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                                         UNIT-1 

FORMAL LANGUAGE AND REGULAR EXPRESSIONS 
 

 

Alphabets 
 

An Alphabet is a finite, non empty set of symbols. It is denoted by S. The 

symbols are called the letters of the alphabet. 

 
Examples 
 
1)S={0,1}, the binary alphabet 
 
1 The ASCII alphabet, the set of ASCII characters  
 
2 S={a,b,c,…z}  
 
3 S={0,1,a,b,c}  

Strings 
 

A string over an alphabet S is a finite sequence of symbols from alphabet S 
 

 

Examples 
 

1) Binary alphabet S={0,1} 
 

Strings are 0111100,111,000,…. Etc 

2) S= {a,b,c,…..z} 
 

aa,bb,afasdsasd, are the strings of the alphabet 
 

 

Languages and Operations on Languages 
 

A language L over the alphabet Є is a subset Є* . That is, a language is a set of 
strings over the given alphabet. 

 

Note1: A language can be empty L =ǿ 
 
Note2. Empty language is not equal to L={€} 
 
Operations: 

 

Union: Union is the simplest operation on two languages. If L1 and L2 are two languages, 

then union, denoted by L1 U L2 is a language containing all strings(w) from both the 

languages . 
 
Concatenation: The concatenation AB of languages A and B is defined by, 
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AB={uv| uЄA, vЄB) 
 
Kleene/Star closure: This operation defines on a set S a derived set S* , having as 

member, the empty string and all strings formed by concatenating a finite number of 

strings in S or alternatively. 

 

S*=S
0
 U S

1
U S

2
 

Where S
0
=Є 

Positive closure: The positive closure of a language is defined as 

S
+
 = S

0
 U S

1
U S

2
 

 
Formal Definition of Computation 

• Let M = (Q, ∑,∂, q0, F) be a finite 

automaton and let w = w1w2…wn be a string where each wi is a member of alphabet ∑ 
 
• M accepts w if a sequence of states r0r1…rn 

in Q exists with three conditions: 
 
1. r0 = q0  

2. ∂ (ri, wi+1) = ri+1 for i=0, … , n-1  

3. r Є F  
 
We say that M recognizes language A if A = {w | M accepts w } 
 
In other words, the language is all of those strings that are accepted 

by the finite automata. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The above figure gives the examples of the DFA 
 
Here is a DFA for the language that is the set of all strings of 0‘s and 1‘s whose numbers 
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of 0‘s and 1‘s are both even: 

 
 

Acceptance of Strings and languages by Finite Automata 
 

A string X is accepted by a finite automata M=(Q,∑,∂,qo,F) if ∂(qo,x) = q for some q Є F. 
This is basically acceptability of a string by the final state. 
 

DFA starts with initial state qo, Let a1,a2,……an is a sequence of input symbols and ∂ is 
transition function. 

 

Step1: ∂(qo,a) = q1, DFA in Qo on input a , enters state q1 

Step2; ∂(q1,a2)= q2, DFA in state q1, on input a2, enters state q2 

Similarly ∂(qi-1,ai) = qi for each i. 
 

 

Here Q={q0,q1,q2,q3} 

∑={0,1} 
 
F={q0} 
 
Input string 110101 

∂(q0,110101) -> ∂(q1,10101) 
 

∂(q0,0101) 

∂(q2,101) 

∂(q3,01) 

∂(q1,1)   

∂(q0,ε)  
 

Qo is a accepting state  
 

1 1  0 1 0 1 

Hence q0------- >q1---------- q0 --------->q2 ----------> q3 ------------>q1 -------------q0 
 
 
A deterministic finite automaton (or DFA) is a deterministic automaton with a finite input 

alphabet and a finite number of states. It can be formally defined as a 5-tuple (Q, ∑,∂, q0, 
 
4. , where  
 
            Q is a non-empty finite set of states, 


 ∑ is the alphabet (defining what set of input strings the automaton operates on), 


 ∂ is the transition function, 


 q0 is the starting state, and 
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 F is a set of final (or accepting states). 
 
 

A DFA works exactly like a general automaton: operation begins at q0 , and movement 

from state to state is governed by the transition function . A word is accepted exactly when 

a final state is reached upon reading the last (rightmost) symbol of the word. 

 

DFAs represent regular languages, and can be used to test whether any string in is in the 

language it represents. Consider the following regular language over the alphabet 

 

This language can be represented by the DFA with the following state diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The vertex 0 is the initial state q0 , and the vertex 2 is the only state in F . Note that for 

every vertex there is an edge leading away from it with a label for each symbol in . This is 

a requirement of DFAs, which guarantees that operation is well-defined for any finite 

string. 

 
If given the string aaab as input, operation of the DFA above is as follows. The first a is 

removed from the input string, so the edge from 0 to 1 is followed. The resulting input 

string is aab. For each of the next two as, the edge is followed from 1 to itself. Finally, b is 

read from the input string and the edge from 1 to 2 is followed. Since the input string is 

now , the operation of the DFA halts. Since it has halted in the accepting state 2, the string 

aaab is accepted as a sentence in the regular language implemented by this DFA. 

 

Now let us trace operation on the string aaaba. Execution is as above, until state 2 is 

reached with a remaining in the input string. The edge from 2 to 3 is then followed and the 

operation of the DFA halts. Since 3 is not an accepting state for this DFA, aaaba is not 

accepted. 
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Design finite automata which accepts set of strings containing four 1‘s in every string over 

alphabet {0,1} 

 
 
 
 
 
 
 
 
 
 
 
 

Q={Q0,Q1,Q2,Q3,Q4} 

 

E={0,1} 
 

S=Qx ε ->Q 

 

Initial state=Q0 

 

Final state,f={Q4} 

 

 0 1 
   

Q0 Q0 Q1 
   

Q1 Q1 Q2 
   

Q2 Q2 Q3 
   

Q3 Q3 Q4 
   

Q4 Q4 - 
   

   
 
 
 
Design DFA that accepts all strings without three consecutive zeroes
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Q={Q0,Q1,Q2,Q3}   

 ε={0,1}   

 Initial state=Q0   

 Final states,f={Q0,Q1,Q2}   

     

  0  1 
     

Q0  Q1  Q0 
     

Q1  Q2  Q0 
     

Q2  -  Q0 
      
Design finite automata that accepts the language L={W belongs to (0,1)*/second 

symbol of W is 0 and the fourth symbol is 1} 

 
 
 
 
 
 
 
 
 
 
 
 
 

Q={Q0,Q1,Q2,Q3,Q4} 
 

ε ={0,1} 

 

Initial state=Q0 

 

Final state=Q4 

 

 0 1 
   

Q0 Q1 Q1 
   

Q1 Q2 -- 
   

Q2 Q3 Q3 
   

Q3 -- Q4 
   

Q4 Q4 Q4 
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Design DFA to accept strings with no of A‘s and B‘s such that numbers of A divisible 
by 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Q={Q0,Q1,Q2} 
 

ε ={A,B} 
 

Initial state=Q0 
 

Final state={Q0} 
 
Consider the below transition diagram and verify whether the following strings will be 
accepted or not 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              (1) 0011—accepted 
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Write a DFA that accepts set of all strings over 0,1 that ends with 11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Q={Q0,Q1,Q2} 
 

E={0,1} 
 

Initial state=Q0 
 

Final state, F={Q2} 
 

 0 1 

Q0 Q0 Q1 

Q1 -- Q2 

Q2 Q0 -- 
 

 

Construct a DFA that accepts set all of strings that start and end with 
different symbol. (over 1,2,3) 
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Q={Q0,Q1,Q2,Q3,Q4,Q5,Q6} 
 

E={1,2,3} 
 

Initial state=Q0 
 

Final states, F={Q4,Q5,Q6} 
 

 1 2 3 

Q0 Q1 Q2 Q3 

Q1 Q1 Q4 Q4 

Q2 Q5 Q2 Q5 

Q3 Q6 Q6 Q3 

Q4 Q1 Q4 Q4 

Q5 Q2 Q2 Q2 

Q6 Q3 Q3 Q3 

 
 
 
Nondeterministic Finite Automaton (NFA) 
 
 
 
 
 
 

q0 

a 
 

q1 
 

 
 
 
 

a,b 

 

4 Does not have exactly one transition from every state on every symbol:  
 

–   Two transitions from q0 on a  
 

–   No transition from q0 (on either a or b)  
 

5 Though not a DFA, this can be taken as defining a language, in a slightly different 

way  
 

6 We'll consider all possible sequences of moves the machine might make for a 

given string  
 

7 For example, on the string aa there are three:  
 

–   From q0 to q0 to q0, rejecting  
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–   From q0 to q0 to q1, accepting  

 
–   From q0 to q1, getting stuck on the last a  

 
8 Our convention for this new kind of machine: a string is in L(M) if there is at least 

one accepting sequence  
 

9 An NFA for a language can be smaller and easier to construct than a DFA  
 

10 Strings whose next-to-last symbol is 1:  
 

 

          An NFA accepts a string: 
 
                   when there is a computation of the NFA that accepts the string 
 
                        There is a computation: all the input is consumed and the automaton is in an 

accepting state 
 
           Example : aa is accepted by the NFA 

―accept‖ 
 
 
 
 

q1 a q2 
 

a 

 

q0  
a 

 

q3 
 
 
 
 
 

q1 a q2 
 

a 
 
 

q0 
 

a 
 

q3 
 

 

‖reject‖ 
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NFA with ε-Transactions 

11 An NFA can make a state transition spontaneously, without consuming an input 

symbol  
 

12 Shown as an arrow labeled with ε  
 

13 For example, {a}* ∪ {b}*:  
 
 
 

q1     

  a
 

 
 

q0 
 
 

 

q2             b 

 

5. An ε-transition can be made at any time  
 

6. For example, there are three sequences on the empty string  
 

–    No moves, ending in q0, rejecting  
 

–    From q0 to q1, accepting  
 

–    From q0 to q2, accepting  
 

7. Any state with an ε-transition to an accepting state ends up working like an 

accepting state too  
 

8. ε-transitions are useful for combining smaller automata into larger ones  
 

9. This machine is combines a machine for {a}* and a machine for {b}*  
 

10. It uses an ε-transition at the start to achieve the union of the two languages  

 

a,b 
 
 
 

a 

q1 

b 
 

q0 q2 
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• Formally, M = (Q, Σ, δ, q0, F), where  
 

–    Q = {q0,q1,q2}  
 

–    Σ = {a,b}  (we assume: it must contain at least a and b)  
 

–    F = {q2}  
 

– δ(q0,a) = {q0,q1}, δ(q0,b) = {q0}, δ(q0,ε) = {q2}, 

δ(q1,a) = {}, δ(q1,b) = {q2}, δ(q1,ε) = {}  
 

δ(q2,a) = {}, δ(q2,b) = {}, δ(q2,ε) = {}  
 

• The language defined is {a,b}*  

• An instantaneous description (ID) is a description of a point in an NFA's 

execution  
 

• It is a pair (q,x) where  
 

–    q ∈ Q is the current state  
 

–    x ∈ Σ* is the unread part of the input  
 

• Initially, an NFA processing a string x has the ID (q0,x)  
 

• An accepting sequence of moves ends in an ID (f,ε) for some accepting state f ∈ F  
 
 
Conversion of NFA to DFA 

 
14 For any string x, there may exist none or more than one path from initial state and 

associated with x.   
15 Consider an NFA M=(Q, Σ, δ, s, F).  

16 For x in Σ*, define  
 

[x] = {q in Q | there exists a path s q} 
 

• Define DFA M‘=(Q‘, Σ, δ‘, s‘, F‘}: Q‘ = { 

[x] | x in Σ* }, 
 

δ ([x], a) = [xa] for x in Σ* and a in Σ, s‘ = 

[ε], 
 

F‘ = { [x] | x in L(M) } 
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Convert the following NFA to DFA. 
 
Ex1: 
 
 

  
0 

q  
0  

0 
 

     
 

      
 

 s       
 

0 
ε  ε 1 s 0 Q 

 

  

r  s 
 

  ε 
  r  

 

   

r p 
 P  

 

p 
   

 

      
 

      

1 
 

       
 

1  
0 

  1  
0 

 

      
  

q, r, p 

 

1 

 

Find a DFA equivalent to NFA M= ({q0,q1,q2},{a,b,}, ∂,q0,{q2})  ∂ is given by 
 

 a B 

qo {q0,q1} {q2} 

q1 {qo} {q1} 

q2 - {q0,q1} 

 

qo is the initial state q2 

is the final state 

construction of DFA 

M‘=(Q‘,∑,∂‘,qo‘,F‘) 

 
11.

 Q‘=2
q
 ={ǿ,[q0],[q1],[q2],[q0,q1],[q0,q2],[q1,q2],[q0,q1,q2]} 

 

 

12. [q0] is initial state  

 
13. F‘={[q2],[q0,q2],[q1,q2],[q0,q1,q2]}  

 
14. ∂‘ as follows  
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 A b 

{q0} {q0,q1} {q2} 

{q1} {q0} {q1} 

{q2} ǿ {q0,q1} 

{q0,q2} {q0,q1} {q1} 

{q1,q2} {q0} {q0,q1} 

{q0,q1,q2} {q0,q1} {q0,q1,q2} 

 
qo is the initial state 

 
{q0,q1,q2} is the final state 

 
 

Convert the following NFA with Є moves into equivalent NFA  Є without  moves. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The above is NFA with Є moves 
 

M={Q, Є,^,q0,F} 
 

={{q0,q1,q2,q3},{0,1},^,q0,q1} 
 

M*={Q, Є,^ ‗,q0,F‘} 

 

17 -closure(q0)={q0,q1} 

― (q1)={q1}  
 

― (q2)={q2} ― 

(q3)={q3}  
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 0 1 Є 

q0 q0 --- 1 

q1 q3 q2 --- 

q2 q1 q3 --- 

q3 q3 q3 --- 

 

^‘(q0,0)= Є-closure(^(^(q0,Є),0)) 
 

= ― (^(Є-closure(q0),0))

 

= ― (^(q0,q1,0) 

= ― (^(q0,0)u^(q1,0)) 

= ― (q0uq3) 
 

= {q0,q1,q3} 

^‘(q0,1)=Є-closure(^(^‘(q0,Є),1)) 
 

= ― (^(Є-closure(q0),1)) 

= ― (^(q0,q1,1)) 

= ― (^(q0,1)u^(q1,1)) 

= ― (q2) 
 

= {q2}  
 

^‘(q1,0)= Є-closure(^(^‘(q1,Є),0)) 
 

= ― (^(Є-closure(q1),0)) 

= ― (^(q1,0)) 

= ― (q3) 

= {q3}  
 

^‘(q1,1)= Є-closure(^(^‘(q,Є),1)) 
 

= ― (^(Є-closure(q1),1)) 

= ― (^(q1,1)) 

= ― (q2) 
 

1. {q2}  
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^‘(q2,0)= Є-closure(^(^‘(q2,Є),0)) 

 

= ― (^(Є-closure(q2),0)) 

= ― (^(q2,0)) 

= ― (q1) 

   =  {q1} 

 

^‘(q2,1)= Є-closure(^(^‘(q2,Є),1)) 
 

= ― (^(Є- closure(q2),1)) 

= ― (^(q2,1) 

=  (q3) 
 

= {q3} 

 

^‘(q3,0)= Є-closure(^(^‘(q3,Є),0)) 
 

2 ― (^(Є closure(q3),0))  
 

=― (^(q3,0)) 

= ― (q3) 

= {q3}  

 

^‘(q3,1)= Є closurЄ(^(^‘(q3,Є),1)) 
 

= ― (^(Є closurЄ(q3),1)) 

= ― (^(q3,1)) 

= ― (q3) 
 

=  {q3}
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here final states are q0 and q1 
 
Since 
 

F‘={Fu{q1} if Є closure(q1)  contain  a state F} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Regular sets 
 

A special class of sets of words over S, called regular sets, is defined recursively 

as follows. 
 
18Every finite set of words over S is a regular set.  
 
19If U and V are regular sets over S, then U u V and UV are also regular.  
 
20If S is a regular set over S, then so is its closure S*.  
 
21No set is regular unless it is obtained by a finite number of applications 

of Definitions (1) to (3).  
 

i.e., the class of regular sets over S is the smallest class containing all finite sets of 

words over S and closed under union, concatenation and star operation. 
 
Examples   

 

1. Let 

 

= {1} then the set of strings {1, 11, 111 …} is a regular set. 

 

 
 

  

2. Let 

 

= {0,1} then the set of strings {10,01} is a regular set. 

 

 
 

  

 

 

Regular Expression 
 

Let  be an alphabet. The regular expressions over  and the sets that they 

denote are defined recursively as follows. 
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1. is a regular expression and denotes empty set. 

 
.  is a regular expression and denotes the set { } 

 

For each a in ,a is a regular expression and denotes the set {a}. 

These are called primitive regular expressions. 

15. If  r and s are regular expressions denoting the languages R and S,  
 

respectively, then (r+s), (rs) and (r*) are regular expressions that denote the sets 

R U S, RS and R* respectively.  

3.A string is a regular expression if and only if it can be derived from the 

primitive regular expressions by a finite number of applications of the rules 

in (2). 

Examples 
 

i) For   = {a,b}, the expression r = (a+b)* (a + bb) is regular. It denotes the 

language,  

L( r ) ={a,bb,aa,ab,ba,bbb,…………}  
 

The first part (a+b)* stands for any string of a‘s and b‘s. The second 
 

part (a+bb) represents either an ‗a‘ or a double ‗b‘. Consequently L( r) is the set 

of all strings on {a,b} terminated by either an ‗a‘ or ‗bb‘ 
 
Languages Associated with Regular Expressions 
 

Regular expressions can be used to describe some simple languages. If r is 

a regular expression, we will let L( r) denote the language associated with ‗r‘. 
 

The languageL(r) denoted by any regular expression r is defined by the 

following rules 
 

1.  is a regular expression denoting the empty set. 

2.  is a regular expression denoting { }. 
 

3.for every a  , a is a regular expression denoting {a}. If r and s are 

regular expressions, then 

4. L(r+s)=L( r) U L(s),  
 

5. L(rs )=L( r) L(s)  
 

6. L( r)=L( r)  
 

7. L(r*)=(L( r))*  
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            Identity rules       
 

I1 

 

+ R = R 

      
 

       
 

        

I2 

  

.R = R. 

   

= 

    
 

         
 

        

I3 ^R =  R^ = R   
 

     
 

I4 ^* =^ and   * =^   
 

     

I5 R + R = R       
 

I6 R*R* = R*       
 

I7 R.R* = R*.R   
 

I8 (R*)* = R       
 

I9 ^ +RR* = R* = ^ + R*.R   
 

I10 (PQ)*P = p.(QP)*   
 

I11    (P + Q)* = (P*Q*)* = (P* + Q*)*   
 

I12 (P+Q)R = PR +QR and   
 

 R(P + Q)= RP + RQ   
 

 
Manipulation of Regular Expression(Arden’s Theorem) 

 

Let p and q be two regular expressions over . If  p does not contain 
 

, then the following eqution in r, r=q+p has a unique solution given by r= qp*. 
 

 

Example 
 

.Prove that the regular expression r =  + 1*(011)*(1*(011)*)* describes 

the same set of strings as that of (1 +011)* 

Sol: 
 

r= + P1P1* 

where p1= 1*(011)* 

1 p1* using I9  
 

2 (1*(011)*)*  
 

3 (p2*p3*)* letting p2=1, p3=011  
 

4 (p2 + p3)* using I11  
 

=(1+011)* 

Hence proved 
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Equivalence and conversion between FA and R.E 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Constructing Finite Automata for a given Regular Expressions 
 
 
 

 

 

 

1. r=  start  

  

 
 
 
 
 
 
 
 
 

2. r =  
 

3. r = a 
 
 
 
 
 

 

4.r = r1.r2 (concatenation of regular expression) 
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5. r = r1 + r2
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6. Kleen closure (r*) 
 
 
 
 
 
 
 
 
 
 

 

Example 
 

Construct NFA with  for regular expression 01* + 1 Sol: 
 

r=01* + 1 r=r1 + r2 r1 = r3.r4 r3=0 r4=1* 
 
r3 
 

 

r4
 
 
 
 
 
 
 
r3.r4 + r2 
 
r=01* +1 
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Convert the regular expression to NFA 
 

1.(a+b)* abd Sol: 

 
 
 
 
 
 
 
 

2.Convert the following regular expression into equivalent NFA with -transaction r= (10*)* 

Sol: 
 

Given r = (10*)* r1 = 1 
 

r2=0* r3= r1.r2, r = 

(r3)* 
 

r1 is 
 
 
 
 
r2 is 
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r3 is 
 
 
 
 
 
 

 

 

 

 

 

 

r = (r3)* 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Therefore r = (10*)* 
 
Conversion of Finite Automata to Regular Expressions 
 

Arden’s Threorm: 
 

Let P and Q be 2 regular expressions over . If P does not contain 

^(epsilon) then following relation R namely 

R = Q + RP has a unique solution given by R = QP* 
 

This method is used to find regular expression recognized by a transitions are 

made regarding transition system 
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1.The transition graph does not have ^ moves 2. Its vertices 

are V1 to Vn 
 

3.Vi the regular expression represents set of strings accepted by system even though Vi is 

final state. 
 

4.  i,jdenotes regular expression representing set of labels of edges from Vi  

  

to Vj when there is no edge 

  

ij  = 

   

consequently we get following set of 

 

      

     

equations in V1  to Vn               
 

               
 

  V1 = V1   11 + V2   21 +………….+ Vn    n1+ ^  

          

             
 

  V2 = V1   12 + V2   22 + ………….+ Vn     n2  

           

 :                
 

 :                
 

 :                
 

            
 

  Vn = V1   1n + V2   2n +………….+Vn    nn  

          

 
Example 

 
1.Find the Regular Expression for a given transition diagram 

 
 
 
 
 
 
 
 
 
 
 

 

Sol q1 = q1.0 + ^ equ1 
 

q2 = q1.1 + q2 equ2 

 

   

             q3 = q2.0 + q3.0 + q3.1equ3   

q3= q2.0 + q3(0+1)   

q1=^ + q1.0   

q1 =^.0* =0*   

put  in equ2   
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q2 = 0*.1 + q2.1   

q2 =0*.1(1)*   

q1+q2 = 0* + 0*1(1)*   

= 0*(^ + 11*)   

=0*1*   (from I9)   

    

q1 + q2 = 0*1*    
    

is the required solution.   
 
 

 

 

 

 

2.Construct regular expression for a given Finite Automata 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sol: 

 
q1 = q2.b + q3.a + ^ equ1 

q2 = q1.a equ2 

q3 = q1.b equ3 

q4 = q2.a + q3.b + q4(a+b)  equ4 
 

 

substitute equ2 and equ3 in equ1 
 
                        q1 = (q1.a))b + (q1.b)a + ^ 
 

q1 = ^ + q1(ab +ba) 
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The above is in R = Q +R.P  form 
 

Where R = q1 
 

Q = ^ 
 

P = (ab+ba) 
 

Therefore the solution is R = QP* 
 

Which is nothing but q1= ^(ab +ba)* 
 
q1 = (ab + ba)* 
 
[Since ^(ab +ba)* = (ab+ba)*] 
 
COMPILER  

 
Compiler is a translator program that translates a program written in (HLL) the 

source program and translate it into an equivalent program in (MLL) the target program. 
As an important part of a compiler is error showing to the programmer. 

 
 
 
 

 
   

target pgm 

 

Source pgm Compiler  
 

     

 Error msg  
 

 
Executing a program written n HLL programming language is basically of two parts. the 
source program must first be compiled translated into a object program. Then the results 
object program is loaded into a memory executed. 

 
Source pgm 

   

obj pgm 
 

 
Compiler 

 
 

    
 

     
 

Obj pgm 

input 

  

opj pgm output 
 

Obj pgm  
 

    
 

     
 

 

ASSEMBLER: programmers found it difficult to write or read programs in machine 

language. They begin to use a mnemonic (symbols) for each machine instruction, which 
they would subsequently translate into machine language. Such a mnemonic machine 
language is now called an assembly language. Programs known as assembler were written 
to automate the translation of assembly language in to machine language. The input to an 
assembler program is called source program, the output is a machine language translation 
(object program). 
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INTERPRETER: An interpreter is a program that appears to execute a source program as 
if it were machine language. 

 
 
 
 
 
 
 
 
 
 
 
Languages such as BASIC, SNOBOL, LISP can be translated using interpreters. JAVA also 
uses interpreter. The process of interpretation can be carried out in following phases.  
2. Lexical analysis  

3. Synatx analysis  

4. Semantic analysis  

5. Direct Execution  

 

Advantages: 

 
Modification of user program can be easily made and implemented as execution 
proceeds.  
Type of object that denotes a various may change dynamically.  
Debugging a program and finding errors is simplified task for a program used for 
interpretation.  
The interpreter for the language makes it machine independent. 

 
Disadvantages: 

 
The execution of the program is slower. 

Memory consumption is more. 

 

3 Loader and Link-editor:   
Once the assembler procedures an object program, that program must be placed into 
memory and executed. The assembler could place the object program directly in memory 
and transfer control to it, thereby causing the machine language program to be execute. 
This would waste core by leaving the assembler in memory while the user‟s program 
was being executed. Also the programmer would have to retranslate his program with 
each execution, thus wasting translation time. To over come this problems of wasted 
translation time and memory. System programmers developed another component called 
loader  

 

“A loader is a program that places programs into memory and prepares them for 
execution.” It would be more efficient if subroutines could be translated into object form the 
loader could”relocate” directly behind the user‟s program. The task of adjusting programs o 
they may be placed in arbitrary core locations is called relocation. Relocation loaders 
perform four functions. 
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STRUCTURE OF THE COMPILER DESIGN  

 
Phases of a compiler: A compiler operates in phases. A phase is a logically interrelated 
operation that takes source program in one representation and produces output in another 
representation. The phases of a compiler are shown in below 
There are two phases of compilation. 

a. Analysis (Machine Independent/Language Dependent)   
b. Synthesis(Machine Dependent/Language independent) 

Compilation process is partitioned into no-of-sub processes called ‘phases’.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lexical Analysis:-  
LA or Scanners reads the source program one character at a time, carving the 

source program into a sequence of automic units called tokens.  
Syntax Analysis:-  

The second stage of translation is called Syntax analysis or parsing. In this phase 
expressions, statements, declarations etc… are identified by using the results of lexical 
analysis. Syntax analysis is aided by using techniques based on formal grammar of the 
programming language.  
Intermediate Code Generations:-  

An intermediate representation of the final machine language code is produced. 
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This phase bridges the analysis and synthesis phases of translation.  
Code Optimization :-  

This is optional phase described to improve the intermediate code so that the 
output runs faster and takes less space.  
Code Generation:-  

The last phase of translation is code generation. A number of optimizations to 
reduce the length of machine language program are carried out during this phase. The 
output of the code generator is the machine language program of the specified computer.  
Table Management (or) Book-keeping:- 
 
This is the portion to keep the names used by the program and records essential information 
about each. The data structure used to record this information called a  
„Symbol Table‟.  
Error Handlers:- 

It is invoked when a flaw error in the source program is detected. 
 
The output of LA is a stream of tokens, which is passed to the next phase, the syntax analyzer 
or parser. The SA groups the tokens together into syntactic structure called as expression. 
Expression may further be combined to form statements. The syntactic structure can be 
regarded as a tree whose leaves are the token called as parse trees. 

 
The parser has two functions. It checks if the tokens from lexical analyzer, 

occur in pattern that are permitted by the specification for the source language. It also imposes 
on tokens a tree-like structure that is used by the sub-sequent phases of the compiler. 

 

Example, if a program contains the expression A+/B after lexical analysis this 
expression might appear to the syntax analyzer as the token sequence id+/id. On seeing the /, 
the syntax analyzer should detect an error situation, because the presence of these two adjacent 
binary operators violates the formulations rule of an expression. 

 
Syntax analysis is to make explicit the hierarchical structure of the incoming 

token stream by identifying which parts of the token stream should be grouped. 

 
Example, (A/B*C has two possible interpretations.) 

1, divide A by B and then multiply by C or  
2, multiply B by C and then use the result to divide A. 

 
each of these two interpretations can be represented in terms of a parse tree.  

Intermediate Code Generation:-  
The intermediate code generation uses the structure produced by the syntax 

analyzer to create a stream of simple instructions. Many styles of intermediate code are 
possible. One common style uses instruction with one operator and a small number of 
operands.  

The output of the syntax analyzer is some representation of a parse tree. the 
intermediate code generation phase transforms this parse tree into an intermediate language 
representation of the source program. 

 

Code Optimization  
This is optional phase described to improve the intermediate code so that the 
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output runs faster and takes less space. Its output is another intermediate code program that 
does the some job as the original, but in a way that saves time and / or spaces. 

1, Local Optimization:-  
There are local transformations that can be applied to a program to 
make an improvement. For example,  

If A > B goto L2 
 
                                                    Goto L3  

L2 :  
This can be replaced by a single statement If 

A < B goto L3  
Another important local optimization is the elimination of common sub-
expressions  

A := B + C + D 

E := B + C + F 
 

Might be evaluated as  
T1 := B  + C 

A := T1 + D 

E := T1 + F 
Take this advantage of the common sub-expressions B + C. 

 

2, Loop Optimization:-  
Another important source of optimization concerns about increasing 
the speed of loops. A typical loop improvement is to move a 
computation that produces the same result each time around the loop to 
a point, in the program just before the loop is entered.  

Code generator :-  
Cg produces the object code by deciding on the memory locations for data, 

selecting code to access each datum and selecting the registers in which each computation is to 
be done. Many computers have only a few high speed registers in which computations can be 
performed quickly. A good code generator would attempt to utilize registers as efficiently as 
possible.  
Table Management OR Book-keeping :-  

A compiler needs to collect information about all the data objects that appear in 
the source program. The information about data objects is collected by the early phases of the 
compiler-lexical and syntactic analyzers. The data structure used to record this information is 
called as Symbol Table. 

 

Error Handing :-  
One of the most important functions of a compiler is the detection and reporting 

of errors in the source program. The error message should allow the programmer to determine 
exactly where the errors have occurred. Errors may occur in all or the phases of a compiler.  

Whenever a phase of the compiler discovers an error, it must report the error to 
the error handler, which issues an appropriate diagnostic msg. Both of the table-management 
and error-Handling routines interact with all phases of the compiler. 
Example: 
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  Position:= initial + rate *60    
 

        
 

  Lexical Analyzer     
 

         

Tokens id1 = id2 + id3 * id4    
 

       
 

  Syntsx Analyzer     
 

        
 

  =      
 

id1 +    
 

  id2 *   
 

    id3  id4 
 

       
 

  Semantic Analyzer      
 

        
 

  =      
 

id1 +    
 

  id2 *   
 

    
id3  

 
60  

     
 

        
 

     int to real 
 

 

 

Intermediate Code Generator 

 

temp1:= int to real (60) 
temp2:= id3 * temp1 
temp3:= id2 + temp2  

id1:= temp3. 
 
 

Code Optimizer 
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Temp1:= id3 * 60.0 

Id1:= id2 +temp1 
 
 
 
 
 

Code Generator 
 
 
 
 
 

MOVF  id3, r2 

MULF *60.0, r2 

MOVF id2, r2 

ADDF r2, r1  
MOVF r1, id1 

 

TOKEN  
LA reads the source program one character at a time, carving the source program into 

a sequence of automatic units called „Tokens‟.  
1, Type of the token. 
2, Value of the token.  

Type : variable, operator, keyword, constant 

Value : N1ame of variable, current variable (or) pointer to symbol table. 
 

If the symbols given in the standard format the LA accepts and produces 
token as output. Each token is a sub-string of the program that is to be treated as a single 
unit. Token are two types.  

1, Specific strings such as IF (or) semicolon. 

2, Classes of string such as identifiers, label, constants. 
 
 
OVER VIEW OF LEXICAL ANALYSIS  
o To identify the tokens we need some method of describing the possible tokens that can 

appear in the input stream. For this purpose we introduce regular expression, a 
notation that can be used to describe essentially all the tokens of programming 
language.  

o Secondly , having decided what the tokens are, we need some mechanism to recognize 
these in the input stream. This is done by the token recognizers, which are designed 
using transition diagrams and finite automata. 

 

ROLE OF LEXICAL ANALYZER   
the LA is the first phase of a compiler. It main task is to read the input character 

and produce as output a sequence of tokens that the parser uses for syntax analysis. 
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Upon receiving a „get next token‟ command form the parser, the lexical analyzer 

reads the input character until it can identify the next token. The LA return to the parser 
representation for the token it has found. The representation will be an integer code, if the 
token is a simple construct such as parenthesis, comma or colon. 

 
LA may also perform certain secondary tasks as the user interface. One such task is 

striping out from the source program the commands and white spaces in the form of blank, 
tab and new line characters. Another is correlating error message from the compiler with the 
source program. 
 
 
 
 
 
LEXICAL ANALYSIS VS PARSING: 
 

 

Lexical analysis Parsing 
A Scanner simply turns an input String (say a A parser converts this list of tokens into a 
file)  into  a  list  of  tokens.  These  tokens Tree-like object to represent how the tokens 
represent things like identifiers, parentheses, fit  together  to  form  a  cohesive  whole 
operators etc. (sometimes referred to as a sentence). 

The  lexical  analyzer  (the  "lexer")  parses A  parser  does  not  give  the  nodes  any 
individual symbols from the source code file meaning  beyond  structural  cohesion.  The 
into tokens. From there, the "parser" proper next thing to do is extract meaning from this 
turns those whole tokens into sentences of structure   (sometimes   called   contextual 
your grammar analysis). 

 
 
TOKEN, LEXEME, PATTERN: 

 
Token: Token is a sequence of characters that can be treated as a single logical entity. 
Typical tokens are,  

1) Identifiers 2) keywords 3) operators 4) special symbols 5)constants  
Pattern: A set of strings in the input for which the same token is produced as output. This 
set of strings is described by a rule called a pattern associated with the token.  
Lexeme: A lexeme is a sequence of characters in the source program that is matched by the 
pattern for a token.  
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Example: 
Description of token 

 

Token lexeme pattern 

   

Const const const 

   

If if If 

   

relation <,<=,= ,< >,>=,> < or <= or = or < > or >= or  letter 
  followed by letters & digit 

I pi any numeric constant 

   

Nun 3.14 any character b/w “and “except" 

   

Literal "core" pattern 

   
 
 
 
A patter is a rule describing the set of lexemes that can represent a particular token in source 
program. 

 

 

 LEXICAL ERRORS: 

 

Lexical errors are the errors thrown by your lexer when unable to continue. Which means 
that there's no way to recognise a lexeme as a valid token for you lexer. Syntax errors, on the 
other side, will be thrown by your scanner when a given set of already recognised valid 
tokens don't match any of the right sides of your grammar rules. simple panic-mode error 
handling system requires that we return to a high-level parsing function when a parsing or 
lexical error is detected. 

 
Error-recovery actions are:  

i. Delete one character from the remaining input.  

ii. Insert a missing character in to the remaining input.  

iii. Replace a character by another character.  

iv. Transpose two adjacent characters.  
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 DIFFERENCE BETWEEN COMPILER AND INTERPRETER 
 
 
 

A compiler converts the high level instruction into machine language while an 
interpreter converts the high level instruction into an intermediate form. 
  
Before execution, entire program is executed by the compiler whereas after 
translating the first line, an interpreter then executes it and so on. 
  
List of errors is created by the compiler after the compilation process while an 
interpreter stops translating after the first error. 
  
An independent executable file is created by the compiler whereas interpreter is 
required by an interpreted program each time. 
  
The compiler produce object code whereas interpreter does not produce object code. 
In the process of compilation the program is analyzed only once and then the code is 
generated whereas source program is interpreted every time it is to be executed and 
every time the source program is analyzed. hence interpreter is less efficient than 
compiler. 
  
Examples of interpreter: A UPS Debugger is basically a graphical source level 
debugger but it contains built in C interpreter which can handle multiple source files. 
example of compiler: Borland c compiler or Turbo C compiler compiles the programs 
written in C or C++. 
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 REGULAR EXPRESSIONS 

 
Regular expression is a formula that describes a possible set of string. 

Component of regular expression..  
X the character x 

. any character, usually accept a new line 

[x y z] any of the characters x, y, z, ….. 

R? a R or nothing (=optionally as R) 

R* zero or more occurrences….. 

R+ one or more occurrences …… 

R1R2 an R1 followed by an R2 

R2R1 either an R1 or an R2.  
A token is either a single string or one of a collection of strings of a certain type. If we view 
the set of strings in each token class as an language, we can use the regular-expression 
notation to describe tokens. 

 
Consider an identifier, which is defined to be a letter followed by zero or more letters 

or digits. In regular expression notation we would write. 
 

Identifier = letter (letter | digit)* 

Here are the rules that define the regular expression over alphabet  . 

 
o is a regular expression denoting { € }, that is, the language containing only the 

empty string.   
o For each „a‟ in ∑, is a regular expression denoting { a }, the language with only one 

string consisting of the single symbol „a‟ . 
o If R and S are regular expressions, then  

 

(R) | (S) means LrULs 
R.S means Lr.Ls   
R* denotes Lr*  

 

REGULAR DEFINITIONS  

 
For notational convenience, we may wish to give names to regular expressions and 

to define regular expressions using these names as if they were symbols.  
Identifiers are the set or string of letters and digits beginning with a letter. The 

following regular definition provides a precise specification for this class of string.  
Example-1, 

Ab*|cd? Is equivalent to (a(b*)) | (c(d?)) 
 
Pascal identifier 

Letter - 
Digits - Id - 

 
 
 

 

 

 
A | B | ……| Z | a | b |……| z| 
0 | 1 | 2 | …. | 9 

letter (letter / digit)* 
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Recognition of tokens:  
We learn how to express pattern using regular expressions. Now, we must study how to take 

the patterns for all the needed tokens and build a piece of code that examins the input string 

and finds a prefix that is a lexeme matching one of the patterns. 
 

Stmt 


if expr then  stmt 

| If expr then else stmt  
| є  

Expr 


term relop term | 
term  

Term 


id 
|numbe
r  

For relop ,we use the comparison operations of languages like Pascal or SQL where = is  
“equals” and < > is “not equals” because it presents an interesting structure of lexemes. The 
terminal of grammar, which are if, then , else, relop ,id and numbers are the names of tokens 
as far as the lexical analyzer is concerned, the patterns for the tokens are described using 
regular definitions. 

 

digit -->[0,9] 

digits -->digit+ 

number  -->digit(.digit)?(e.[+-]?digits)? 

letter -->[A-Z,a-z] 

id -->letter(letter/digit)* 

if --> if 

then -->then 

else -->else 

relop --></>/<=/>=/==/< > 

 
In addition, we assign the lexical analyzer the job stripping out white space, by recognizing 
the “token” we defined by: 

ws 


(blank/tab/newline)
+
  

Here, blank, tab and newline are abstract symbols that we use to express the ASCII 
characters of the same names. Token ws is different from the other tokens in that ,when we 
recognize it, we do not return it to parser ,but rather restart the lexical analysis from the 
character that follows the white space . It is the following token that gets returned to the 
parser. 
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Lexeme Token Name Attribute Value  

Any ws _ _   

If if _   

Then then _   

Else else _   

Any id id pointer to table entry  

Any number number pointer to table 

  entry   

< relop LT   
 

<= relop LE 

= relop ET 

< > relop NE 
 
 
 TRANSITION DIAGRAM:  

Transition Diagram has a collection of nodes or circles, called states. Each state 
represents a condition that could occur during the process of scanning the input looking 
for a lexeme that matches one of several patterns . 

Edges are directed from one state of the transition diagram to another. each edge is labeled 

by a symbol or set of symbols.  

If we are in one state s, and the next input symbol is a, we look for an edge out of state s 

labeled by a. if we find such an edge ,we advance the forward pointer and enter the 

state of the transition diagram to which that edge leads.   
Some important conventions about transition diagrams are  
1. Certain states are said to be accepting or final .These states indicates that a lexeme has 
been found, although the actual lexeme may not consist of all positions b/w the lexeme 
Begin and forward pointers we always indicate an accepting state by a double circle.  
2. In addition, if it is necessary to return the forward pointer one position, then we shall 

additionally place a * near that accepting state.  
3. One state is designed the state ,or initial state ., it is indicated by an edge labeled 

“start” entering from nowhere .the transition diagram always begins in the state before 
any input symbols have been used. 
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As an intermediate step in the construction of a LA, we first produce a stylized 

flowchart, called a transition diagram. Position in a transition diagram, are drawn as 
circles and are called as states. 

 
 
 
 
 
 
 
 
 
 
 

 
The above TD for an identifier, defined to be a letter followed by any no of letters 

or digits.A sequence of transition diagram can be converted into program to look for the 
tokens specified by the diagrams. Each state gets a segment of code. 

 
If = if 

Then = then 

Else = else 

Relop = < | <= | = | > | >= 

Id = letter (letter | digit) *| 

Num = digit | 

AUTOMATA   

 
An automation is defined as a system where information is transmitted and used for 

performing some functions without direct participation of man.  
1, an automation in which the output depends only on the input is called an 
automation without memory.  
2, an automation in which the output depends on the input and state also is called as 
automation with memory.  
3, an automation in which the output depends only on the state of the machine is 
called a Moore machine.  
3, an automation in which the output depends on the state and input at any instant of 
time is called a mealy machine. 

 

DESCRIPTION OF AUTOMATA 
 

1, an automata has a mechanism to read input from input tape,  
2, any language is recognized by some automation, Hence these automation are 

basically language „acceptors‟ or „language recognizers‟.  
Types of Finite Automata 

 

Deterministic Automata  
Non-Deterministic Automata. 
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 DETERMINISTIC AUTOMATA 

 
A deterministic finite automata has at most one transition from each state on any 

input. A DFA is a special case of a NFA in which:- 

 

1, it has no transitions on input  € , 

2, each input symbol has at most one transition from any state. 

 

 

 
DFA formally defined by 5 tuple notation M = (Q, ∑, δ, qo, F), where 

Q is a finite „set of states‟, which is non empty.  
∑ is „input alphabets‟, indicates input set.  
qo is an „initial state‟ and qo is in Q ie, qo, ∑, Q 
F is a set of „Final states‟,  
δ is a „transmission function‟ or mapping function, using this function the 

next state can be determined. 

 
The regular expression is converted into minimized DFA by the following procedure: 

 
Regular expression →  NFA → DFA → Minimized DFA 

 
The Finite Automata is called DFA if there is only one path for a specific input from 

current state to next state. 

 

a 

So 
a 

S2 
 

 
 

 
 
 

 

b 
 
 
 

S1 
 
 
 
 
 

From state S0 for input „a‟ there is only one path going to S2. similarly from S0 there 
is only one path for input going to S1. 
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 NONDETERMINISTIC AUTOMATA 

 
A NFA is a mathematical model that consists of  

 A set of states S. 

 A set of input symbols ∑. 

 A transition for move from one state to an other. 

 A state so that is distinguished as the start (or initial) state. 

 A set of states F distinguished as accepting (or final) state. 

 A number of transition to a single symbol.

 
A NFA can be diagrammatically represented by a labeled directed graph, called a 
transition graph, In which the nodes are the states and the labeled edges represent 
the transition function. 

 
This graph looks like a transition diagram, but the same character can label two or 
more transitions out of one state and edges can be labeled by the special symbol € 
as well as by input symbols. 

 
The transition graph for an NFA that recognizes the language ( a | b ) * abb is 
shown 

 
 
 
 
 
 
 
 
 
 
 

 DEFINITION OF CFG 
 
It involves four quantities. 

CFG contain terminals, N-T, start symbol and production. 

Terminal are basic symbols form which string are formed. 

N-terminals are synthetic variables that denote sets of strings  
In a Grammar, one N-T are distinguished as the start symbol, and the set of 
string it denotes is the language defined by the grammar.  
The production of the grammar specify the manor in which the terminal and 
N-T can be combined to form strings.  
Each production consists of a N-T, followed by an arrow, followed by a string 
of one terminal and terminals. 

 

 

 DEFINITION OF SYMBOL TABLE 
 

An extensible array of records.  
The identifier and the associated records contains collected information about 
the identifier.  

FUNCTION identify (Identifier name)  
RETURNING a pointer to identifier information contains 
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The actual string  
A macro definition A 
keyword definition  
A list of type, variable & function definition 
A list of structure and union name definition  
A list of structure and union field selected definitions. 

 

 

 Creating a lexical analyzer with Lex 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Lex specifications: 

 

A Lex program (the .l file ) consists of three parts: 

 

declarations 

%% 

translation rules 

%% 

auxiliary procedures 

 

1. The declarations section includes declarations of variables,manifest constants(A manifest 
constant is an identifier that is declared to represent a constant e.g. # define PIE 3.14), 
and regular definitions.  

2. The translation rules of a Lex program are statements of the form :  

p1 {action 1} 

p2 {action 2} 

p3 {action 3} 

… … 

… …  
where each p is a regular expression and each action is a program fragment describing 
what action the lexical analyzer should take when a pattern p matches a lexeme. In Lex 
the actions are written in C. 
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3. The third section holds whatever auxiliary procedures are needed by the 

actions.Alternatively these procedures can be compiled separately and loaded with the 
lexical analyzer.  

 
 

Note: You can refer to a sample lex program given in page no. 109 of chapter 3 of the book: 

Compilers: Principles, Techniques, and Tools by Aho, Sethi & Ullman for more clarity. 
 

 

 INPUT BUFFERING  
The LA scans the characters of the source pgm one at a time to discover tokens. 

Because of large amount of time can be consumed scanning characters, specialized buffering 
techniques have been developed to reduce the amount of overhead required to process an 
input character.  
Buffering techniques: 

1. Buffer pairs  

2. Sentinels  

 

The lexical analyzer scans the characters of the source program one a t a time to discover 
tokens. Often, however, many characters beyond the next token many have to be examined 
before the next token itself can be determined. For this and other reasons, it is desirable for 
thelexical analyzer to read its input from an input buffer. Figure shows a buffer divided into 
two haves of, say 100 characters each. One pointer marks the beginning of the token being 
discovered. A look ahead pointer scans ahead of the beginning point, until the token is 
discovered .we view the position of each pointer as being between the character last read and 
thecharacter next to be read. In practice each buffering scheme adopts one convention either 
apointer is at the symbol last read or the symbol it is ready to read. 
 
 
 
 
 
 
 
 
 
 
 

 

Token beginnings look ahead pointerThe distance which the lookahead pointer may 
have to travel past the actual token may belarge. For example, in a PL/I program we may see: 
DECALRE (ARG1, ARG2… ARG n) Without knowing whether DECLARE is a keyword or 
an array name until we see the character that follows the right parenthesis. In either case, the 
token itself ends at the second E. If the look ahead pointer travels beyond the buffer half in 
which it began, the other half must be loaded with the next characters from the source file. 
Since the buffer shown in above figure is of limited size there is an implied constraint on 
how much look ahead can be used before the next token is discovered. In the above example, 
ifthe look ahead traveled to the left half and all the way through the left half to the middle, 
we could not reload the right half, because we would lose characters that had not yet been 
groupedinto tokens. While we can make the buffer larger if we chose or use another 
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buffering scheme,we cannot ignore the fact that overhead is limited. 
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UNIT-2 

          CONTEXT  FREE GRAMMARS AND PARSING 
 

ROLE OF THE PARSER 

 

Parser obtains a string of tokens from the lexical analyzer and verifies that it can be generated 

by the language for the source program. The parser should report any syntax errors in an 

intelligible fashion. The two types of parsers employed are: 
 
1.Top down parser: which build parse trees from top(root) to bottom(leaves) 

2.Bottom up parser: which build parse trees from leaves and work up the root. 
 
Therefore there are two types of parsing methods– top-down parsing and bottom-up parsing 
 
 
 
 
 
 
 
 
 
 
 
 

 

TOP-DOWN PARSING 
 
A program that performs syntax analysis is called a parser. A syntax analyzer takes tokens as 

input and output error message if the program syntax is wrong. The parser uses symbol-look-

ahead and an approach called top-down parsing without backtracking. Top-downparsers 

check to see if a string can be generated by a grammar by creating a parse tree starting from 

the initial symbol and working down. Bottom-up parsers, however, check to see a string can 

be generated from a grammar by creating a parse tree from the leaves, and working up. Early 

parser generators such as YACC creates bottom-up parsers whereas many of Java parser 

generators such as JavaCC create top-down parsers. 

 
 
RECURSIVE DESCENT PARSING 
 
Typically, top-down parsers are implemented as a set of recursive functions that descent 

through a parse tree for a string. This approach is known as recursive descent parsing, also 

known as LL(k) parsing where the first L stands for left-to-right, the second L stands for 
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leftmost-derivation, and k indicates k-symbol lookahead. Therefore, a parser using the single 

symbol look-ahead method and top-down parsing without backtracking is called LL(1) 

parser. In the following sections, we will also use an extended BNF notation in which some 

regulation expression operators are to be incorporated. 
 
A syntax expression defines sentences of the form , or . A syntax of the form defines 

sentences that consist of a sentence of the form followed by a sentence of the form followed 

by a sentence of the form . A syntax of the form defines zero or one occurrence of the form . 

A syntax of the form defines zero or more occurrences of the form . 
 
A usual implementation of an LL(1) parser is: 

o initialize its data structures, 
 

o get the lookahead token by calling scanner routines, and 

o call the routine that implements the start symbol. 
 

 

Here is an example. 
 
proc syntaxAnalysis() 

begin 
 
initialize(); // initialize global data and structures 

nextToken(); // get the lookahead token 
 
program(); // parser routine that implements the start 

symbol end; 

 
 

FIRST AND FOLLOW 

 

To compute FIRST(X) for all grammar symbols X, apply the following rules 

until no more terminals or e can be added to any FIRST set. 
 
1. If X is terminal, then FIRST(X) is {X}.  
 
2. If X->e is a production, then add e to FIRST(X).  
 
3. If X is nonterminal and X->Y1Y2...Yk is a production, then place a in FIRST(X) if for  
 
some i, a is in FIRST(Yi) and e is in all of FIRST(Y1),...,FIRST(Yi-1) that is, Y1.......Yi-

1=*>e. If e is in FIRST(Yj) for all j=1,2,...,k, then add e to FIRST(X). For  
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example, everything in FIRST(Yj) is surely in FIRST(X). If y1 does not derive e, then we 

add nothing more to FIRST(X), but if Y1=*>e, then we add FIRST(Y2) and so on.  

 

To compute the FIRST(A) for all nonterminals A, apply the following rules until nothing 

can be added to any FOLLOW set. 
 
1. Place $ in FOLLOW(S), where S is the start symbol and $ in the input right endmarker.  
 
2. If there is a production A=>aBs where FIRST(s) except e is placed in FOLLOW(B).  
 
3. If there is aproduction A->aB or a production A->aBs where FIRST(s) contains e, 

then everything in FOLLOW(A) is in FOLLOW(B).  
 
Consider the following example to understand the concept of First and Follow.Find the first 

and follow of all nonterminals in the Grammar-  
 
E -> TE' 

E'-> +TE'|e 

T -> FT' 

T'-> *FT'|e 

F -> (E)|id 

Then:  

FIRST(E)=FIRST(T)=FIRST(F)={(,id}  
 
FIRST(E')={+,e}  
 
FIRST(T')={*,e} 

FOLLOW(E)=FOLLOW(E')={),$} 

FOLLOW(T)=FOLLOW(T')={+,),$} 

FOLLOW(F)={+,*,),$}  
 
For example, id and left parenthesis are added to FIRST(F) by rule 3 in definition of FIRST 

with i=1 in each case, since FIRST(id)=(id) and FIRST('(')= {(} by rule 1. Then by rule 3 

with i=1, the production T -> FT' implies that id and left parenthesis belong to FIRST(T) 

also.  
 
To compute FOLLOW,we put $ in FOLLOW(E) by rule 1 for FOLLOW. By rule 2 applied 

toproduction F-> (E), right parenthesis is also in FOLLOW(E). By rule 3 applied to 

production E-> TE', $ and right parenthesis are in FOLLOW(E').  

 

3.5 CONSTRUCTION OF PREDICTIVE PARSING TABLES 
 
For any grammar G, the following algorithm can be used to construct the predictive 
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parsing table. The algorithm is 
 
Input : Grammar G 

Output : Parsing table M 

Method 
 

1. 1.For each production A-> a of the grammar, do steps 2 and 3.  
 

2. For each terminal a in FIRST(a), add A->a, to M[A,a].  
 

3. If e is in First(a), add A->a to M[A,b] for each terminal b in FOLLOW(A). If e is in 

FIRST(a) and $ is in FOLLOW(A), add A->a to M[A,$].  
 

4. Make each undefined entry of M be error.  
 

 

.LL(1) GRAMMAR 
 
The above algorithm can be applied to any grammar G to produce a parsing table M. For 

some Grammars, for example if G is left recursive or ambiguous, then M will have at least 

one multiply-defined entry. A grammar whose parsing table has no multiply defined entries 

is said to be LL(1). It can be shown that the above algorithm can be used to produce for every 

LL(1) grammar G a parsing table M that parses all and only the sentences of G. LL(1) 

grammars have several distinctive properties. No ambiguous or left recursive grammar can 

be LL(1). There remains a question of what should be done in case of multiply defined 

entries. One easy solution is to eliminate all left recursion and left factoring, hoping to 

produce a grammar which will produce no multiply defined entries in the parse tables. 

Unfortunately there are some grammars which will give an LL(1) grammar after any kind of 

alteration. In general, there are no universal rules to convert multiply defined entries into 

single valued entries without affecting the language recognized by the parser. 

 
 

The main difficulty in using predictive parsing is in writing a grammar for the source 

language such that a predictive parser can be constructed from the grammar. Although left 

recursion elimination and left factoring are easy to do, they make the resulting grammar hard 

to read and difficult to use the translation purposes. To alleviate some of this difficulty, a 

common organization for a parser in a compiler is to use a predictive parser for control 

constructs and to use operator precedence for expressions.however, if an lr parser generator 

is available, one can get all the benefits of predictive parsing and operator precedence 

automatically. 
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                                        UNIT-3 

                           BOTTOM UP PARSERS 
 

 
LR PARSING INTRODUCTION 
 

The "L" is for left-to-right scanning of the input and the "R" is for constructing a rightmost 
 

derivation in reverse. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

WHY LR PARSING:  
 

 LR parsers can be constructed to recognize virtually all programming-language 
constructs for which context-free grammars can be written. 





 The LR parsing method is the most general non-backtracking shift-reduce parsing 
method known, yet it can be implemented as efficiently as other shift-reduce 




methods. 




 The class of grammars that can be parsed using LR methods is a proper subset of 
the class of grammars that can be parsed with predictive parsers. 



 An LR parser can detect a syntactic error as soon as it is possible to do so on a left-to- 


 
right scan of the input. 

 
The disadvantage is that it takes too much work to constuct an LR parser by hand for a 

typical programming-language grammar. But there are lots of LR parser generators 

available to make this task easy. 

 
 
 



DEPARTMENT OF INFORMATION TECHNOLOGY,SVECW                                                                                Page 52 

 

 
 

.MODELS OF LR PARSERS 
 
The schematic form of an LR parser is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The program uses a stack to store a string of the form s0X1s1X2...Xmsm where sm is on top. 

Each Xi is a grammar symbol and each si is a symbol representing a state. Each state symbol 

summarizes the information contained in the stack below it. The combination of the state 

symbol on top of the stack and the current input symbol are used to index the parsing table 

and determine the shiftreduce parsing decision. The parsing table consists of two parts: a 

parsing action function action and a goto function goto. The program driving the LR parser 

behaves as follows: It determines sm the state currently on top of the stack and ai the current 

input symbol. It then consults action[sm,ai], which can have one of four values: 

 shift s, where s is a state 




 reduce by a grammar production A -> b 




 accept 




 error 
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The function goto takes a state and grammar symbol as arguments and produces a state. 
 
For a parsing table constructed for a grammar G, the goto table is the transition function of a 

deterministic finite automaton that recognizes the viable prefixes of G. Recall that the viable 

prefixes of G are those prefixes of right-sentential forms that can appear on the stack of a 

shiftreduce parser because they do not extend past the rightmost handle. 
 
A configuration of an LR parser is a pair whose first component is the stack contents and 

whose second component is the unexpended input: 
 
(s0 X1 s1 X2 s2... Xm sm, ai ai+1... an$) 
 
This configuration represents the right-sentential 

form X1 X1 ... Xm ai ai+1 ...an 
 
in essentially the same way a shift-reduce parser would; only the presence of the states on the 

stack is new. Recall the sample parse we did (see Example 1: Sample bottom-up parse) in 

which we assembled the right-sentential form by concatenating the remainder of the input 

buffer to the top of the stack. The next move of the parser is determined by reading ai and 

sm, and consulting the parsing action table entry action[sm, ai]. Note that we are just looking 

at the state here and no symbol below it. We'll see how this actually works later. 
 
The configurations resulting after each of the four types of move are as follows: 
 
If action[sm, ai] = shift s, the parser executes a shift move entering the configuration 

(s0 X1 s1 X2 s2... Xm sm ai s, ai+1... an$) 
 
Here the parser has shifted both the current input symbol ai and the next symbol. 
 
If action[sm, ai] = reduce A -> b, then the parser executes a reduce move, entering 

the configuration, 
 
(s0 X1 s1 X2 s2... Xm-r sm-r A s, ai ai+1... an$) 
 
where s = goto[sm-r, A] and r is the length of b, the right side of the production. The parser 

first popped 2r symbols off the stack (r state symbols and r grammar symbols), exposing state 

sm-r. The parser then pushed both A, the left side of the production, and s, the entry for 

goto[sm-r, A], onto the stack. The current input symbol is not changed in a reduce move. 
 
The output of an LR parser is generated after a reduce move by executing the semantic 

action associated with the reducing production. For example, we might just print out the 
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production reduced. 
 
If action[sm, ai] = accept, parsing is completed. 

 

SHIFT REDUCE PARSING 
 
A shift-reduce parser uses a parse stack which (conceptually) contains grammar symbols. 

During the operation of the parser, symbols from the input are shifted onto the stack. If a 

prefix of the symbols on top of the stack matches the RHS of a grammar rule which is the 

correct rule to use within the current context, then the parser reduces the RHS of the rule to 

its LHS,replacing the RHS symbols on top of the stack with the nonterminal occurring on the 

LHS of the rule. This shift-reduce process continues until the parser terminates, reporting 

either success or failure. It terminates with success when the input is legal and is accepted by 

the parser. It terminates with failure if an error is detected in the input. The parser is nothing 

but a stack automaton which may be in one of several discrete states. A state is usually 

represented simply as an integer. In reality, the parse stack contains states, rather than 
 
grammar symbols. However, since each state corresponds to a unique grammar symbol, the 

state stack can be mapped onto the grammar symbol stack mentioned earlier. 
 
The operation of the parser is controlled by a couple of tables: 
 
ACTION TABLE 
 
The action table is a table with rows indexed by states and columns indexed by terminal 

symbols. When the parser is in some state s and the current lookahead terminal is t, the 

action taken by the parser depends on the contents of action[s][t], which can contain four 

different kinds of entries: 
 
Shift s' 
 
Shift state s' onto the parse 

stack. Reduce r 
 
Reduce by rule r. This is explained in more detail below. 

Accept 
 
Terminate the parse with success, accepting the 

input. Error 
 
Signal a parse error 
 
GOTO TABLE 
 
The goto table is a table with rows indexed by states and columns indexed by nonterminal 

symbols. When the parser is in state s immediately after reducing by rule N, then the next 
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state to enter is given by goto[s][N]. 
 
The current state of a shift-reduce parser is the state on top of the state stack. The 

detailed operation of such a parser is as follows: 
 
1. Initialize the parse stack to contain a single state s0, where s0 is the distinguished 

initial state of the parser.  
 
2. Use the state s on top of the parse stack and the current lookahead t to consult the action 

table entry action[s][t]:  
 
· If the action table entry is shift s' then push state s' onto the stack and advance 

the input so that the lookahead is set to the next token.  
 
· If the action table entry is reduce r and rule r has m symbols in its RHS, then pop m 

symbols off the parse stack. Let s' be the state now revealed on top of the parse stack 

and N be the LHS nonterminal for rule r. Then consult the goto table and push the 

state given by goto[s'][N] onto the stack. The lookahead token is not changed by 

this step. 

 If the action table entry is accept, then terminate the parse with success. 




 If the action table entry is error, then signal an error. 




3. Repeat step (2) until the parser terminates.  
 
For example, consider the following simple grammar 

 
0) $S: stmt <EOF>  

 
1) stmt: ID ':=' expr  

 
2) expr: expr '+' ID  

 
3) expr: expr '-' ID  

 
4) expr: ID  

 
which describes assignment statements like a:= b + c - d. (Rule 0 is a special 

augmenting production added to the grammar). 
 
One possible set of shift-reduce parsing tables is shown below (sn denotes shift n, rn 

denotes reduce n, acc denotes accept and blank entries denote error entries): 
 
Parser Tables 
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SLR PARSER 
 
An LR(0) item (or just item) of a grammar G is a production of G with a dot at some position 

of the right side indicating how much of a production we have seen up to a given point. 
 
For example, for the production E -> E + T we would have the following items: 
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[E -> .E + T] 
 
[E -> E. + T] 
 
[E -> E +. T] 
 
[E -> E + T.] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONSTRUCTING THE SLR PARSING TABLE 
 
To construct the parser table we must convert our NFA into a DFA. The states in the LR 

table will be the e-closures of the states corresponding to the items SO...the process of 

creating the LR state table parallels the process of constructing an equivalent DFA from a 

machine with e-transitions. Been there, done that - this is essentially the subset construction 

algorithm so we are in familiar territory here. 
 
We need two operations: 

closure() and goto(). 
 
closure() 
 
If I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by 

the two rules: Initially every item in I is added to closure(I) 
 
If A -> a.Bb is in closure(I), and B -> g is a production, then add the initial item [B -> .g] to I, 

if it is not already there. Apply this rule until no more new items can be added to closure(I). 

From our grammar above, if I is the set of one item {[E'-> .E]}, then closure(I) contains: 
 
I0: E' -> .E 
 
E -> .E + 

T E -> .T 
 
T -> .T * 

F T -> .F 
 
F -> .(E) 
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F -> .id 

goto() 
 
goto(I, X), where I is a set of items and X is a grammar symbol, is defined to be the closure 

of the set of all items [A -> aX.b] such that [A -> a.Xb] is in I. The idea here is fairly intuitive: 

if I is the set of items that are valid for some viable prefix g, then goto(I, X) is the set of items 

that are valid for the viable prefix gX. 
 
SETS-OF-ITEMS-CONSTRUCTION 
 
To construct the canonical collection of sets of LR(0) items for 

augmented grammar G'. 
 
procedure items(G') 

begin 

C := {closure({[S' -> .S]})}; 

repeat 
 
for each set of items in C and each grammar symbol X 

such that goto(I, X) is not empty and not in C do 
 
add goto(I, X) to C; 
 
until no more sets of items can be added to C 

end; 

 

 

ALGORITHM FOR CONSTRUCTING AN SLR PARSING TABLE 
 
Input: augmented grammar G' 
 
Output: SLR parsing table functions action and goto for G' 
 
Method: 
 
Construct C = {I0, I1 , ..., In} the collection of sets of LR(0) items for 

G'. State i is constructed from Ii: 
 
if [A -> a.ab] is in Ii and goto(Ii, a) = Ij, then set action[i, a] to "shift j". Here a must be a 

terminal. 

if [A -> a.] is in Ii, then set action[i, a] to "reduce A -> a" for all a in FOLLOW(A). Here A 

may not be S'. 
 
if [S' -> S.] is in Ii, then set action[i, $] to "accept" 
 
If any conflicting actions are generated by these rules, the grammar is not SLR(1) and the 

algorithm fails to produce a parser. The goto transitions for state i are constructed for all 
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nonterminals A using the rule: If goto(Ii, A)= Ij, then goto[i, A] = j. 
 
All entries not defined by rules 2 and 3 are made "error". 
 
The inital state of the parser is the one constructed from the set of items containing [S' -> 

.S]. Let's work an example to get a feel for what is going on, 
 
An Example 
 
(1) E -> E * B  
 
(2) E -> E + B  
 
(3) E -> B  
 
(4) B -> 0  
 
(5) B -> 1  

The Action and Goto Table The two LR(0) parsing tables for this grammar look as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 CANONICAL LR PARSING 
 
By splitting states when necessary, we can arrange to have each state of an LR parser 

indicate exactly which input symbols can follow a handle a for which there is a possible 

reduction to A. As the text points out, sometimes the FOLLOW sets give too much 

informationand doesn't (can't) discriminate between different reductions. 
 
The general form of an LR(k) item becomes [A -> a.b, s] where A -> ab is a production and s 

is a string of terminals. The first part (A -> a.b) is called the core and the second part is the 

lookahead. In LR(1) |s| is 1, so s is a single terminal. 
 
A -> ab is the usual righthand side with a marker; any a in s is an incoming token in which 
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we are interested. Completed items used to be reduced for every incoming token in 

FOLLOW(A), but now we will reduce only if the next input token is in the lookahead set s..if 

we get two productions A -> a and B -> a, we can tell them apart when a is a handle on the 

stack if the corresponding completed items have different lookahead parts. Furthermore, note 

that the lookahead has no effect for an item of the form [A -> a.b, a] if b is not e. Recall that 

our problem occurs for completed items, so what we have done now is to say that an item of 

the form [A -> a., a] calls for a reduction by A -> a only if the next input symbol is a. More 

formally, an LR(1) item [A -> a.b, a] is valid for a viable prefix g if there is a derivation 
 
S =>* s abw, where g = sa, and either a is the first symbol of w, or w is e and a is $. 
 
ALGORITHM FOR CONSTRUCTION OF THE SETS OF LR(1) ITEMS 
 
Input: grammar G' 
 
Output: sets of LR(1) items that are the set of items valid for one or more viable prefixes of 

G' 
 
Method: 
 
closure(I) 

begin 

repeat 
 
for each item [A -> a.Bb, a] in I, 

each production B -> g in G', 

and each terminal b in FIRST(ba) 

such that [B -> .g, b] is not in I do 
 
add [B -> .g, b] to I; 
 
until no more items can be added to I; 
 
end; 
 
 

 

goto(I, X) 
 
begin 
 
let J be the set of items [A -> aX.b, a] such that 
 
[A -> a.Xb, a] is in I 
 
return closure(J); 
 
end; 
 
procedure items(G') 
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begin 
 
C := {closure({S' -> .S, $})}; 
 
repeat 
 
for each set of items I in C and each grammar symbol X such 
 
that goto(I, X) is not empty and not in C do 
 
add goto(I, X) to C 
 
until no more sets of items can be added to C; 
 
end; 
 

An example,  
Consider the following grammer, 

S‟->S 

S->CC 

C->cC  
C->d 

Sets of LR(1) items 

I0: S‟->.S,$  
S->.CC,$ 

C->.Cc,c/d 

C->.d,c/d 

 
I1:S‟->S.,$ 

I2:S->C.C,$ 

C->.Cc,$ 

C->.d,$ 

 

I3:C->c.C,c/d 

C->.Cc,c/d 

C->.d,c/d 
 

 

I4: C->d.,c/d 

 
I5: S->CC.,$ 

 
I6: C->c.C,$ 

C->.cC,$ 

C->.d,$ 

 

I7:C->d.,$ 

 
I8:C->cC.,c/d 

 
I9:C->cC.,$ 
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Here is what the corresponding DFA looks like 
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ALGORITHM FOR CONSTRUCTION OF THE CANONICAL LR 
PARSING TABLE  

 
Input: grammar G'  
Output: canonical LR parsing table functions action and goto 
 

1. Construct C = {I0, I1 , ..., In} the collection of sets of LR(1) items for G'.State i 
is constructed from Ii.   

2. if [A -> a.ab, b>] is in Ii and goto(Ii, a) = Ij, then set action[i, a] to "shift j". Here 
a must be a terminal.   

3. if [A -> a., a] is in Ii, then set action[i, a] to "reduce A -> a" for all a in 
FOLLOW(A). Here A may not be S'.   

4. if [S' -> S.] is in Ii, then set action[i, $] to "accept"   
5. If any conflicting actions are generated by these rules, the grammar is not 

LR(1) and the algorithm fails to produce a parser.   
6. The goto transitions for state i are constructed for all nonterminals A using the 

rule: If goto(Ii, A)= Ij, then goto[i, A] = j.   
7. All entries not defined by rules 2 and 3 are made "error".  

 
8. The inital state of the parser is the one constructed from the set of items 

containing [S' -> .S, $].  

LALR PARSER: 
 
We begin with two observations. First, some of the states generated for LR(1) parsing have 

the same set of core (or first) components and differ only in their second component, the 

lookahead symbol. Our intuition is that we should be able to merge these states and reduce 

the number of states we have, getting close to the number of states that would be generated 

for LR(0) parsing. This observation suggests a hybrid approach: We can construct the 

canonical LR(1) sets of items and then look for sets of items having the same core. We merge 

these sets with common cores into one set of items. The merging of states with common 

cores can never produce a shift/reduce conflict that was not present in one of the original 

states because shift actions depend only on the core, not the lookahead. But it is possible for 

the merger to produce a reduce/reduce conflict. 
 
Our second observation is that we are really only interested in the lookahead symbol in 

places where there is a problem. So our next thought is to take the LR(0) set of items and add 

lookaheads only where they are needed. This leads to a more efficient, but much more 

complicated method. 
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ALGORITHM FOR EASY CONSTRUCTION OF AN LALR TABLE 
 
Input: G' 
 
Output: LALR parsing table functions with action and goto for G'. 
 
Method: 
 

1. Construct C = {I0, I1 , ..., In} the collection of sets of LR(1) items for G'.  
 

2. For each core present among the set of LR(1) items, find all sets having that core 

and replace these sets by the union.  
 

3. Let C' = {J0, J1 , ..., Jm} be the resulting sets of LR(1) items. The parsing actions 

for state i are constructed from Ji in the same manner as in the construction of the 

canonical LR parsing table.  
 

4. If there is a conflict, the grammar is not LALR(1) and the algorithm fails.  
 

5. The goto table is constructed as follows: If J is the union of one or more sets of 

LR(1) items, that is, J = I0U I1 U ... U Ik, then the cores of goto(I0, X), goto(I1, 

X), ..., goto(Ik, X) are the same, since I0, I1 , ..., Ik all have the same core. Let K 

be the union of all sets of items having the same core asgoto(I1, X).  

 

6. 6. Then goto(J, X) = K. Consider the above example, 
 
I3 & I6 can be replaced by their union 
 
I36:C->c.C,c/d/$ 
 
C->.Cc,C/D/$ 
 
C->.d,c/d/$ 
 
I47:C->d.,c/d/$ 
 
I89:C->Cc.,c/d/$ 
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Parsing Table 
 
 
 

 

state c d $ S C 
      

0 S36 S47  1 2 
      

1   Accept   
      

2 S36 S47   5 
      

36 S36 S47   89 
      

47 R3 R3    
      

5   R1   
      

89 R2 R2 R2   
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                                                    UNIT 4 
 

                              SYNTAX DIRECTED TRANSLATION 
 

 
 
SYNTAX DIRECTED TRANSLATION  
 
 The Principle of Syntax Directed Translation states that the meaning of an input 

sentence is related to its syntactic structure, i.e., to its Parse-Tree. 




 By Syntax Directed Translations we indicate those formalisms for specifying 
translations for programming language constructs guided by context-free grammars. 





o We associate Attributes to the grammar symbols representing the language 

constructs. 




o Values for attributes are computed by Semantic Rules associated with 

grammar productions. 


 Evaluation of Semantic Rules may: 


 
o Generate Code; 

 
o Insert information into the Symbol 

Table; o Perform Semantic Check; 
 

o Issue error 

messages; o etc. 
 
 
There are two notations for attaching semantic rules: 
 
1. Syntax Directed Definitions. High-level specification hiding many implementation 

details (also called Attribute Grammars).  
 
2. Translation Schemes. More implementation oriented: Indicate the order in which 

semantic rules are to be evaluated.  
 
Syntax Directed Definitions 
 
• Syntax Directed Definitions are a generalization of context-free grammars in which: 
 
1. Grammar symbols have an associated set of Attributes;  
 
2. Productions are associated with Semantic Rules for computing the values of attributes.  
 
 Such formalism generates Annotated Parse-Trees where each node of the tree is a 

record with a field for each attribute (e.g.,X.a indicates the attribute a of the grammar 




symbol X). 
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 The value of an attribute of a grammar symbol at a given parse-tree node is defined by 
a semantic rule associated with the production used at that node. 



 

 

We distinguish between two kinds of attributes: 
 
1. Synthesized Attributes. They are computed from the values of the attributes of the 

children nodes.  
 
2. Inherited Attributes. They are computed from the values of the attributes of both the 

siblings and the parent nodes  

 
 

Syntax Directed Definitions: An Example 
 
• Example. Let us consider the Grammar for arithmetic expressions. The 

Syntax Directed Definition associates to each non terminal a synthesized 

attribute called val. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
S-ATTRIBUTED DEFINITIONS 
 
Definition. An S-Attributed Definition is a Syntax Directed Definition that uses 

only synthesized attributes. 
 
• Evaluation Order. Semantic rules in a S-Attributed Definition can 

be evaluated by a bottom-up, or PostOrder, traversal of the parse-tree.  
 
• Example. The above arithmetic grammar is an example of an S-
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Attributed Definition. The annotated parse-tree for the input 3*5+4n is:  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

L-attributed definition  
Definition: A SDD its L-attributed if each inherited attribute of Xi in the RHS of A ! X1 : 

:Xn depends only on 
 
1. attributes of X1;X2; : : : ;Xi  1 (symbols to the left of Xi in the RHS)  
 
2. inherited attributes of A.  
 
Restrictions for translation schemes: 
 
1. Inherited attribute of Xi must be computed by an action  before Xi.  
 
2. An action must not refer to synthesized attribute of any symbol to the right of that action.  
 
3. Synthesized attribute for A can only be computed after all attributes it references have 

been completed (usually at end of RHS).  
 
SYMBOL TABLES 
 
A symbol table is a major data structure used in a compiler. Associates attributes with 

identifiers used in a program. For instance, a type attribute is usually associated with each 

identifier. A symbol table is a necessary component Definition (declaration) of identifiers 

appears once in a program .Use of identifiers may appear in many places of the program text 

Identifiers and attributes are entered by the analysis phases. When processing a definition 

(declaration) of an identifier. In simple languages with only global variables and implicit 

declarations. The scanner can enter an identifier into a symbol table if it is not already there 

In block-structured languages with scopes and explicit declarations: 
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The parser and/or semantic analyzer enter identifiers and corresponding attributes 

 
Symbol table information is used by the analysis and synthesis phases 

 
To verify that used identifiers have been defined (declared) 

 
To verify that expressions and assignments are semantically correct – type checking 

 
To generate intermediate or target code 

 
 


 Symbol Table Interface 

The basic operations defined on a symbol table include: 
 allocate – to allocate a new empty symbol table 




 free – to remove all entries and free the storage of a symbol table 




 insert – to insert a name in a symbol table and return a pointer to its entry 


 
 lookup – to search for a name and return a pointer to its entry 




 set_attribute – to associate an attribute with a given entry 




 get_attribute – to get an attribute associated with a given entry 


 
Other operations can be added depending on requirement For example, a delete operation 

removes a name previously inserted Some identifiers become invisible (out of scope) after 

exiting a block 
 

This interface provides an abstract view of a symbol table 
 

Supports the simultaneous existence of multiple tables 
 

Implementation can vary without modifying the interface 
 

Basic Implementation Techniques 
 

First consideration is how to insert and lookup names 
 

Variety of implementation techniques 
 

Unordered List 
 

Simplest to implement 
 

Implemented as an array or a linked list 
 

Linked list can grow dynamically – alleviates problem of a fixed size array 
 

Insertion is fast O(1), but lookup is slow for large tables – O(n) on average 
 

Ordered List 
 

If an array is sorted, it can be searched using binary search – O(log2 n) 
 

Insertion into a sorted array is expensive – O(n) on average 
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Useful when set of names is known in advance – table of reserved words 

 
Binary Search Tree 

 
Can grow dynamically 

 
Insertion and lookup are O(log2 n) on average 

 

 

HASH TABLES AND HASH FUNCTIONS  
 A hash table is an array with index range: 0 to TableSize – 1 




 Most commonly used data structure to implement symbol tables 




 Insertion and lookup can be made very fast – O(1) 




 A hash function maps an identifier name into a table index


 
 A hash function, h(name), should depend solely on name 




 h(name) should be computed quickly 




 h should be uniform and randomizing in distributing names 




 All table indices should be mapped with equal probability. 




 Similar names should not cluster to the same table index 






HASH FUNCTIONS  
 
_ Hash functions can be defined in many ways . . . 
 
_ A string can be treated as a sequence of integer 

words _ Several characters are fit into an integer word 
 
_ Strings longer than one word are folded using exclusive-or or addition _ 

Hash value is obtained by taking integer word modulo TableSize 
 
_ We can also compute a hash value character by character: 
 
_ h(name) = (c0 + c1 + … + cn–1) mod TableSize, where n is name 

length _ h(name) = (c0 * c1 * … * cn–1) mod TableSize 
 
_ h(name) = (cn–1 + ___ cn–2 + … + ___ c1 + __c0))) mod TableSize 
 

_ h(name) = (c0 * cn–1 * n) mod TableSize 
 

 

RUNTIME ENVIRONMENT  
 Runtime organization of different storage locations 




 Representation of scopes and extents during program execution. 
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 Components of executing program reside in blocks of memory (supplied by OS). 




 Three kinds of entities that need to be managed at runtime: 


 
o  Generated code for various procedures and programs. 

 
forms text or code segment of your program: size known at compile 

time. o Data objects: 
 

Global variables/constants: size known at compile time 
 

Variables declared within procedures/blocks: size known 
 

Variables created dynamically: size unknown. 
 

o Stack to keep track of procedure activations. 

Subdivide memory conceptually into code and data areas: 

 Code: Program 


 
instructions 

 Stack: Manage activation of procedures at runtime. 




 Heap: holds variables created dynamically 




 SYNTAX TREES 
 
Syntax trees are high level IR. They depict the natural hierarchical structure of the source 

program. Nodes represent constructs in source program and the children of a node represent 

meaningful components of the construct. Syntax trees are suited for static type checking. 

 
Variants of Syntax Trees: DAG 
 
A directed acyclic graph (DAG) for an expression identifies the common sub 

expressions (sub expressions that occur more than once) of the expression. DAG's can be 

constructed by using the same techniques that construct syntax trees. 
 
A DAG has leaves corresponding to atomic operands and interior nodes corresponding 

to operators. A node N in a DAG has more than one parent if N represents a common 

sub expression, so a DAG represents expressions concisely. It gives clues to compiler 

about the generating efficient code to evaluate expressions. 
 
Example 1: Given the grammar below, for the input string id + id * id , the parse tree, 

syntax tree and the DAG are as shown. 
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Example : DAG for the expression a + a * (b - c) + ( b - c ) * d is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the SDD to draw syntax tree or DAG for a given expression:- 
 
• Draw the parse tree  
 
• Perform a post order traversal of the parse tree  
 
• Perform the semantic actions at every node during the traversal  
 



DEPARTMENT OF INFORMATION TECHNOLOGY,SVECW                                                                                Page 73 

 

– Constructs a DAG if before creating a new node, these functions check whether an 

identical node already exists. If yes, the existing node is returned. 
 
SDD to produce Syntax trees or DAG is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the expression a + a * ( b – c) + (b - c) * d, steps for constructing the DAG is 

as below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BASIC BLOCKS AND FLOW GRAPHS 
 
A graph representation of three-address statements, called a flow graph, is useful for 

understanding code-generation algorithms, even if the graph is not explicitly constructed by a 

code-generation algorithm. Nodes in the flow graph represent computations, and the edges 

represent the flow of control. Flow graph of a program can be used as a vehicle to collect 

information about the intermediate program. Some register-assignment algorithms use flow 

graphs to find the inner loops where a program is expected to spend most of its time. 
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BASIC BLOCKS 
 
A basic block is a sequence of consecutive statements in which flow of control 
 
enters at the beginning and leaves at the end without halt or possibility of branching except at 

the end. The following sequence of three-address statements forms a basic block: 
 
t1 := a*a 
 
t2 := a*b 
 
t3 := 2*t2 
 
t4 := t1+t3 
 
t5 := b*b 
 
t6 := t4+t5 
 
A three-address statement x := y+z is said to define x and to use y or z. A name in a basic 

block is said to live at a given point if its value is used after that point in the program, 

perhaps in another basic block. 
 
The following algorithm can be used to partition a sequence of three-address statements into 

basic blocks. 
 
Algorithm 1: Partition into basic blocks. 

Input: A sequence of three-address statements. 
 
Output: A list of basic blocks with each three-address statement in exactly one 

block. Method: 
 
1. We first determine the set of leaders, the first statements of basic 

blocks. The rules we use are the following: 
 
I) The first statement is a leader. 
 
II) Any statement that is the target of a conditional or unconditional goto is a leader. 
 
III) Any statement that immediately follows a goto or conditional goto statement is a 

leader. 
 
2. For each leader, its basic block consists of the leader and all statements up to but not 

including the next leader or the end of the program. 
 
Example 3: Consider the fragment of source code shown in fig. 7; it computes the dot 

product of two vectors a and b of length 20. A list of three-address statements performing 

this computation on our target machine is shown in fig. 8. 
 
begin 

prod := 
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0; i := 1; 
 
do begin 
 
prod := prod + a[i] * 

b[i]; i := i+1; 
 
end 
 
while i<= 

20 end 
 
Let us apply Algorithm 1 to the three-address code in fig 8 to determine its basic 
 
blocks. statement (1) is a leader by rule (I) and statement (3) is a leader by rule (II), since the 

last statement can jump to it. By rule (III) the statement following (12) is a leader. Therefore, 

statements (1) and (2) form a basic block. The remainder of the program beginning with 

statement (3) forms a second basic block. 
 
(1) prod := 0  
 
(2) i := 1  
 
(3) t1 := 4*i  
 
(4) t2 := a [ t1 ]  
 
(5) t3 := 4*i  
 
(6) t4 :=b [ t3 ]  
 
(7) t5 := t2*t4  
 
(8) t6 := prod +t5  
 
(9) prod := t6  
 
(10) t7 := i+1  

(11) i := t7  
 
(12) if i<=20 goto (3)  
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