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ABSTRACT 
 

 

The use of multivariate measurements to characterize brain activity (electrical, 

magnetic, optical) is widespread. The most common approaches to reduce the complexity 

of such observations include principal and independent component analysis (PCA and 

ICA), which are not well suited for discrimination tasks. We addressed two questions: 

first, how do the neurophysiological responses to elongated phonemes relate to tone and 

phoneme responses in normal children, and second, how discriminable are these 

responses. We employed fully optimized linear discrimination analysis to maximally 

separate the multi-electrode responses to tones and phonemes, and classified the response 

to elongated phonemes. We find that discrimination between tones and phonemes is 

dependent upon responses from associative regions of the brain apparently distinct from 

the primary sensory cortices typically emphasized by PCA or ICA, and that the neuronal 

correlates corresponding to elongated phonemes are highly variable in normal children 

(about half respond with neural correlates of tones, and half as phonemes). Our approach 

is made feasible by the increase in computational power of ordinary personal computers, 

and has significant advantages for a wide range of neuronal imaging modalities. 
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INTRODUCTION 

The use of multivariate measurements to characterize brain activity (electrical, 

magnetic, optical) is now widespread.  The most common approaches to reduce the 

complexity of such observations often include principal component analysis (PCA) 

(Pearson, 1901; Hotelling, 1931; Flury, 1997), and more recently, independent 

component analysis (ICA) (Bell A. J. and Sejnowski, 1995, Hyvarinen and Oja, 1997). 

These methods are designed for separating orthogonal (PCA) or statistically independent 

(ICA) components within multivariate data. Nevertheless, such approaches may not be 

well suited for certain classification tasks. Such failures might be expected to be found 

when the neural components generating the largest correlated signals are not, but smaller 

dependent combinations of signals are, the neuronal components critical for perceptual 

discrimination. 

Linear discrimination analysis (LDA) was described by Fisher (1936) to separate 

species based on morphometric measurements. Fisher worked out the fundamental 

mathematics required to incorporate more than one variable (measurement) in each data 

sample (multivariate), and to admit more than 2 groups in the analysis. Once a data set 

whose group memberships are known have been used as a training set for LDA, one can 

examine unknown samples and perform classification. Classification literally involves 

determining in which group is a sample most likely to be a member of. In its more 

modern implementation (Schiff et al 2005), discrimination quality is determined by 

relying on normal distributional assumptions and covariance constraints which are rarely 

present in neurophysiological data. As computational power increases, it is now possible 

to fully optimize such discrimination analysis by, for instance, testing all combinations of 
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electrodes to see which are best at discriminating responses. We will here apply such 

fully optimized analysis to an important problem in the cognitive physiology of dyslexia 

– the use of modified phonemes to retrain children with language impairments. 

The neural circuitry that the brain employs to processes tones and phonemes is 

asymmetric. In normal right-handed individuals, the perception of language phonemes is 

associated with neural correlates in the left temporoparietal region, while pitch 

discrimination is biased to right frontotemporal structures (Kayser et al 1998). Phoneme 

discrimination selective to native language may form early during childhood (Kuhl, 

2000), and by adulthood, native phoneme selectivity has asymmetrically left sided 

temporoparietal neural correlates (Naatanen et al 1997). 

It has been proposed that the origin of dyslexia in certain children may be caused 

by deficits associated with phoneme discrimination. Tallal et al (1996) suggested that 

three to six percent of children are language learning impaired (LLI) due to phonological 

deficits in the rapid processing of speech. This deficit would lead to an inaccurate 

perception of fast components of speech, such as short or ‘stop’ consonants ‘b’ or ‘d’ in 

phonemes ‘ba’ versus ‘da’ in English (Tallal, 1980).   

Mismatch negativity (MMN), first described in Naatanen et al (1978), is the 

difference between the late event related potential (ERP) amplitude detected with an 

occasionally presented stimulus (target, infrequent event) and the response amplitude to a 

commonly presented stimulus (non-target, frequent event). Kraus et al (1996) showed 

that the MMN associated with /da/-/ga/ auditory oddball experiments is decreased in 

language learning disabled children with normal intelligence.  



 5 

It has been reported that children with LLI can show significant improvements in 

phoneme discrimination following training (Merzenich et al 1996, Tallal et al 1996) 

using software which elongates and emphasizes the fast transitions in speech (Fast 

ForWord (FF) Scientific Learning Corp, Berkeley). Despite the widespread use of such 

language training, we know little about the physiology of elongated phoneme perception. 

Although one might suppose that an individual with a deficit in processing fast 

components of speech might perceive elongated phonemes as 'phonemes', these computer 

synthesized sounds differ substantially from normal language components.  

To learn more about the comparative physiology of tones, phonemes and 

elongated phonemes, we conducted measurements of mismatch negativity for these 

stimuli incorporating phonemes actually employed in FF training software (with 

permission of Scientific Learning Corp.). We specifically addressed two questions: first, 

how do the neurophysiological responses to elongated phonemes relate to tone and 

phoneme responses in normal children, and second, how discriminable are these 

responses. Our supposition was that the artificial nature of elongated phonemes might 

contribute to highly variable responses, with some subjects perceiving them as tones, and 

others as language phonemes. If this were so, then perhaps the difference in response 

would be related to the efficacy of training, and the use of a physiological screening test 

might be predictive of training effectiveness.  

Previous attempts to contrast tone and phoneme responses have used techniques 

such as PCA to establish significant hemispheric asymmetries in ERP responses (Kayser 

et al 1998). We here employ LDA (Fisher, 1936) to maximally separate the multi-
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electrode responses to tones and phonemes, and then use this discrimination to classify 

the response to elongated phonemes.  

In a recent study, using a different algorithmic strategy, a sub-exhaustive search 

of sensor pairs was employed in order to discriminate magnetoencephalography 

correlations reflective of a variety of disease states (Georgopoulos et al 2007). To our 

knowledge, no one has employed fully optimized strategies to apply LDA to such 

problems. With exhaustive searching, we find that discrimination between tones and 

phonemes best relies upon responses from electrodes over associative regions of the brain 

apparently distinct from the primary sensory cortices typically selected by PCA or ICA, 

and that the neuronal correlates corresponding to elongated phonemes are highly variable 

in normal children (about half respond with neural correlates of tones, and half as 

phonemes). Our fully optimized approach is one made feasible in recent years by the 

increase in computational power of ordinary personal computers, and has significant 

applicability for a range of neuronal imaging modalities. 
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METHODS 

Subjects 

Thirty-four child volunteers 11 to 13 years old were recruited for the study from 

public schools located in a suburban area of Washington, D.C. All children were 

psychometrically tested for IQ, phonemic awareness, receptive language, and basic 

reading skills. Eighteen right-handed (Edinburgh inventory) children (10 females), 

having all standardized psychometric clustered or total scores above 84 were selected for 

further investigation. Subjects were paid 20 $US per visit. This protocol was approved by 

the Institutional Review Board of George Mason University. 

 

Experimental Procedures 

Following parental informed consent and assent, subjects had a 32-channel EEG 

cap applied (Neuroscan Inc.), including two bipolar (vertical and horizontal) extraocular 

electrodes as well as linked ear lobe references. Conductive gel (Quick-Gel, Neuroscan 

Inc.) was inserted beneath each electrode, and gentle abrasion used to obtain impedances 

below 10 kOhm. EEG signals were amplified 1000 times  (Neuroscan amplifiers), 

bandpass filtered between 0.1 to 200 Hz, and digitized at 1000 Hz. 

Matched earphones, calibrated for loudness, were inserted into the auditory 

canals. A screening test was performed for normal auditory acuity defined as pure-tone 

threshold <25dB sound pressure level for frequencies of 500 and 1000 Hz (Bellis et al, 

2000). Possible ocular and muscular artifacts were demonstrated to the subject by 

showing the effects on real time EEG. EEG caps were disinfected with 2.5% 

glutaraldehyde solution between uses.  
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Protocol 

An active attention (motor response required) tonal oddball experiment 

employing 440 Hz and 880 Hz tones was presented using 300 ms duration stimuli. 

Hanning windowing with 5 ms rise/fall was applied to the stimuli. A total of 200 

presentations, with 20% randomly interspersed deviant target stimuli, were presented 

followed by another block of 200 presentations where the targets and non-target 

frequencies were reversed. In each block, the subject was told to press a button when 

hearing a deviant stimulus with the right hand index finger for the first 100 presentations, 

and after a short break, respond to the target with the left hand index finger. Interstimulus 

interval was randomly jittered between 1.8 and 2.2 sec. The duration and the average 

loudness root mean square (RMS) of the tones, phonemes and elongated phonemes were 

set to be equal (Matlab™ was used for signal processing). This was achieved by 

calculating RMS of all stimuli and then multiplying the waveforms of each stimulus by 

the ratio of RMS of one of the stimuli (we chose elongated ABA) to the RMS of the 

stimulus being adjusted. We show in Figure 1 examples of the tones, normal phonemic, 

and elongated phonemic stimuli, as well as difference plots to illustrate the differences 

between the normal and elongated phonemes. The difference plots show the differing 

lengths of the initial vowel in normal and elongated phonemic stimuli, which were used 

to set the varying intervals to start the mismatch negativity averaging below – it is only 

the differing consonants which create the ‘oddball’ perception we seek. 

 Normal phoneme oddball presentation of /aba/ and /ada/ was performed in a 

similar manner to the tonal oddballs. Phonemic stimuli were matched for duration, and 
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again, an active balanced design with two blocks of 200 presentations (100 for each 

hand), using 20% targets with the targets counterbalanced between the two blocks, was 

employed as above. 

Elongated phoneme oddball presentation of /aba/ and /ada/ was performed using 

actual elongated /aba/ and /ada/ from FF software, adjusted for RMS, with the identical 

protocol procedures used for normal phoneme oddball task.  

 

Data reduction 

Epochs were defined as segments of EEG 200 ms before and 823 ms after the 

stimulus onset, so the total epoch length was 1024 ms. Epochs were subject to artifact 

rejection (if any electrode exceeded ±75µV), band-pass filtered from 1 Hz (-24 dB/oct) to 

30 Hz (-24 dB/oct), and mean baseline adjustment performed to zero the prestimulus 

mean.  

After the above-mentioned procedures, we calculated average waveforms 

separately for the targets and the non-targets. We then subtracted non-target averages 

from target averages, creating difference waves for each electrode and each subject. A 

plot of the grand average difference waves for all subjects is shown in Figure 2.  

MMN magnitude for each subject was determined as average voltage difference 

in the window from 180 to 280 ms after stimulus onset for tones. Since normal phonemic 

stimuli start with the vowel ‘a’, whose duration is about 100 msec, the neural 

discrimination processes cannot begin before 100 msec after the stimulus onset. 

Elongated phonemes start with a short, approximately 50 ms, ‘a’ at the beginning of the 

stimulus. Therefore the MMN window for normal and elongated phonemes were shifted 
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by 100 ms and 50 ms respectively, yielding windows for MMN between 280 to 380 for 

normal and 230 to 330 for elongated phonemes (Figure 1). 

Analysis of variance was performed in order to identify laterality of responses for 

tones, phonemes and elongated phonemes. PCA was implemented using a singular value 

decomposition procedure (Golub, 1996; Flurry, 1997). For ICA we employed FastICA 

(Hyvärinen 2001). 

In classification analysis, one can ask whether an unknown sample (elongated 

phonemes) is closer in multivariate characteristics to well defined groups (tones or 

phonemes). In this study we use linear discrimination analysis. 

 

Discrimination methods 

Linear Discrimination Analysis (LDA) creates a linear combination of variables 

(electrode data) that maximally separate the standard distance between two sets of 

measurements (see Appendix). A complete discussion of the theory of LDA can be found 

in Flury (1997), and a set of efficient matrix algorithms for the LDA implementation we 

employed can be found in the code archived in the supplementary material from Schiff et 

al. (2005). 

LDA does not provide, in general, a means of determining which variables are 

more important for the classification. Although it is possible to calculate the significance 

of each variable using normal theory, this calculation requires data assumptions such as 

normality and equality of the covariance matrices, which may not apply to our data 

(Flurry, 1997). Because these assumptions may not accurately estimate the significance 

of variables in our data set, another approach was pursued. 
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We chose to calculate all possible combinations of variables and ascertain which 

variables (electrodes) are optimal for the classification. This procedure may also be 

viewed a search for a projection, where the observations of the two groups are maximally 

separated in terms of standard distance as defined in (Flury, 1997). 

The optimal classifier (projection) was found by optimizing two types of error 

rates: plug-in and leave-one-out. Plug-in error rate is defined as a fraction of misclassified 

observations from the training set based on the classification constructed from all the 

samples in the training set. In other words, the same observations are used to create and 

test the classifier. Leave-one-out error rate is calculated by leaving out one observation, 

constructing the classifier and then testing the classification of the omitted observation. 

The procedure is repeated for all observations in the data set. Thus, leave-one-out error 

rate is defined as the fraction of observations that would be misclassified omitting each 

observation in turn. 
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RESULTS 

  Electroencephalographical MMN data were collected during an oddball 

experiment with tones, phonemes and elongated phonemes as described in Methods.  

Before calculating the discriminant functions it is useful to confirm that there is a 

statistically significant difference between the two groups. We found that the significance 

of MANOVA analysis using 36 observations (averaged MMN amplitude in a window) 

from 18 subjects with stimulus as a factor (2 levels: tones, phonemes) varied as a function 

of the number of electrodes used. With all 25 electrodes as dependent variables, the 

difference was marginal (F=2.29; df=25, 10; p=0.085), whereas with a more optimal 

number of electrodes (13 electrodes), the differences are highly significant (F=3.97; 

df=13, 22; p=0.002). 

We further investigated the physiological asymmetry in the responses to tones, 

phonemes, and elongated phonemes. All 18 subjects completed the initial tones and 

phonemes protocol, and 8 of 18 completed the elongated phoneme protocol. We used 

repeated measures ANOVA with two factors: side and electrode. We indexed each 

electrode on one side with the corresponding electrode on the other side. Midline 

electrodes were excluded from this asymmetry analysis similarly to Kayser et al (1998). 

Our results were analogous to the results reported earlier by Kayser et al (1998).  The 

responses were asymmetric, with responses to tones more negative in electrodes located 

on the right, and with responses to phonemes more negative in electrodes located on the 

left. Interestingly, there was no significant asymmetry in responses to elongated 

phonemes.  



 13 

We then investigated the optimal number of electrodes for classifications. For n 

electrodes, there are 
  

n!

k !(n ! k)!
= 2n

k =1

n

" !1 unique combinations. Therefore we studied 

225-1=33,554,431 combinations of 25 electrodes. For each combination we calculated 

linear discriminator functions, and computed plug-in error and leave-one-out error rates 

as described in Methods.  In order to compute leave-one-out error for a particular 

combination it was necessary to calculate 36 discriminators (tones and phonemes for 18 

subjects), for a total of (36+1)* 33,554,431= 1,241,513,947 discriminators. Using 2 

laboratory grade personal computers, these calculations were completed in about 3 weeks 

(about 650 hours of processor time).  

Only a few combinations of electrodes yielded the best classification. An example 

of optimization for 9 out of 25 electrodes is shown in Figure 3. In this Figure the vertical 

axis represents leave-one-out error and the horizontal axis plug-in error. Each point 

corresponds to the number of errors from different combination of electrodes. Note that 

since some combinations produced exactly the same errors, some points represent 

multiple combinations. Only one combination out of 2,042,975 gives the optimal 

classification with 2 plug-in errors and 3 leave-one-out errors. The results for all 

combinations of electrodes are presented in Table 1. The optimal leave-one-out errors are 

all higher than the plug-in errors as would be expected. The utility of employing both 

leave-one-out and plug-in errors for optimization is illustrated in the results of Figure 3 – 

there were 4 combinations with 3 leave-one-out errors, of which 3 had 3 plug-in errors, 

and one, the optimum combination, had 2 plug-in errors.  

Discrimination between tone and phoneme observation is not feasible using only 

one electrode. Using any one electrode, the LDA yielded the leave-one-out error rate of 
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12 observations (33%). The minimum leave-one-out error rate using two electrodes 

dropped to 8 observations (22%).  

In Table 1 we also summarize the classification of elongated phonemes. The 

average number of elongated phoneme observations classified as tones is 3 versus 5 

classified as phonemes. Normal subjects have no clear propensity to process elongated 

phonemes as either tones or phonemes. An example of creating a classifier from an 

optimal combination of 13 electrodes between tones and phonemes is shown in Figure 4. 

In Figure 4A, selected electrodes are shown as solid squares and unselected electrodes are 

shown as hatched squares. The magnitude of the coefficients from the linear combination 

for each selected electrode is coded in gray scale. We used this classifier to assign group 

membership (tones, phonemes) to the data obtained in response to elongated phonemes. 

The results indicate that four out of eight elongated phoneme results were classified as 

tones (Figure 4B). Note that the optimal electrodes are scattered spatially over the scalp. 

The electrodes that are important for classification are not constrained to lie directly 

above the auditory cortices, but include strong contributions from frontal and parietal 

association areas.  

In order to further assess the statistical validity of the linear discrimination we 

randomized the assignment of tone versus phoneme for each observation consisting of 

electrodes and repeated the search for the optimal combination of 13 out 25 electrodes. 

The randomization procedure was repeated 100 times (Figure 5). Most randomizations of 

the data set resulted in optimal combinations of electrodes with minimum leave-one-error 

around 15, whereas optimal leave-one-out error for the original dataset was 4. This 
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bootstrap result confirms that the original LDA optimization was not a result of 

multicomparison overfitting. 

Multivariate methods such as PCA, ICA and LDA provide a way of combining 

the data from multiple electrodes into a linear combination, and it is instructive to 

compare these combinations. Only five PCA components of a total of 25 are required to 

account for 95% of the variance in our data, whereas 20 out of 25 ICA components are 

necessary to account for the same amount of variance. This result was expected, since 

PCA is designed specifically for dimensionality reduction, whereas ICA is designed for 

unmixing linearly mixed signals.  

To compare PCA, ICA and LDA, we first rewrite the data models for these 

methods so that the data is factorized into a product of 2 matrices, in the form  

 
 

Xm,n=Um,n B-1
n,n 

 
or 

 
Um,n=Xm,n B n,n 

 
 

where X is an m-by-n data matrix with n electrodes and m observations, U is an m-by-n 

matrix of linear combinations of electrode values, and B is an n-by-n set of linear 

combination coefficients. The data mean across time was removed prior to calculating the 

components. We then calculated the linear combinations (columns of the matrix B, only 

one column for LDA) and plotted the coefficients (weights) of linear combinations in 

Figure 6 in the spatial arrangement of the corresponding electrodes (and in corresponding 

linear bar charts).  
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The first component of PCA reflects the spatial mean of the voltages from the 

scalp electrodes. Other PCA components separate different spatial areas, such as front 

and back (2nd component), left and right (3rd component) and center versus sides and 

edges (4th component). ICA components and LDA coefficients do not have such well-

defined spatial patterns. 

We compared the differences in the separation of the linear combinations for 

PCA, ICA, and LDA, using data from tones and phonemes using a t-test. Only the LDA 

combination and the 3rd PCA component separated the two means, but LDA was far more 

effective (3rd PCA component: p=0.0007; LDA: p<0.0001; and the standard distances 

separating the transformed values are much greater for LDA as seen in the projected 

means in Figure 6). The third PCA component reflected right from left sided asymmetry, 

as has been noted previously (Kayser et al, 1998). Since the third PCA component 

separated left and right electrodes, the ability of this PCA component to separate tones 

and phonemes is another demonstration of the laterality of the responses to tones and 

phonemes.  
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DISCUSSION 

 Although LDA is in common use in analyzing multivariate data (Schiff et al 

2005), we are not aware of full optimization, using all combinations of electrodes, for 

neuronal multielectrode data as we have described. We have demonstrated that fully 

optimized LDA can be highly effective in separating physiological responses to tones 

versus phonemes in individual subjects. Interestingly, the response to elongated 

phonemes is mixed among a population of normal children. 

 LDA shows a very different spatial pattern than PCA or ICA. In discriminating 

phonemes from tones, the associational cortices heavily contribute to the neural correlates 

of discrimination. PCA, highlighting the large asymmetric discrepancies between 

receptive language sites in posterior temporal left versus right brain, is not an effective 

discrimination tool for individual subjects. Perhaps it is the disentangling of linear 

combinations (blind source separation) that ICA optimizes is the reason for its poor 

performance in this setting – it is in the optimal linear combinations of electrode data for 

this task, and presumably for the relevant underlying neuronal generators, that the best 

discrimination is found.  

 We have shown that the response to elongated phonemes optimally segregates 

into responses that are divided between tone and phonemic responses in the subjects. 

Such widely varying responses to these stimuli may help explain variability in the 

response to elongated training paradigms for children. Our findings lead us to the 

hypothesis that examining a population of LLI dyslexic children for physiological 

responses to elongated phonemes might help identify which subjects will benefit from 

such training. 
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The use of optimal electrodes improves the classification quality, lowering the 

dimensionality of the data set. The electrodes that were optimal were not located directly 

over auditory processing areas, where the sensory evoked responses are largest 

bilaterally.  Our findings suggest that the neural correlates from other areas are critical for 

the classification; indeed, responses from frontal, parietal, and central midline areas were 

necessary to perform this classification well. Perhaps the associational regions of cortex, 

where the actual perceptions are being processed, are critical signals for us to quantify 

discrimination from in such perceptual tasks. This said, we also recognize that our 

anatomical associations of brain structures without source localization limits our 

interpretation. Studying such subjects with high density EEG or MEG, along with using 

anatomically valid head models to estimate current sources, would be quite valuable.  

In this study, we sought an optimal combination of electrodes to use for 

discrimination with an entire population of subjects as a potential screening tool. 

Nevertheless, our strategy is applicable to individual subjects, for instance, in brain 

machine interface paradigms, where one seeks the optimal electrode combination to use 

for cognitive discrimination for an individual subject. We will show the utility of such 

individual subject optimization in future reports. 

Our use of full optimization has become feasible because the power to perform 

this computation is now practical using routine laboratory grade personal computers. 

Although many theoretical methods exist to test for discrimination quality (Flury 1997), 

data from neuronal experiments will always deviate from the constraints on distribution 

and covariation required for normal theory assumptions. In contrast, our use of empirical 

error rates and brute force full optimization yields electrode combinations from among 
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millions of possibilities, which are most suitable for a given situation. Our results find 

that such discriminators are powerful enough to work on individual subjects, with very 

low error rates. Such an approach is of general applicability to a wide range of 

multivariate neuronal data such as multielectrode electrical, magnetic encephalography, 

optical measurements, or functional MRI.  
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APPENDIX. Methods of linear discrimination 

 

The univariate standard distance ΔY between two numbers y1 and y2 with respect 

to random variable Y is defined as (see Flury 1997) 
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Y
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where E represents expectation. Standard distance may be interpreted as a one-

dimensional Euclidian distance in units of standard deviation of random variable Y. 

Generalization to the p-variate case is accomplished by considering all linear 

combinations of p variables, i.e. reducing the problem to the univariate case. The p-

variate standard distance is then defined as maximum of all univariate standard distances 

of linear combinations of p variables, or  

    

!
Y
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 where a, y1, y2 are p-variate vectors and ψ is the covariance matrix of p-variate random 

variable Y. The maximum of ΔY(y1, y2) is found by using the extended Cauchy-Schwartz 

inequality  

  (u 'v)2
! (u'Mu)(v'M"1v)     (A3) 

where u, v are p-variate nonzero vectors and M is a positive definite symmetric matrix. 

The equality holds when u=cM-1v or v=cMu with c, a real number. Maximizing ΔY(y1, 
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y2) is equivalent to maximizing 
  
!

Y

2 (y
1
,y

2
)  Therefore by setting u=a, v=y1-y2 and M=ψ, 

the maximum is found at 

   
a = c! "1(y

1
" y

2
)      (A4) 

Conventionally constant c is set to unity, thus the p-variate standard distance is equal to  
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If the means of random variable Y are µ1 and µ2 in populations 1 and 2 respectively and 

the covariance is equal in two populations, the linear combination a that maximizes the 

standard distance between the two means is defined as the linear discriminant function 

(LDF) and is equal to  
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LDF may be viewed as a projection from a p-variate space to a one-dimensional real line 

( !p
"! ) that maximizes the separation of the two populations on the real line.  

 

In practice covariance matrix ψ is estimated as a weighted sum of the covariance 

matrices in two populations or pooled covariance S, i.e. 
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where 
 
y

j
and Sj are the estimates of the mean and covariance matrix in the jth population. 
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After the calculation of the LDF, we may choose the midpoint between the means of the 

projections of the data from the two populations as a cutoff point. This point corresponds 

to a straight line (in the case of bivariate data) or a hyper-plane (for multivariate data set) 

in the original variable space. 

An alternative approach requires that the data from the populations follows a 

normal distribution, that is Y~Np(µ1,ψ) in population 1 and Y~Np(µ2,ψ) in 2. 

The probability distribution function (PDF) of the multivariate normal distribution is 

equal to 

   

N
p
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(
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where det(ψ) is the determinant of ψ. 

Introducing the notion of prior probabilities π1 and π2, and the conditional PDF of 

Y, fj(y), given population membership j=1, 2,  the posterior  probability of being in the 

population 1 or 2 given data y by Bayes theorem is equal to  
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We then shall classify an observation y to population 1, if π1y > π2y. This condition is 

equivalent to π1f1(y)> π2f2(y), or 
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it follows that the posterior probability follows logistic function 
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We introduce a dummy variable  
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and calculate the posterior probability
   
!

1y
=

e
z

1+ e
z

. Posterior probability for the 

population 2 is found by subtracting the result from unity. 

 Efficient matrix codes written in Matlab (The Mathworks, Natick, MA) for 

performing the above LDA can be found in the archived supplementary material from 

Schiff et al (2005). 
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TABLES 

 

Table 1. Results of search for optimal electrodes. 

For a given number of electrodes sampled (column 1), we give the total number of all 

unique combinations of electrodes (column 2), the resulting optimal plug-in and leave-

one-out errors (columns 3 and 4), the number of optimal combinations (column 5) the 

average number of elongated phonemes misclassified as tones (column 6), and the 

average number of phonemes misclassified as phonemes (column 7). On the bottom row, 

we give the average number of misclassifications for all electrode combinations. 

Number of 
Electrodes 

Number of 
Combinations 

Optimal 
Plug-in 
Error 

Optimal 
Leave- 
One-
Out 

Error 

Number of  
Optimal 
Combi-
nations 

Average 
Elongated 
Phonemes 

Classified as 
Tones 

Average 
Elongated 
Phonemes 

Classified as 
Phonemes 

1 25 12 12 1 3 5 
2 300 6 8 1 2 6 
3 2300 5 6 1 2 6 
4 12650 4 4 1 1 7 
5 53130 2 4 1 1 7 
6 177100 2 4 2 2 6 
7 480700 2 3 5 1.8 6.2 
8 1081575 2 3 4 2 6 
9 2042975 2 3 1 2 6 

10 3268760 3 3 2 1 7 
11 4457400 3 3 1 1 7 
12 5200300 4 4 1 2 6 
13 5200300 2 4 1 4 4 
14 4457400 2 4 1 4 4 
15 3268760 2 5 2 4 4 
16 2042975 0 6 6 4 4 
17 1081575 0 6 3 4 4 
18 480700 0 7 3 3.67 4.33 
19 177100 0 8 3 4.67 3.33 
20 53130 1 8 1 4 4 
21 12650 1 9 1 4 4 
22 2300 0 10 3 4.67 3.33 
23 300 1 10 1 4 4 
24 25 1 11 1 4 4 
25 1 0 13 1 5 3 

Average     3.0 5.0 
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FIGURE CAPTIONS 

1. Stimuli used in oddball tasks. A. Tones. B. Phonemes. C. Elongated phonemes. 

The RMS power was adjusted so that it was equal for all stimuli (see Methods). 

Differences are ADA-ABA, where v and c indicate vowel and consonant 

respectively. 

2. Difference wave grand averages for tones, phonemes and elongated phonemes 

from all subjects. We aligned all recordings to start at 0 ms which was the onset 

time of each 300 ms stimuli. Each plot corresponds to the geometric alignment 

of the 10-20 nomenclature for the 30 EEG electrodes (F, FT, T, TP, P, FC, C, 

CP, O, FZ, FCZ, CZ, CPZ, PZ, OZ), along with horizontal extraoculogram 

electrodes (HEOG) and vertical extraoculogram electrodes (VEOG). Grand 

averages from all subjects for all similar trials given for tones (dark lines), 

phonemes (dotted lines), and elongated phonemes (gray lines).  

3. Example of optimization of plug-in and leave-one-out errors for 9 out of 25 

electrodes. We plot all plug-in and leave-one-out error rates as open circles. 

There are many overlapping combinations of error rates. But there is only one 

combination, indicated by a star, which gives the minimum combined error rates 

of 3 leave-one-out errors and 2 plug-in errors.  

4. Example of optimal classification. A. Thirteen optimal electrodes selected from 

25 electrodes for linear discrimination (unselected electrodes are shown as 

hatched squares). Gray scale indicates the value of the weights of the linear 

coefficients corresponding to each electrode. B. One-dimensional plot of 

transformed data using optimal classifier. Vertical dashed line indicates 
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classification boundary. Two observations from combined phonemes and tones 

set are misclassified. Four out of eight observations of elongated phonemes are 

classified as tones (observations are spread vertically for clarity). 

5. Results of the dataset bootstrap randomization for 13 electrodes to further assess 

the validity of the LDA.  

6. Comparison of PCA, ICA and LDA.  

First 5 components (linear combinations) from PCA and ICA for combined data 

matrix of tone and phoneme measurements plotted as magnitude of component 

coefficients in spatial arrangement of electrodes (color scale) and linear bar 

charts. Electrode arrangement for array is shown at right. At the top right is shown 

a plot for the LDA coefficients. To the left of each array plot is shown the 

projection of mean MMN values for tones (18, blue circles) and phonemes (18, 

red asterisks). Red and blue bars represent the means of these projections. The 

PCA first component reflects overall spatial mean, second component contrasting 

front to back, third right to left. No such clear spatial patterns are evident in ICA 

components or LDA coefficients. Only two transformations significantly 

separated the means significantly, the third PCA component and LDA (3rd PCA 

component: p=0.0007; LDA: p<0.0001). The third PCA component reflected 

right from left sided asymmetry, as has been noted previously (Kayser et al, 

1998). Nevertheless, the discrimination power of LDA was substantially more 

powerful than the other transformations.  
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Figure 1. 
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Figure 2. 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

  


