
Automata and Languages

Amit Rajaraman

March 2020

Contents

1 Regular Languages 2
1.1 Finite Automata . 2
1.2 Nondeterminism . 5
1.3 Regular Expressions . 9
1.4 Nonregular Languages . 13

2 Context-Free Languages 16
2.1 Context-Free Grammars . 16
2.2 Pushdown Automata . 20
2.3 Equivalence of Context-Free Grammars and Pushdown Automata 25

Automata and Languages 2 -Amit Rajaraman

§1. Regular Languages

Before we proceed any further, a question we must ask is - what is a computer? The computers we use
are probably too complicated to model as a mathematical system. So we shall try to create an idealized
computer called a computational model. Like models in general, this model is realistic in some ways, and
unrealistic in others.

1.1. Finite Automata

Finite automata are a good place to begin that are good models for computers with an extremely limited
amount of memory.

Example. For starters, consider an automatic door controller. It has a front pad, a back pad and a door.
The door can be either open or closed and each of the pads can be either pressed or not pressed. Using this,
we can construct a “state diagram” to show how the state of the system proceeds:

Closed Open

Rear
Both

Neither

Front
Both

Neither

Front

Neither

It can also be represented by the following table:

Front Back Neither Both
Closed Open Closed Closed Closed
Open Closed Closed Open Closed

Thinking of a finite automaton like this automatic door controller, which has only a single bit of memory,
suggests standard ways to represent automata as a state transition graph or a state transition table.
Finite automata, and their probabilistic counterparts, Markov Chains, are very useful tools.
Let us look at another finite automaton to cement the idea before exactly defining what it is.

Example. Consider the following state diagram of an automaton M .

q1start q2 q3

0 1

1
0

0, 1

It has three “states”, q1, q2 and q3. The start state, q1 is indicated as shown. The accept state, q2 is indicated
by the double circle. The arrows are called transitions. When the automaton receives some input string like
11001, it processes the string and produces some output, accept or reject. For now, we will consider only
yes/no questions like this one.
An already obvious question to ask is that what language of input strings give an accept output? We will
answer this soon.

Definition 1.1. A deterministic finite automaton is a 5-tuple (Q,Σ, δ, q0, F) where

• Q is a finite set called the set of states.

• Σ is a finite set of input symbols called the alphabet.

Automata and Languages 3 -Amit Rajaraman

• δ : Q× Σ→ Q is the transition function.

• q0 ∈ Q is the start state.

• F ⊆ Q is the set of accept states.

Accept states are also sometimes called final states.

Example. The finite automaton M we described earlier can be put in this format in the following way:

• Q = {q1, q2, q3}

• Σ = {0, 1}

• δ is described as follows:

0 1
q1 q1 q2
q2 q3 q2
q3 q2 q2

• q1 is the start state, and

• F = {q2}

If A is the set of all strings that machine M accepts, we say that A is the language of M and write L(M) = A.
In our example,

L(M) = {w | w contains at least one 1 and an even number of 0s follow the last 1}.

Definition 1.2. Let M = (Q,Σ, δ, q0, F) be a deterministic finite automaton and let w = w1w2 · · ·wn be
a string where each wi ∈ Σ. Then M accepts w if a sequence of states r0, r1, . . . , rn in Q exist with three
conditions:

1. r0 = q0,

2. δ(ri, wi+1) = ri+1 for i = 0, 1, . . . , n− 1 and

3. rn ∈ F .

We say that M recognizes language A if A = {w |M accepts w}.

Definition 1.3. A language is called a regular language if some deterministic finite automaton recognizes
it.

We define three operations on languages, called regular operations, and use them to study the properties of
regular languages.

Definition 1.4. Let A and B be languages. We define the following regular operations:

• Union: A ∪B = {x | x ∈ A or x ∈ B}.

• Concatenation: A ◦B = {xy | x ∈ A and y ∈ B}.

• Kleene Star : A∗ = {x1x2 · · ·xk | k ≥ 0 and each xi ∈ A}

These operations are called regular operations as the class of regular languages are closed under these
operations. Hencefort, we shall refer to the Kleene star operation as just the star operation.

We shall first show a proof that the class of regular languages is closed under the union operation. We shall
revisit this later and provide a much simpler proof.

Automata and Languages 4 -Amit Rajaraman

Proof. Let M1(Q1,Σ1, δ1, q01, F1) and M2(Q2,Σ2, δ2, q02, F2) recognize A1 and A2 respectively. Set Σ =
Σ1 ∪ Σ2.
We construct the finite automaton M(Q,Σ, δ, q0, F) that recognizes A1 ∪ A2 by setting Q = Q1 × Q2,
δ(q1, q2) = (δ1(q1), δ2(q2)) for all q1 ∈ Q1, q2 ∈ Q2, q0 = (q01, q02) and F = {(q1, q2) | q1 ∈ F1 or q2 ∈ F2}.
It can be checked that M recognizes A1 ∪A2. �

To prove that the class of regular languages is closed under concatenation, we must build an automaton
that accepts a string if it can be split into two parts, the first of which is accepted by the first machine and
the second of which is accepted by the second machine. To show how this can be done, we introduce a new
concept called non-determinism.

Automata and Languages 5 -Amit Rajaraman

1.2. Nondeterminism

So far, for every input symbol, the next state is exactly determined, that is, it is a deterministic machine.
In a nondeterministic machine, several choices may exist for the next state at any point.
Every deterministic finite automaton is thus clearly a nondeterministic finite automaton as well.
We shall abbreviate “nondeterministic finite automaton” as NFA and “deterministic finite automaton” as
DFA.

Example. The following is an NFA (and not a DFA):

q1start q2 q3 q4

0,1 0,1

1 0, ε 1

The difference between a DFA and an NFA is immediately apparent. In the above example, there are multiple
arrows from q1 corresponding to input 1 and no arrow from q2 corresponding to 1. We also see the addition
of ε as input, which is not in the alphabet.

How does an NFA compute? At each point with multiple paths, the machine splits into multiple copies
of itself, each one following one of the possibilites in parallel. Each copy of the machine then continues as
before. If there are subsequent choices, it splits again. If the next input symbol does not appear on any of
the arrows exiting the current state, that copy of the machine dies. Finally, if any of these copies ends at
an accept state, the NFA is said to accept the input string.
If a state with an ε exiting arrow is encountered, the machine splits into multiple copies,each one following
one of the arrows, without reading any input.

Nondeterminism is a sort of parallel computing where many “threads” are running simultaneously. The NFA
splitting corresponds to the process of “forking” into several children, each proceeding separately. If any of
these processes accepts, the entire computation accepts.
We can also think of an NFA as a tree of possibilities where the tree splits at each point where the machine
has more than one choice.

But why are NFA’s important? As we shall see shortly, every NFA can be converted to an equivalent DFA,
and constructing NFA’s is sometimes easier than constructing DFA’s. An NFA is usually much smaller than
its DFA counterpart and its functioning may be easier to understand.

Example. Let A be the language consisting of all strings over {0, 1} containing a 1 in the third position
from the end. The following NFA recognizes A.

q1start q2 q3 q4

0, 1

1 0, 1 0, 1

The following DFA also recognizes A.

Automata and Languages 6 -Amit Rajaraman

q000start q100

q001 q101

q010

q011

q110

q111

0

1

0

1

1 1

0

0

00
101

0

1

1

It is obvious that the DFA in the above example is far more complicated than the NFA.
Let us now formally define an NFA.

Definition 1.5. A nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, q0, F), where

• Q is a finite set of states.

• Σ is a finite alphabet.

• δ : Q× Σε → P(Q) is the transition function.

• q0 ∈ Q is the start state, and

• F ⊆ Q is the set of accept states.

Here Σε is Σ ∪ {ε} and P(Q) is the power set of Q.

Let w = y1y2 · · · ym be a string over the alphabet Σ. We say that a nondeterministic finite automaton N
accepts w if we can write w as w = y1y2 · · · ym where each yi ∈ Σε and a sequence of states r = r0, r1, . . . , rm
exists in Q such that:

• r0 = q0,

• ri+1 ∈ δ(ri, yi+1) for i = 0, 1, . . . ,m− 1 and

• rm ∈ F .

Definition 1.6. We say that two machines are equivalent if they recognize the same language.

Theorem 1.1. Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Proof. Let us first do this for the case where there are no ε arrows. Then given an NFA N = (Q,Σ, δ, q0, F)
that recognizes language A, we can construct the DFA M = (Q′,Σ, δ′, q′0, F

′) such that

• Q′ = P(Q). P(Q) is the power set of Q.

• For any R ∈ Q′ and symbol a,

δ′(R, a) =
⋃
r∈R

δ(r, a).

• q′0 = {q0}.

• F ′ = {q ∈ Q | q contains at least one accept state}.

Automata and Languages 7 -Amit Rajaraman

Now we need to consider the ε arrows as well. For any R ∈ Q′, define

E(R) = {q | q can be reached from R by traveling along 0 or more ε arrows}.

We can then modify the transition function as follows:

δ′(R, a) =
⋃
r∈R

E(δ(r, a)).

We must also modify the start state to q′0 = E({q0}).
It is clear that this construction will work and recognize language A, as can easily be verified from the
definition. �

Note that the size of the DFA created from the above construction equivalent to a given NFA has a number
of nodes which is exponential in terms of the number of nodes of the NFA. It is thus clear why NFA’s tend
to be significantly more compact than their corresponding equivalent DFA’s.

Corollary 1.2. A language is regular if and only if some nondeterministic finite automaton recognizes it.

Now that we have this much stronger corollary to determine if a language is regular, let us go back to
continuing to prove that the class or regular languages is closed under the regular operations.

Theorem 1.3. The class of regular languages is closed under the union operation.

Proof. Let N1 = (Q1,Σ, δ1, q1, F1) recognize A1 and N2 = (Q2,Σ, δ2, q2, F2) recognize A2 for (regular)
languages A1 and A2. (We assume that they have the same alphabet Σ. If they have different languages Σ1

and Σ2, set Σ = Σ1 ∪ Σ2).
Construct N = (Q,Σ, δ, q0, F) to recognize A1 ∪A2 as follows.

• Q = {q0} ∪Q1 ∪Q2. (Assume without loss of generality that Q1 and Q2 are disjoint)

• The state q0 is the start state of N . (q0 is not in Q1 or Q2)

• F = F1 ∪ F2

• δ is defined as follows. For any q ∈ Q and a ∈ Σε,

δ(q, a) =

δ1(q, a) q ∈ Q1

δ2(q, a) q ∈ Q2

{q1, q2} q = q0 and a = ε

∅ q = q0 and a 6= ε

Here we basically check separately whether a given string is accepted by M1 or M2, and accept if it is
accepted by either. �

Theorem 1.4. The class of regular languages is closed under concatenation.

Proof. Let N1 = (Q1,Σ, δ1, q1, F1) recognize A1 and N2 = (Q2,Σ, δ2, q2, F2) recognize A2 for (regular)
languages A1 and A2.
Construct N = (Q,Σ, δ, q1, F2) to recognize A1 ◦A2.

• Q = Q1 ∪Q2.

• Define δ such that for any q ∈ Q and a ∈ Σε,

δ(q, a) =

δ1(q, a) q ∈ Q2 and q 6∈ F1

δ1(q, a) q ∈ F1 and a 6= ε

δ1(q, a) ∪ {q2} q ∈ F1 and a = ε

δ2(q, a) q ∈ Q2.

We basically split if the part of the string read so far is accepted by N1, check whether the remainder
is accepted by N2 and recurse.

Automata and Languages 8 -Amit Rajaraman

�

Theorem 1.5. The class of regular languages is closed under the star operation.

Proof. Let N1 = (Q1,Σ, δ1, q1, F1) recognize A. Construct N = (Q,Σ, δ, q0, F) as follows to recognize A∗.

• Q = {q0} ∪Q1. (q0 is not in Q1)

• F = {q0} ∪ F1. This is done so that ε is in the resulting language.

• Define δ such that for any q ∈ Q and any a ∈ Σε,

δ(q, a) =

δ1(q, a) q ∈ Q1 and q 6∈ F1

δ1(q, a) q ∈ F1 and a 6= ε

δ1(q, a) ∪ {q1} q ∈ F1 and a = ε

{q1} q = q0 and a = ε

∅ q = q0 and a 6= ε

It can be checked that this machine recognizes A∗. The idea is similar to that in the concatenation proof,
but we keep looping on the same machine. �

Exercise 1.1. Prove that the class of regular languages is closed under the intersection operation.

Automata and Languages 9 -Amit Rajaraman

1.3. Regular Expressions

We use regular expressions to build up expressions describing languages, which are called regular expressions.
An example is (0 ∪ 1) ◦ 0∗. This language describes all strings that start with a 0 or 1 and are followed by
0s. The concatenation symbol is usually omitted and understood implicitly, so the given expression can also
be written as (0 ∪ 1)0∗.

Regular expressions have several obvious uses in computer science, like searching for strings in a text that
satisfy certain properties for instance.
In arithmetic, there is a precedence order in the operations wherein we give × higher precedence than +.
Similarly, in regular expressions, the precedence order is star, then concatenation, and finally union (unless
parentheses are used to change the order).

Definition 1.7. We say that R is a regular expression if R is equal to

1. a for some a in the alphabet Σ,

2. ε,

3. ∅,

4. (R1 ∪R2) for regular expressions R1 and R2,

5. (R1 ◦R2) for regular expressions R1 and R2, or

6. (R∗1) for regular expression R1.

Remark. Do not confuse the regular expressions ε and ∅. {ε} is the language containing a single string, the
empty string, whereas ∅ is the language containing no strings.

Given a regular expression R, we use L(R) to denote the language of R.
For convenience, we use R+ to denote RR∗, that is, the language has all strings that are 1 or more concate-
nations of strings from R. So R+ ∪{ε} = R∗. We also let Rk to denote the concatenation of k R’s with each
other.

Exercise 1.2. Describe the languages corresponding to the following regular expressions.

(a) 1∗∅

(b) ∅∗

(c) (0 ∪ ε)(1 ∪ ε)

(d) (ΣΣ)∗

(e) (01+)∗

Solution.

(a) ∅

(b) {ε}

(c) {ε, 0, 1, 01}

(d) {w | w is a string of even length }

(e) {w | every 0 in w is followed by at least one 1}

Exercise 1.3. Prove the following identities for any regular language R.

(a) R ∪ ∅ = R

(b) R ◦ {ε} = R

Automata and Languages 10 -Amit Rajaraman

Regular expressions and finite automata are equivalent in their descriptive power, which may not be an
immediately obvious fact. However any of them can be converted to the other.

Lemma 1.6. If a language is described by a regular expression, it is regular.

Proof. We shall prove each of the 5 cases of the definition separately.

1. R = a for some a in Σ. Then L(R) = {a}. The following NFA recognizes L(R).

q1start q2
a

2. R = ε. Then L(R) = {ε}. The following NFA recognizes L(R).

q1start

3. R = ∅. Then L(R) = ∅. The following NFA recognizes L(R).

q1start

For the remaining cases, that is, R = R1 ∪ R2, R = R1 ◦ R2 and R = R∗1, we use the constructions given in
the proofs that the regular languages are closed under each of the regular operations. �

We define a new type of automaton to help prove the next theorem, which states that if a language is regular,
it can be described by a regular expression. We call this a generalized nondeterministic finite automaton
(abbreviated as GNFA). The GNFA reads blocks of symbols from the input, not necessarily just one symbol
at a time as in an ordinary NFA. The GNFA moves from one state to another by reading a block of symbols
from the input, which may themselves constitute a string determined by the regular expression on that
arrow.
For convenience, we also require that each GNFA always has a special form that meets the following criteria:

• The start state has transition arrows going to every other state but no arrows coming in from any
other state.

• There is only one accept state, and there are arrows coming in to the accept state from every other
state but no arrows going out to any other state. Further, the accept state is not the same as the start
state.

• Except for the start and accept states, there are arrows going from every state to every other state
and also from each state to itself.

To prove the theorem, what we do is find a way to convert any DFA to a special GNFA (with ≥ 2 states),
and then repeatedly constructing an equivalent GNFA with 1 less state by “ripping” out a state. When we
get a GNFA with just 2 states, it just has a single arrow from the start state to the accept state, with label
equal to the required regular expression.

Define R to be the set of all regular expressions over the alphabet Σ.

Definition 1.8. A generalized nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, qstart, qaccept), where

• Q is the finite set of states,

• Σ is the input alphabet,

• δ : (Q− {qaccept})× (Q− {qstart})→ R is the transition function,

Automata and Languages 11 -Amit Rajaraman

• qstart is the start state, and

• qaccept is the accept state.

A GNFA accepts a string w in Σ∗ if w = w1w2 · · ·wk, where each wi is in Σ∗ and a sequence of states
q0, q1, . . . , qk exist such that

• q0 = qstart,

• qk = qaccept, and

• for each i, we have wi ∈ L(Ri), where Ri = δ(qi−1, qi). In other words, Ri is the expression on the
arrow from qi−1 to qi.

Lemma 1.7. Given any DFA, there exists an equivalent GNFA in the special form.

Proof. Consider a DFA N = (Q,Σ, δ, q0, F), define a GNFA N ′ = (Q′,Σ, δ′, qstart, qaccept) as follows.

• Q′ = Q ∪ {qstart, qaccept}, (qstart and qaccept are not in Q)

• δ′ is defined as follows. For any qi, qj ∈ Q′,

δ′(qi, qj) =

ε qi = qstart and qj = q0

ε qi ∈ F and qj = qaccept

{a : δ(qi, a) = qj} otherwise.

We simply add a new start state with an ε arrow to the old start state, and a new accept state with ε arrows
from each of the old accept states. If any arrows have multiple labels, we replace these with a single arrow
whose label is the union of the previous labels. We add arrows labelled ∅ between states that had no arrows
between them.
It can be checked that this is in fact a GNFA in special form. �

We shall now exactly describe the process that we use to obtain a regular expression from a given GNFA.
Given a GNFA G, we define CONVERT(G) by the following algorithm.

1. Let k be the number of states of G.

2. If k = 2, then G must consist of a start state, an accept state, and exactly one arrow between them
labelled with a regular expression R.

Return R.

3. If k > 2, we select any state qrip ∈ Q different from qstart and qaccept and let G′ be the GNFA
(Q′,Σ, δ′, qstart, qaccept) where

Q′ = Q− {qrip},

and for any qi ∈ Q′ − {qaccept} and qj ∈ Q′ − {qstart}, let

δ′(qi, qj) = (R1)(R2)∗(R3) ∪R4

for R1 = δ(qi, qrip), R2 = δ(qrip, qrip), R3 = δ(qrip, qj) and R4 = δ(qi, qj).

Return CONVERT(G′).

Lemma 1.8. For any GNFA G, CONVERT(G) is equivalent to G.

Proof. We shall prove this by an induction on k, the number of states in G. Define G′ as in the above
recursive algorithm.

Basis. The basis case is k = 2. In this case, G only consists of a start state, an accept state, and a single
arrow between them with the label describing all strings that G recognizes. Thus the expression is equivalent
to G.

Automata and Languages 12 -Amit Rajaraman

Inductive step. Assume it is true for k − 1 states. Let k > 2. We shall show that G, which has k states,
and G′, which has k − 1 states, are equivalent, that is, they recognize the same language. Suppose that
G accepts a sequence w. Then in an accepting branch of the computation, G enters a sequence of states
qstart, q1, q2, . . . , qaccept.
If none of them is qrip, G′ also clearly accepts w. If there are any runs of qrip, then removing those runs also
yields an accepting string. This is because for bracketing sequences qi, qj around a run, the arrow between
qi and qj has all strings from qi to qj through qrip. So G′ accepts w.
On the other hand, if G′ accepts some sequence w, then the arrow from qi to qj in G′ describes the collection
of strings taking qi to qj in G, either directly or through qrip. Clearly, G must also accept w. Thus G and
G′ are equivalent.

The induction hypothesis merely says that when the algorithm calls itself recursively on G′, the resulting
regular expression is equivalent to G′ (because G′ has k − 1 states). As G is equivalent to G′, G must also
be equivalent to the resulting regular expression, namely CONVERT(G). �

Theorem 1.9. A language is regular if and only if some regular expression describes it.

Proof. We have already proved one of the implications in 1.6.
To prove the other implication, we first use 1.7 to create an equivalent GNFA given any DFA. We then use
1.8 to obtain a regular expression that is equivalent to this GNFA, which is in turn equivalent to the initial
DFA.

We thus have the two way implication. �

Exercise 1.4. Find the regular expression corresponding to the following NFA.

1start 2

3

a

a

b

bb a

Solution. The resulting regular expression from the above DFA using the algorithm used in 1.9 is

(a(aa ∪ b)∗ab ∪ b)((ba ∪ a)(aa ∪ b)∗ab ∪ bb)∗((ba ∪ a)(aa ∪ b)∗ ∪ ε) ∪ a(aa ∪ b)∗

Exercise 1.5. For any string w = w1w2 · · ·wn, the reverse of w, written wR, is given by wn · · ·w2w1. For
any language A, denote AR = {wR | w ∈ A}. Show that if A is regular, AR is regular.

Automata and Languages 13 -Amit Rajaraman

1.4. Nonregular Languages

As we have regular languages, the presence of nonregular languages is also expected, that is, languages that
cannot be recognized by any finite automaton. For instance, consider the language B = {0n1n | n ≥ 0}. We
wouldn’t expect to have a finite automaton that recognizes this language as it appears we would need to
count the number of 0s processed so far (which is not bounded above), and we only have a finite number of
memory. Indeed, this language cannot be recognized by any finite automaton.

However, this immediately begs the question, what is a condition to determine whether a language is regular
or nonregular?

Theorem 1.10 (The Pumping Lemma). If A is a regular language, then there is a number p, called the
pumping length, where if s is any string in A of length at least p, then s can be divided into three pieces,
s = xyz, satisfying the following conditions:

1. For each i ≥ 0, xyiz ∈ A,

2. |y| > 0, and

3. |xy| ≤ p.

The proof of this theorem essentially relies on the pigeonhole principle. If I set p as the number of states,
then I will have a segment in the middle which is just equal to a loop on some state. Since concatenating
this segment with itself is still just a loop on that state, the theorem seems correct.

Proof. Let M = (Q,Σ, δ, q0, F) be a DFA recognizing A. Let p be the number of states of M .
Let s = s1s2 · · · sn be a string in A of length n ≥ p. Let r1, r2, . . . rn+1 be the corresponding states that
M goes through while processing s, so ri+1 = δ(ri, si) for i = 1, 2, . . . , n. As M has p states, we have
that there is at least one repeated state in the first p + 1 elements of the sequence (by the Pigeonhole
principle). Let the indices of this repeated state be l, j, that is, rl = rj where l < j ≤ p + 1. Set
x = s1s2 · · · sl−1, y = slsl+1 · · · sj−1 and z = sjsj+1 · · · sn. Now note that x takes M from r1 to rl, y takes
M from rl to rl, and z takes M from rl to rn+1.
As y takes M from rl to rl, y

i for i ≥ 0 will also take M from rl to rl and xyiz will also be accepted by M .
As l 6= j, |y| > 0. And as j ≤ p+ 1, j − 1 ≤ p and |xy| ≤ p. �

Exercise 1.6. Prove that the language B = {0n1n | n ≥ 0} is nonregular.

Solution. If B is a regular language, then consider s = 0p1p, where p is the pumping length. Let us take two
cases. (Here x, y, z represent the same x, y, z as in the Pumping Lemma)

• y is either only 0s (or only 1s). Then xy2z will have more 0s (1s) than 1s (0s) and so it is not in B.

• y contains both 0s and 1s. Then xy2z can have the same number of 0s and 1s, but they will be out of
order and hence it will not be a member of B.

We arrive at a contradiction and hence B is not a regular language.

Exercise 1.7. Prove that B = {w | w has an equal number of 0s and 1s} is a nonregular language.

Hint. Show that 0p1p cannot be pumped.

Exercise 1.8. Prove the nonregularity of the following languages.

(a) D = {ww | w ∈ {0, 1}∗}.

(b) E = {1n2 | n ≥ 0}. This is a unary nonregular language.

(c) F = {0i1j | i > j}.

We shall now show another theorem that helps us determine when a language is regular.

Automata and Languages 14 -Amit Rajaraman

Definition 1.9. Let x and y be strings and L be any language. We say that x and y are distinguishable by
L if some string z exists such that exactly one of the strings xz and yz is in L. Otherwise, if for every string
z, xz ∈ L if and only if yz ∈ L, we say that x and y are indistinguishable by L.

If x and y are indistinguishable by L, we write x ≡L y.

Lemma 1.11. Given a language L, ≡L is an equivalence relation.

Proof. This proof is trivial and is left as an exercise to the reader. �

Definition 1.10. Let L be a language and X be a set of strings. We say that X is pairwise distinguishable
by L if every two distinct strings in X are distinguishable by L.

Definition 1.11. Let L be a language. The index of L is defined as the maximum number of elements in
any set that is pairwise distinguishable by L. The index of a language may be finite or infinite.

Theorem 1.12 (Myhill-Nerode Theorem). A language L is regular if and only if it has finite index. Moreover,
its index is the size of the smallest DFA recognizing it.

Proof. We shall first show that if a language L is recognized by a DFA with k states, it has index at most k.
If there exists a set with > k elements that is pairwise distinguishable, then by the Pigeonhole principle, we
get that there exist two strings x and y in the set such that the state the DFA is in after processing these
strings is the same. However, if this is the case, then for any string z, the DFA will accept xz if and only if
it accepts yz. Thus, the index is at most k.

We shall now show the other direction, that is, if the index of L is a finite number k, it is recognized by a
DFA with k states.
Let X = {x1, x2, . . . , xk} be pairwise distinguishable by L. Construct a DFA N = {Q,Σ, δ, x0, F} as follows.
Q = X. δ(xi, a) = xj if xia ≡L xj . Note that this xj is unique as X is pairwise distinguishable and such an
xj exists as X has the maximum number of elements. x0 is the unique xi such that xi ≡L ε. F = X ∩ L.
If a string s ≡L xj for some j, then the state of N after reading s will be xj (Why?). Thus the language
recognized by N is just L itself (from the definition of F).

Combining the above two, we get that a language is regular if and only if it has finite index. To prove the
second part of the theorem, suppose that there is a DFA that recognizes the language with size less than the
index. Then using the first part of the proof gives a contradiction. There clearly exists a DFA recognizing
the language of size equal to the index from the second part of the theorem. This completes our proof. �

Automata and Languages 15 -Amit Rajaraman

Problems

Exercise 1.9. Let

Σ3 =

0

0
0

 ,
0

0
1

 ,
0

1
0

 , · · · ,
1

1
1

 .

A string in Σ3 gives 3 rows. Consider each row to be a binary number and let

B = {w ∈ Σ∗3 | the bottom row of w is the sum of the top two rows}

Show that B is regular.

Exercise 1.10. Consider the language

L = {wwR | w ∈ (0 ∪ 1)∗}

Show that L is nonregular. (The meaning of wR is described in 1.5.)

Exercise 1.11. Say that string x is a prefix of string y if a string z exists such that xz = y and that x is a
proper prefix of y if in addition, x 6= y. Let A be any language. Show that the class of regular languages is
closed under the following two operations.

(a) NOPREFIX(A) = {w ∈ A | no proper prefix of w is in A}

(b) NOEXTEND(A) = {w ∈ A | w is not the proper prefix of any string in A}

Exercise 1.12. Let A be any language. Show that the class of regular languages is closed under the DROPOUT
operation defined as follows.

DROPOUT(A) = {xz | xyz ∈ A where x, z ∈ Σ∗, y ∈ Σ}.

Exercise 1.13. For languages A and B, let the shuffle of A and B be the language

{w | w = a1b1 · · · akbk, where a1 · · · ak ∈ A and b1 · · · bk ∈ B, each ai, bi ∈ Σ∗}.

Show that the classes of regular languages is closed under the shuffle operation.

Exercise 1.14. If A is any language, let A 1
2−

be the set of all first halves of strings in A defined as follows.

A 1
2−

= {x | for some y, |x| = |y| and xy ∈ A}

Show that if A is regular, so is A 1
2−

.

Exercise 1.15. Let B and D be two languages. Write B b D if B ⊆ D and D contains infinitely many
strings that are not in B. Show that, if B and D are two regular languages where B b D, then we can find
a regular language C where B b C b D.

Exercise 1.16. Let M = {Q,Σ, δ, q0, F} be a DFA and h ∈ Q be called its “home”. A synchronizing

sequence for M and h is a string s ∈ Σ∗ where δ̂(q, s) = h for all q ∈ Q (Here δ̂(q, s) is the state M ends up
at when it starts at q and processes s). Say that M is synchronizable if it has a synchronizing sequence for
some state h. Prove that if M is a k-state synchronizable DFA, it has a synchronizing sequence of length at
most k3.
This has in fact been improved by Kohavi (?, check again) to show that the length of the synchronizing

sequence lies between k3−k
6 and k2+k−4

2 . C̆erný conjectured in 1964 that this bound can be improved to
(k − 1)2, a very tight bound, which remains one of the largest unsolved problems in Automata Theory at
the time of writing this.

Automata and Languages 16 -Amit Rajaraman

§2. Context-Free Languages

In this chapter, we shall present context-free grammars, that can describe certain features that have a
recursive structure. They naturally arise from trying to understand the relationship of terms like nouns,
verbs and prepositions in ordinary grammar, and their respective phrases which lead to a natural recursion.
An important application of this is in most compilers and interpreters, which contain a parser that extracts
the meaning of a program prior to compilation. A number of methods help construct this parser once a
context-free language is available. Some even automatically generate the parser.
The collection of associated languages are context-free languages.

2.1. Context-Free Grammars

Example. The following is a context-free grammar. Call it G1.

A→ 0A1

A→ B

B → #

The grammar consists of substitution rules or productions. Each rule has a symbol, called a variable, and a
string separated by an arrow. The string contains variables and other symbols called terminals. One variable
is designated as the start variable, and usually occurs on the left-hand side of the top-most rule. Using a
grammar, we describe a language, called a context-free language, by generating each string of that language
as follows.

1. Write down the start variable.

2. Find a variable that is written down and a rule that starts with that variable. Replace that variable
with the right hand side of that rule.

3. Repeat step 2 until no more variables remain.

For example, G1 generates 00#11 as follows.

A =⇒ 0A1 =⇒ 00A11 =⇒ 00B11 =⇒ 00#11

The above information may also be represented pictorially by a parse tree.

In the above example, the two rules with A on the left-hand side can be merged into a single rule as
A → 0A1 | B, using the symbol “|” as an “or”. To understand the link with the English language, we give
a more illustrative example below.

Example.

〈SENTENCE〉 → 〈NOUN-PHRASE〉〈VERB-PHRASE〉
〈NOUN-PHRASE〉 → 〈CMPLX-NOUN〉 | 〈CMPLX-NOUN〉〈PREP-PHRASE〉
〈VERB-PHRASE〉 → 〈CMPLX-VERB〉 | 〈CMPLX-VERB〉〈PREP-PHRASE〉
〈PREP-PHRASE〉 → 〈PREP〉〈CMPLX-NOUN〉
〈CMPLX-NOUN〉 → 〈ARTICLE〉〈NOUN〉
〈CMPLX-VERB〉 → 〈VERB〉 | 〈VERB〉〈NOUN-PHRASE〉
〈ARTICLE〉 → a | the
〈NOUN〉 → boy | girl | flower
〈VERB〉 → touches | sees
〈PREP〉 → with

Automata and Languages 17 -Amit Rajaraman

Strings in this grammar include
a boy sees

the boy touches a flower

the girl touches the boy with the flower

Exercise 2.1. Show two different ways in which the third string in the above grammar can be generated.
Here, “two different ways” means two different parse trees, not two different derivations. (Why aren’t these
two the same?) Note the correspondence between these two ways and the two ways the string can be read.

Let us formalize our definition of a context-free grammar.

Definition 2.1. A context-free grammar is a 4-tuple (V,Σ, R, S), where

1. V is a finite set called the variables.

2. Σ is a finite set, disjoint from V , called the terminals.

3. R is a finite set of rules, with each rule being a variable and a string of variables and terminals. More
precisely, R is a finite subset of V × (V ∪ Σ)∗, called the set of rules.

4. S ∈ V is the start variable.

We shall abbreviate “context-free grammar” as CFG and “context-free language” as CFL.
If u, v and w are strings of variables and terminals, and A → w is a rule of the grammar, we say that uAv
yields uwv, written as uAv ⇒ uwv.
We say that u derives v, written u

∗⇒ v, if u = v or there exists a sequence u1, u2, . . . , uk of strings of
terminals and variables some for k ≥ 0 such that

u⇒ u1 ⇒ u2 ⇒ · · · ⇒ uk ⇒ v

The language of the grammar is {w ∈ Σ∗ | S ∗⇒ w}.

Exercise 2.2. Put the two examples given above in the form given in the definition of a CFG.

Many CFLs are the union of simpler CFLs. These can then easily be combined to form a corresponding
CFG by combining their rules and then adding a new rule S → S1 | S2 | · · · | Sk, where the Sis are the start
variables of each of the CFGs.

Exercise 2.3. Construct a CFG which has corresponding language {0n1n | n ≥ 0} ∪ {1n0n | n ≥ 0}

Solution. We can combine the two following CFGs:

S1 → 0S11 | ε and S2 → 1S20 | ε

to get a grammar that generates the given language as follows.

S → S1 | S2

S1 → 0S11 | ε
S2 → 1S20 | ε

Lemma 2.1. Any regular language is a context-free language.

Proof. Let N(Q,Σ, δ, q0, F) be a DFA that recognizes the given regular language. We convert N to a CFG
G(V,Σ, R, S) as follows.

• V = Q

• R = {qi → aqj | qi, qj ∈ V and δ(qi, a) = qj} ∪ {qi → ε | qi ∈ F}

• S = q0

Automata and Languages 18 -Amit Rajaraman

We leave it to the reader to verify that this grammar generates the language of the DFA. �

If a grammar generates a string in multiple ways, we say that the string is generated ambiguously from the
grammar.

Definition 2.2. A derivation of a string in a grammar G is a leftmost derivation if at every step the leftmost
remaining variable is replaced.

Rightmost derivations are defined similarly.

Definition 2.3. Let (V,Σ, R, S) be a context-free grammar. Any string in (V ∪ Σ)∗ that can be derived
from the start symbol S is called a sentential form.

In the above definition, if there exists a leftmost derivation from S to the sentential form, it is called a
left-sentential form. Right-sentential forms are defined similarly.

Definition 2.4. A string w is derived ambiguously in a context-free grammar G if it has two or more
different left-most derivations. Grammar G is ambiguous if it generates some string ambiguously.

Sometimes when we have an ambiguous grammar, we can find an unambiguous grammar that generates the
same language. Some languages, however, can only be generated by ambiguous grammars. Such languages
are called inherently ambiguous.

It is often very useful to represent context-free grammars in a simplified form.

Definition 2.5. A context-free grammar is in Chomsky normal form if every rule is of the form

A→ BC

A→ a

where a is any terminal, A is any variable and B,C are any variable other than the start variable. In
addition, we permit the rule S → ε, where S is the start variable.

Theorem 2.2. Any context-free language can be generated by a context-free grammar in Chomsky normal
form.

Proof. We can convert any CFG G into Chomsky normal form as follows.

1. Add a new variable S0 and the rule S0 → S, where S was the original start variable. This is done to
ensure that the start variable is not on the right side of any rule.

2. Next, we take care of all ε-rules, that is, rules with ε on the right side. We remove any ε-rule A→ ε,
where A 6= S. Then for each occurrence of A on the right side of a rule, we add a new rule with that
occurrence deleted. We repeat this until there are no ε rules not involving S.

3. We then handle all unit rules. We remove a unit rule A → B. Then wherever a rule B → u appears,
we add the rule A→ u unless this was a unit rule previously removed. Here, u is a string of variables
and terminals. We repeat this until there are no unit rules.

4. Given any rule A → u1u2 · · ·uk, where k > 2 and each ui is a variable or terminal symbol, with the
rules A→ u1A1, A1 → u2A2, . . . , and Ak−2 → uk−1uk (The Ais are new variables).

5. Finally, if we have any rule A → u1u2, we replace any terminal ui with the new variable Ui and add
the rule Ui → ui.

It can be checked that the language of this grammar is the same as that of the original grammar. �

Exercise 2.4. Convert to the following CFG to Chomsky normal form.

S → ASA | aB
A→ B | S
B → b | ε

Automata and Languages 19 -Amit Rajaraman

Solution. Performing the algorithm given in the above proof yields the following CFG.

S0 → AA1 | UB | a | SA | AS
S → AA1 | UB | a | SA | AS
A→ b | AA1 | UB | a | SA | AS
A1 → SA

U → a

B → b

Automata and Languages 20 -Amit Rajaraman

2.2. Pushdown Automata

We shall now introduce another computational model called a pushdown automaton. These automata are
like DFAs, but they have an extra component called a stack, which provides additional memory beyond that
of just the DFA. This allows the automaton to recognize certain non-regular languages. Pushdown automata
are equivalent in power to context-free grammars.
The schematic of a finite automaton can be understood as follows:

state control

a b b a

input

The “state control” represents the states and the transition function, and the tape contains the input string,
which is read character by character. The arrow points at the next character to be read.

Similarly, a pushdown automaton can be understood as follows.

state control

a b b ax

y

z

stack
input

In addition to the finite automaton-like structure it has, it also has a stack on which which symbols can
be written down and read back later (The concept of a stack is hopefully familiar to the reader). This
stack, which has infinite memory, is what enables the pushdown automaton to recognize languages such as
{0n1n | n ≥ 0} because it can store the number of 0s it has seen on the stack. The “pushdown” in pushdown
automaton corresponds to the stack structure.

Unlike DFAs and NFAs, deterministic pushdown automata and nondeterministic pushdown automata are
not equivalent. However, as nondeterministic pushdown automata are equivalent to context-free grammars,
we shall focus on them for the remainder of this subsection.

Example. Let us attempt to construct the pushdown automaton corresponding to the language L described
in 1.10. We do so as follows.

• Start in a state q0 that represents a guess that we have not yet seen the end of the w in the definition
of L. While in state q0, we read symbols and push them onto the stack.

• At any time, we may guess that we have reached the end of w. Since the automaton is nondeterministic,
we guess that we have reached the end of w by going to state q1, and also stay in q0 and continue to
read inputs.

• Once in state q1, we look at the input symbol and compare it to the topmost symbol on the stack. If
they are the same, we pop it. Otherwise, the branch dies.

• If we empty the stack, then we have seen something of the form wwR, so we accept.

We shall now formally define a nondeterministic pushdown automaton.

Automata and Languages 21 -Amit Rajaraman

Definition 2.6. A nondeterministic pushdown automaton is a 7-tuple (Q,Σ,Γ, δ, q0, Z0, F) where Q,Σ,Γ, F
are all finite sets, and

1. Q is the (finite) set of states,

2. Σ is the (finite) input alphabet,

3. Γ is the (finite) stack alphabet (this is the set of elements we can push onto the stack),

4. δ : Q× Σε × Γ→ P(Q× Γ∗) is the transition function,

5. q0 ∈ Q is the start state,

6. Z0 ∈ Γ is a particular symbol called the start symbol, which initially appears on the stack, and

7. F ⊆ Q is the set of accept states.

We shall abbreviate “Nondeterministic Pushdown Automaton” as NPDA.
In the above definition, the transition function is the main thing that is different from our usual definition
of an NFA. In one transition, it:

1. consumes from input the symbol used in the transition (if the symbol is ε, then no input is consumed),

2. goes to a new state, and

3. replaces the symbol at the top of the stack with a string. Note that the string could also be ε, which
means that we pop the stack.

Given this, the correspondence to the above definition is clear.
We require Z0 in the above definition of a stack so that we can know when the stack is empty. Note that
it is equivalent to use a specific symbol that we push in the beginning to signify the bottom of the stack.
Some books use this definition of the NPDA instead. Next, we shall define what it means for an NPDA to
recognize a string.

Definition 2.7. An NPDA M = (Q,Σ,Γ, δ, q0, Z0, F) is said to accept a string w if w can be written as
w = w1w2 · · ·wm, where each wi ∈ Σε and sequence of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈
Γ∗ exist that satisfy the following three conditions.

1. r0 = q0 and s0 = Z0.

2. For i = 0, 1, . . . ,m − 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at and si+1 = bt for some a ∈ Γ
and b, t ∈ Γ∗.

3. rm ∈ F .

Exercise 2.5. Express the example we described before defining an NPDA in the form given in the definition
of an NPDA.

Solution. The PDA can be expressed as P = ({q0, q1, q2}, {0, 1}, {0, 1, Z0}, δ, q0, Z0, {q2}), where

δ(q0, a, Z0) = {(q0, aZ0)} for all a ∈ {0, 1}
δ(q0, a, b) = {(q0, ab)} for all a, b ∈ {0, 1}
δ(q0, ε, a) = {(q1, a)} for all a ∈ {0, 1, Z0}
δ(q1, a, a) = {(q1, ε)} for all a ∈ {0, 1}
δ(q1, ε, Z0) = {(q2, Z0)}

Similar to how we express NFAs and DFAs as graphs, NPDAs can also be expressed as graphs, where in
addition to the way we draw the NFA structure, we also write what happens to the stack as follows. An arc
labelled a,X/α from state q to p means that (p, α) ∈ δ(q, a,X). That is, it tells what input is used (a), and
the old and new tops of the stack (X and α respectively).

So for instance, the PDA described in 2.5 is depicted by the following diagram.

Automata and Languages 22 -Amit Rajaraman

q0start q1 q2

0, Z0/0Z0

1, Z0/1Z0

0, 0/00
1, 0/10
0, 1/01
1, 1/11

0, 0/ε
1, 1/ε

ε, Z0/Z0

ε, 0/0
ε, 1/1

ε, Z0/Z0

Exercise 2.6. Construct the NPDA that recognizes the language L = {aibjck | i = j or j = k}

It is also useful to represent a PDA at some point of time by a triple (q, w, γ), where q is the state, w is the
remaining input, and γ is the stack contents. We conventionally show the top of the stack at the left end of
γ. Such a triple is called an instantaneous description, or ID of the automaton.

Let V = (Q,Σ,Γ, δ, q0, Z0, F) be an NPDA. Define `P , or just ` when P is understood, as follows. Suppose
(p, α) ∈ δ(q, a,X). Then for all strings w ∈ Σ∗, β ∈ Γ∗, we write

(q, aw,Xβ) ` (p, w, αβ)

This notation, called the “turnstile” notation, represents the transition between different IDs of the NPDA.
Note that w and β do not influence the transition, they are merely carried along.
We also use `∗P or `∗ to represent 0 or more moves of the NPDA. That is, I `∗ I for any ID I and I ` J if
there exists a state K such that I ` K and K `∗ J .

We shall call a sequence of IDs a computation. We have the following.

• If a computation is legal, then the computation formed by adding the same additional input string to
the end of the input in each ID is also legal.

• If a computation is legal, then the computation formed by adding the same additional string below the
stack of each ID is also legal.

• If a computation is legal, and some tail of the input is not consumed, we can remove this tail from
each ID and the resulting computation will still be legal.

These three points just say that information that the NPDA does not look at does not affect its computation.

Theorem 2.3. If P = (Q,Σ,Γ, δ, q0, Z0, F) is an NPDA and (q, x, α) `∗P (p, y, β), then for any strings
w ∈ Σ∗, γ ∈ Γ∗,

(q, xw, αγ) `∗P (p, yw, βγ).

Proof. This proof is trivial and is left as an exercise to the reader. (Perform an induction on the number of
steps in the sequence of IDs) �

Using this notation, we can alternatively formulate the definition of the language recognized by a language
as follows. Let P = (Q,Σ,Γ, δ, q0, Z0, F) be an NPDA. Then

L(P) = {(q0, w, Z0) `∗P (q, ε, α) | q ∈ F and α ∈ Γ∗}

The above condition is called acceptance by final state, which is exactly what it is.

Definition 2.8. Let P = (Q,Σ,Γ, δ, q0, Z0, F) be an NPDA. We define

N(P) = {w | (q0, w, Z0) `∗ (q, ε, ε)}

Automata and Languages 23 -Amit Rajaraman

The above set represents the set of input strings that when consumed, empty the stack as well. This is called
acceptance by empty stack.
The following two theorems shows how the above two acceptances are intimately related.

Lemma 2.4. If L = N(PN) for some NPDA PN = (Q,Σ,Γ, δN , q0, Z0), then there is an NPDA PF such
that L(PF) = L.

Proof. We first set the start symbol of PF as some X0 6∈ Γ. If we see X0 on the stack for some input, then
it means that PN would empty the stack for that same input. We also set the start state of PF as some
p0 6∈ Q, whose sole purpose is to push Z0 onto the stack and send it to q0. Then, PF simulates PN , until the
stack of PN is empty. We also create another state pf 6∈ Q, which is the (unique) accepting state of PF . PF

goes to pf if PN would have emptied the stack for that input (that is, it has X0 on the top of the stack).
That is,

PF = (Q ∪ {p0, pf},Σ,Γ ∪ {X0}, δF , p0, X0, {pF })

where δF is given as follows.

1. δF (p0, ε,X0) = {q0, Z0X0}. This pushes Z0 onto the stack and sends PF to q0.

2. δN (p,A,X) ⊆ δF (p, a,X) for all q ∈ Q, a ∈ Σε and X ∈ Γ. This makes PF behave like PN .

3. δF (p, a,X) also contains {(pf , ε)} for q ∈ Q, a = ε and X = X0. This sends PF to pf if PN would have
emptied the stack for the same input.

We must show that w ∈ L(PF) if and only if w ∈ N(PN).

(If) This is reasonably straightforward. We have that (q0, w, Z0) `∗PN
(q, ε, ε).

Using 2.3 gives (q0, w, Z0X0) `∗PN
(q, ε,X0).

Since PF has all the moves of PN , we also have (q0, w, Z0X0) `∗PF
(q, ε,X0). Along with the initial and

final moves, we have

(p0, w,X0) `PF
(q0, w, Z0X0) `∗PF

(q, ε,X0) `PF
(pf , ε, ε).

Thus PF accepts w by final state.

(Only if) The first and third rules of δF give very limited ways to accept w by final state. We can only use the
third rule at the last step and even then, it must have X0 on the top of the stack. As X0 only appears
at the bottom-most position in the stack, and it must be inserted at the first step, any computation of
PF that accepts w must look like the above computation. Further, the entire computation except the
first and last steps must be like a computation of PN with X0 below the stack. (Why?) We conclude
that (q0, w, Z0) `∗{ PN}(q, ε, ε), that is, w ∈ N(PN).

�

Lemma 2.5. If L = L(PF) for some NPDA PF = (Q,Σ,Γ, δF , q0, Z0), then there is an NPDA PN such that
N(PN) = L.

Proof. Similar to the previous proof, we introduce p0, pf 6∈ Q and X0 6∈ Γ. Whenever PF enters an accepting
state after consuming input w, the corresponding system in PN empties its stack. That is, let

PN = (Q ∪ {p0, pf},Σ,Γ ∪ {X0}, δN , p0, X0)

where δN is given as follows.

1. δN (p0, ε,X0) = {(q0, Z0X0)}. This is the first step where Z0 is pushed onto the stack so that PN may
behave like PF .

2. δF (q, a, Y) ⊆ δN (q, a, Y) for all q ∈ Q, a ∈ Σε and Y ∈ Γ. This makes it behave like PF .

Automata and Languages 24 -Amit Rajaraman

3. δN (q, ε, Y) also contains (pf , ε) for q ∈ F and Y ∈ Γ. If the PF part of PN is in an accepting state, it
goes to pf .

4. δN (pf , ε,X) = {(pf , ε)}. This repeatedly pops the symbol on the stack until it is empty.

The ideas used in proving that w ∈ PN if and only if w ∈ PF are similar to those used in the proof of 2.4 so
we leave it as an exercise to the reader. �

Theorem 2.6. Let L be a language. L is accepted by final state by some NPDA if and only if it is accepted
by empty stack by some NPDA.

Proof. This follows directly from 2.4 and 2.5. �

Automata and Languages 25 -Amit Rajaraman

2.3. Equivalence of Context-Free Grammars and Pushdown Automata

In this subsection, we shall show the equivalence of context-free languages and languages that are recognized
(by final state) by some NPDA. To do so, we shall instead consider those languages that are recognized by
empty stack by some NPDA.

Any left-sentential that is not a terminal string can be written as xAα, where A is the leftmost variable, x is
the string of whatever terminals appear to its left, and α is the string of terminals and variables that appear
to its right. Then Aα is called the tail of this left-sentential form. A left-sentential form that is a terminal
string is said to have tail ε.

Given a CFG, we shall attempt to construct an NPDA that simulates its leftmost derivations. We shall do
so by “guessing” the sequence of left-sentential forms that the CFG takes to reach a given terminal string w.
The tail of each sentential form xAα appears on the stack (with A on top). x is represented by our having
consumed of it from the input. That is, if w = xy, then the input consists of just y.

Now suppose the NPDA is in ID (q, y, Aα) representing left-sentential form xAα. It guesses the rule used to
expand A as A → β. Now again, the terminals at the start of the string βα need to be removed to expose
the tail. These terminals are compared against the next input symbols, to ensure that our guess was correct.
If it is not, then this branch of the NPDA dies. If we are able to guess a leftmost derivation of w, then we
shall eventually reach the left-sentential form w. At that point, the stack is empty as the tail is ε and we
accept by empty stack.

We shall now make the above informal construction rigorous as follows. Let G = (V,Σ, R, S) be a CFG.
Construct an NPDA P as follows:

P = ({q},Σ, V ∪ Σ, δ, q, S)

where δ is defined by
δ(q, ε, A) = {(q, β) | (A, β) ∈ R}for each variable A.

δ(q, a, a) = {(q, ε)} for each terminal a.

Lemma 2.7. Let G be a CFG and P be an NPDA constructed from G as above. Then N(P) = L(G).

Proof. We shall prove that a string w is in N(P) if and only if it is in L(G).

(If) Let w ∈ L(G). Then w has leftmost derivation

S = γ1 ⇒ γ2 ⇒ · · · ⇒ γn = w.

We shall show by induction on i that (q, w, S) `∗P (q, yi, αi), where yi and αi are as follows.

Let αi be the tail of γi and γi = xiαi. Then yi is the string such that xiyi = w.

Basis Step: For i = 1, we have γ1 = α1 = S, x1 = ε, and y1 = w. We then trivially have (q, w, S) `∗
(q, w, S) = (q, y1, α1).

Induction: We shall assume that (q, w, S) `∗ (q, yi, αi) and show that (q, w, S) `∗ (q, yi+1, αi+1). Since
αi is a tail, it begins with a variable A.

In the derivation, the step γi ⇒ γi+1 involves replacing A with some string β. Using the construction
of P , the first part allows us to replace A at the top of the stack with β and the second part allows us to
match terminals at the top of the stack with subsequent input symbols. Then we reach (q, yi+1, γi+1),
which represents the next left-sentential form γi+1.

Finally, note that αn = ε. Thus (q, w, S) `∗ (q, ε, ε), which proves that P accepts w by empty stack.

(Only if) Here, we need to prove that if (q, x,A) `∗ (q, ε, ε), then A
∗⇒ x. We shall do so by induction on the

number of moves taken by P .

Basis Step: If only one move is taken, then the only possibility is that A→ ε is a rule of G and x = ε.
This implies that A⇒ ε.

Automata and Languages 26 -Amit Rajaraman

Induction: Suppose P takes n > 1 moves. The move taken in the first step must be of the first type
in the definition of P . Let the rule that is substituted be A → Y1Y2 · · ·Yk, where each Yi is either
a variable or a terminal. The next n − 1 steps must consume x from the input and pop each of the
elements Y1, Y2, . . . , Yk from the stack. Let us break x as x1x2 · · ·xk, where x1 is the portion of the
input consumed until Y1 is removed from the stack, x2 is the next portion that is consumed until Y2
is removed from the stack, and so on.

Then we have that (q, xi, Yi) `∗ (q, ε, ε) for each i. As each xi < n, we can use the inductive hypothesis

to get that Yi
∗⇒ xi.

Then we have the following derivation:

A⇒ Y1Y2 · · ·Yk
∗⇒ x1Y2 · · ·Yk

∗⇒ · · · ∗⇒ x1x2 · · ·xk = x.

This completes the proof.

�

Now that we have gone one way from grammars to NPDAs, we shall provide a construction in the other
direction to prove their equivalence.
That is, given any NPDA P that recognizes language L(P), we must construct a CFG G that also recognizes
language L(P).

Lemma 2.8. Let P = (Q,Σ,Γ, δ, q0, Z0) be an NPDA. Then there is a context-free grammar G such that
L(G) = N(P).

Similar to the second part of the previous proof, let us have a sequence of symbols Y1, Y2, . . . , Yk that must
be popped. Let some input x1 be read while Y1 is popped. x2 is the next portion that is consumed until Y2
is popped, and so on. Note that here, by “popping”, we do not mean a single step that is the usual meaning
of popping. We instead mean possibly multiple steps that result in Y1 being removed from the stack.
The variables of the CFG we shall construct will represent “events” that the NPDA changes from state p at
the beginning to q when X is removed from the stack. This composite symbol is denoted [pXq]. Note that
this is a single variable. We make this rigorous in the following proof.

Proof. We construct a CFG G = (V,Σ, R, S) as follows. S is the special start symbol. We also have

V = {S} ∪ {[pXq] | p, q ∈ Q and X ∈ Γ}.

For all states p, S → [q0Z0p] is a rule. According to the intuition we provided, this generates all strings w
that cause P to pop Z0 when going from q0 to p. That is, it represents all strings w that cause P to empty
its stack.

Let δ(q, a,X) contain (r, Y1Y2 · · ·Yk) where a ∈ Σε and k ≥ 0 (in the case where k = 0, we take the pair
(r, ε) instead).

Then for all lists of states r1, r2, . . . , rk, G has the rule

[qXrk]→ a[rY1r1][r1Y2r2] · · · [rk−1Ykrk].

This represents that one way to go from q to rk while popping X is to read a, then use some input to pop
Y1 while going from r to r1, then read some more input that pops Y2 while going from r1 to r2, and so on.

Let us now prove that the CFG we have constructed satisfies L(G) = N(P), that is,

[qXp]
∗⇒ w if and only if (q, w,X) `∗ (p, ε, ε).

(If) Suppose (q, w,X) `∗ (p, ε, ε). We must show that [qXp]
∗⇒ w. We shall do so by induction on the

number of steps.

Basis Step: Only one step is involved. Then (p, ε) ∈ δ(q, w,X) and w is in Σε. By the construction of
G, [qXp]→ w is a rule, so [qXp]⇒ w.

Automata and Languages 27 -Amit Rajaraman

Induction: Let n > 1 steps be involved. The first step must look like

(q, w,X) ` (r0, x, Y1Y2 · · ·Yk) `∗ (p, ε, ε)

where w = ax for some a ∈ Σε. It follows that

(r0, Y1Y2 · · ·Yk) ∈ δ(q, w,X).

By the construction of G, there is a rule

[qXrk]→ a[r0Y1r1][r1Y2r2] · · · [rk−1Ykrk],

where rk = p and r0, r1, . . . , rk−1 ∈ Q.

Let x = w1w2 · · ·wk, where each wi is the input consumed when Yi is popped. Then we have that
(ri−1, wi, Yi) `∗ (ri, ε, ε). We can use the inductive hypothesis on each of these steps to conclude that

for each i, [ri−1Yiri]
∗⇒ wi. With rk = p, we may put these derivations together as follows to get the

required result.

[qXrk]⇒ a[r0Y1r1][r1Y2r2] · · · [rk−1Ykrk]
∗⇒ aw1[r1Y2r2][r2Y2r3] · · · [rk−1Ykrk]

...
∗⇒ aw1w2 · · ·wk = w

(Only if) We must show that if [qXp]
∗⇒ w, then (q, w,X) `∗ (p, ε, ε). We shall do so by induction on the

number of steps in the derivation.

Basis Step: Only one step is involved. In this case, [qXp]→ w is a rule. The only way this is possible
is if there is a transition of P from q to p where X is popped. That is, (p, ε) ∈ δ(q, w,X). But then
we have (q, w,X) `∗ (p, ε, ε).

Induction: Let n > 1 steps be involved. Let p = rk and the first sentential form be as follows:

[qXrk]⇒ a[r0Y1r1][r1Y2r2] · · · [rk−1Ykrk]
∗⇒ w.

This is because (r0, Y1Y2 · · ·Yk) ∈ δ(q, a,X). Break w as w = aw1w2 · · ·wk such that [ri−1Yiri]
∗⇒ wi

for each i. Then for all i,
(ri−1, wi, Yi) `∗ (ri, ε, ε).

Using 2.3, we have
(ri−1, wiwi+1 · · ·wk, Yi) `∗ (ri, wi+1wi+2 · · ·wk, ε).

Putting all these together, we have

(q, aw1w2 · · ·wk, X) ` (r0, w1w2 · · ·wk, Y1Y2 · · ·Yk)

`∗ (r1, w2w3 · · ·wk, Y2Y3 · · ·Yk)

...

`∗ (rk, ε, ε)

This completes our proof as rk = p.

�

Theorem 2.9. The class of languages recognized by nondeterministic pushdown automata is equal to the
class of languages generated by context-free grammars.

Proof. This immediately follows from 2.8 and 2.7. �

	Regular Languages
	Finite Automata
	Nondeterminism
	Regular Expressions
	Nonregular Languages

	Context-Free Languages
	Context-Free Grammars
	Pushdown Automata
	Equivalence of Context-Free Grammars and Pushdown Automata

