Auto-Scaling in OpenStack

@DALLAS

Saurav Tewari
Student volunteer (May 2015- Aug 2015)

S&Iutiéns

Index

Introduction
Pre-Configuration
Heat Orchestration Template (HOT)
HOT created as part of autoscaling application
Workflow of autoscaling
Interval at which alarm will be triggered
Snapshots
Initial state of network
Creating network stack from networkmain.yaml
Creating network scale from networkmain.yaml
Injecting code (increasing cpu_util) from ScalingMain vm to machine28 vm
Scaling up
Injecting code (decreasing cpu_util) from ScalingMain vm to machine28 vm
Scaling down
Ceilometer statistics API
Stack event for checking alarm triggering time
Ceilometer query for measuring specific resource cpu-utilization
OpenStack CLI
Heat API
Ceilometer API
Code injection commands
References

Introduction

Heat is the component responsible for orchestration in OpenStack. It manages the lifecycle of
openstack application using templates and defines the relationship among resources. It defines the
lifecycle of applications. Heat allow advanced functionality such as nested stacks and autoscaling.
AutoScaling is a feature of OpenStack Heat that allows resources of an application to autoscale
when required. Autoscaling is possible for any number of resources but in this application we have
considered only autoscaling of virtual machines.

In auto-scaling Heat and Ceilometer plays vital role. Heat provides resources to be scaled and
policy for scaling. Ceilometer provides alarm which notifies when certain threshold (of some meter)
have been met.

Pre-Configuration

Creating image with following three files.

1. run.sh: this file contains code for running infinite echo and dumping to \dev\null file.

2. start.sh: it contains for loop that executes run.sh file in each loop.

3. end.sh: it contains command to kill all the running shell processes.
After all files have been created take a snapshot of this image. This screenshot will be used for
booting all the virtual machine instances for auto-scaling.

Pre configured files

Heat Orchestration Template (HOT)

It it the default format which is used to create stack: a collection of resource. HOT is written in
YAML (YAML Ain’t Markup Language) format. It integrates well with software configuration
management tools and other OpenStack components. There are three versions of HOT that are

2

available today. The version of templates matter because each version contains specific features
and supports specific functions:

1. Icehouse (oldest) 2013-05-23
2. Juno 214-10-16
3. Kilo (latest) 2015-04-30

parameter groups:

a declaration of input parameter groups and order
parameters:

declaration

resources:

declaration of template resources
outputs:

declaration of output parameters

HOT structure

HOT created as part of autoscaling application
1. networkmain.yaml

This templates creates an infrastructure for creating auto-scaling resources. It creates a Router
(ScalingRouter) which is connected to Network (ScalingNetwork) and an Instance (ScalingMain).

-

. 0=
ScalingRouter E SealingMain

o [

g) 3

z _/ E

i

0}

networkmain.yaml

2.scalingmain.yaml

This is the main templates which is used for scaling. It has following main resource:

a. Heat::AutoScalingGroup: It is the group of resources that can be scaled. The template
contains only Nova::Server as scaling-group member. Metadata has been set for server since alarm
will check resources with this metadata (key, value pair) for triggering alarm.

b. Heat::ScalingPolicy: Defines the policy for change (add/remove) in scaling-group. The
template includes two scaling policies. One for scaling-up and other for scaling down. Depending on
the triggered alarm it will scale-up/ scale-down the AutoScalingGroup resources.

C. Ceilometer::Alarm: Defines the meter and condition to be monitored for triggering alarm. The
template monitors cpu utilization (cpu_util meter) of resources having metadata as defined in
AutoScalingGroup. This is important because by default alarm monitors cpu utilization for all the
resource present in tenant. By setting matching-metadata we are restricting to monitor only those
resource with specific metadata.

ScalingPolicy

scale-upl xme»un% \tarm achon
AutoScalingGroup Alarrm

' _I Muonibars
Fver 2

CFU utllization

metadala: malching meladata:
“rvebering 2 Y “rmatadata wser medadata.)Y

main resources for scaling

|

,,_B

i =
ScalingRouter g ScalingMain
5 {) z
= 2 {:]
])
i
i machine2s

scalingmain.yaml|

Workflow of autoscaling

ScalingMain is used to inject code to any virtual machine of AutoScalingGroup. Initially
AutoScalingGroup has one virtual machine. Overall two virtual machines on ScalingNetwork.

1. Using SSH inject code/kill process from ScalingMain to other virtual machine.

2. Ceilometer Alarms monitors the average cpu utilization of all the virtual machines of Scaling

stack (part of scaling group in scalingmain.yaml).

3. If the average cpu utilization of stack is greater than or equal to 30% (mentioned in cpu_high
alarm) or less than or equal to 10% (mentioned in cpu_low alarm) then alarm is triggered.

4. The alarm notifies the ScalingPolicy URL (as mentioned in alarm_action of ceilometer alarm
definition in scalingmain.yaml). The time at which alarm is triggered depends on the interval of

pipeline.yaml file and period of alarm.

5. The ScalingPolicy add or removes virtual machines depending which alarm has been triggered.

6. step 1-5 is repeated until specific condition is specified.

Scaling stack
. += | Scaling Polic
2. Jee e
z |-
- Scaling upidown '\ﬁlan-n g
Scaling group hanitars
—] Alarm
Vis CPU utilizaton
inject
coxde
ScalingMain
{instance}

Interval at which alarm will be triggered

The time at which meter sample will be collected by Ceilometer Collector is defined in
“pipeline.yaml!”. By default the cpu_util meter sample are collected at every 600 seconds or 10

minutes (interval under meter ‘cpu’).

H31IWOTI3D

SOouUrcCes
- mame: meter _Source
rrterval: G688

METETS :

- meeter_sink
mE Cu_Source

erval: G688
2

pipeline. yaml

For auto-scaling application we have changed it to 60 so that samples are collected every 60
seconds. Also there is telemetry services configuration file “ceilometer.conf’. Here the interval for

collection should be equal to or greater than interval in pipeline.yaml file.

Period of evalustion cycle, should be »= than conflgured plpeline
£ EnkEruEl - llection of {integer value
Deprecated group/name - [alarm]/threshold_evaluation_interval
fevaluation_interval = 68

ceilometer.conf

So whenever the interval is pipeline.yaml is changed, ceilometer.conf should also be updated if
required.

Snapshots

Initial state of network

FOFRCMCTIEL

PERTET]
PRI

Initial setup

Creating network stack from networkmain.yaml

Ll Al k0]

network stack

Creating network scale from networkmain.yaml

i [§3
= g T |
scale stack
Initially 1 virtual machine as part of autoscaling group

Injecting code (increasing cpu_util) from ScalingMain vm to machine28 vm

Connecting remotely using ssh
and injecting code by executing shell files remotely

CPU utilization of machine28 using top command

Scaling up

AutoScalingGroup instance scaled up from 1 to 4

Injecting code (decreasing cpu_util) from ScalingMain vm to machine28 vm

Injecting code for decreasing cpu utilization
by executing end.sh file remotely

Scaling down

=
=]
=0
=)
=]
=1
=

uLgim il

AutoScalingGroup instance scaled down from 5 lo 2
(one is ScalingMain vm which is not part of scaling group)

10

Bratix | et

Al

) S R

Al

Al

DRHEEHA M AR AR YRR AR AR

R B
o A e A e B S 8

itEkriztdciirdcbickiciRricElciir

A TP T TR |

Average CPU utilization of all the AutoScallingGroup vm
by Ceilometer statistics AP

Stack event for checking alarm triggering time

Srack Bwerns

Bk Foviarn Frvems e Twrbes fee

P

Stack (scale) events

Ceilometer query for measuring specific resource cpu-utilization

While creating Nova::Server (as part of AutoScalingGroup) we set following metadata:
metadata: {"metering.stack": {get_param: "OS::stack_id"}}

While creating Ceilometer::Alarm we set following matching_metadata:
matching_metadata: "metadata.user_metadata.stack": {get_param: "OS::stack_id"}

11

This metadata query is not same because when resource contains metadata in the form of
‘metering.X: Y” then ceilometer converts the metadata of resource to “user_metadata.x: Y”. And
since we are checking the metadata the ceilometer query becomes “metadata.user_metadata.x: Y”

heat show-resource vmlD ceilometer resource -r vmiD
metadata; sonvened to metadata:
“‘metering.X". Y L v ‘user_metadata X" Y
Conversion
OpenStack CLI

To check information of stack or any telemetry services OpenStack had provided API. For this
application some of Heat and Ceilometer API are used. Following are the API used are

Heat API

To check stack present in tenant
heat stack-list
To create new stack
heat stack-create scale -f scalingmain.yaml //scale: name of stack, scalingmain.yaml: filename
To delete a stack
heat stack-delete scale//scale: name of stack to be deleted
To display stack information
heat stack-show scale //scale: stack name

Ceilometer API
To check alarm present in tenant
ceilometer alarm-list
To display alarm information
ceilometer alarm-show -a alarm_id //alarm_id: ID of alarm
To check sample-list of cpu_util meter
ceilometer sample-list -m cpu_util - metadata.user_metadata.stack=stack_id
/I-m cpu_util: meter for outputting sample, stack_id: id of stack
To check statistics
ceilometer statistics -m cpu_util -q metadata.user_metadata.stack=stack id -p 120
/Ip: period for statistics should be displayed
To delete alarm
ceilometer alarm-delete -a alarm_id //alarm_id: ID of alarm

12

Code injection commands
To login to virtual machine remotely using ssh

Ssh cirros@x.x.x.x /[cirros: hostname, x.x.x.x floating IP
To start injecting code
sh start.sh [[start.sh: shell file that runs multiple infinite loops in background
To kill all shell process
sh end.sh /lend.sh: shell file that kill all the running shell process
References
e http://docs.openstack.org/developer/heat/template_guide/hot_spec.html
e https://ask.openstack.org/en/question/50124/heat-template-alarm/
e https://bugs.launchpad.net/heat/+bug/1356544
e https://ask.openstack.org/en/question/58566/heat-orchestration-scale-down-a-specific-in

stance/
http://docs.openstack.org/admin-guide-cloud/content/section_telemetry-data-collection-p
rocessing.html
http://docs.openstack.org/developer/ceilometer/configuration.html#pipeline-configuration
http://docs.openstack.org/kilo/config-reference/content/section_ceilometer.conf.html
http://docs.openstack.org/developer/ceilometer/architecture.html
http://docs.openstack.org/developer/ceilometer/configuration.html#pipeline-configuration
https://github.com/rbowen/presentations/blob/master/ceilometer/slides.md
https://github.com/openstack/ceilometer/blob/master/ceilometer/compute/util. py#L 34

13

http://docs.openstack.org/developer/heat/template_guide/hot_spec.html
https://bugs.launchpad.net/heat/+bug/1356544
https://ask.openstack.org/en/question/58566/heat-orchestration-scale-down-a-specific-instance/
https://ask.openstack.org/en/question/58566/heat-orchestration-scale-down-a-specific-instance/
http://docs.openstack.org/admin-guide-cloud/content/section_telemetry-data-collection-processing.html
http://docs.openstack.org/admin-guide-cloud/content/section_telemetry-data-collection-processing.html
http://docs.openstack.org/developer/ceilometer/configuration.html#pipeline-configuration
http://docs.openstack.org/kilo/config-reference/content/section_ceilometer.conf.html
http://docs.openstack.org/developer/ceilometer/architecture.html
http://docs.openstack.org/developer/ceilometer/configuration.html#pipeline-configuration
https://github.com/rbowen/presentations/blob/master/ceilometer/slides.md

