for c < ca < c + c. 

By the turn of the century it was not unusual to begin analysis with the 
principle of the least upper bound: in logical terms, the comprehension schema 
was used at the very start. This seemed desperate if, like Russell in Principia, 
one wanted a (theory of some) ramified hierarchy to provide a 'universal' 
system for mathematics. He introduced the so-called reducibility axiom which 
says, in effect, in the case of subsets of L,, that no new ones appear in L< for 
o> c+ l. These tactics seemed equally desperate, especially coming from a 
philosopher who had compared the advantages of the axiomatic method to 
those of stealing over honest toil; more so than Zermelo's mildly evasive 
business of 'definite predicates' on p. 193. 

Already back in 1931, Godel concentrated on another weakness of the 
ramified hierarchy in Principia: it stopped at co+ co, for no good reason. More 
specifically, footnote 48a of (4) points out that the consistency of (the appro- 
priate formal theory of) L,,+ can be proved in L^,+,+. It might be added that, 
by 1930, transfinite definitions, for example, of the real closure of an arbitrary 
ordered field, were common in mathematics-and usually there was a very 
good reason for stopping at some stage c: either when no new objects are 
introduced after a or when the objects accumulated by that stage satisfy some 
clearly stated (closure) condition. 

Footnote 48a was essentially negative, containing no hint, even remotely 
satisfactory for predicativist aims, where to stop (beyond co+ o). But Gidel 
discovered a problem for which this was irrelevant. 

Constructible sets: reculer pour mieux sauter 

Godel's first decision was not to stop the hierarchy L, at all. More formally, 
with Zermelo (1930) as background he did not stop before K, the first un- 
countable inaccessible ordinal defined on p. 191. As to the broad question, 
what one wants to know about LK, a good start is: Which of the usual axioms 
of set theory are satisfied by L, ? 

Several are verified immediately, for example, extensionality or pairing, 
but also the non-elementary axiom of well foundedness of e, simply 
because (LK, ) is the restriction of (CKE, ) to L x LK. There are pleasant 
surprises. 
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The first is closure under the power set operation: 

Vx 3yVz(zey->z c x). 

Let x = L,. 
Proof: There are 2"o subsets of L,, so < 2"? such subsets in LK. Suppose they 

appear in { a: L+,, -L <,, a <K}, say Q,. Since K is regular and > 2?o, QK has an 
upper bound a< K. Then y L^+ since y is defined by the formula: z c L, 
(in Li). Clearly, the argument applies not only to K, but to any cardinal / 
which is regular and >2Ko. N.B. As it stands, the argument leaves open 
whether, for such /, new subsets of L, appear in L,-L,p; cf. p. 199. The proof 
above is certainly not difficult, once one has understood that y is to be the set 
of subsets of L, that occur in LK or Lp (and not $L,, itself). Of course, the 
proof by inspection that, for limit numbers a, C. satisfies the power set axiom, 
is even simpler; cf. p. 190. 

The replacement property, which implies comprehension (by taking charac- 
teristic functions), presents the new aspect. There is no evidence at all that 
the non-elementary version is satisfied in L, but the formal schema is, by 
induction on the logical complexity of the (elementary) formulae defining the 
functional relation involved, and use of familiar closure properties of sets 
of ordinals; cf. the few lines on p. 456 of Barwise (1977) needed for a full 
proof. 

The axiom of choice also holds, and again the proof is a little more involved 
than mere inspection (on p. 192). But it also gives more: a rather simple 
explicit definition, by recursion on a < K, of a well ordering of LK. Suppose the 
elements u of L. are well ordered by <O, which induces a well ordering of 
finite sequences u of La (also written < a). As usual, elementary formulae F 
are numbered. For x eL, -L, let F, be the first formula which defines 
x (in Lj): 

x = {z: FX(z, u)} for suitable u in L,. 

Let uX be the first such u. Then the elements of LX+1 - L are ordered lexico- 
graphically according to (Fx, ux). It turns out that the (natural) definition of 
<K uses only quantification over elements of LK. Incidentally, similar care is 
needed in checking that the (natural) definition, say .Y, of constructibility is 
invariant, that is, it defines LK both when its quantifiers range over LK and 
over C,, and that V xY(x) holds in LK; this is often written: V = L. Using 
the parallel on p. 190 we can fairly say that the definition of the well ordering 
<K of LK is easier than Gauss's construction of a regular polygon with 17 
sides. 

Bibliographical remarks. (a) In keeping with his reservations, mentioned on 
p. 193, G6del first tried to do without the replacement property, and to 
describe the constructible hierarchy L. only for ca< card C,,-,; in particular, 
without using von Neumann's canonical well ordering (p. 193). Instead, well 
orderings had to be defined (painfully) in C+,,; further details are in the 
review of Kleene (1978) based on G6del's conversations and on his notes for 
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lectures at Notre Dame, now at Princeton. The simplification achieved by 
using von Neumann's notations, for which higher types are needed, provided 
the second memorable lesson, after footnote 48a of (4), in Giodel's education 
on the virtues of transfinite iteration. (b) The titles of (16)-(18) about consis- 

tency properties of formal set theories do not even mention the notion of 
constructible set although he considered the use of that notion as his most 

significant contribution in the area. (This was not a late afterthought, for 

example, in his comments reported in Kleene (1978), but is already stressed in 
his notes for lectures in the thirties.) Actually, his choice of titles involved him 
in painful details: it had to be verified that the properties of CK used to estab- 
lish facts about LK, were formally derivable from the axioms listed in the 
theories considered. Gbdel's strategy of going into details avoided controversy 
at the time, as in (4), mentioned on p. 171. But it also left the (false) impression 
that the most urgent, if not the only fruitful problem was to complement his 
work by establishing the consistency of the negations of the propositions he had 
established for the constructible sets, in other words, to show their formal 
independence. This turned out to be of a different order of difficulty; cf. p. 200. 

(c) Godel himself paid a price for his cautious tactics in (b); for example, in 
footnote 2 of (20), he recognized the absurdity of stressing the consistency of 
the axiom of choice since, by p. 192 above, it is as easily seen to be true for the 

hierarchy C, as the other axioms. A more startling oversight (corrected in 

(26), p. 271 and p. 273) occurs in ?3 of (20). There he assumed the formal 

independence of the continuum hypothesis, CH, and played with the idea that 
CH should be judged by its arithmetic 'fruits', that is, its arithmetic conse- 

quences. Certainly, by (3) on p. 172, mere consistency leaves open the possi- 
bility that CH has new, even false arithmetic consequences; but a glance at his 
own definition of L, in particular, at C, = L,, shows that CH, and even V = L 
has none at all. Godel's oversight is natural enough if consistency is regarded 
as an end in itself. The opposite view, already described in part II, was 

publicized for nearly a decade before a convincing though temporary use was 
made of it by Ax and Kochen (1965) in their proof of the decidability of the 

theory of p-adic fields (on p. 628, by means of the CH), alluded to on p. 176 
above. For a realistic view of Gidel's heuristic ideas on p. 150, two more 

points are relevant. (d) He himself missed several interesting results by giving 
attention only to the theorem stated, not to the details of its proof. This con- 
cerns less formal errors, for example, at the end of (14), but certainly his review 
of Skolem (1934), mentioned already on p. 181. Returning to L: according to 
Godel's notes, not he, but S. Ulam, steeped in the Polish tradition of descrip- 
tive set theory, noticed that the definition of the well-ordering (on p. 196) of 
subsets of c was so simple that it supplied a non-measurable PCA set of real 
numbers (when all objects involved are taken from L). (e) Conversely as it 
were, Godel tended to be uncritical of logically exciting claims, for example, 
regarding non-standard models (in 29), admittedly, written in the seventies; 
cf. p. 160. He attributed the scepticism of number theorists to broad prejudice, 
mysteriously connected with the recursive undecidability of Hilbert's tenth 
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problem. In fact, later developments more than justify the suspicions of the 
majority.* 

GCH: a variant of the axiom of reducibility 

We now come to G6del's principal discovery about the (thin) hierarchy La. 
To understand the issue, it is necessary to recall p. 192 on the continuum 
hypothesis (in its intended sense, that is, for the fat hierarchy C^), and the 
objects involved: elements of $c3, subsets X of pco, and mappings of X onto 
J3o, resp. co. These objects ECC+4. In contrast, by p. 196, when the CH is 

meant for some L, the corresponding objects-elements of La) n 4w etc.-can 
occur at levels far beyond w + 4. Also, inasmuch as there are liable to be more 
of all these objects in La than Lf for PI< o (and more in C,+4 than in LK), the 
truth or falsity of the CH may well be sensitive to the length of the segments 
L, (and to the kind of hierarchy) considered. A corresponding sensitivity is 
found in a more familiar formulation of the CH in terms of cardinal arithmetic: 
card co) is the first cardinal > w. This is the least ordinal which is not in 1-1 
correspondence with the set co by a map in the stock of sets considered. The 
ordinal is denoted by co and by ol(La), if all maps (of co onto initial segments 
of the ordinals), resp. all such maps in La are considered. Evidently, w, = co(C,) 
for all a > co, but coi(L,) is liable to be < co, even though La and C, have the 
same ordinals; cf. the example on p. 190, where the least integer n which 
satisfies (Vx > n) [(X3- 2)x O 0] for all x constructible by ruler and compass, 
is < than the least integer with that property for all real numbers x. In fancy 
language, already used on p. 196: while the property of being an ordinal is 
invariant or absolute, the property (of ordinals) of being a cardinal > c is not. 
This point is often overlooked in the (popular) 'debate' on the CH, where the 
orderliness of the ordinals (in CK or LK) is contrasted with the mess of cow 
(in C,): a similar mess is involved in the collection of maps (in C,) of co onto 
initial segments of the ordinals. It does not seem at all surprising that we have 
not (yet) decided whether the two 'messes' match. This fact is perfectly 
consistent with p. 192 on the non-elementary decidability of CH; after all, 
we don't even know how to match up the surely less 'messy' set of prime pairs 
with the ordinals <co, though the matter is certainly decided by Peano's 
non-elementary axioms, as mentioned on p. 192. 

Returning to the GCH: by a quite simple use of the theorem of Loewenheim 
on p. 176 (cf. also p. 192) G6del established the GCH for L,, and by careful 
formalization in (18), even a little more: for any model (D, E) of formal set 
theory, the 'inner model' defined by the condition ' on p. 196, always 
satisfies the GCH. This result is a consequence of the following more delicate 
property of the constructible hierarchy (where 'cardinal' refers to constructible 
maps): 

* For specialists. The best-known claim for non-standard models is in Robinson & Roquette 
(1975), where incidentally arbitrary ones are used, in no way tailored to their problem. But the 
only novelty is their use of a (known) generalization of Roth's theorem to arbitrary number 
fields on p. 158, which has nothing to do with non-standard models. 
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Reducibility for cardinals. Let a+ be the first cardinal > a. Then all subsets 
of La which occur in the hierarchy at all, eLa+ (This is the sharpening of 
closure under the power set operation on p. 196). 

A proof, in less than a page, can be found on pp. 465-466 of Barwise (1977). 
It is remarkably similar to some early expositions by Godel, especially in his 
notes for general lectures, for example, to the American Mathematical Society 
in December 1938. As he mentioned in conversation, the idea of the sort of 
argument involved, occurred to him when he learnt Skolem's proof (on p. 176) 
as a student. 

Few other memorable properties of L were discovered in the 30 years after 
(18) until the so-called Souslin hypothesis was shown to be false for L in 
Jensen (1972): there is a dense ordering in L without end points, which is 
complete (for cuts in L), and any set (in L) of non-overlapping intervals is 
countable in L; but the ordering is not order isomorphic to the real numbers 
(of L). Incidentally, G6del's notes, for example, in Arbeitsheft XI, 47-54, 
contain material on Souslin's hypothesis and the related matter of Aronszajn 
trees, but, apparently, nothing in relation to L. As is clear from its title, Jensen 
(1972) concerns the details of L, also for ordinals a which are not cardinals. 
Such concern would have appeared marginal (Kleinarbeitt) even only 10 
years earlier, since the significance of such La was first established in the 
sixties in so-called generalized recursion theory; cf. ch. C.5 of Barwise (1977). 

The discoveries in Jensen (1972) about L were used by Shelah to solve 
a purely algebraic-sounding problem about certain (abelian) groups satisfying 
a condition W (for 'Whitehead'). They have a free basis, say BG, provided G 
is countable, the only case that arises in the (topological) context where the 
condition W was first introduced. The problem, explained in detail in the very 
readable exposition Eklof (1976), was whether 

(*) all groups satisfying W have a free basis. 

Though the word 'set' is not mentioned in (*), the stock of sets considered is 
clearly liable to be relevant (as in problems on cardinals on p. 198). The more 
sets, the more groups (satisfying W): the (universal) proposition (*) is more 
difficult to satisfy. But for any given group G: the more sets, the more subsets 
of G, and so the better the chance of there being a basis Ba (in the stock 
considered). Shelah established (*) for all constructible G and BG, by essential 
use of Jensen (1972). The example illustrates two points of general interest. 

First, in terms of current mathematical jargon: how easy is it to guess 
whether some phenomenon in group theory is set-theoretical (as one speaks of, 
say, gravitational phenomena)? That is, whether knowledge of set theory is 
relevant or even decisive. Flash judgment does not seem reliable; for example, 
in the superficially similar case of the-particular, but also uncountable- 
abelian group Go of bounded sequences of integers with pointwise addition, the 

t G6del's Arbeitshefte contain some attractive Kleinarbeit too, for example, XV, 11-13, or 
XVI, 38-40, on the axiom of extensionality; but this is superseded by the much more thorough 
analysis in Scott (1961). 
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constructible part of Go has a (constructible) free basis, simply by use of the 
continuum hypothesis, as observed in Specker (1950). But a quite different, 
much more informative proof in Nobeling (1968) establishes the result, and 
more, for Go itself. 

Secondly: how useful is it to eliminate (some particular) specifically set- 
theoretical restrictions ? in the case above, of uncountable groups satisfying W: 
to constructible sets. As in similar cases, the answer will have to wait till group 
theorists are familiar enough with such groups or their constructible parts to 
have a chance of spotting whatever uses such objects may have; in other words, 
until St. Thomas's adaequatio rei intellectu applies (to those group theorists). 
Fundamentalists in set theory follow the simple rule that all 'hypotheses', not 
known to be satisfied by (suitable) segments of the full hierarchy, should be 
eliminated. But, at least in terms of the guiding parallel on p. 189, this simpli- 
city is spurious. For example, in number theory, the full Euclidean plane or 
the field of all complex numbers is not always most relevant; in fancy language, 
it may be more rewarding to embed the numbers in some subfield with 
suitable properties (which we happen to know). So if set theory is ever to 
become significant for number theory-if c or C, is to be embedded in some 
variant of the full hierarchy, with the axioms of formal set theory (or of a 

subsystem!) playing the role of the axioms for fields above-a prerequisite is 
that we should know something about that variant. As matters stand today, the 
constructible hierarchy has at least as good a chance of being useful as the full 

hierarchy from which it is extracted: after all, we know literally more about 
the L. than the CO. We now return to a topic, already broached on p. 197, which 
has led to a sophisticated arsenal of 'subhierarchies'. 

Formal independence results. Part II provides general orientation on the topic, 
in particular (on p. 188), on the imagination needed to discover uses. As so 
often in such cases (cf. p. 165), as it were to protect the results in question, a 

body guard of exaggerations has developed; for example, the connerie that 

problems about a specific structure like C,,+ are 'meaningless' when they do 
not happen to be decided by the sort of properties so far codified in axioms. 

(This connerie is involved in regarding the CH as 'settled' by its formal 

independence.) In view of the last paragraph, the body guard is now super- 
fluous. Since Cohen (1963) a great number of subhierarchies have been 
introduced to establish the (formal) independence of most propositions men- 
tioned in the last few pages, including Souslin's hypothesis and (*) on p. 199. 

(Readers may wish to verify that the former is decided by the non-elementary 
axioms, while (*) is not, at least: not obviously; cf. the discussion of CH and 
GCH on p. 192.) For the purposes of this memoir, there is no need to enter 
into details. But a general outline of this successful work is relevant in relation 
to both G6del's heuristic views on p. 150, and to his own (early) results 
contained in his notes at Princeton. 

For one thing he observed some simple conditional independence results, 
rediscovered-in one way or another-in the fifties; cf. Hajnal (1956), Levy 
(1957), Shoenfield (1959). Specifically, suppose that V= L (on p. 196) is 
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independent of the remaining axioms (without the axiom of choice), and some 
set, say a, whose members are constructible, is not constructible. Then a new 
hierarchy, L,[a], defined by putting LO[a] = {(a (in place of: Lo = i), satisfies, 
for suitable a, the usual axioms including the axiom of choice, but not: V = L. 
Thus V = L is also independent of the axiom of choice. As on p. 196, there 
are obvious possibilities of refinement. In view of the rediscoveries of such 
extensions it is fair to say that not the general principle, but the discovery of 
particular sets a needed for specific (absolute) independence results presented 
the principal difficulty. 

Around March 1942, in Arbeitshefte XIV-XVI, G6del made extensive notes 
for proving the formal independence of the axiom of choice (for sets of pairs 
of integers), and hence of V = L. The general idea goes back to (9), on so- 
called modal logic, and its topological models. With present experience it is 
not too difficult to complete the proof. But something essential-in Godel's 
words (in conversation): a method-had been missing; cf. also his letter of 1st 
May 1968, where he corrected the description of Cohen (1963) given in the 
Statement in support of his own election to the Royal Society, as being a 
'refinement' of his work. Godel had just as much admiration for the later 
reformulation of Cohen (1963) in terms of so-called boolean-valued models 
(which are more obviously related to his ideas in 1942). Again, not the 'broad 

principles' involved in that later work, but their appropriate use, constituted 
the progress. For example, Church (1953) explicitly considered boolean- 
valued models for propositional logic, and, as explained in some detail in 
Scott's introduction to Bell (1977), the notion of forcing-though not the 

catchy name-had so to speak forced itself on several people who toyed with 
set-theoretic models of intuitionistic logic in the late fifties. 

Some logical andfoundational lessons 

The development of set theory followed a pattern which seems to be often 
successful at the beginning of research. After some experimentation in the 

general area of experience under investigation, one selects objects in the area 
which seem to lend themselves to theory; this presupposes of course that 
some non-trivial facts are known about those objects. In the general area of 
sets (and definitions), the most successful selections were those of the full 
cumulative hierarchy generated by the power set operation, and-at the other 
extreme-of the ordinals, generated by iterating the operation: x H+ x u {x}; in 
the latter case, some functions have to be added since not much can be expressed 
by (elementary formulae built up from the order relation) e alone; cf. p. 166 
concerning the successor or, for that matter, the order relation on the finite 
ordinals. The non-trivial facts known at the start are the familiar axioms. Later 
the classes of objects selected are restricted or enriched to realize structures 
with additional properties; in the case of sets, the full hierarchy is restricted, 
ordinals (or constructibles) are enriched; cf. L~[a] above. Godel took a 

lively interest when, in the fifties and sixties, the area of experience adumbrated 
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by Brouwer in his writings on choice sequences, began to be studied according 
to the pattern above. A particular kind of such sequences, mentioned already 
on p. 186, turned out to have a simple theory: lawless sequences. The term is 
due to Godel who objected to their original name: absolutely free, their 
principal property being that no restriction may be imposed on them beyond 
a finite number of values (a restriction on restrictions reminiscent of anti- 
trust laws which are intended to ensure a free market, but nevertheless are felt 
to be a shade short of absolute freedom). Compounds of lawless sequences, 
later called 'projections', have played much the same role as compounds of L 
and a to form L[a] on p. 201. Parts of the story are to be found in Troelstra 
(1977). G6del's interest is significant for a correct estimate of what has come to 
be known as his 'platonism'. He never questioned the possibility of a part of 
mathematics which is intended to be about our own 'constructions' or choices. 
Thus, once objects of this sort, in particular, lawless sequences had been 
described, the search for non-trivial facts about them was, for him, just 
as well-determined a project as his own search for axioms of set theory 
(and of course easier, since the pioneers in set theory had already discovered 
the more obvious interesting properties). But he did not regard that part as 
at all useful for mathematics itself, let alone as the whole of legitimate mathe- 
matics. 

Godel himself was less interested in the general pattern above than in the 
use of (his) more specific experience in set theory for other parts of logic. As 
early as 1936, commenting in his note book on a report by Bernays of Gentzen's 
lecture to a philosophical congress in Paris, he felt that the actual details of his 
proof of reducibility on p. 199 should be useful for a consistency proof of 
analysis; and nearly 40 years later, in his still unpublished additions to (24), he 
repeated this impression, though less explicitly. Evidently, the idea was that 
the 'collapse' should not stop at countable substructures, but should somehow 
go on to (suitable families of) finite orderings. Even if successful, this idea 
would no doubt have to be supplemented by the difficult step from foundations 
to technology in part II, presumably, by the discovery of a significant problem 
in set theory itself which is solved by use of that idea. 

In accordance with his heuristic views, Godel took little notice of what 
seems to be the principal foundational lesson to be learnt from the work 
described in part III, in particular, on formal independence results (pp. 200- 
201): the contrast between research at an early and at an advanced stage of a 

subject, well illustrated by the difference in meaning of 'axiom'. For example, 
Martin's axiom in ch. B.6 of Barwise (1977) and Jensen's 0 in B.5 were 
discovered by inspecting (elaborate) proofs like many axioms of current 
mathematical practice, and are not meant to be seen by inspecting familiar 
objects like C, on p. 192. However, in a brilliant programmatic lecture (25) in 
1946, Godel derived a foundational lesson, in the traditional sense of 'founda- 
tions', from his own work on definability. The lecture contains a second lesson 
of this sort, on (higher) infinite cardinals, which belongs to part IV. Incident- 
ally, though the topics of these lessons are so to speak at opposite poles of the 
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early 'debate' on sets, the inadequacies of formal systems in part II are central 
to both. 

The most obvious inadequacy of any formal system for analysing even 
approximately the possibilities of definitions follows from diagonalization, as 
recognized already by Poincare. In (25) Godel pointed out how the use of 
ordinals in the constructible hierarchy prevents diagonalization, and thus 
provides a class of definitions with better closure properties. In conversation 
he mentioned that for a while he thought of it as exhausting all definitions, in 
fact, 'L' stood for 'law'; cf. also the footnote on p. 211 of (26): 'constructible' 
means definable. But he soon noticed that, for example, once one understands 
(not only L,, but) the C,, quantification over sets in C, is also meaningful, 
and so he arrived at the notion of ordinal definability in (25). Without being 
dogmatic or even particularly specific about a more realistic candidate for an 
idea(lization) of the possibilities of humanly intelligible definitions, Godel 
felt that L provided at least an idea for such an idealization. He also mentioned, 
in passing, that, so to speak at the lower end of the spectrum, the familiar class 
of computer programmes (for recursive functions) escaped diagonalization too 
-but for a different reason: only the larger category of programmes for 
partial functions has a (partial) recursive enumeration. Similar ideas on 
definitions were pursued in the fifties and early sixties (but without reference 
to (25) which appeared only later), arriving at subclasses of the class of recursive 
definitions because now definitions were required to be justified by appropriate 
proofs. This was achieved by restricting the ordinal logics in Turing (1939) by 
a so-called autonomy condition: before an ordinal was introduced, it had to 
be (formally) proved to be one. Here diagonalization was prevented even 
though everything in sight was recursively enumerated, since only proper 
segments of the system are justified according to the scheme adopted. The 
claim was that, in this way, one had a (simultaneous) characterization of 
certain informal notions of proof and definition. Not surprisingly, whatever its 
formal merits, the weaknesses of such a characterization are similar to those 
pointed out on pp. 185-187 in Brouwer's attempts to make proofs into a 

principal object of study. In fact, with all the additional detail in front of one, 
the criticism can go further. It concerns growth (and here it does not matter if 
one means, literally, growth of neurological connections or simply of under- 

standing). Evidently, the introduction of hierarchies is reminiscent of growth, 
but the specific laws of growth implied by the particular hierarchies have no 
visible counterpart in experience. The weakness of those characterizations is 
not a matter of principle, for example, a conflict with empiricist methodology; 
(successful) rational mechanics and (unsuccessful) hydrodynamics of ideal 
fluids are not one bit less a priori than those hierarchies. The difference is that 
so-called reasonable assumptions about our reason are just much wider off the 
mark than our ideas about 'rational' behaviour of the planets. There is a 
charming description on p. v of the Preface to Dedekind (1888) of 'rational' 
ideas about reading: spelling out words is reading in slow motion, with the 

logical corollary that, for literal certainty, one ought to slow down (and accept 
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the literal text including printer's errors, rather than an obviously intended 
meaning). Be that as it may, the silent majority of logicians has not taken up 
the part of (25) on definability and provability; certainly less than the other 
ideas in (25) on axioms of infinity which provide a beautiful illustration of 
Godel's heuristic views on p. 150. 

Fortunately for the purpose of testing those views concretely, in the last 25 

years also other candidates for new axioms of set theory have come up. They 
concern infinite two-person games and winning strategies for one of the 

players. (Incidentally, Zermelo (1912) is one of the first papers on such 
'determinate' games). The work on those other axioms has been as different, 
both in style and content, from Godel's (25) as can be imagined. So, for 
contrast, it will be briefly described in part IV below. 

IV. AXIOMS OF INFINITY AND DETERMINACY 

The axioms in question are intended to hold for suitable segments C, of the 
fat cumulative hierarchy on p. 190. Evidently, this aim makes sense only for 
those who know a basic minimum about that hierarchy. G6del tried to convey 
this minimum knowledge in three publications in the forties, in terms varying 
according to-what he considered to be-his audience: for philosophers in 

(19), sophisticated mathematicians in (25), school masters in (20). Instead of 

speaking of a 'minimum knowledge', he spoke of the 'reality' of the Cx (as will 
be described in more detail on pp. 209-210). In any case, here we accept the 
aim. But before one gets to specific problems there are at least two further 
broad preliminary questions: 

What do we naively want to know about C< ? G6del concentrated on Cantor's 
continuum problem, that is, whether the CH is true or false (which, by p. 192, 
concerns only C,+4). Believing it to be false, he regarded a refutation of the 
GCH as an easier first step. He took the formal undecidability by means of 
current axioms for granted, and so new axioms had to be discovered. By p. 200 
there is also the more delicate matter: 

Is it at all rewarding to study the C, further ? Or are there variants of Cc 
which are, perhaps, less easy to describe, but more manageable (by use of what 
we already know of the CQ): should one reculer pour mieux sauter ? 

Godel did not encourage the interest of the naive question to be questioned 
by the others. Instead he gave in (25) a beautifully plausible account of likely 
ways to find new axioms, in other words, of continuing the process which has 
led to the currently used axioms. 

Enriching the language of formal set theories 

The most obvious loss in the passage (on p. 165) from non-elementary 
axiomatizations to formalizations is that not arbitrary predicates, but only 
those defined by elementary formulae are used. So the most obvious step is to 
write down (new) axioms with the aid of some of those lost predicates. This is 

204 

This content downloaded from 193.61.13.36 on Thu, 21 May 2015 09:18:54 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


easy, contrary to a wide-spread misunderstanding (generated by the idea that 
there is something 'universal' about the usual systems of set theory). Speci- 
fically, in terms of numberings n of formulae N (on p. 170): though, by 
diagonalization, the predicate T of natural numbers, called 'truth definition' 
by Tarski, 

T(n) if and only if N 

is not definable explicitly, T has an obvious implicit definition (by recursion 
on the number of logical operators in N), also known in the literature as 
'Tarski's adequacy conditions'. The definition involves, as an auxiliary, an 
enumeration S(n,x) of all monadic predicates defined by formulae N with 
one free variable, any finite sequence of sets being coded by one set. Now, 
given a formalization Y of set theory, let F+ be obtained by adding the relation 
symbol S to the formalism and the implicit definition as a new axiom, the 
axiom schemata of Y being extended to all formulae in the enlarged formalism. 
Then F+ is stronger than F: for example, the consistency of F can be proved 
in F+. In short, one of the inadequacies of formal languages (on p. 203) is 
that not all implicitly definable predicates are explicitly definable. 

Those with special interest in geometry would think of extending the 
language of set theory by symbols for geometric relations, and the axioms by 
propositions expressing geometric properties of those relations (with the 
proviso that all sets of real numbers or subsets of C,,, considered, represent 
geometrically meaningful figures). 

Godel had a different idea, going back to footnote 48a of (4), and his other 
fruitful contacts with higher types mentioned in (a) on p. 196. 

Godel's programme: axioms of infinity 

He pointed out in (25) that, for current formalizations 3F of set theory, the 
extension "+ above can be replaced by an axiom Is in the usual language of set 
theory, where Is, is seen to be valid by the same considerations as F (as in the 
'general argument' on p. 171), and all theorems of F+ in the usual language 
can be derived from IF in JS. In fact, I9 is nothing else but the proposition 
used in footnote 48a in (4) some 15 years earlier, the existence of the least Ca 

for which J is obviously valid. The argument is standard: though no enumera- 
tion of the monadic predicates definable in formal set theory can be explicitly 
defined, there is such an enumeration, say S(n, x;y), for the predicates 

Ny(x): xey and the quantifiers in N are restricted to range over y. 

Godel concluded that, if such a modest use of higher types-actually, more 

than-replaced the most natural alternative (extension by enlarging the lan- 

guage of set theory), then a little more imagination would do miracles. Of 
course, nothing in mathematical practice gives even a hint of any more 

imaginative use, unless, following Godel on p. 265 of (26), one regards analytic 
number theory as an instance of passing to type o + 1 in order to solve 
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problems about C,. But then there are plenty of open problems in mathe- 
matical practice: so why stick to its traditions ? 

To summarize his programme as it were, G6del proposed to solve every 
problem by use of a suitable axiom of infinity. Naturally, he was not specific 
about the term, but the idea was clear enough: a new axiom of infinity is to be 
satisfied by some C,, but only for o>3 if Cp satisfies the already established 
axioms. (And: the bigger the a the better). 

Certainly, the evidence for Godel's programme was not worse than the 
evidence, mentioned on p. 166, which Hilbert had for his programme (of 
Methodenreinheit). 

Later work. There can be no question of summarizing here the massive work 
done on G6del's programme over the last 35 years. It is described at length 
in Kanamori and Magidor (1978), where complete references are given to the 
literature mentioned in the rest of part IV. But two directions of such work, 
firmly established by the end of the fifties, are worth noting specially. First, a 
new style of axiom was discovered, known to logicians under the name of 
(Levy's) reflection principle, and to mathematicians as (Grothendieck's) axiom 
of universes; 'new', even though the early instances are formally derivable in 
current set theory Y or from Is, on p. 205. The general idea is that all properties 
of C,, stated in some given (elementary or non-elementary) language, should 
also be satisfied by some element x of C,-either simultaneously, or by an x 
depending on the property considered. The idea corresponds clearly to the 
(intended) unending character of the hierarchy C,. Already the simplest case 
of a non-elementary language, so-called Il-reflection, ensures that CO is 
closed under all earlier schemes, for example, in Mahlo (1912), of building up 
the hierarchy 'from below'; cf. Bernays (1961). Evidently, except for properties 
stated in the most primitive language, reflection principles are not satisfied by 
C,. The second line of work goes in the opposite direction as it were: some 
simple set-theoretical property P(a) about o and its power set $o, which holds 
for a = co (and, usually trivially, for o = 2), is asserted or, at least studied, 
for certain a > o. One typical example, going back to work in Poland in the 
thirties, is the existence of a two-valued measure on 3ca which is additive for 
subsets of $3a of cardinal < o. Another typical example is derived from the 
partition theorem in Ramsey (1928). By the early sixties, any c>co which has 
the properties P considered, was known to be larger than all familiar cardinals; 
for example, for any such oc, there are a strongly inaccessible cardinals < c. 
Far from being disturbing (for Godel's programme), this knowledge is a 
prerequisite if 3 oP(o) is to deserve the name axiom of infinity at all! After all, 
one wants here cardinals a which differ from w 'as much as' wo differs from, 
say, 2. However, with remarkably few exceptions the particular properties P 
that people have stumbled on, are very poorly understood; mostly, one does 
not know if they are satisfied by any o > co at all, nor even whether superficially 
similar P are not satisfied. (A notable exception is the property called 'weak 
compactness' which follows from 111-reflection.) Incidentally, though (25) 
was published only in the sixties, work on those new axioms, especially of the 
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second kind, could have profited from G6del's presentation in 1946, since 
Tarski and Erdbs were principal contributors; the former was present at the 
lecture, the latter was in contact with Godel. 

The first genuine implications of axioms of infinity for questions outside 
cardinal arithmetic were discovered in the early sixties: if (co>o and) o is 
measurable then some subset of C,a+, and even of C, is not constructible (as shown 
by Scott, respectively Rowbottom; in fact, the constructible subsets of C, 
are then couitable). Whatever the defects of the particular property of 
measurability may be, one sees from the proofs how an arithmetic question 
might be settled by 'looking down on w from above'. For people more familiar 
with another sense of 'L', for Lebesgue measure rather than for constructible 
sets, an implication discovered later by Solovay is more instructive: every 
PCA set of real numbers is L-measurable. The required coverings (by open 
sets) of such a set and of its complement are defined by use of the assumed 
measure on the first measurable cardinal > o. 

However, G6del's particular candidate, Cantor's continuum problem, is left, 
demonstrably, undecided by any (consistent) axioms of infinity so far proposed. 
Indeed, it is fair to say that the only memorable result on cardinal exponentia- 
tion discovered in the last 70 years (by Silver) can be proved by methods not 
too different from those current at the turn of the century. If o is of cofinality 
> o and < a, and if, for all f < ct: 2' = cl)p then 2a = o+l; a nice proof is on 

pp. 388-389 of Barwise (1977). 
Before taking stock of work done on G6del's programme and, particularly, 

of his heuristic views, the quite different direction of research mentioned on 

p. 204, has to be summarized. 

Axioms of determinacy 

In the fifties, when the theory of games was popular, certain so-called 
infinite games attracted special attention in Poland, where infinitistic generali- 
zations had been popular for a quarter of a century. Suppose G is a set of 

sequences of natural numbers. Two players choose alternately natural 
numbers x2,+ and x2n+2 for n = 0, 1, ... If x stands for the sequence x1, x2, ... 
the first player has won if xeG. A winning strategy for that player is, by 
definition, a functionf1 (with finite sequences as arguments and with numerical 

values) such that, for all choices x2.: n 1, the sequence 

f(< >)), x2,'' fl(<x2 X^, ., ^ X2n>)), Xn+2, . E G, 

where )> is the empty sequence. Similarly, a winning strategy for the other 

player is a functionf2 such that, for all x2n+1: n > 1, 

xx,f2(<X1>), .. ., X2n+l,f2(<xl,., X2n+l>)) X2n+3s *.. * G. 
Another way of writing these conditions is 

3 Vresp. V x x ... V x2+ x1 x2+2 (x E G), 

resp. V x 3 x2 ... V X2n+1 3 X2n+l ... (x ? G), 
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for short, W1 and W2. A kind of dual to such 'games' without an end are 'games' 
without a beginning where the winning conditions, say W} and W', for the 
two players are 

..V x +2 3 x2n+l. V x2 3 x1 (x E G), 

resp ... 3 x2+2 V X2n+, ... 3 X2 V xl(x ? G) 

(and the distinguished player is now the one with the last move). 
Steinhaus, later in collaboration with Mycielski, experimented with the 

unpromising proposition, called axiom of determinacy: W1 v W2 (formulated for 
all sets G of sequences: the xn are arbitrary sets, not only natural numbers). The 

proposition is unpromising because the general idea behind it is nothing else 
but an extension of the well-known law for negatingfinite sequences of quantifiers. 
But a glance at its proof shows that it uses, in an obviously essential way, the 
fact that finite sequences have a beginning and an end; in particular, this is 
needed for the two basic properties of negation: the laws of contradiction and 
of the excluded middle. In fact, 

- 
(W1 & W2) holds, but not necessarily W v W2. 

Incidentally, by Galvin and Prikry (1976), neither Wlv W2 nor -i (W & W2) 
need hold. 

For about two decades many articles, of uneven quality, were published on 
determinacy, and certainly none that is remotely comparable in distinction to 
G6del's (25). But finally, Martin (1975) proved that all Borel games are deter- 
minate, that is, W, v W2 holds if G is a Borel set. This is not only of interest to 
the subject of infinite games, but easily the most convincing contribution to 
Godel's programme so far. More specifically, the proof proceeds by transfinite 
recursion on the countable ordinals a((< 1, the first uncountable ordinal), 
where ox is the number of applications of Borel operations (complementation, 
projection, countable unions) used to generate the set G,. In a very transparent 
way, the determinacy of G+,,, a set of sequences x: x eX, is derived from 
the corresponding result for a suitable set Ga of sequences x: xn E X. In set- 
theoretic terminology, the proof uses C,o to establish the determinacy of all 
Borel sets of sequences of natural numbers, a proposition about the quite 
familiar, low level C,,+2 of the cumulative hierarchy. 

Even if not for G6del, for mathematical practice the assumption of C,, is 
an 'axiom of infinity'. Of course, its interest is established up to the hilt by the 
particular proof of Martin (1975)* since the transfinite iteration of the power 
set operation is seen to be useful by inspection. But more is true by work going 
back to H. Friedman: at least for the usual formulations of set theory, the 
determinacy of sets G^ cannot be formally derived at all without use of Cp 
where / is of the same order of magnitude as c. As on p. 176, this negative 

* In addition, the proof has the virtue of making a very convincing use of (a simple instance 
of) the very attractive so-called priority argument, which was discovered in recursion theory 
nearly twenty years earlier, but applied only to the somewhat teratological subject of degrees 
of undecidability of recursively enumerable sets. 
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result can be given a positive twist: for any < o,, if a proposition of suitably 
simple (syntactic) structure is derivedfrom assuming C,, it can also be derivedfrom 
Borel determinacy. (A similar positive twist can be given to the results in the 
literature on the consistency of stronger axioms of infinity than C,1 relative to 
the assumption that larger classes of sets than Borel sets are determinate). In 
short, determinacy is an alternative to Gidel's programme. 

Superficially, the relation between axioms of determinacy and the use of C, 
for large oa, is quite similar to that between the axiom of choice and the use of 
transfinite recursion in measure theory at the turn of the century. As long as 

only consequences of a simple syntactic structure are formulated, the details of 
the definitions in the proofs by transfinite recursion are lost in the statement 
of the theorems (just as the details of the winning strategy defined in Martin 

(1975) are lost if only simple consequences of Borel determinacy are considered). 
It remains to be seen whether somebody discovers problems, also in measure 

theory, for which those details are relevant. 

Gidel's foundational views: balancing the account 

As already mentioned on several occasions, in his publications G6del used 
traditional terminology, for example, about conflicting views of 'realist' or 
'idealist' philosophies. In conversation, at least with me, he was ready to treat 
them more like different branches of the subject, the former concentrating on 
the things considered, the latter on the processes of acquiring knowledge about 
these objects or about the processes. (He rejected only so-called positivist 
philosophy which-at least for logic-is distinctly negative, since it accepts, 
as arbitrary 'conventions' or as 'facts of our natural history', phenomena which 
the other branches see as problematic, or at least as capable of a rewarding 
analysis.) Naturally, for a given question, a 'conflict' remains: Which branch 
studies the aspects relevant to solving that question ? with obvious parallels 
in mathematics and the natural sciences. 

Godel's successes: mixing the realist and idealist traditions. In mathematics, 
the idealist tradition is involved, in one form or another, in constructivist 
foundations which stress the use of definitions and proofs in the process of 

acquiring mathematical knowledge; cf. pp. 183-188 and 201-204 at the end 
of part II, resp. part III. In particular, Poincare stressed definitions, Hilbert 
and Brouwer stressed proofs. (Incidentally, contrary to an almost universal 

misunderstanding, Hilbert's finitist proofs are much more restricted than 
intuitionistic ones.) As already mentioned Godel solved problems which either 
had been formulated explicitly by the three famous constructivists above or, 
at least, are patently relevant to their foundational schemes. G6del himself 
stressed, most clearly in his letters reprinted in Wang (1974), that his results 
are best understood in terms of notions from the realist tradition which were 

rejected or simply ignored in the constructivist schemes, such as: logical 
validity, arithmetic truth, various fat or thin hierarchies. G6del's analysis was 

adopted in this memoir. But another reason for his success was, obviously, his 
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familiarity with the subjects derived from the constructivist programmes: 
formal systems, intuitionistic logic, ramified hierarchies. By (yet another!) 
fortunate coincidence, the relative importance of the two elements in G6del's 
successes can be illustrated by the case of Zermelo who had an equally staunch 
realist Weltanschauung: so much so that he simply refused to look at the 
tainted subjects! Thus, the stated reason for his outburst in Zermelo (1932) 
against G6del's incompleteness results, was that G6del considered formal 

systems at all, establishing their inadequacy instead of dismissing them as 

obviously inadequate. (An unstated reason could have been that detailed work 
on any subject is liable to create a vested interest in it, and a reluctance to look 
at alternatives.) At that time the still little-known Zermelo (1935) was in 

preparation, sketching what we should now call infinitary systems, with 

infinitely long formulae and infinite proof figures, intended to represent the 

meaning of propositions and the structure of mathematical thought adequately: 
in short, an alternative to formal systems. Whatever his conscious motives may 
have been, Zermelo's instincts to protect his alternative were more than justi- 
fied: he did not get beyond his intentions! What he actually said about those 
infinitistic representations was not only, trivially, formulated in finite terms, 
but-and this is the critical defect-already fully expressed in current systems 
of set theory, as implied by G6del's analysis on p. 205 (though Zermelo (1935) 
is not mentioned in (25) at all)*. G6del's programme is nothing else but the 
first genuine proposal for implementing those realist intentions, by deriving 
from them new axioms-to be compared to deriving mathematical laws from a 

physical conception (or physical 'picture'), Maxwell's derivation of his 

equations from Faraday's picture being the standard example. 
Godel's programme involves quite different problems from those he had 

solved earlier: for one thing there was no idealist bias to be corrected by 
injecting suitable realist elements. He was treading new ground (though 
surely not 'rushing in', unlike the gamblers on infinite games on pp. 207-208). 

Neglected problems: beyond naive idealism. Evidently-as already illustrated 
on p. 201 in. the particular case of sets-recognizing some phenomena as a 

(legitimate) subject of research is necessary, but by no means sufficient for 

progress with understanding them. To put it paradoxically: once generalized 
doubts about them have been removed and some simple useful properties have 
been noted (here: doubts about infinite sets, and axioms codifying some 
obvious properties of the CQ), the principal problem is selection-selection of 

objects, among those recognized, which lend themselves to theory by some- 

thing like available means, and selection of properties which have implications 
for such a theory. Such selection involves-besides the phenomena-just those 
processes which are the business of the idealist branch of philosophy, its 

sophisticated part as it were. When reasons for new axioms, that is, matters of 

* It is also not very well known that so-called fully analysed infinite proof figures were 
considered in intuitionistic mathematics in the twenties; cf. pp. 393-395 in Brouwer (1977). 
Again, analysis in the sixties of the properties actually stated about those figures (cf. p. 202) 
shows that they do not go very far either. 
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evidence, are at issue (as in G6del's programme), questions belonging to 
sophisticated idealism must be expected to become important or even domi- 
nant. Here it is to be emphasized that the bulk of the constructivist literature at 
best ignores sophisticated questions of selection, but more generally dismisses 
them (as a matter of some vague kind of 'convenience' or of sacrosanct 
'personal taste'). Instead, that literature assumes miracles from the slogan 
about mathematics being 'our own construction'-as opposed to some 
'external reality'. This assumption leads to what might be called naive idealism 
which is no less widespread than naive realism though the name is not. It is 
naive on at least two counts, besides those already listed in the remarks on 
proofs and definitions at the end of parts II and III. First, it forgets the prob- 
lems arising in those parts of mathematics which are simply intended to be 
about our own constructions, for example, about computation rules; parts in 
which realist questions of a correct representation (definition) of a previously 
understood notion or of the mathematical structure of some external phenome- 
non do not arise at all. Nevertheless there remains the problem of recognizing 
whether a construction does or does not have some property: it is no simpler 
to decide if a diophantine equation has a solution when this problem is 

interpreted purely computationally than when one thinks of the natural 
numbers as properties of (extensions of) concepts. Secondly-and, if anything, 
this assumption is even more naive-the constructivist literature regards as 

particularly fundamental those parts of (mental) experience of which we are 
most acutely aware; for example, in the case of definitions and proofs, principal 
attention is given to the slow early stages in the learning process-not to our 

predispositions nor to our reasoning after that elementary knowledge has 
become part of our intellectual reflexes. Parallels in naive natural philosophy are 
obvious, for example, whenever the visible part is simply assumed to be 
decisive-not only, trivially, for our view of the world in the literal sense of the 
term, but also for scientific understanding. This naive part of the idealist 
tradition which has of course completely overshadowed its sophisticated part, 
is viewed with great scepticism by the silent majority (whose objections, as 

expected, are not very articulate). 
Naturally, Godel too had strong reservations about naive idealism, though 

he would not apply the term 'naive' to any part of traditional philosophy. But 
at least in mathematics he never seems to have faced squarely the problems 
raised in sophisticated idealism. This omission is only too obvious from his 
obiter dicta on evaluating the evidence for new axioms; a foretaste was given 
on p. 197 (c), the full flavour will be conveyed by the samples cited below. If I 
had not known him personally, I should have dismissed those dicta as another 
'body guard', to protect his programme until the time was ripe for progress. 
As it is, the level of his discussions troubles me. It is not much above that of 
the 'debates' on the paradoxes mentioned on p. 188, more troubling still: it is 

utterly different from what I remember of our conversations (up to his illness 
at the end of the sixties), more than 20 years after (19) and (20) were written. 

Perhaps others, less involved than I am, will one day read the masses of his 
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notes in Princeton, and fit that troublesome material into a more interesting 
picture of Godel. 

Bibliographical remarks. (a) Both in (19) and (20), Gbdel tries to use the 

parallel between mathematical and physical objects to support his programme: 
without reference to specific examples, but simply as 'realities independent 
of ourselves'. This is doubly suspect. Trivially, again by p. 204, this makes his 
programme only a candidate for research, without the slightest hint of its 
chances of success. (Some physical phenomena are far from having a satisfac- 
tory theory.) Less trivially, there is no emphasis on the fact that mathematical 
notions enter into the description of the simplest physical phenomena on a 
par with other notions, not to speak of physical laws; for example, objects have 
chromatic and arithmetic properties (a yellow table with 4 legs): so one is left 
without an issue at all-quite apart from the fact that the methods needed for 
studying very different kinds of physical objects differ markedly among them- 
selves. (b) The proposal in (20), already mentioned on p. 197, to judge new 
axioms by deciding (demonstrably) formally undecided propositions, conflicts 
with (a), vague as the latter may be. For in judging new scientific hypotheses, 
essential use is made of consequences which are tested independently, for 
example, observationally. A more convincing parallel involves (the use of new 
axioms for) new proofs of old theorems, as on p. 521 of (20) or p. 265 of (26), 
but implicitly taken back on p. 271 of (26) where such uses, so-called weak 
extensions, are described as sterile. For the record: today, some 30 years later, 
the general level of derivative literature on assessing new axioms is even more 
embarrassing, for example, in two of the otherwise most brilliant expositions in 
Barwise (1977). First, on p. 344, a cardinality principle is announced: 'Thus 
we see, the more problems a new axiom settles, the less reason we have for 
believing that the axiom is true'. Secondly, on pp. 813-814, in connection 
with instances of determinacy which are known not to hold for L~, their 
validity for Cs is regarded as plausible because (i) Borel determinacy holds- 
but also for L. if oa > ,o !-and (ii) because the consequences for descriptive set 
theory are coherent and pleasant-so to speak: fat is beautiful. (c) Gbdel 
developed a remarkable obsession with mere cardinality, later escalated, by 
(b), on p. 344 of Barwise (1977). Thus (20) suggests in effect that the most 
fundamental problem about the continuum is to decide whether the continuum 
hypothesis CH is true or false (for C,: >co+ 3)-as if one did not want to 
know the geometry of the continuum just as much. Obviously, Godel wanted 
to forestall the inevitable conneries which the expected proof of the formal 
independence of the CH was to produce. He was doubly unsuccessful. First, 
even some 30 years later, the peroration to the article on Hilbert's first problem 
(on the CH) in Browder (1976), questions whether the CH has a definite truth 
value for the intended meaning at all, because despite many attempts (by looking 
at many variants of ordinary set theory), the CH has not yet been decided: as 
if there were not infinitely many false starts, perhaps due to a systematic 
oversight, for any problem. But also-and this is not at all a matter of mere 
conneries-Gidel's exaggeration gives no hint of the kind of implications 
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which make those independence results significant (apart from the technical 
uses in (c) on p. 197): obviously not by casting doubt on the precision of the 
continuum problem, but on its 'fundamental' character, its interest. Specifi- 
cally, because of those results, the CH may be true even if some perfectly 
straightforward subset X of C^,+ can be mapped onto C, or C,,+ only by a 
very odd map, and the CH may be false, but only because some quite odd X 
cannot be mapped onto C, or C,,+ (at all). In terms of pp. 176-177, explaining 
the unexpected usefulness of the general notion of logical validity, the CH 
lacks stability (with respect to perturbation of the domain of sets X involved). 
Without such stability, the problems of sophisticated idealism become 
decisive: which sets X and which maps do we want to know about ? Examples 
were considered by Cantor and Brouwer (more than 70 years ago). The 
former showed that the CH does hold for closed sets X, the latter-back in 
1908, reprinted on pp. 102-104 of Brouwer (1975)-considered geometrically 
meaningful, topological maps, when the CH is false even for quite simple X. 
(For spaces of choice sequences, with the usual topology, all maps are auto- 
matically continuous and then the CH is obviously false.) (d) Still in connec- 
tion with geometrical properties, G6del notes on p. 524 of (20) that not all sets 
of points are geometrically significant, but calls certain consequences of the 
CH 'paradoxical': at most a conflict with geometric impressions is involved, 
but no more than in the case of several well-known consequences of the axiom 
of choice-and, by (c) on p. 197, in footnote 2 of (20) he had recognized the 

validity of that axiom for the CQ. (Actually, even without the axiom of choice 
one gets geometrically meaningless results when V x3 !yA(x,y) holds but the 

unique function f which satisfies: V xA[x,f(x)] is highly discontinuous, for 

example, characteristic functions of sets defined by the comprehension 
principle applied to logically complicated predicates.) 

Points (a)-(d) troubled me, as already mentioned on p. 158, before I met 
Godel personally. The following gem occurred to him later, concerning 
weakly and strongly inaccessible cardinals. (The latter are defined on p. 191; 
the former need not be closed under exponentiation.) For finite cardinals, the 
two properties are not equivalent: 1 (in contrast to: 2) is only weakly, not 

strongly inaccessible since 0? = 1. From this G6del concluded that the GCH 
was implausible, since it implies that all weakly inaccessible infinite cardinals 
are also strongly inaccessible. Before publication on p. 268, ?3 of (26), which 
expands (20), Godel told me his discovery. He added, with the expectant look 
he always had when he thought he was saying something particularly naughty, 
that I surely regarded it all as no more than a play on words (Wortspiel). I still 
remember my pleasure (and his) when a totally ambiguous comment occurred 
to me. No similar banter is to be found in (26) itself. 

V. PHILOSOPHY: SPECULATIONS AND REFLECTION 

The three published samples of Godel's speculations on spectacular topics 
are about time travel, minds and machines, and the origin of life on earth. 
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The first was developed by him in considerable detail in (21)-(23), the second 
was a principal topic of our conversations in the sixties, and the third happens 
to bring out particularly clearly, by contrast with Crick and Orgel (1973), the 

single most distinctive point in Godel's heuristic views, his preference for 

using general qualitative rather than specific 'empirical' data-in accordance 
with the ideals of traditional philosophy. 

On present evidence G6del's contributions to the topics above are not 
conclusive, and certainly not comparable to his successes in parts II and III. 
As can be gathered from p. 151 it is beyond the scope of this memoir to go into 
the many differences involved, in the nature of the topics, the stages of develop- 
ment, the attention Godel gave to them, and so forth. Nevertheless, quite apart 
from a pleasing freshness and wit, the special twists he gave to his speculations, 
serve remarkably well the purpose mentioned already in part II: they provide 
striking illustrations, in the quite different area of natural science, for the 
lessons learnt on p. 174 from reflecting on his incompleteness theorems in the 
foundations of mathematics; cf. also p. 161. 

General Theory of Relativity 

Godel's early interest in the subject and his close contacts with Einstein were 
described in part I. The following account of G6del's publications in the area 
is due to Professor R. Penrose, F.R.S. 

Godel's writings on the General Theory of Relativity were not extensive, 
consisting of three quite short articles (21)-(23), but they were highly original 
and, in the long run, quite influential. In these articles he described a family of 

cosmological solutions of Einstein's equations that possessed a number of 
novel features. Most striking among these was the presence of closed timelike 
curves in his original non-expanding model. Thus, in this model, it would be 

possible in principle for an observer to travel into his own past. While for the 

majority of physicists, this feature might be regarded as a sufficient criterion to 
rule the model out as 'physically unrealistic', Gidel appears to have taken a 

contrary view. Indeed, in (22) he computed, in a footnote, the amount of fuel 

required for the execution of such a journey and, finding this to be absurdly 
large, concluded that his model could not be ruled out as contradicting 
experience. (He did not, however, consider the vastly 'cheaper' but equally 
paradoxical possibility of an observer merely sending a signal into his own 

past.) In the modern theory of global general relativity, for example, in 
Hawking and Ellis (1973), it has been found necessary to examine the various 
types of 'pathology' that can exist in space-time models even when these 
features might be regarded as sufficient to rule out the models as 'physically 
unreasonable'. Thus, this original Gidel model has provided an interesting 
and significant example of a space-time precisely because of this 'unphysical' 
feature. Indeed, the Godel model was the first simply-connected such example, 
the closed timelike curves being therefore 'essential' in the sense that they 
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cannot be removed by passing to a covering space. The model is interesting 
also for a more philosophical reason. It shows that a concept of time that is 
globally quite different from that seemingly implied by our normal experiences 
cannot be ruled out merely on the basis of the known local physical laws, once 
some of the ideas of general relativity are taken into account. 

A second feature possessed by G6del's models is that the matter in them 
rotates relative to the local inertial frames. Thus, the models show that at 
least one form of 'Mach's principle' is not a consequence of general relativity 
(contrary to what Einstein had originally hoped). G6del also proposed ex- 
panding rotating models (without closed timelike curves) which could be 
serious candidates for the actual large-scale structure of the universe. Godel's 
demonstration of the existence of apparently realistic models in which there is 
a relative rotation between inertial frames and distant matter led to the 
speculation among cosmologists that such a feature might also be detectable 
in the actual universe. However, very low observational limits can now be 
placed on this hypothetical rotation (apparently < 10-16 s-~). 

A third feature of the models is that they possess spatial homogeneity but 
not isotropy. Godel appears to have been the first to study such models and to 
introduce the appropriate non-holonomic frame techniques (largely un- 
familiar to relativists of the time) for their detailed analysis. However, much 
of his work in this area remained unpublished and had to be rediscovered by 
others. The study of spatially homogeneous models has become an important 
part of theoretical cosmology in more recent years; cf. Heckmann and 
Schiicking (1962). Godel was concerned only with space-times filled with 
incoherent matter. A corresponding analysis of empty space-times was made 
by Taub (1951) shortly afterwards. 

Thus, by Professor Penrose's account, the direct physical interest of Godel's 

papers (21)-(23) is limited-in accordance with Einstein's comment on (22) in 
the same volume. (G6del's papers appeared in the middle of a long period 
during which the general theory made little progress.) But by that same account, 
as Professor Penrose emphasizes from his own research experience (according 
to a letter of 11 September 1979), G6del's work served as a cross check on 
mathematical conjectures and proofs in the modern global theory of relativity. 
This is the first of the striking parallels to his incompleteness theorems 

promised on p. 214, in particular, to the use, on p. 175, of his second incom- 

pleteness theorem as a cross check on proposed consistency proofs (though, as 
mentioned there, the direct foundational interest of that theorem is quite 
limited). 

Bibliographical remark. In a long typed essay at Princeton, Godel expanded 
(22) in the style of academic philosophy, using (21) to interpret Kant's ideas on 
time. Perhaps closer study will show what more is gained from this pedantic 
attention to Kant's elaborations than from the simple idea of ghosts which, by 
p. 155, had long been in Godel's thoughts (while, as he says in the essay, he 
never had much sympathy for Kant's general philosophy). In any case, though 
the typescript dates from the fifties, Godel did not publish it. But he put it 
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among the items to be published after his death, on lists he made in the seven- 
ties, especially on days when he thought he was going to die. 

Non-mechanical laws of nature 

Throughout his life G6del looked for good reasons which would justify the 
most spectacular conclusion that has been drawn from his first incompleteness 
theorem: minds are not (Turing) machines. In other words, going back to p. 
162, the laws of thought are not mechanical, that is, cannot be programmed 
even on an idealized computer. ('Mechanical' should not be confused with 
'mechanistic' in the sense of deterministic; the usual probabilistic laws are mech- 
anically computable.) The popular reasons are quite inconclusive. Certainly 
by-Matyasevic's improvement of-the incompleteness theorem, those minds 
which can settle all diophantine problems are not machines. But we have 
neither found any evidence of such minds nor the slightest hint of any computer 
programmes which simulate, even in outline, actual proof search-not even for 
solving problems which do have a mechanical decision procedure, for example, 
propositional algebra; cf. the use of impure methods stressed in part II. 

In conversation G6del brought up one of his favourite twists: Either mind 
is not mechanical or mathematics, in fact, arithmetic, is not our own construction. 
The tacit assumption here, one of those reasonable assumptions about our 
reason on p. 203, is that we can decide all properties of our own constructions. 
Godel remained unsympathetic to the admittedly tasteless comparison with 
our physiological productions which can have painfully unexpected properties. 
His reaction was quite different to another objection I made in the early sixties, 
expressed by the question: 

Is mechanics mechanical? or, more formally, are the laws of current physics 
mechanical in the sense that-according to current theory-every analogue 
computer can be simulated by a digital computer (with the same probability 
of error)? It is certainly not evident that celestial mechanics is mechanical, in 
particular, that collision properties of n-body configurations are mechanically 
decidable-even in finite time intervals. (For specialists: a little care is needed 
in the formulation, since the data should not be points but neighbourhoods in 
phase space.) Other candidates for non-mechanical laws came from statistical 
mechanics of co-operative phenomena such as boiling. 

The question above expresses an objection; for if some laws of ordinary 
matter are non-mechanical, then the notion of machine is not adequate 'in 
principle' to separate mind and matter. G6del was at first tempted to dismiss 
the question, by the familiar petitio principii of supposing that only mechanical 
laws are precise (for a non-mechanical mind ?), but he stopped himself in the 
middle of the sentence, I believe, the only time in all our conversations. 
Afterwards, he took an active interest in the search for non-mechanical laws 
both in physics and in the part of logic which studies specifically mental 
constructions. (In the latter the petitio principii to be avoided is the require- 
ment that those constructions must be represented by a mechanical procedure.) 
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The question above is not yet settled. Here the parallel promised on p. 214 
to the lessons learnt in part II from the incompleteness theorem, concerns the 
evaluation of the 'empirical evidence' provided by existing solutions in mecha- 
nics. Certainly, the bulk are mechanical, just as the bulk of ordinary mathe- 
matics is easily formalized in Principia (despite its incompleteness). If there 
are mechanically undecidable problems in some parts of mechanics, they may 
have been discounted by now-replaced by more tractable questions, just as 
number-theoretic practice concentrated on more rewarding problems about 
diophantine equations long before the negative solution of Hilbert's tenth 

problem so to speak ratified the practice. Corresponding to the positive aspects 
emphasized in the article on the tenth problem in Browder (1976), in mechanics 
one would hope to have a new kind of analogue computer. Last but not least, 
the mere existence of some non-mechanical laws of nature, just as the mere 
existence of some formally undecided problems in mathematics, does not 
settle their significance in the sense of their frequency in different branches of 
science. Incompleteness phenomena are, on present evidence, much more 

significant for set theory than for arithmetic (tacitly, for the questions that 
strike us as interesting). It certainly cannot be excluded that, similarly, the 

phenomena of consciousness (that strike us) follow non-mechanical laws as a 
rule in contrast to the phenomena of ordinary physics, at least those on which 

physical theory concentrates. (This discussion is sharpened by the Note on 

p. 224). 
Bibliographical remarks. (a) Komar (1964) which was overlooked in our 

conversations, points out that non-mechanical laws arise in those parts of 

physics where theoretically admissible states a are represented by so-called 

primitive recursive sequences s of natural numbers (given by a description of 
the experimental set up), and some observable relation R between a, and a2 
corresponds to: s, and s2 differ infinitely often. But Komar (1964) is inconclu- 
sive since the theories considered are not shown to permit arbitrary primitive 
recursive s (or enough for R to be non-mechanical). (b) More recently, on 

p. 59 of Browder (1976), Arnold mentioned other candidates for non-mechanical 
laws in statistical mechanics involving vector fields given by polynomials with 
rational coefficients, though like the n-body problems on p. 216, Arnold's 
seem to need neighbourhoods instead of discrete coefficients. (Mechanical 
undecidability is usually easier to establish in the latter case; occasionally there 
are neat theoretical reasons, even in classical mechanics, for discrete data, for 

example, Newton's for the exponent-2 in his law of gravitation.) (c) Accord- 

ing to p. 326 of Wang (1974), in the seventies Godel seems to have gone back 
to his original twist; but his arguments for supposing that physical laws must 
be mechanical have a, for him, strangely positivistic flavour. 

Chemical evolution of living organisms on earth 

Though Gbdel's published comment on this topic, on p. 326 of Wang (1974), 
is very brief, it is worth mentioning since it fits in with his general views 

expressed in many conversations. His particular conjecture was that the 
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probability of a living organism developing in geological time as a result of 
random chemical operations was vanishingly small. The initial distribution of 
matter is assumed to be random, and nothing is said about the significant 
features of either the chemical reactions or of living organisms which would 
be used in the calculation. Evidently, he hoped that only 'basic' knowledge, 
for example, schoolboy chemistry would be needed since-as he often said- 
the use of specific detail could not be convincing in Big Questions. 

As it happens, Crick and Orgel (1973) present a perfect example of so to 
speak the opposite heuristic view. Briefly, they use two 'very' specific details 
about molybdenum: it is rare in our part of the universe, and it occurs in 
living organisms. So it seems a foregone conclusion that, with these two addi- 
tional hypotheses, G6del's conjecture holds, and should be easy to prove 
formally. But also, while Gidel's conjecture, as formulated, gives no hint at all 
of any positive theory about the origin of life on earth, Crick and Orgel (1973) 
inevitably looked for a source in regions of the universe where molybdenum is 
more plentiful and where chemical evolution could have succeeded, free from 
terrestrial constraints. (After that they followed Genesis: like Jehovah those 
extra-terrestrial beings set about populating the Earth, in their fashion.) 

Their speculations have not settled the origin of life on earth. But their use 
of 'specific detail' about molybdenum provides a neat parallel to one of the 
lessons on incompleteness on p. 174. The aim of (4) and its improvements in 
the thirties was independence of subject matter, for as broad a class of formal 
systems as possible. The so far most successful applications of incompleteness 
involve 'specific' properties, such as the size of ordinals in set theory or the rate 
of growth of number-theoretic functions, and above all the informal notion of 
arithmetic truth, at least, for diophantine problems. Remark (on another 
spectacular topic). The literature on hidden variables in the quantum theory 
contains several impossibility proofs which are also incomparable, without 
stressing this fact. By and large philosophers and logicians try to avoid specific 
details of the theory, and prefer to use (familiar) properties studied in logic or 
probability theory. 

General interests-and a contrast 

Judged by the amount of space in G6del's note books dealing with general 
philosophy and theology, including demonology, these subjects occupied a 
great deal of his attention ever since his student days. They were rarely 
touched in our conversations since there was not enough common interest. 
However, during the 15 years or so when I saw a great deal of him, he would 
occasionally quote passages from his preferred reading at the time-Kant, then 
the slow-paced Husserl, then so to speak the opposite extremes, Fichte and 
Schelling. The quotations were not at all well-known, and, at least for me, very 
perceptive. Given Godel's methodical habits mentioned on p. 151. he may 
well have kept a record of these and similar passages. The publication of such 
an anthology is likely to produce a minor revolution in philosophy: if we came 
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to associate Hegel or Husserl with a dozen crisp and memorable ideas, we 
could cherish them as much as-what we know of-Heraclitus. 

G6del's conversations on the general topics above, at least until his illness, 
had the light touch and exquisite discretion noted already elsewhere in this 
memoir, in contrast to the impression left by some of his more popular 
writings (p. 158). In this respect there is a striking parallel to the difference 
between the letters of Archimedes and his public image which has him look 
for a fulcrum in outer space to move the earth-as might be expected from 
some kind of misfit, ill at ease on this planet. Incidentally, if G6del's work is 
to be compared to that of one of the ancients, Archimedes is a better choice 
than Aristotle (who invented logic, but proved little about it). Archimedes did 
not invent mechanics, as G6del did not invent logic. But both of them changed 
their subjects profoundly by work with an almost unsurpassable ratio of 
interest of the results to effort, as seen in part II above or in the laws of the 
lever. 

VI. FOUNDATIONS AND THE COMMON UNDERSTANDING 

As promised at the outset this memoir has described G6del's contribution 
to our present understanding of formal and (non-elementary) axiomatic 
notions; in particular, logical validity and arithmetic truth (or, equivalently, in 
fancy language: consequence from Peano's non-elementary axioms) in part II, 
and truth for segments of the cumulative hierarchy of sets in part III. Those 
notions had been neglected by most logicians for a quarter of a century before 
Godel's famous results put them back into circulation, by establishing 
memorable relations between them and formal notions. Apart from any heuris- 
tic value which non-elementary notions may have had for G6del's own 
discoveries, they continue to be essential-even for an effective use of elemen- 
tary logic itself (pp. 180-182). The interest of G6del's contribution is in no 
way diminished by the checkered development of the subject since then: by 
the efforts needed to discover rewarding applications, the limitations of G6del's 
general programme to apply traditional philosophical notions more broadly 
(in parts IV and V), and not even by the endless refinements of his work which 
have gone far beyond the point of diminishing returns. 

Also as promised at the outset, the refutations of the best known foundational 
schemes of this century by use of G6del's results were compared with an 
alternative critique, by inspecting (later) mathematical experience. The com- 
parison is familiar from so-called purely mathematical and experimental 
refutations of theories in the natural sciences; the former involve conflicts 
with very familiar facts, so to speak with the bare minimum expected of the 
theories, a standard example being Galileo's refutation of his (first) proposal 
that the velocity of a freely falling body is proportional to the distance covered 
(and so a body at rest would never start to fall at all, contrary to very familiar 
experience). So-called experimental tests of theories, even of those presented 
as abstractly as Newton's or Einstein's theories of gravitation, generally require 
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a high level of unfamiliar extensions of ordinary experience (and if positive the 
tests supersede mathematical refutations of competing theories). In the case of 
foundational schemes, G6del's results provide mathematical refutations, 
while details of mathematical experience are used to pin-point less obvious 
defects of the schemes. 

As a corollary, already asserted on p. 149: since the silent majority has the 

experience needed for the alternative critique, G6del's results could not be 

expected to affect significantly the conception, let alone the practice of that 

majority. Sooner or later, it would discount foundational ideals, either ignoring 
them altogether or putting them in their place by reference to experience. For 
the same reason, the majority has no need for a pedantic formulation of the 
ideals themselves. 

The presentation above leaves out of account a side of G6del's contribution 
to foundations, in fact, of the subject of foundations itself, which is literally 
of the highest interest, for two principal reasons. 

First of all, the scientific experience needed for the alternative critique has 
not been, and cannot be absorbed at all widely. Some philosophers, including 
Wittgenstein, have attempted something like that alternative, using only 
examples from quite elementary mathematics. This was unconvincing. It left 
a nagging doubt whether the examples were representative. More formally, as 
shown in logic (cf. p. 186), large parts of mathematics can be set out in accord- 
ance with conflicting foundational schemes, usually quite elegantly after some 

practice with the style involved. So, quite objectively, elementary experience 
is not enough for a decision between such schemes, let alone against (all of) 
them. 

Secondly, foundational questions occur to us when we know little; as little 
as a school boy in his teens or even as little as the Greeks 2300 years ago. At 
this stage of experience the familiar foundational answers or schemes have a 

great attraction-in keeping with the objective fact, mentioned in the last 

paragraph, that limited experience does not decide against them. In such 
circumstances it is rare indeed that anything significant, let alone conclusive 
can be done using only a mild extension of familiar experience. Godel's results 
are significant, and, especially in part II, use no more additional knowledge 
than the elementary parts of logic available in the twenties, practically no more 
than needed to state the foundational schemes in mathematical terms. (His 
notes to later reprints or translations give, with loving care, the most economical 

formulations.) 
In short, foundational interests exist; Gbdel's results which are relevant 

here, are significant and can be fully understood with a minimum of back- 
ground. So they have an exceptional value, measured by the simplest criteria 
of all: the size and probable duration of the market for his contributions (or, 
equivalently, measured by the particular kind of fame which Schopenhauer 
analysed in ch. 4 of his Aphorismen der Lebensweisheit). This value of Gbdel's 
results is of course quite separate from their value-for foundations or for 
science-at a more developed stage, perhaps to be compared to those elements 
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which are valuable or even vital at an early stage of evolution, and less reward- 

ing or even superfluous later, with one difference. In the case of the evolution 
of knowledge, each generation starts off at an early stage. Besides, for all of us 
there are areas about which we know little and have first impressions analogous 
to foundational schemes. G6del's results on the famous schemes of Russell 
and Hilbert, at least when looked at in the way just described, give one confi- 
dence in the possibility of analysing other schemes of this sort instead of simply 
suppressing them (and the analyses of other foundational schemes mentioned 
at the end of parts II and III, support this confidence). 

Sub specie aeternitatis, or at least as long as our age of intellectual affluence 
lasts, the value to the common understanding described above, may well be 
seen as the most extraordinary part of Godel's contributions-memorable as 
their scientific uses, reported in parts II and III, undoubtedly are. 

The photograph reproduced as a frontispiece was taken by A. Eisenstaedt 
in 1966; the snapshot in the text was taken at the time of Godel's most famous 

discovery. 
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