Automata, semigroups and groups: 60 years of synergy

$$
\text { Jean-Éric Pin }{ }^{1}
$$

${ }^{1}$ LIAFA, CNRS and University Paris Diderot
60th birthday of Stuart W. Margolis
June 2013, Bar Ilan
Don't forget to turn your mobile phone back on AFTER this lecture

The precursors

Turing (1936) Turing Machine

McCulloch and Pitts (1943) Neural networks

Shannon (1948)

The founders

Kleene $(1951,1956)$

Equivalence between automata and regular expressions.

Schützenberger (1956):

Ordered syntactic monoid
Codes, unambiguous expressions.

Chomsky (1956):
Chomsky hierarchy

1956: Schützenberger's paper

M. P. SCHÜTZENBERGER

Une théorie algébrique du codage
Séminaire Dubreil. Algèbre et théorie des nombres, tome 9 (1955-1956), exp. $\mathrm{n}^{\circ} 15$, p. 124.
http://www.numdam.org/item?id=SD_1955-1956__9_A10_0

- Birth of the theory of variable length codes
- Free submonoids of the free monoid
- Link with probabilities
- Definition of the syntactic preorder

Theory of codes: lead to the following books

1985

Berstel, Perrin

2011
Encyclopedia of Mathematics and Its Applications 129

CODES AND AUTOMATA

Definition of the syntactic preorder

```
2.- Equivalence syntaxiques.
Soient A un deni-groupe contenant un élément neutre, K une partie
quelconque de A.
Définition. On dira que a est syntaxiquement plus fort que b dans A, par
rapport à K (a\geqslantb (A,K)) si pour tout x,y:A :
                        xby\inK entraine xay\inK
```



```
lonts" (a \equivb(A,K).
```

The syntactic preorder of a language K of A^{*} is the relation \leqslant_{K} defined on A^{*} by $u \leqslant_{K} v$ iff, for every $x, y \in A^{*}, x u y \in K \Rightarrow x v y \in K$.

The syntactic congruence \sim_{K} is the associated equivalence relation: $u \sim_{K} v$ iff $u \leqslant_{K} v$ and
$v \leqslant_{K} u$.

Codes and syntactic monoids

Exemole.
Le cas le plus simple $(K=2 ; \quad \ell=3)$ est décrit par l'arbre suivant. Il contiont 9 mots et son GSF (privé do l'élément neutre bilatère) a 24 élémonts et ne possèdo pas d'idéaux propres. Cette dernière particularité n'est pas une nécessité pour los GSF des codes de ce type.

a^{*}	a	$a^{2} b a$	$a b a$	a^{2}	$a b a^{2}$		$a b a b$	$a^{2} b$	$a^{2} b a b$	$a b^{2}$	$a b a^{2} b$	$a b$
${ }^{*} b a b a$	$b a^{2}$	$b a^{3}$	$b a$	$b a^{2} b a$	$b a b a^{2}$	b^{3}	$b a b$	$b a^{2} b$	b	b^{2}	$b a b^{2}$	

Early results

- Automata theory: Medvedev (1956), Myhill (1957), Nerode (1958), Rabin and Scott (1958), Brzozowski (1964).
- Logic and automata: Trahtenbrot (1958), Büchi (1960), McNaughton (1960), Elgot (1961).
- Semigroup theory: Clifford and Preston (1961) [Vol 2 in 1967]

Krohn-Rhodes theorem (1962-1965)

Every automaton divides a cascade product of permutation automata and flip-flops.

Every semigroup divides a wreath product of simple groups and copies of U_{2}. Every aperiodic semigroup divides a wreath product of copies of U_{2}.
$U_{2}: a a=a b=b, b a=b b=b$
... lead to the following books

1968

Arbib (ed.)

2011

Rhodes and Steinberg

Schützenberger's theorem on star-free languages

[1] Sur les monoïdes finis n'ayant que des sous-groupes triviaux. In Séminaire Dubreil-Pisot, année 1964-65, Exposé 10, 6 pages. Inst. H. Poincaré, Paris, 1965.
[2] On finite monoids having only trivial subgroups. Information and Control 8 190-194, 1965.
[3] Sur certaines variétés de monoïdes finis. In Automata Theory, Ravello 1964, 314-319. Academic Press, New York, 1966.
[4] On a family of sets related to McNaughton's L-language. In Automata Theory, Ravello 1964, 320-324. Academic Press, New York, 1966.

Schützenberger's theorem on star-free languages

Star-free languages $=$ smallest class of languages containing the finite languages and closed under Boolean operations and concatenation product.

Theorem

A language is star-free iff its syntactic monoid is aperiodic.

Schützenberger product of two monoids. If H is a variety of groups, the variety $\overline{\mathrm{H}}$ of all monoids whose groups belong to H is closed under Schützenberger product.

The Asilomar conference (September 1966)

Conference on the Algebraic Theory of Machines, Languages and Semigroups (Asilomar, California).

The proceedings (Arbib 1968) contain several chapters on the Krohn-Rhodes theory and on the local structure of finite semigroups (by Arbib, Rhodes, Tilson, Zeiger, etc.), a chapter "The syntactic monoid of a regular event" by McNaughton-Papert and other material.

The Asilomar conference (September 1966)

Conference on the Algebraic Theory of Machines, Languages and Semigroups (Asilomar, California).
The proceedings (Arbib 1968) contain several chapters on the Krohn-Rhodes theory and on the local structure of finite semigroups (by Arbib, Rhodes, Tilson, Zeiger, etc.), a chapter "The syntactic monoid of a regular event" by McNaughton-Papert and other material.
Schützenberger's famous provocative sentence: The garbage truck driven by Arbib. Didn't help the synergy between Paris and Berkeley...

1968-1969

Cohen and Brzozowski, On star-free events, Proc. Hawaii Int. Conf. on System Science (1968).
Definition of the dot-depth. Proof of Schützenberger's theorem using Krohn-Rhodes decomposition.

Meyer, A note on star-free events, J. Assoc. Comput. Mach. 16, (1969)

Proof of Schützenberger's theorem using Krohn-Rhodes decomposition.

1972: Imre Simon's thesis

Hierarchies of events of dot-depth one.
Piecewise testable languages $=$ Boolean combination of languages of the form $A^{*} a_{1} A^{*} a_{2} \cdots A^{*} a_{k} A^{*}$, where a_{1}, \ldots, a_{k} are letters:

Theorem (Simon 1972)

A regular language is piecewise testable iff its syntactic monoid is \mathcal{J}-trivial.

Consequences in semigroup theory

Easily proved to be equivalent to

Theorem (Straubing-Thérien 1985)

Every \mathcal{J}-trivial monoid is a quotient of an ordered monoid satisfying the identity $x \leqslant 1$.

Many known proofs of one of the two results: Combinatorics on words [Simon], induction on $|M|$ [Straubing-Thérien], profinite techniques [Almeida], direct construction [Henckell-Pin], simplified combinatorics [Straubing, Klima], etc.

Locally testable languages

Brzozowski and Simon (1973), McNaughton (1974)
Locally testable languages $=$ Boolean combination of languages of the form $u A^{*}, A^{*} u$ and $A^{*} u A^{*}$ where $u \in A^{+}$.

Theorem

A regular language is locally testable iff its syntactic semigroup is locally idempotent and commutative.

For each idempotent $e \in S$, eSe is idempotent and commutative.

Follow up

Brzozowski-Simon proved the first theorem on graph congruences. Motivated by problems on languages, further results were proved by Knast, Thérien, Weiss, etc.

Lead to the study of global varieties of categories (Almeida, Jones, Rhodes, Szendrei, Steinberg, Tilson, Trotter, etc.).

Straubing (1985) studied the decidability of varieties of the form $\mathbf{V} * \mathbf{D}$, where $\mathbf{D}=\llbracket y x^{\omega}=x^{\omega} \rrbracket$ and described the corresponding languages.
Lead to Tilson's delay theorem.

Eilenberg's book

To prepare his book Automata, languages, and machines (Vol A, 1974, Vol B 1976), S. Eilenberg worked with Schützenberger and Tilson.

Theorem (Eilenberg 1976)

There is bijection between varieties of monoids and varieties of languages.

Finite monoids	Regular languages
Aperiodic monoids	Star-free languages
\mathcal{J}-trivial monoids	Piecewise testable languages

Perrot's conjectures (September 1977)
Open protlems in the theny Spartatio movicids for notimal languags JF. \&emot Spor estat
Notitinis A Variety of ntimel learguags Vis muderstrod in the sanse of Eilunbuy. Given an alphaset $X, X^{*} V$ denotes the fanily of lenguses over X that belong to the miety $V: U_{6}(V)$ is the vaiety' of fuite

Perrot's conjectures

(1) Is there a variety of languages closed under concatenation whose corresponding variety of monoids is not of the form $\overline{\mathrm{H}}$?
(2) Is there a nontrivial variety of languages closed under shuffle product whose corresponding variety of monoids contains a noncommutative monoid?
(3) Is there a nontrivial variety of languages closed under the star operation?

Nontrivial means not equal to the variety of all regular languages.

Status of Perrot's conjectures

(3) was solved in [Pin TCS (1978)]
(2) was solved in [Esik and Simon, Semigroup Forum (1998)]

Status of Perrot's conjectures

(3) was solved in [Pin TCS (1978)]
(2) was solved in [Esik and Simon, Semigroup Forum (1998)]

What about conjecture (1)?
When Perrot presented this conjecture, someone in the back of the audience raised his hand...

S.W. Margolis

H. Straubing

Two former students of Rhodes

Straubing's results

[JPAA 1979]: Closure under concatenation product on varieties of languages corresponds to the Mal'cev product $\mathrm{V} \rightarrow \mathrm{A} @ \mathrm{~V}$ on varieties of monoids. (A is the variety of aperiodic monoids)
[JPAA 1979]: Description of the languages whose syntactic monoid is a solvable group [respectively, a monoid in which all subgroups are solvable].

Dean Prs．Perot and Pin，
Thank you fa your letter and the interesting papers you sent I an quite compressed with the results on the shuffle product and the ster．

I an sending you 3 pagers．The one on aperiodic homomaphisens gives a characterization of＊In－vavedies whose corresponding＊－varieties are closed under cmedalead tron （Incidentally，you don＇t need the fall strougth of this theorem to show that there are＊－varieties closed under con－ catenation that are not＂variétés à qrauyes＂－see the attached sheet．）

The papen on the Scbuitrenherger product was just fanisho and hos nit yet been submitted to a journal My dissertation is why close，in content to the paper＂Families of Recognizable sets．．．＂but conlams some additional reralts I will send you a coryshatly．

Again，thanks very much for you niterest．I hope you

SW. MARGOLIS
The University of Vermont
COLLEGE OF ENGINEERING, MATHEMATICS AND BUSINESS ADMINISTRATION
DEPARTMENT OF MATHEMATICS, NICHOLSON BUILDING
BURLINGTON, VERMONT 05405
$(802) 656-2940$
2/14/80
Pear Professor $P_{\text {in: }}$
Shank you for your recent letter and papers. d have just solved one of your conjectured and through you would like to know. A'll give you an outline of the proof.

TheorenLI If V is a variety then $P(V)=M \Leftrightarrow B_{z} V V$.

- Lemma The above theorem is true $\Leftrightarrow P(V) \neq M$ where V is the variety of monoids all of whose regular g
classes are subsemiaroups. classes are subsemigroups.
If. This follows from the observation that B_{2} is in

I met Howard Straubing for the first time in Mai 1979. Our collaboration led to 9 joint articles.

In 1981, I visited Stuart in Vermont. Then Stuart spent 8 months in my place near Paris (Sept. 82 - June 83). This collaboration considerably improved my English and led to 16 joint articles and an uncountable number of coffee stamps on my papers.

So my Margolis number is $\frac{1}{16} \cdots$

RESEARCH ARTICLE

ON M-VARIETIES GENERATED BY POWER MONOIDS
by
Stuart W. Margol is
Communicated by G. Lallement

ACKINOWLEDGEMENTS

I would like to thank Howard Straubing for bringing this problem to my attention and Jean-Eric Pin for sending me his work before it was published. Conversations with Garance Pin were amusing.

\square LIAFA, CNRS and University Paris Diderot

A selection of successful topics

(1) Languages and power semigroups
(2) Languages and inverse semigroups
(3) Profinite groups and the Rhodes conjecture
(4) Concatenation hierarchies

Languages and power semigroups

Given a variety of monoids V , let PV be the variety generated by all monoids of the form $\mathcal{P}(M)$, where $M \in \mathbf{V}$.
[Reutenauer TCS 1979, Straubing SF 1979]:
Closure under projections on varieties of languages corresponds to the operation $\mathrm{V} \rightarrow \mathrm{PV}$ on varieties of monoids.

Also closely related to the shuffle product.

Varieties of the form PV

Objective: full classification of the varieties of the form PV. Many results by Almeida, Margolis,
Perrot, Pin, Putcha, Straubing, etc.
$\mathbf{P V}=\mathbf{M}$ iff $B_{2} \in \mathbf{V}$ [Margolis 81]
$\mathbf{P}^{3} \mathbf{V}=\mathbf{M}$ [Margolis-Pin 84].
PG Powergroups (see later).
Full classification for $\mathrm{V} \subseteq \mathrm{A}$ (Almeida 05).
Major open problems: PB, PJ.
Extension to ordered monoids (ongoing work)

Languages and inverse semigroups

Let Inv be the variety of monoids generated by inverse monoids. What is Inv? What is the corresponding variety of languages?

Let $\mathrm{J}_{1}=$ idempotent and commutative monoids. Let Ecom = monoids with commuting idempotents.

$$
\left.\diamond_{2} \mathrm{G}=\mathrm{Inv}=\mathrm{J}_{1} * \mathrm{G}=\mathrm{J}_{1} \mathbb{(}\right) \mathrm{G} \stackrel{\text { Ash }}{=} \text { Ecom }
$$

[Margolis-Pin 84, Ash 87]

Extensions of a group by a semilattice

A monoid M is an extension of a group by a semilattice if there is a surjective morphism π from M onto a group G such that $\pi^{-1}(1)$ is a semilattice.

- How to characterize the extensions of a group by a semilattice?
- Is there a synthesis theorem in this case?
- In the finite case, what is the variety generated by the extensions of a group by a semilattice?

Covers, categories and inverse semigroups

Margolis-Pin, Marquette Conf. (1984) +3 articles in J. of Algebra 110 (1987)

Extensions of groups by semilattices are exactly the E-unitary dense semigroups.

Representation of E-unitary dense semigroups by groups acting on categories. (First example of a derived category, due to Stuart).

Extension of McAlister's P-theorem (representation theorem on inverse semigroups) to nonregular semigroups.

The 1984 conjecture and its follow up

Conjecture. Every [finite] E-dense semigroup is covered by a [finite] E-unitary dense semigroup and the covering is one-to-one on idempotents.

The conjecture was solved by Ash (finite case, 1987) and Fountain (infinite case, 1990).

Subsequent research: Birget, Margolis, Rhodes, (1990), Almeida, Pin, Weil (1992), Fountain, Pin and Weil (2004): General extensions of a monoid by a group.

Rhodes conjecture (1972, Chico 1986)

The group radical of a monoid M is the set

$$
K(M)=\bigcap_{\tau: M \rightarrow G} \tau^{-1}(1)
$$

where the intersection runs over all relational morphisms from M into a group.

Fact. M belongs to $\mathbf{V} \oplus \mathbf{G}$ iff $K(M) \in \mathbf{V}$.
Let $D(M)$ be the least submonoid T of M closed under weak conjugation: if $t \in T$ and $a \bar{a} a=a$, then $a t \bar{a} \in T$ and $\bar{a} t a \in T$.

Rhodes conjecture: $K(M)=D(M)$. Proved by Ash [1991].

Connection with pro-group topologies

Hall (1950): A topology for free groups and related groups.
Reutenauer (1979): Une topologie du monoïde libre.
Pin, Szeged (1987) + Topologies for the free monoid (1991).
Topological conjecture. A regular language is closed in the pro-group topology iff its ordered syntactic monoid satisfies $e \leqslant 1$ for every idempotent e.

Thm: The topological conjecture implies the Rhodes conjecture and gives a simple algorithm to compute the closure of L.

Finitely generated subgroups of the free group

Pin and Reutenauer, A conjecture on the Hall topology for the free group, (1991).
Thm: The topological conjecture is equivalent to the following statement: Let H_{1}, \ldots, H_{n} be finitely generated subgroups of the free group. Then $H_{1} H_{2} \cdots H_{n}$ is closed.
This later property was proved by Ribes and Zalesskii (1993).

Many further developments and open problems (solvable groups).

Powergroups

[Margolis-Pin 84, Ash 87]

$$
\diamond_{2} \mathbf{G}=\mathrm{Inv}=\mathrm{J}_{1} * \mathrm{G}=\mathrm{J}_{1} @ \mathbf{G} \stackrel{\text { Ash }}{=} \text { Ecom }
$$

[Margolis-Pin 85, Ash 91, Henckell-Rhodes 91]

$$
\diamond \mathrm{G}=\mathrm{PG}=\mathrm{J} * \mathrm{G} \stackrel{\mathrm{Ash}}{=} \stackrel{\mathrm{HR}}{\mathrm{~J}} \otimes \mathrm{G}=\mathrm{BG}=\mathrm{EJ}
$$

Also needs [Knast 83].
BG $=$ Block groups $=$ At most one idempotent in each \mathcal{R}-class and each \mathcal{L}-class.
$\mathrm{EJ}=$ Idempotents generate a \mathcal{J}-trivial monoid.

Concatenation hierarchy of star-free languages

Level 0: \emptyset and A^{*}.
Level $n+1 / 2$: Union of products of languages of level n.

Level $n+1$: Boolean combination of languages of level n.

The hierarchy is infinite (Brzozowski-Knast 1978).
Level 1 = Piecewise testable languages = languages corresponding to J. (Simon 72).
Level $3 / 2$ is also decidable (Pin-Weil 2001, using varieties of ordered monoids).

Level 2

Thm. Let L be a rational language and let M be its syntactic monoid. Are equivalent [Pin-Straubing 81]
(1) L has concatenation level 2 .
(2) M divides a finite monoid of upper triangular Boolean matrices.
(3) M divides $\mathcal{P}(M)$, for some \mathcal{J}-trivial monoid M.
(4) L is expressible by a Boolean combination of Σ_{2}-formulas of Büchi's logic. [Thomas 82]
Many partial results, but decidability is still an open problem!

Conclusion and new directions

A lot of exciting collaboration between automata, semigroups and group theory over the past 60 years. Keep going! Here are some new trends:
Cost functions (Colcombet).
Words over ordinals and linear orders (Carton). Tree languages (Bojanczyk, Straubing).
Profinite equational theory for lattices of regular languages (Gehrke, Grigorieff, Pin).

Conclusion and new directions

A lot of exciting collaboration between automata, semigroups and group theory over the past 60 years. Keep going! Here are some new trends:
Cost functions (Colcombet).
Words over ordinals and linear orders (Carton). Tree languages (Bojanczyk, Straubing).
Profinite equational theory for lattices of regular languages (Gehrke, Grigorieff, Pin).
Convince Stuart to have a birthday conference every year during the next 40 years.

