Auto Days 2011 Predictive Analytics in Auto Finance

Vick Panwar SAS Risk Practice

Copyright © 2010 SAS Institute Inc. All rights reserved.

Agenda

Introduction

Changing Risk Landscape

Key Drivers and Challenges

Sample Predictive Analytics for Vehicle Finance Organizations

- Manage credit risk and protect your portfolio
- Establish in-house credit scoring
- **Real time Decisioning**
- □ Predict loan exposure, reduce the risk of loan losses
- Optimize lease offers
- **Collections Optimization**

Best Practices – Case Study

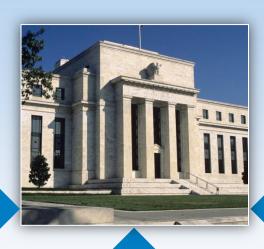
Questions and Answers

New Era of Financial Services Firms: *Earnings Quantity to Earnings Quality*

Leading Firms are investing in the ability to provide account holder "event" level information to manage customer relationships, risk, regulatory drivers, and return on capital.

Enhanced Operational & Capital Advantage

- Capital Allocation is directly tied to accounts & product profitability
- Risk processes are as integral as accounting & forecasting
- Velocity of financial analysis is changing



Enhanced Regulatory Reporting Capability

- Proactive risk & financial reporting to internal & external agencies
- Ability to report in multi jurisdictions
- Strategy embedded in forward looking capital planning

"The goal is to increase quality of relationships with profitable customers"

Enhanced Customer Relationships

- Siloed Channels replaced with "Events"
- Products are offered at anticipate life or firm level events
- Customer RM balanced by Risk RM

Convergence of Capabilities

Marketing

Customer capacity Business Segments to Develop & Grow Market Segment Penetration

Risk

Customer Credit Worthiness Exposures Geographic Concentration Risk Adjusted Pricing

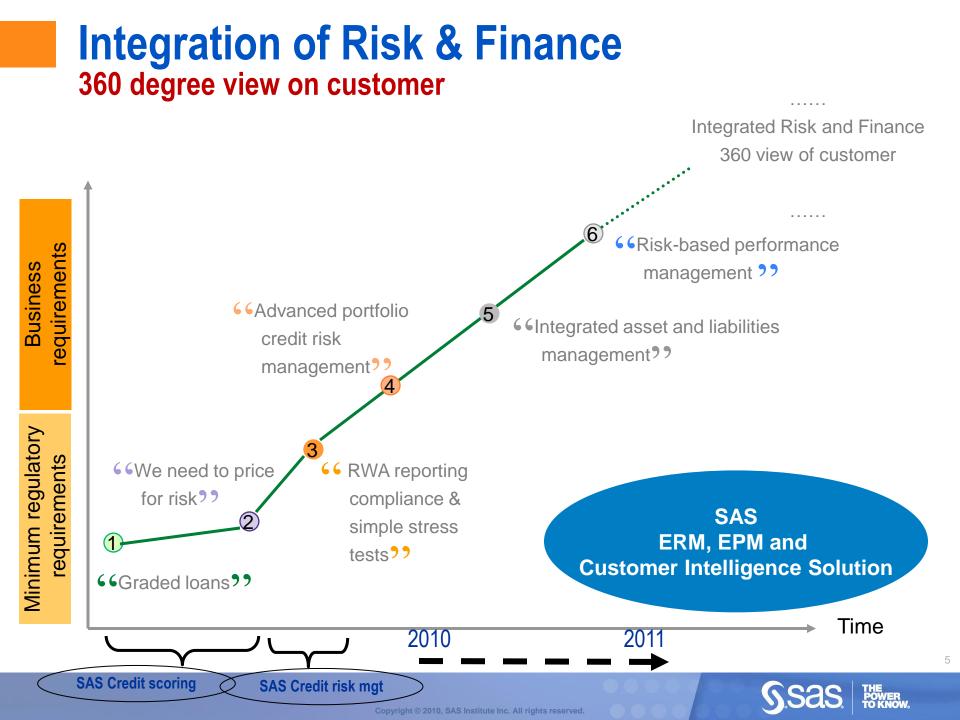
Finance

Loss Reserves and Allocations Accounting Planning and Budgeting Capital FTP and RAPM There is a "convergence" between Risk, Marketing and Financial data that Financial Services organizations utilize every day

Enterprise View

Risk Factors Influence Buy Decisions Profitable Markets Identified Internal Hedging via Marketing Proactive Capital Management via "Firm Wide" stress testing

Quickly link Marketing and Sales direction with products that provide long term value while determining the "credit worthy" customers to sell to.



SAS Analytical Solutions

Performance Management

	agement		
Strategy Management	Balance Sheet Planning	Funds Transfer Pricing	Risk Adjusted Perf.
Profitability	Forecasting & Budgeting	Activity Based Costing	Risk Based Pricing
Treasu Risk Regulato Capital	Risk Economic Capital Risk Analytics Optimizat Optimizat Workflow Ianagement	Real Tin Decisio MGMT	a cs ne on

6

POWER TO KNOW.

SAS Analytical Application Platform

Common Infrastructure supporting SAS solutions

Copyright © 2010, SAS Institute Inc. All rights reserved.

Agenda

Introduction

Changing Risk Landscape

- Key Drivers and Challenges

Sample Predictive Analytics for Vehicle Finance Organizations

- □ Manage credit risk and protect your portfolio
- Establish in-house credit scoring
 - **Gal time Decisioning**
- Predict loan exposure, reduce the risk of loan losses
- Optimize lease offers
- Collections Optimization

Best Practices – Case Study

Questions and Answers

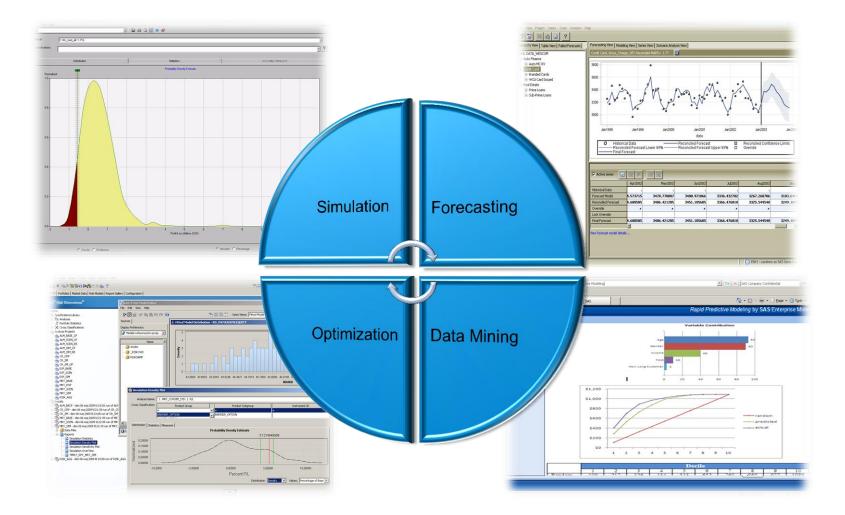
Analytics for Auto Finance Typical Predictive Analytics

Forecasting	 Loan Losses Cost of funds (Treasury, Interest Rates) Residual values at future point in time (behavioral) Loan Exposure
Data Mining	 Regression based models PD, LDG at origination and on going Residual value at lease origination Optimal down payment Segmentation
Simulation	 Portfolio risk Credit Risk Liquidity Risk Capital Management Forecasting Roll Rates
Optimization	 Optimization Pricing Lease offers & Buy backs Collections Design of Experiment

9

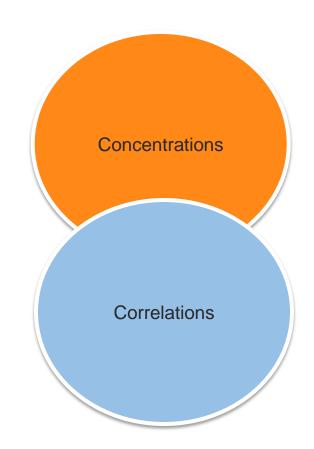
POWER TO KNOW

Brief Overview Analytics Solutions



Manage credit risk and protect your portfolio

- What is credit risk?
 - Default and Delinquency Analysis
 - Estimation at Origination vs. Behavior
 - Ratings Migration
 - Concentration Analysis
- How do I protect my portfolio?
 - Early warning systems
 - Behavioral scoring
 - Hedging
- How much capital should be held
 - Matching capital to assets
- Risk based pricing



Credit Performance Reporting

Delinquency Reporting

🔇 ▼ 🕑 ▼ 🖹 😭 🌮 🛠 🏵 🔗 🔗 🔜 🗖 🚉 * Portal Administrator *

SAS Risk Portal

Options 🗸 | Search | Log Off sasdemo | Help 🗸 |

Ssas.

📲 <u>–</u> – × –

SAS MISK I OITAI	≤ 11					4				Χ		2
Executive Reports	Delinquenc;	y Status by Rati	ngs		<u>a</u> R, 2	(* I	Delinquency	Status by FIG	O Score			
Retail		Detir	quency Stat	tus			FIGO	Delir	nquency Sta	tus		
Wholesale	Rating	0-90	>90	Charge-Off	Total		FICO	0-90	>90	Charge-Off	F Total	
Capital Markets	1. AAA	\$787,359,800	\$13,367,931	\$7,735,408	\$808,463,140		0 - 550	\$8,475,916	\$84,219	\$83,480	\$8,643,	615
Market Data Trends	2. AA	\$1,258,236,439	\$8,522,232	\$3,442,110	\$1,270,200,781		551 - <mark>600</mark>	\$140,269,274	\$2,194,408	\$2,166,227	\$144,629,	,909
Credit Risk Dashboard	3. A	\$309,036,807	\$2,003,743	\$4,000,169	\$315,040,720		601 - 650	\$279,677,080	\$2,133,784	\$910,899	\$282,721,	,763
Dashboard	4.888	\$490,068,885	\$4,534,196	\$235,751	\$494,838,832		651 - 700	\$140,500,649	\$1,995,507	\$123,965	5 \$142,620, *	,120
Inputs	5. BB	\$652,558,441	\$9,467,496	\$4,080,824	\$666,106,760		701 - 750	\$121,435,058	\$491,018	\$4,415,367	\$126,341,	,443
Results	6. B	\$371,611,234	\$354,990	\$5,487,116	\$377,453,340		751 - 800	\$404,950,552	\$2,760,648	\$2,846,832	2 \$410,558,	,032
Analysis	Total	\$3,868,871,606	\$38,250,588	\$24,981,379	\$3,932,103,573		800 +	\$267,935,464	\$3,616,131	\$6,848,392	2 \$278,399,	988,
Home					L'and the second second	· .	Total	\$1,363,243,993	\$13,275,715	\$17,395,162	\$1,393,914,	870
	Delinquency Status	s by Month 8	Region			* 1	Delinquency	Monthly Tab	le			
	Monthly Percentages of Delinguency Buckets							Delinqu	quency Status			
		(> 30+	days DQ)					lysis by Regi ed by Exposu		irrent 30- 59	60- 89 90+	Ch O
		Regio	on=East				06/01/06	East		90.98 3.00	0.77 0.85	4
		regie	AL-LUSC									

Monthly Percentages of Delinquency Buckets	^			D	elinqu	ency S	Status	;	^
(> 30+ days DQ)		is by Region by Exposure	Current	30- 59	60- 89	90+	Chrg- Off		
Region=East		06/01/06	East	90.98	3.00	0.77	0.85	4.40	
			Midwest	88.55	3.52	0.64	0.80	6.48	
Percentage			Southeast	89.53	2.84	0.76	0.74	6.13	
5-			West	89.56	3.16	0.69	0.72	5.87	
		05/01/06	East	91.13	3.33	0.73	0.83	3.98	
			Midwest	88.84	3.59	0.77	0.91	5.89	
4 -			Southeast	89.63	3.32	0.58	0.74	5.74	
П			West	89.80	3.35	0.66	0.86	5.33	
		04/01/06	East	91.21	3.56	0.85	0.75	3.63	
3-L N n a N N N			Midwest	89.36	3.54	0.86	0.80	5.45	

~

Establish in-house credit scoring

- 3 Choices
 - Using FICO or similar scores
 - Outsourcing modeling
 - In housing credit scoring

Why?

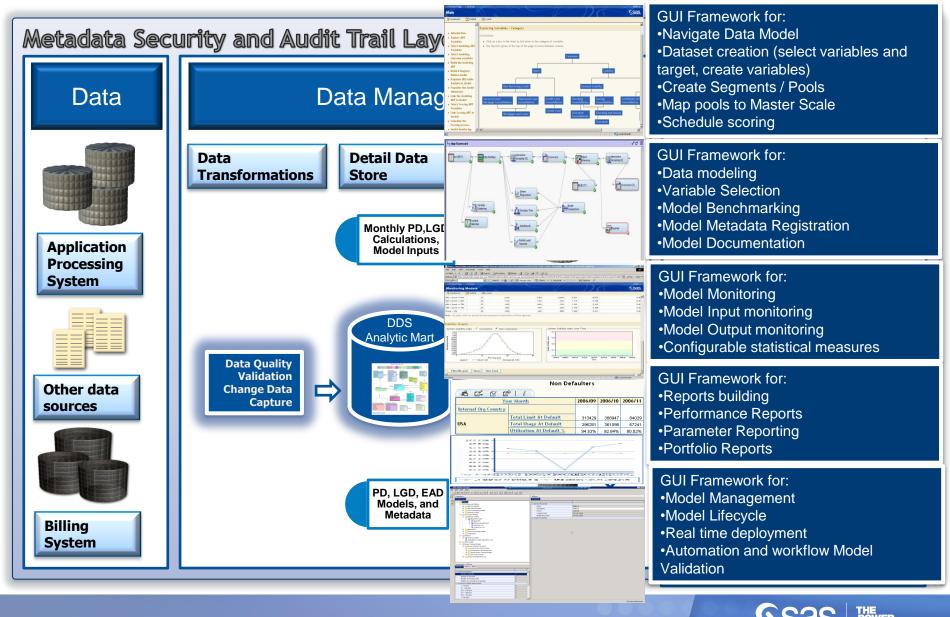
Develop analytical skills in house

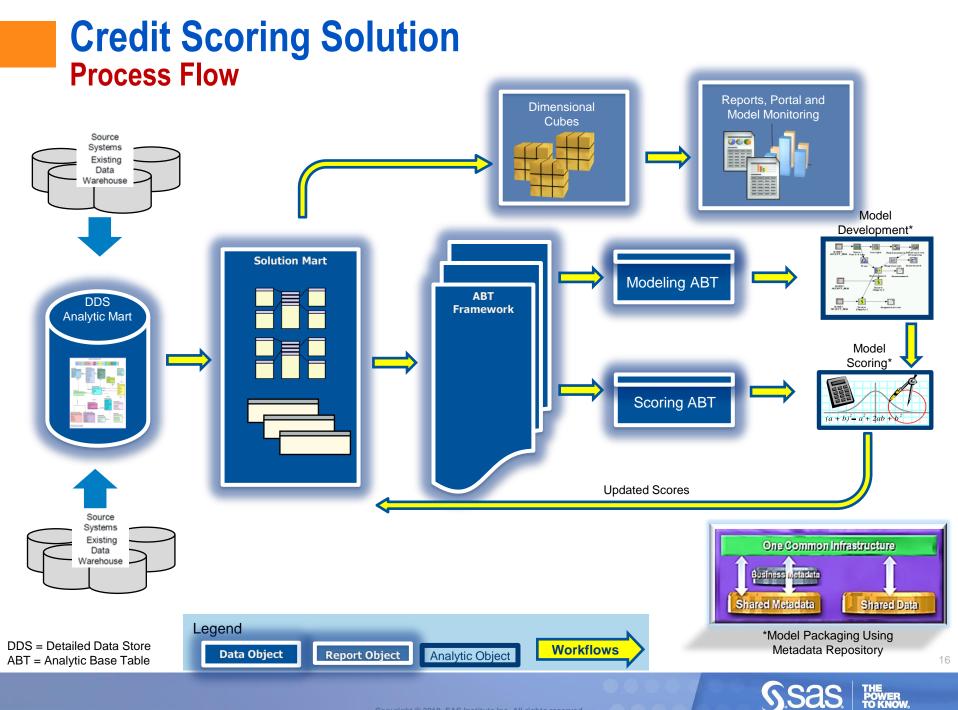
Gain deeper insight into credit portfolio and customer behavior

Ability to use analytics develop for other uses (PD, Delinquency, Collections, Marketing Campaigns)

Aligning risk, finance, and marketing

In house Credit Scoring Framework Real Time Decisioning or Batch Processing





Credit Scoring Analytics Solution Model Monitoring & Validation

🚈 http://nlsstrhdw.emea.sas.com:8080/Portal/viewItem.do?com.sas	.portal.Iten	nId=Link-	+omi://Fo	oundati -	Microsof	t Interne	t Explore	r		
File Edit View Favorites Tools Help										
😓 Back 🔹 🤿 🖉 🚰 🔞 Search 📾 Favorites 🛞 Media 🧭	B- 3		11							
Address 🕘 http://nlsstrhdw.emea.sas.com:8080/Portal/viewItem.do?com.sas.p	oortal.ItemId	=Link%2Bo	mi%3A%2	F%2FFou	ndation%2	Freposnar	me%3DFou	Indation%2	FDocumer	t%3Bid%
Google - 💽 💽 Search - 🌚 🚿 🗗 Po	pups okay	ANG Check	• *	utoLink	• 🗐 Auto	əfil 🔁	Options	Þ		
Portal Page Search	11			11		~	T		$\left(\right)$	
Monitoring Models								10		
📎 Bookmark 🛱 Publish 💽 E-mail										
Reporting > Monitoring Models > Select Models								SAS® (Credit S	Scoring
Monitoring Ongoing PD models										
Model Type: Models for Ongoing Risk Management										
Product Type: Mortgage Product										
Notes: 1. Select upto two models for comparison and select a period to dis 2. The model names for production models are specified in red.	play the m	easure le	vel dash	board.						
Model Name	APR04	MAY04	JUN04	JUL04	AUG04	SEP04	OCT04	NOV04	DEC04	JAN05
PD Model 1 for Mortgages (Outcome period:12 months)	•	0	•	•		0	•	0	0	0
PD Model 2 for Mortgages (Outcome period:12 months)	0	0	•	•	•	•	•	0	0	•
🧢 Months 4 - 15 of 15 💙								F		

THE POWER TO KNOW

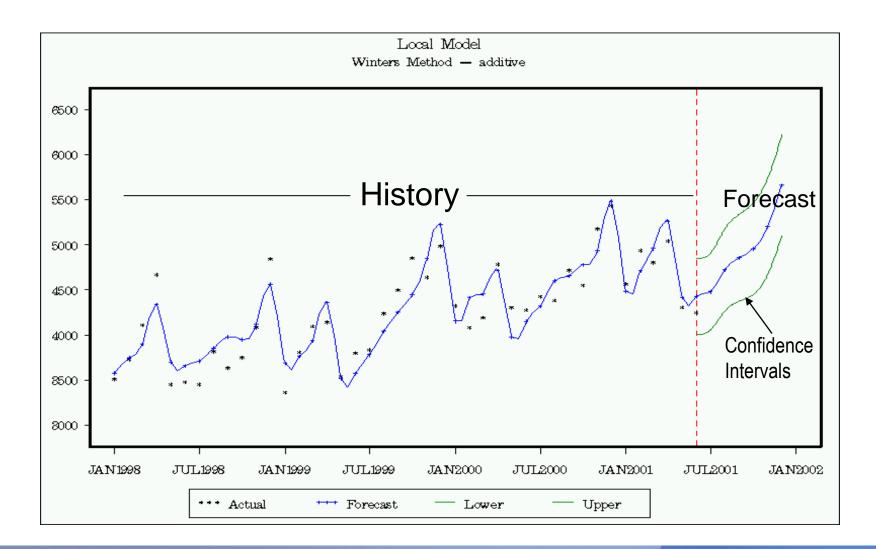
Real Time Auto-Decisioning Criteria What-if analysis

- Enable business analysts to easily access suite of models built by 3rdparty vendor
- Enable deeper / more robust auto-loan/lease application analysis
- Monitor population score shifts & model input calibration
- Enable what-if / scenario analysis based on changes to
 - » Population of applicants (perturbing input data)
 - » Auto-decisioning criteria
 - » Both (decisioning criteria and characteristics of applicants)
- Process flow templates processes to catalog and automate library of what-if analysis scenarios

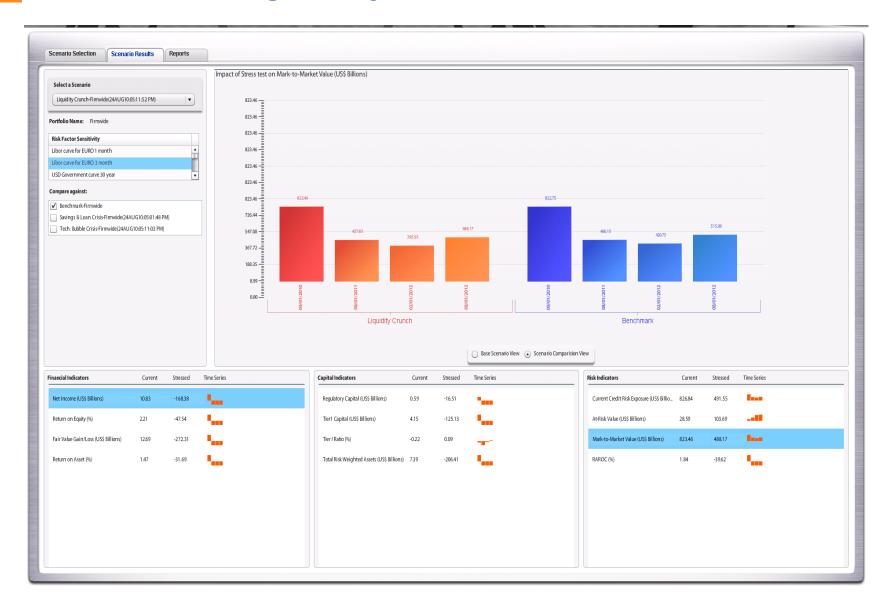
Predict Loan exposure, reduce the risk of loan losses

- Loan Loss Forecasting
 - Accounting based
 - Predictive Analytics
 - » Data Mining or Econometric Time Series Based
 - » Multi-Level Forecast
- Stress test
 - Economic factors
 - Sales volumes
 - Promotions

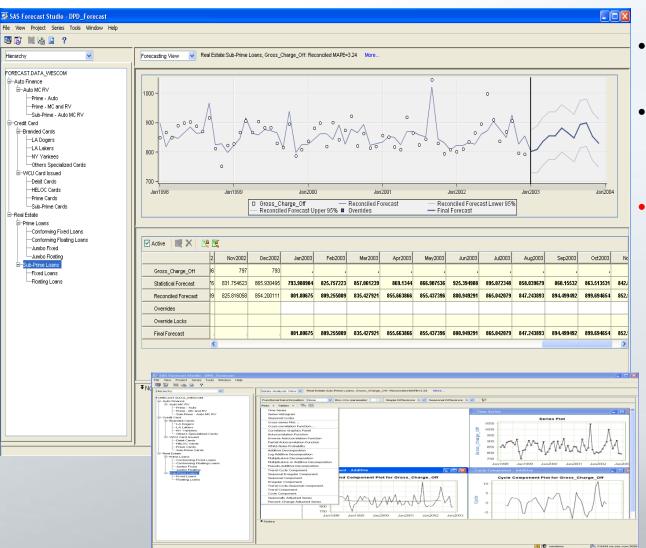
Goal: Historical Time Series and Forecast E.g. Auto Loan Loss Forecast



Stress Testing Analytics



Forecast Server



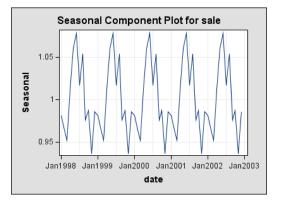
- Automatic model diagnosis and selection
- Can be run batch or interactively
- Incorporates Event
 Calendars and discrete
 event modeling
- Deconstructs forecast
 into seasonal, cyclical,
 trend and "unobserved"
 components

Popular Forecasting Methods

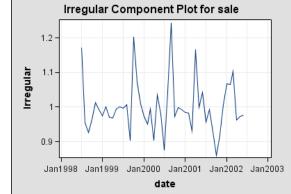
- ARIMA
- Exponential Smoothing
- UCM
- Croston's Method
- Intermittent Demand Model
- Curve Fitting
- Moving Average (window)
- Multiple Regression
- Random Walk
- SAS Code
- Compare models

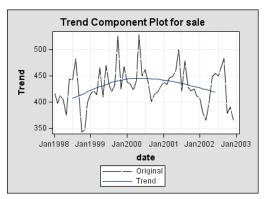
Forecasting Process Primary Elements

Seasonality*



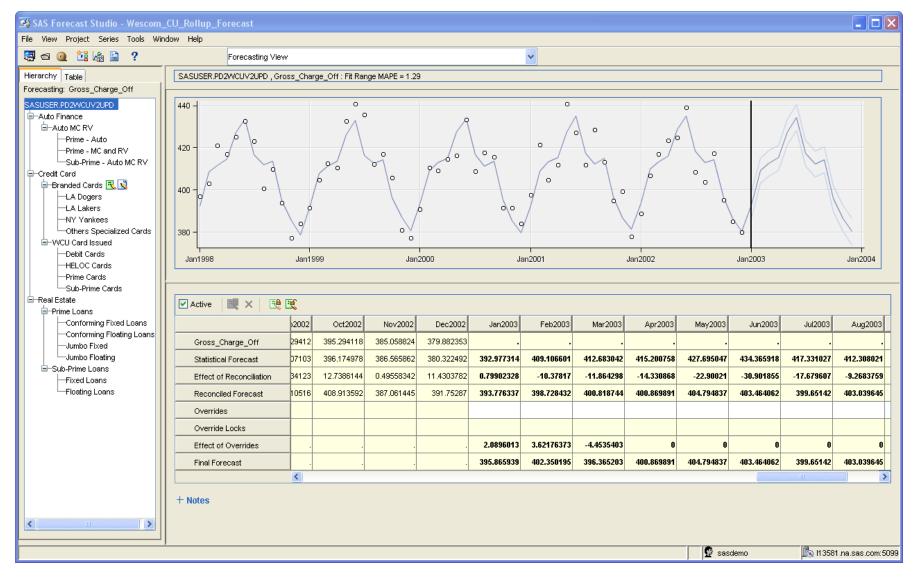
Trend* (up, down, or function)





* Sometimes it is helpful to add causality (known as regressors, explanatory, or independent variables) to explain the 1st and 2nd components

Multi Level Forecasting Automatic Reconciliation



Optimize lease offers

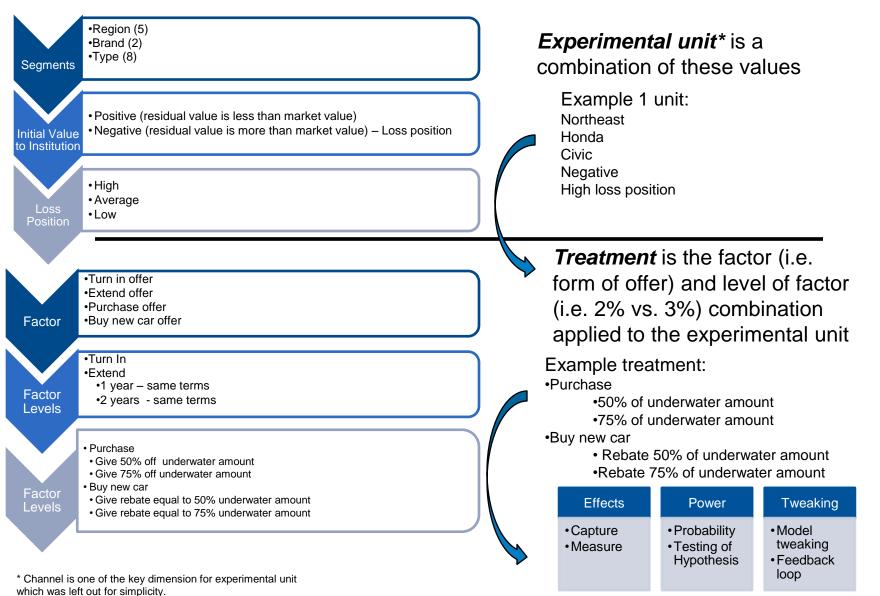
- Optimizing lease offers
 - What is the value of different customer options?
 - What is the propensity of customer to take any options?
 - How does one develop an optimization logic for which product to present in which order?

- Design of Experiment question to answer:
 - What is the propensity to accept an offer at the end of the lease end process, conditioned upon the specifics of an offer?

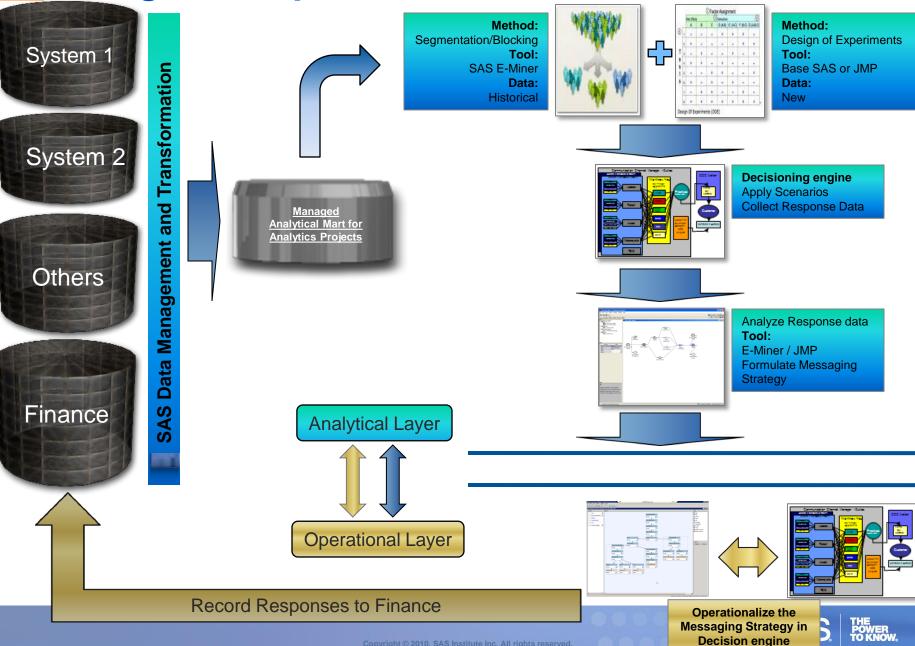
**Cost of each option can be calculated given a residual value

**Optimization of the profit equation given acceptance rates and alternatives

Optimize lease offers – Design of Experiment



Design of Experiment Framework



Copyright © 2010, SAS Institute Inc. All rights reserved.

Collection Optimization

- Collection Optimization requirements:
 - Segments of customers based on PD and LGD calculation
 - » Behavioral score cards
 - Historical collection response rates for PD/LGD buckets
 - Historical success rates /channel (channel sequence)
 - Formulate collection strategies
- Benefits
 - Optimize collection actions to maximize \$ collected per \$ spent
 - Prioritize strategies (channel & agent) based on customer's Expected Loss Amount (PD*LGD*EAD)
 - Minimize \$ spent on collection effort
 - » Prioritizing high cost contact strategy with high risk accounts
 - » Minimize collection contacts for self-cure accounts.
 - ** PD- probability of default
 - ** LGD- loss given default (% of exposure at default)
 - ** EAD- \$ exposure at default

Copyright © 2010, SAS Institute Inc. All rights reserved

Agenda

Introduction

Changing Risk Landscape

- Key Drivers and Challenges

Sample Predictive Analytics for Vehicle Finance Organizations

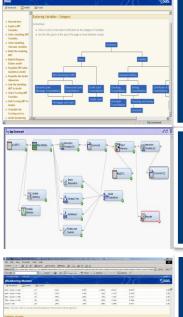
- Manage credit risk and protect your portfolio
- Establish in-house credit scoring
- **Real time Decisioning**
- Predict loan exposure, reduce the risk of loan losses
- Optimize lease offers
- **Collections Optimization**

Best Practices – Case Study

Questions and Answers

Collections Auto Finance - Case Study

In House Credit Scoring Management



GUI Framework for: •Navigate Data Model •Dataset creation (select variables and target, create variables) •Create Basel II pools •Map pools to Master Scale •Schedule model scoring

GUI Framework for: •Data modeling •Variable Selection •Model Benchmarking •Model Metadata Registration •Model Documentation

GUI Framework for: •Model Monitoring •Model Input monitoring •Model Output monitoring •Basel compliant •Configurable statistical measures

Problem:

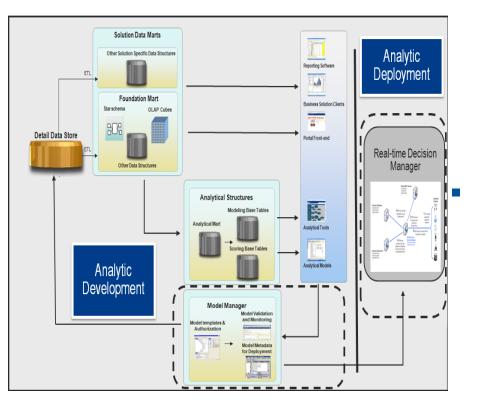
- No ability to extract data for analysis in a timely fashion
- Required ability to create models for delinquency and collections very quickly as credit crisis spread.
- Ability to support multiple modelers and feed results to collections team to operationalize model feedback on collection priorities

Solution: SAS CSFB Solution

- Ability to generate modeling dataset via web interface for over 5000+ variables
- Ability to use state of the art modeling capability in creating models in less than 1/3 of the time it used to take
- Collections team performance and staffing improved drastically enabling firm to generate an ROI at more than 10 x the solution price.

Decisioning Auto Finance - Case Study

Real Time Model Deployment • Press



Problem:

- No ability to deploy model without recoding and re-testing
- Need to reduce time to update model in strategy management very quickly
- Ability to support multiple strategies but production and on an ad hoc basis on large scale dataset for batch and real time decision

Solution: SAS Model Manager and Real Time Decision Solution

- Ability to store all models in a single repository for promotion to production
- Promotion to production decision engine required no re-coding
- Ability to implement strategy change often and very quickly to react to changing market conditions
- Run large scale decision project under tie constraints allotted

www.sas.com

Copyright © 2010 SAS Institute Inc. All rights reserved.