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" New Era of Financial Services Firms:

Earnings Quantity to Earnings Quality

Leading Firms are investing in
the ability to provide account
holder “event” level information
to manage customer
relationships, risk, regulatory
drivers, and return on capital.

Enhanced Operational
& Capital Advantage

» Capital Allocation is directly tied Enhanced Regulatory

to accounts & product profitabilit . "
_ i P / Reporting Capability
* Risk processes are as integral as

accounting & forecasting * Proactive risk & financial
« Velocity of financial analysis is reporting to internal & external
* Ability to report in multi
jurisdictions

« Strategy embedded in forward
looking capital planning

“The goal is to increase
quality of relationships with
profitable customers”

Enhanced Customer
Relationships
* Siloed Channels replaced with
“Events”

* Products are offered at anticipate
life or firm level events

» Customer RM balanced by
Risk RM



" Convergence of Capabilities

Marketing
Customer capacity
Business Segments to
Develop & Grow
Market Segment
Penetration

Risk Enterprise View

Customer Credit Risk Factors Influence Buy Decisions
Worthiness Profitable Markets Identified
Exposures Internal Hedging via Marketing
Geographic Proactive Capital Management via
Concentration “Firm Wide” stress testing

Risk Adjusted Pricing

Finance

Loss Reserves and
Allocations

Accounting

Planning and Budgeting
Capital

FTP and RAPM




| Integration of Risk & Finance

360 degree view on customer

Integrated Risk and Finance
360 view of customer

&

¢ ¢Risk-based performance
management 99
5

Advanced portfolio S
¢ ¢Integrated asset and liabilities

credit risk
management management??
g, 3
‘_:"5 e ¢ ¢We need to price ¢ ¢ RWA reporting
= GE') for risk? 9 compliance &
E 2 @ simple stress SAS
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S 2 | (Graded loans Customer Intelligence Solution
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SAS Analytical Solutions

Performance Management

Strategy Management Balance Sheet Planning | Funds Transfer Pricing

Credit
Risk

Customer
Experience

Economic

IVIarketing
Capital y

Optimization

j / ~ Social
| Treasury Customer Tt
. | Analytics

Analytics |

Optimization

I"‘-‘, Regulatory

) Real Time
Capital —

Decision
Governance & MeMT

Compliance

Fair
Banking
Regulation

Operational
Risk

Detection

Risk Adjusted Perf.

Profitability Forecasting & Budgeting | Activity Based Costing | Risk Based Pricing
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I SAS Analytical Application Platform

Common Infrastructure supporting SAS solutions
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3 Analytics for Auto Finance
Typical Predictive Analytics

* Loan Losses

= * Cost of funds (Treasury, Interest Rates)

U A o * Residual values at future point in time (behavioral)
* Loan Exposure

J

* Regression based models
* PD, LDG at origination and on going
. Al A . * Residual value at lease origination
* Optimal down payment
» Segmentation

J

* Portfolio risk
* Credit Risk
Al1(] * Liquidity Risk
 Capital Management
* Forecasting Roll Rates

A

* Optimization
* Pricing

®le ATI10 « Lease offers & Buy backs
* Collections

* Design of Experiment )
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" Brief Overview Analytics Solutions
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| Manage credit risk and protect your portfolio

= \What is credit risk?

= Default and Delinquency Analysis

= Estimation at Origination vs. Behavior
= Ratings Migration

= Concentration Analysis

= How do | protect my portfolio?
= Early warning systems
= Behavioral scoring
= Hedging
= How much capital should be held
= Matching capital to assets

Risk based pricing

11
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" Credit Performance Reporting

(TR OISR Loan Performance  Retail  Wholesale  Reg Cap Dashboard  Credit Risk Dashboard  Inputs  Detail Data Store  Pre-Collections Dashboard ~ Collections Dashboard ~ PDAGD/ACCF Modeling = Firmwide Risk ~ ALM  Marki

Total Revenue secmeoe @ X o poA st meve @@ X o ROE i shore: e | B @ X o
$600 1.2 ‘
§500 1.1
‘ 1
§400
103

§ 4200
0.8

$200
0.7
$100 0.6
$0 0.5

2006 2007 2008 2009 2006 2007 2008 2009
Year Yeur

Tax Expense serteut B @ X o Restructured Loans st moue 0@ X o NonPerforming Loans st moue (B @ X o
2
1419 \ 2009
1416
:‘x" |||||||||
2007 2008 2009
Yeur $80 $100 $120 $140 $160 $180 $200 $220 $240
RAROC vs NIl stz {1 @ X o RAROC vs Hurdle Rate seme @@ X o Links st v (@ X
M"Mmm ." 7 '. m”m Civcke bate % refresh colaction
!\EE‘ " _ I - w 1(‘(}\ e — LIRS
E E il = = 'P" & Economic Factor Stress Testing
an o |
510 I I - = " [& 1ndustry Concentration
3 L Bl A
sz B . l . i '“i =. l ' # Scenario Stress Testing Tool
At - - _ e - i




" Delinquency Reporting

Q-9 NE6 APAHxa@e 2 %= g v - 5 x

* Paortal Administrator ®

Help -

Cptions -

SAS Risk Portal Gsas.

Log &ff sasdemno

Reports Delinquency Status by Ratings N X A Delinquency Status by FICO Score BIX| 2
Delinquency Status Delinquency Status
Rating - — i FICO
0-90 »90 | Charge-OFF Total 0-20 =00 Charge-0OFfF Total
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" Establish in-house credit scoring

= 3 Choices
= Using FICO or similar scores
= Qutsourcing modeling
= |[n housing credit scoring

Why?
Develop analytical skills in house
Gain deeper insight into credit portfolio and customer behavior

Ability to use analytics develop for other uses
(PD, Delinquency, Collections, Marketing Campaigns)

Aligning risk, finance, and marketing
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In house Credit Scoring Framework

Real Time Decisioning or Batch Processing

N ]

Application
Processing
System

Other data
sources

e |
E

Billing
System

Metadata Security and Audit Trail Lay

E

Data Detail Data —y
Transformations Store

Monthly PD,LGL
Calculations,
Model Inputs

Data Quality
Validation
Change Data
Capture

PD, LGD, EAD
Models, and
Metadata

.........

2006/09

_—
il
' SAS Institute Inc. All rights reserved.

4 GUI Framework for:

*Navigate Data Model

# -Dataset creation (select variables and

target, create variables)
*Create Segments / Pools
*Map pools to Master Scale
*Schedule scoring

GUI Framework for:

*Data modeling

*Variable Selection

*Model Benchmarking
*Model Metadata Registration
*Model Documentation

GUI Framework for:

*Model Monitoring

*Model Input monitoring

*Model Output monitoring
*Configurable statistical measures

GUI Framework for:
*Reports building

*Performance Reports
*Parameter Reporting
*Portfolio Reports

GUI Framework for:

*Model Management

*Model Lifecycle

*Real time deployment
*Automation and workflow Model

Validation




8 Credit Scoring Solution

Process Flow

Reports, Portal and

Dimensional L
Model Monitoring
Source
Systems
Existing
Data
Warehouse

odel
Development*

Solution Mart

DD Framework
Analytic Mart

Model
Scoring*

(a+ b)2= a’+ dab +

Updated Scores

Source
Systems
Existing
Data
Warehouse:

*Model Packaging Using

N
Data Object Report Object Aavre el | Workflows V> Metadata Repository

DDS = Detailed Data Store
ABT = Analytic Base Table

THE


http://d72777.na.sas.com/risk/DDS/31_Banking_Logical_Report/1Picturesection0.htm
http://supportprod.unx.sas.com/documentation/solutions/riskmanagement/firmwidebank/rrdatamodel13.pdf

Credit Scoring Analytics Solution
Model Monitoring & Validation

3 http://nlsstrhdw.emea.sas.com:8080/Portal/viewItem.do?com.sas.portal.ltemld=Link +omi://Foundati - Microsolt Internet Explorer

File Edit View Favorites Tools Help

GBack v = - @ [2) 4} Qoearch [ajFavorkes EPmeda (P | 5 S =1 = &)
Address [Q] http:/inlsstrhdw.emea.sas.com:8080/PortalfviewItem.do?com. sas. portal. ItemId=Link%2Bomi%3A%2F %2F Foundation%2F reposname % 3DFoundation®%2FDacument % 3Bid% ;I
Google - | =l| [Clseach + & | 0 | popups okay | 4F Check ~ X Autolink ~ (5005 fed options

«Portal Page «Search

Monitoring Models

& Bookmark ] Publish [@] E-mail

Reporting > Monitoring Models > Select Models SAS® Credit Scoring

Monitoring Ongoing PD models

Model Type: Models for Ongoing Risk Management
Product Type: Mortgage Product

Notes:
1. Select upto two models for comparison and select a period to display the measure level dashboard.
2. The model names for production models are specified in red.

Model Name APRO4 MAYO4 JUNO4 JULO4 AUGO4 SEPO4 OCTO4 NOVO4 DECO4  JANOS F
¥ PD Model 1 for Mortgages (Outcome period:12 months) J J J J J J J 9 - J
¥V PD Model 2 for Mortgages (Outcome period:12 months) 2 J J J J J J J J J

™ Months 4 - 15 of 15

THE
POWER
TO KNOW.
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I Real Time Auto-Decisioning Criteria
What-if analysis

= Enable business analysts to easily access suite of models built by 3-
party vendor

= Enable deeper / more robust auto-loan/lease application analysis
= Monitor population score shifts & model input calibration
= Enable what-if / scenario analysis based on changes to

» Population of applicants (perturbing input data)

» Auto-decisioning criteria

» Both (decisioning criteria and characteristics of applicants)

= Process flow templates processes to catalog and automate library of
what-if analysis scenarios

THE
POWER
TO KNOW.
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" Predict Loan exposure, reduce the risk of
loan losses

= Loan Loss Forecasting
= Accounting based
= Predictive Analytics
» Data Mining or Econometric Time Series Based
» Multi-Level Forecast

= Stress test
= Economic factors
= Sales volumes
= Promotions

GSsas | B,



" Goal: Historical Time Series and Forecast
E.g. Auto Loan Loss Forecast
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I Stress Testing Analytics
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" Forecast Server

4 SAS Forecast Studio - DPD_Forecast
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Automatic model
diagnosis and selection

Can be run batch or
interactively

Incorporates Event
Calendars and discrete
event modeling

Deconstructs forecast
into seasonal, cyclical,
trend and “unobserved”
components

Popular Forecasting Methods
* ARIMA
*  Exponential Smoothing
+  UCM
*  Croston’s Method
*  Intermittent Demand Model
«  Curve Fitting
*  Moving Average (window)
*  Multiple Regression
* Random Walk
*  SAS Code
+  Compare models
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Primary Elements

Seasonality*

" Forecasting Process

Seasonal Component Plot for sale

1.05

Seasonal

14

0.95 4

T T T T T T
Jan1998 Jan1999 Jan2000 Jan2001 Jan2002 Jan2003
date

Trend* (up, down, or function)

Random (error)

Irregular

Irregular Component Plot for sale

0.9+

T T T T T T
Jan1998 Jan1999 Jan2000 Jan2001 Jan2002 Jan2003
date

Trend Component Plot for sale

S
ol )l ‘\\/ “r\\ A
w17 y

350 l‘l.

Trend

* Sometimes it is helpful to add
causality (known as regressors,
explanatory, or independent
variables) to explain the 1st and 2nd
components
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o Multi Level Forecastin

Automatic Reconciliation

1% SAS Forecast Studio - Wescom_CU_Rollup_Forecast
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| Optimize lease offers

= Optimizing lease offers
= What is the value of different customer options?
= What is the propensity of customer to take any options?

= How does one develop an optimization logic for which product to
present in which order?

= Design of Experiment gquestion to answer:

= What is the propensity to accept an offer at the end of the lease
end process, conditioned upon the specifics of an offer?

**Cost of each option can be calculated given a residual value
**Optimization of the profit equation given acceptance rates and alternatives

THE
POWER
TO KNOW.
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2 Optimize lease offers — Design of Experiment

" p
.Reglon (5) E . t | 't* .
Brand (2) Xxperimental unit® 1S a
*Type (8) . .
) combination of these values
) Example 1 unit:
* Positive (residual value is less than market value) Northeast
HEIAVZINTY * Negative (residual value is more than market value) — Loss position Honda
to Institution y Civic
_ D Negative
*High High loss position
Loss -ﬁverage
= *Low
Position )
Treatment is the factor (i.e.
«Turn in offer )
Lum in ofer form of offer) and level of factor
s o er (i.e. 2% vs. 3%) combination
/ applied to the experimental unit
*Turn In h .
“Extond Example treatment:
o +1 year — same terms *Purchase
Lg\?e?sr *2 years - same terms ) *50% of underwater amount
*75% of underwater amount
burch *Buy new car
* Purchase
« Give 50% off underwater amount * Rebate 50% of underwater amount
« Give 75% off underwater amount *Rebate 75% of underwater amount
Factor . Buy new car
| * Give rebate equal to 50% underwater amount
Levels * Give rebate equal to 75% underwater amount
J *Capture * Probability *Model
«Measure «Testing of tweaking
Hypothesis *Feedback
* Channel is one of the key dimension for experimental unit loop

which was left out for simplicity.
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" Design of Experiment Framework

W oy
All
. ' :
A v > '
A M
A 1]
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f /

System 1

System 2
LI}

Analytical Mart for
Analytics Projects
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| Operational Layer l
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Messaging Strategy in
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http://www.marketap.com/images/segmentation-graphic.jpg
http://images.google.com/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/a/ac/Design_Of_Experiments.png&imgrefurl=http://commons.wikimedia.org/wiki/File:Design_Of_Experiments.png&usg=__qwRmZ8nDn4P414KhTcZlOt6JgS0=&h=650&w=894&sz=65&hl=en&start=1&um=1&tbnid=bQrQe6qAK_o9CM:&tbnh=106&tbnw=146&prev=/images?q=design+of+experiments&ndsp=18&hl=en&rlz=1R2SKPB_enUS333&sa=N&um=1

2 Collection Optimization

= Collection Optimization requirements:
= Segments of customers based on PD and LGD calculation
» Behavioral score cards
= Historical collection response rates for PD/LGD buckets
= Historical success rates /channel (channel sequence)
= Formulate collection strategies

= Benefits
= Optimize collection actions to maximize $ collected per $ spent

= Prioritize strategies (channel & agent) based on customer’s Expected Loss
Amount (PD*LGD*EAD)

= Minimize $ spent on collection effort
» Prioritizing high cost contact strategy with high risk accounts
» Minimize collection contacts for self-cure accounts.

** PD- probability of default

** | GD- loss given default (% of exposure at default)
** EAD- $ exposure at default

GSas  Em.
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I Collections Auto Finance - Case Study

= |n House Credit Scoring = Problem:

Management = No ability to extract data for analysis in a

= GUI Framework for:

*Navigate Data Model

*Dataset creation (select variables
and target, create variables)

Bl -Create Basel Il pools

Sl GUI Framework for:

*Data modeling

*Variable Selection

*Model Benchmarking
*Model Metadata Registration
*Model Documentation

: GUI Framework for:

*Model Monitoring
*Model Input monitoring
*Model Output monitoring
*Basel compliant

Bl -Configurable statistical measures

timely fashion

Required ability to create models for
delinquency and collections very quickly as
credit crisis spread.

Ability to support multiple modelers and feed
results to collections team to operationalize
model feedback on collection priorities

Solution: SAS CSFB Solution

= Ability to generate modeling dataset via web

interface for over 5000+ variables

= Ability to use state of the art modeling

capability in creating models in less than 1/3
of the time it used to take

Collections team performance and staffing
improved drastically enabling firm to
generate an ROI at more than 10 x the
solution price.




" Decisioning Auto Finance - Case Study

= Real Time Model Deployment = Problem:

= No ability to deploy model without recoding
and re-testing

I = Need to reduce time to update model in

Solution Data Marts

i Analytic strategy management very quickly
8 . S = Ability to support multiple strategies but
| | production and on an ad hoc basis on large
e et s L ’(ﬁ‘ scale dataset for batch and real time
EE Real-time Decision decision

Manager
_ ¢+ = Solution: SAS Model Manager and
'l Real Time Decision Solution
\g '/ = Ability to store all models in a single

| repository for promotion to production
\--~‘--~' = Promotion to production decision engine

Modeling Base Tables

required no re-coding

= Ability to implement strategy change often
and very quickly to react to changing market
conditions

* Run large scale decision project under tie
constraints allotted
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