CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Spring 2019

Chapter 1

Introduction to the Theory of Computation

1. Mathematical Preliminaries and Notation

- Sets
- Functions and Relations
- Graphs and Trees
- Proof Techniques

2. Three Basic Concepts

- Languages
- Grammars
- Automata

3. Some Applications

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Define the three basic concepts in the theory of computation: automaton, formal language, and grammar.
- Solve exercises using mathematical techniques and notation learned in previous courses.
- Evaluate expressions involving operations on strings.
- Evaluate expressions involving operations on languages.
- Generate strings from simple grammars.
- Construct grammars to generate simple languages.
- Describe the essential components of an automaton.
- Design grammars to describe simple programming constructs.

Sets

Representations

$\mathrm{S}=\{0,1,2\}$
$S=\{i: i>0, i$ is even $\}$
Empty set: \varnothing
Operations
Union (\cup) $\quad: S_{1} \cup S_{2}=\left\{x: x \in S_{1}\right.$ or $\left.x \in S_{2}\right\}$
Intersection $(\cap): S_{1} \cap S_{2}=\left\{x: x \in S_{1}\right.$ and $\left.x \in S_{2}\right\}$
Difference (-) $\quad: S_{1}-S_{2}=\left\{x: x \in S_{1}\right.$ and $\left.x \notin S_{2}\right\}$
Complement $\quad: \bar{S}=\{\mathrm{x}: \mathrm{x} \in \mathrm{U}$ and $\mathrm{x} \notin \mathrm{S}\}$
Subset: $\mathrm{S}_{1} \subseteq \mathrm{~S}_{2}$
Proper subset: $\mathrm{S}_{1} \subset \mathrm{~S}_{2}$
Power set: $\mathrm{P}(\mathrm{S})=\{\mathrm{A}: \mathrm{A} \subseteq \mathrm{S}\}$
Cartesian product: $\mathrm{S}_{1} \times \mathrm{S}_{2}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x} \in \mathrm{S}_{1}\right.$ and $\left.\mathrm{y} \in \mathrm{S}_{2}\right\}$
Example 1.1 on p5 Example 1.2 on p5

Functions and Relations

Function $f: X \rightarrow Y, y=f(x), x \in X$
Given two functions f and g defined on the positive integers, if there is a positive constant c such that for all $n, f(\boldsymbol{n}) \leq \boldsymbol{c g}(\boldsymbol{n})$, f is said to has order of at most \boldsymbol{g}, denoted by $\boldsymbol{f}(\boldsymbol{n})=\mathbf{O}(\boldsymbol{g}(\boldsymbol{n}))$.
if $|f(n)| \geq c|\mathbf{g}(\boldsymbol{n})|, f$ is said to has order of at least \boldsymbol{g}, denoted by $f(n)=\Omega(g(n))$,

Finally, if there exist constants c_{1} and c_{2} such that $\boldsymbol{c}_{\boldsymbol{1}}|\boldsymbol{g}(\boldsymbol{n})| \leq|f(\boldsymbol{n})| \leq \boldsymbol{c}_{2}|\boldsymbol{g}(\boldsymbol{n})|, f$ and g are said to have the same order of magnitude, denoted by $f(n)=\theta(\boldsymbol{g}(\boldsymbol{n}))$

Relation $R \subseteq \mathrm{X} \times \mathrm{Y},(\mathrm{x}, \mathrm{y}) \in \mathrm{R}$ (or x R y)
Equivalence relation \equiv on $\mathrm{X}(\equiv \subseteq \mathrm{X} \times \mathrm{X})$, if it satisfies three rules:

1. Reflexive: $x \equiv x$ for all x
2. Symmetric: $\mathrm{x} \equiv \mathrm{y}$ then $\mathrm{y} \equiv \mathrm{x}$
3. Transitive: $\mathrm{x} \equiv \mathrm{y}$ and $\mathrm{y} \equiv \mathrm{z}$ then $\mathrm{x} \equiv \mathrm{z}$.

Functions and Relations

Example 1.3 on p7

$$
\begin{aligned}
& f(n)=2 n^{2}+3 n, \\
& g(n)=n^{3}, \\
& h(n)=10 n^{2}+100
\end{aligned} \quad \begin{aligned}
& f(n)=\mathrm{O}(g(n)), \\
& g(n)=\Omega(h(n)), \\
& f(n)=\Theta(h(n))
\end{aligned}
$$

Example 1.4 on p8
$x \equiv y$ if and only if $x \bmod 3=y \bmod 3$
Then \equiv is an equivalence relation

Graphs and Trees

$$
G=(V, E) \text {, where } V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \text { and } E=\left\{e_{1}, e_{2}, . ., e_{m}\right\}
$$

In directed graph

$$
\mathrm{e}_{\mathrm{i}}=\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}\right)
$$

v_{j} is a parent of v_{k}
v_{k} is a child of v_{j}
In undirected graph

$$
\mathrm{e}_{\mathrm{i}}=\left\{\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}\right\}
$$

A walk from v_{i} to v_{n} : a sequence of edges $\left(v_{i}, v_{j}\right),\left(v_{j}, v_{k}\right), \ldots\left(v_{m}, v_{n}\right)$. The length of a walk is the number of edges in the walk.
A path is a walk in which no edge is repeated.
A path is simple if no vertex is repeated.
A cycle with base v_{i} is a path from v_{i} to v_{i}.
A loop is an edge from a vertex to itself.

Graphs and Trees

A tree is a directed graph that has no cycles, and has one distinct vertex, called the root, such that there is exactly one path from the root to every other vertices.

Leaf

vertex without outgoing edges
Level of a vertex
The number of edges in the path from the root to the vertex
Height of a tree
The largest level number of any vertex

Proof Techniques

Proof by induction

Want to prove $\mathrm{P}(\mathrm{n})$ is true for all positive integer n
Three steps of proof:

1. Basis: Verify $\mathrm{P}(1)$ is true
2. Induction hypothesis: Assume $\mathrm{P}(\mathrm{k})($ or $\mathrm{P}(2), \ldots, \mathrm{P}(\mathrm{k})$) is true
3. Induction proof: Prove $\mathrm{P}(\mathrm{k}+1)$ is true

Example 1.5: Prove that a binary tree of height n has at most 2^{n} leaves
Example 1.6: Show that $S_{n}=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

Proof by contradiction

Want to prove P is true.
Assume P is false, and leads to an incorrect conclusion.
So P cannot be false. That is, P is true.
Example 1.7: Show that $\sqrt{2}$ is an irrational number.

Theory of Computation Basic Concepts

- Automaton: a formal construct that accepts input, produces output, may have some temporary storage, and can make decisions
- Formal Language: a set of sentences formed from a set of symbols according to formal rules
- Grammar: a set of rules for generating the sentences in a formal language
In addition, the theory of computation is concerned with questions of computability (the types of problems computers can solve in principle) and complexity (the types of problems that can solved in practice).

Languages

Alphabet: nonempty set Σ of symbols, E.g. $\Sigma=\{\mathrm{a}, \mathrm{b}\}$
Strings: finite sequence of symbols, E.g. $w=a b a a a, ~ v=b b a a b$
Empty string: λ
Concatenation of two strings w and $\mathrm{v}: \mathrm{wv}, w^{n}=w \cdot w \cdots w, w^{0}=\lambda$
Reverse of a string w : w^{R}
$\begin{aligned} & \text { Length of a string w: }|\mathrm{w}| \\ & \text { Substring, Prefix, Suffix }\end{aligned}|w|=\left\{\begin{array}{cc}0, & \text { if } w=\lambda \\ |u|+1, \text { if } w=a u, a \in \Sigma\end{array}\right.$
$\Sigma^{*}=\{$ all strings over $\Sigma\}$
$\Sigma^{+}=\Sigma^{*}-\{\lambda\}$
A language: a subset L of Σ^{*}
A sentence of L : a string in L
Example 1.8: Prove $|u v|=|u|+|v|$
Example 1.9: Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$, then $\Sigma^{*}=\{\lambda, \mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \ldots\}$

Languages

Alphabet: nonempty set Σ of symbols, E.g. $\Sigma=\{\mathrm{a}, \mathrm{b}\}$
Strings: finite sequence of symbols, E.g. $w=a b a a a, ~ v=b b a a b$
Empty string: λ
Concatenation of two strings w and $\mathrm{v}: \mathrm{wv}, w^{n}=w \cdot w \cdots w, w^{0}=\lambda$
Reverse of a string w : w^{R}
$\begin{aligned} & \text { Length of a string w: }|\mathrm{w}| \\ & \text { Substring, Prefix, Suffix }\end{aligned}|w|=\left\{\begin{array}{cc}0, & \text { if } w=\lambda \\ |u|+1, \text { if } w=a u, a \in \Sigma\end{array}\right.$
$\Sigma^{*}=\{$ all strings over $\Sigma\}$
$\Sigma^{+}=\Sigma^{*}-\{\lambda\}$
A language: a subset L of Σ^{*}
A sentence of L : a string in L
Example 1.8: Prove $|u v|=|u|+|v|$
Example 1.9: Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$, then $\Sigma^{*}=\{\lambda, \mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{ba}, \mathrm{a} a b, \ldots\}$

Languages

Complement $\bar{L}=\Sigma^{*}-L$
Reverse

$$
L^{R}=\left\{w^{R}: w \in L\right\}
$$

Concatenation $\quad L_{1} L_{2}=\left\{x y: x \in L_{1}, y \in L_{2}\right\}$

$$
\begin{aligned}
L^{n} & =L L \cdots L \\
L^{0} & =\{\lambda\}
\end{aligned}
$$

Star-closure $\quad L^{*}=L^{0} \cup L^{1} \cup L^{2} \cdots$
Positive closure $L^{+}=L^{1} \cup L^{2} \cdots$

Example $1.10 \quad L=\left\{a^{n} b^{n}: n \geq 0\right\}$

$$
\begin{aligned}
& L^{2}=? \\
& L^{R}=?
\end{aligned}
$$

Grammars

Definition 1.1 A grammar G is defined as a quadruple

$$
\mathrm{G}=(\mathrm{V}, \mathrm{~T}, \mathrm{~S}, \mathrm{P}) \text {, where }
$$

V is a finite set of variables, T is a finite set of terminal symbols, $\mathrm{S} \in \mathrm{V}$ is the start variable, and P is a finite set of productions.

Production rule: $x \rightarrow y$, where $x \in(V \cup T)^{+}$and $y \in(V \cup T)^{*}$ w derives z (z is derived from w)
$\cdot \mathrm{w} \underset{n}{\Rightarrow} \mathrm{z}, \quad$ E.g. $\mathrm{w}=\mathrm{uxv}$ and $\mathrm{x} \rightarrow \mathrm{y}$ then $\mathrm{z}=\mathrm{uyv}$
$\cdot \mathrm{w} \Rightarrow \mathrm{z}, \quad \mathrm{w}=\mathrm{w}_{1} \Rightarrow \mathrm{w}_{2} \Rightarrow \ldots \Rightarrow \mathrm{w}_{\mathrm{n}}=\mathrm{z}$
$\cdot \mathrm{W} \stackrel{*}{\Rightarrow} \mathrm{z}, \quad$ there is an $\mathrm{n} \geq 0$ such that $\mathrm{w} \xrightarrow{n} \mathrm{z}$
Definition 1.2 Let $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ be a grammar. Then the set

$$
L(G)=\left\{w \in T^{*}: S \stackrel{*}{\Rightarrow} w\right\}
$$

is the language generated by G . If $\mathrm{w} \in \mathrm{L}(\mathrm{G})$, then the sequence

$$
\mathrm{S} \Rightarrow \mathrm{w}_{1} \Rightarrow \mathrm{w}_{2} \Rightarrow \ldots \Rightarrow \mathrm{w}_{\mathrm{n}} \Rightarrow \mathrm{w}
$$

is a derivation of the sentence w. The strings $S, w_{1}, w_{2}, \ldots, w_{n}$ are called sentential forms of the derivation.

Examples

Example 1.11 $G=(\{S\},\{a, b\}, S, P)$ with P given by $\begin{aligned} & S \rightarrow a S b \\ & S \rightarrow \lambda\end{aligned}$ Then $L(G)=\left\{a^{n} b^{n}: n \geq 0\right\}$
Example 1.12 Find a grammar that generates $L=\left\{a^{n} b^{n+1}: n \geq 0\right\}$
Solution: $\quad \begin{aligned} G=(\{S, A\},\{a, b\}, S, P) & S \rightarrow A b \\ \text { with products } & A \rightarrow a A b \\ & A \rightarrow \lambda\end{aligned}$
Example 1.13 Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$. The grammar G with productions

$$
S \rightarrow S S, \quad \text { generates the language }
$$

$$
S \rightarrow \lambda, \quad \mathrm{~L}=\left\{\mathrm{w} \in \Sigma^{*}: \mathrm{w} \text { contains equal numbers of a's and b's }\right\}
$$

$$
\begin{aligned}
& S \rightarrow a S b, \\
& S \rightarrow b S a,
\end{aligned}
$$

Examples

Two grammars G_{1} and G_{2} are equivalent if they generate the same languages, that is, $L\left(G_{1}\right)=L\left(G_{2}\right)$.

Example 1.14 $G_{1}=\left(\{S\},\{a, b\}, S, P_{1}\right)$ with P_{1} given by

$$
\begin{aligned}
& S \rightarrow a A b \mid \lambda \\
& A \rightarrow a A b \mid \lambda
\end{aligned}
$$

Then $L\left(G_{1}\right)=\left\{a^{n} b^{n}: n \geq 0\right\}$
So G_{1} is equivalent to G in Example 1.11

Automata

Some Applications

Compiler (parser) design and Digital circuit design
Example 1.15 Identifiers as a language generated by a grammar (Identifiers: Strings of letters and digits starting with a letter)

```
<id> -> <letter> <rest>
<rest> -> <letter><rest> | <digit> <rest> | |
<letter> >a|b| ...|
<digit> > 0| l| ...|9
```

Example 1.16 Identifiers accepted by an automaton

Some Applications

Example 1.17 Serial binary adder

$$
\begin{aligned}
& x=a_{n} a_{n-1} \ldots a_{1} a_{0} \text { and } y=b_{n} b_{n-1} \ldots b_{1} b_{0} \\
& z=x+y=d_{n} d_{n-1} \ldots d_{1} d_{0}
\end{aligned}
$$

