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Course Staff

• Instructor: Mridul Aanjaneya
Office Hours: 2:00PM - 4:00PM, Gates 206 (Mon).

• Course Assistant: Sean Kandel
Office Hours: 6:00PM - 8:00PM, Gates 372 (Tue/Thu).

• Textbook: Michael T. Sipser, Introduction to the Theory of
Computation (second edition).

• Website: http://www.stanford.edu/class/cs154/

• Discussion: Lore (http://www.lore.com/)
Access code: R4ML4Z
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Course Requirements

• Homework

• Midterm

• Final (optional)

Note:

• Final grade will be computed from Homework (60%) and best
of Midterm/Final (40%).

• Projected grade will be out one week before the Final, taking
Homework (60%) and Midterm (40%).

Can skip Final if satisfied with grade.

• Can collaborate on homeworks, but separate write-up per
person and must mention collaborators.

• 4 homeworks, 2 free late days, use them however you want.

No late days for final homework.
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Why Study Automata?

• Regular expressions:

are used in many systems, e.g., UNIX.
DTD’s describe XML tags with RE like format.

• Finite automata model protocols, electronic circuits.

Theory is used in model-checking.

• Context free languages:

are used as syntax descriptors for PL’s, parsers (YACC).
have an important role in describing natural languages.
find use in procedural modeling.
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Course Outline

• Deterministic/Nondeterministic finite automata.

• Regular expressions.

• Decision/closure properties of regular languages.

• Context-free languages. Parse trees. Normal forms.

• Pushdown automata. Equivalence of CFG’s and PDA’s.

• Pumping lemma for CFL’s. Properties of CFL’s.

• Enumerations, Turing machines.

• Undecidable problems. NP-completeness.

• Satisfiability. Cook’s theorem.
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Automata, Computability and Complexity

Main Question:

What are the fundamental capabilities and limitations of computers?

Dates back to the 1930s.

Different interpretations in all three areas.

Mridul Aanjaneya Automata Theory 6/ 64



Complexity

Question

Why are some problems hard and others easy?

• Subset sum: Given a set of integers, does any non-empty
subset of them add up to zero?

• So far only a classification according to hardness.

• Can help alter the root of difficulty, settle for an approximate
solution, some problems are hard only in the worst case.
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Computability

Question

Which problems are solvable?

• Halting problem: Given an arbitrary computer program,
decide if it finishes or continues running forever.

• Computability and complexity are closely related.

Mridul Aanjaneya Automata Theory 8/ 64



Automata

• Deals with different models of computation.
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Preliminaries: Mathematical Induction
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Preliminaries: Mathematical Induction

Example

Prove that 12 + 22 + 32 + . . .+ n2 is n(n+1)(2n+1)
6 .

• Basis (n=1): 1(1+1)(2·1+1)
6 = 2·3

6 = 1 = 12.

• Induction: Let P(n) := 12 + . . .+ n2 is n(n+1)(2n+1)
6 .

P(n + 1) = 12 + . . .+ n2 + (n + 1)2 = n(n+1)(2n+1)
6 + (n + 1)2

= (n + 1)
{

n(2n+1)+6n+6
6

}
= (n + 1)

{
2n2+7n+6

6

}
= (n + 1)

{
2n2+4n+3n+6

6

}
= (n+1)(n+2)(2n+3)

6

• Since P(1) is true and P(n)⇒ P(n + 1), we conclude that
P(n) is true for all n ≥ 1.
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Preliminaries: Graphs

• Undirected graph
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Preliminaries: Graphs

• Degree of a vertex
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Preliminaries: Graphs

• Subgraph
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Preliminaries: Graphs

• Path
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Preliminaries: Graphs

• Cycle
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Preliminaries: Graphs

• Directed graph
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Preliminaries: Pigeonhole Principle

Pigeonhole Principle

If there are n + 1 pigeons and n pigeonholes, then some pigeonhole
must contain at least two pigeons.
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Preliminaries: Pigeonhole Principle

Generalized Pigeonhole Principle

If there are kn + 1 pigeons and n pigeonholes, then some pigeonhole
must contain at least k + 1 pigeons.
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Preliminaries: Pigeonhole Principle

Example 1

Given twelve integers, show that two of them can be chosen whose
difference is divisible by 11.

Example 2

Twenty-five crates of apples are delivered to a store. The apples are
of three different sorts, and all the apples in each crate are of the
same sort. Show that among these crates there are at least nine
containing the same sort of apple.

Example 3

Show that in any group of five people, there are two who have an
identical number of friends within the group.
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Alphabet

• An alphabet is any finite set of symbols.

Some examples include: ASCII, {0,1} (binary), {a,b,c}.
• The set of strings over an alphabet Σ is the set of lists, each

element of which is a member of Σ.

Note: Strings are shown with no commas, e.g., abc, 01101.

• Σ∗ denotes this set of strings.

• ε stands for the empty string (string of length 0).

Example:

• For the alphabet Σ = {0, 1}, the set of strings in Σ∗ is:

{ε,0,1,00,01,10,11,000,001,010,011,100,101,110,111,. . .}
• For the alphabet Σ = {a, b, c}, the set of strings in Σ∗ is:

{ε,a,b,c,aa,ab,ac,ba,bb,bc,ca,cb,cc,. . .}
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Alphabet

• An alphabet is any finite set of symbols.

Some examples include: ASCII, {0,1} (binary), {a,b,c}.
• The set of strings over an alphabet Σ is the set of lists, each

element of which is a member of Σ.

Note: Strings are shown with no commas, e.g., abc, 01101.

• Σ∗ denotes this set of strings.

• ε stands for the empty string (string of length 0).

Example:

• For the alphabet Σ = {0, 1}, the set of strings in Σ∗ is:

{ε,0,1,00,01,10,11,000,001,010,011,100,101,110,111,. . .}
• Subtlety: 0 as a string, and 0 as an alphabet look the same.

Context determines the type.
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Languages

• A language is a subset of Σ∗ for some alphabet Σ.

• Example 1: The set of strings over {0,1} with no two
consecutive 1’s.

{ε,0,1,00,01,10,000,001,010,100,101,0000,0001,0010,
0100,0101,1000,1001,1010,. . .}

• Example 2: The set of strings over {a,b,c} with unequal
number of a’s and b’s.

{a,b,aa,ac,bb,bc,ca,cb,aaa,bbb,aab,baa,aba,aac,caa,
aca,bbc,cbb,bcb,bba,abb,bab,cca,ccb,cac,cbc,bcc,acc,. . .}

Mridul Aanjaneya Automata Theory 23/ 64



Finite Automata

• Informally, finite automata are finite collections of states with
transition rules for going from one state to another.

• There is a start state and (one or more) accept states.

Representation: Simplest representation is often a graph.

• Nodes denote states, and arcs indicate state transitions.

• Labels on arcs denote the cause of transition.

q q
1 2

1

10

0

• The above automaton only accepts binary strings ending in 1.
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An example

• 01100011100101

q q
1 2

1

10

0
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An example
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An example

• Accept!

q q
1 2

1

10

0
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An example

• Exercise: Verify that 000111010110 is rejected.

q q
1 2

1

10

0
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Deterministic Finite Automata

Definition

A DFA is a 5-tuple (Q,Σ, δ, q0,F ) consisting of:

• A finite set of states Q,

• A set of input alphabets Σ,

• A transition function δ : Q × Σ→ Q,

• A start state q0, and

• A set of accept states F ⊆ Q.

The transition function δ:

• Takes two arguments, a state q and an alphabet a.

• δ(q,a) = the state the DFA goes to when it is in state q and
the alphabet a is received.
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Graph representation of DFA’s

• Nodes correspond to states.

• Arcs represent transition function.

Arc from state p to state q labeled by all those input symbols
that have transitions from p to q.

• Incoming arrow from outside denotes start state.

• Accept states indicated by double circles.

q q
1 2

1

0

0

q
3

1

0,1

• Accepts all binary strings without two consecutive 1’s.
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Example

• 011

q q
1 2

1

0

0

q
3

1

0,1
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Transition table for DFA’s

0 1
→ q∗1 q1 q2

q∗2 q1 q3

q3 q3 q3

• A row for each state, a column for each alphabet.

• Accept states are starred.

• Arrow for the start state.

q q
1 2

1

0

0

q
3

1

0,1
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Extended transition function

• Effect of a string on a DFA can be described by extending δ
to a state and a string.

• Induction on length of the input string.

• Basis: δ(q,ε)=q

• Induction: δ(q,wa)=δ(δ(q,w),a)

w is a string, a is an input alphabet.
Convention: w,x,y,. . . are strings, a,b,c,. . . are alphabets.

• For a DFA, extended δ is computed for state q and inputs
a1a2. . .an by following a path starting at q and selecting arcs
with labels a1,a2,. . .,an in turn.
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Example using transition table

0 1
→ q∗1 q1 q2

q∗2 q1 q3

q3 q3 q3

δ(q2, 011) = δ(δ(q2, 01), 1) = δ(δ(δ(q2, 0), 1), 1)

= δ(δ(q1, 1), 1) = δ(q2, 1) = q3

q q
1 2

1

0

0

q
3

1

0,1
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Language of a DFA

• Automata of all kinds define languages.

• If A is an automaton, L(A) is its language.

• For a DFA A, L(A) is the set of strings labeling paths from
the start state to an accept state.

• Formally, L(A) = set of strings w such that δ(q0,w) is in F.

• Example: 01100011100101 is in L(A), where A is:

q q
1 2

1

10

0
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Proofs of set equivalence

Question

How to prove that two different sets are in fact the same?

• Here, T is the set of strings of 0’s and 1’s with no consecutive
1’s and L = {w | M accepts w}, where M is:

q q
1 2

1

0

0

q
3

1

0,1
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Proofs of set equivalence

Question

How to prove that two different sets are in fact the same?

• In general, to show T = L, we need to prove two parts:

If w is in L, then w is in T, i.e., L ⊆ T.
If w is in T, then w is in L, i.e., T ⊆ L.

q q
1 2

1

0

0

q
3

1

0,1
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Part 1: L ⊆ T

• To prove: If w ∈ L, then w has no consecutive 1’s.

• Proof is induction on length of w.

• Important trick: Expand the inductive hypothesis to be more
detailed than you need.
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Part 1: L ⊆ T (Inductive Hypothesis)

1 If δ(q1,w)=q1, then w has no consecutive 1’s and does not
end in 1.

2 If δ(q1,w)=q2, then w has no consecutive 1’s and ends in a
single 1.

• Basis: |w| = 0, i.e., w = ε.
1 holds as ε has no 1’s at all.
2 holds vacuously, since δ(q1,ε) is not q2.

• Note: p ⇒ q is always true, if p is false.

q q
1 2

1

0

0

q
3

1

0,1
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Part 1: L ⊆ T

1 If δ(q1,w)=q1, then w has no consecutive 1’s and does not
end in 1.

2 If δ(q1,w)=q2, then w has no consecutive 1’s and ends in a
single 1.

• Inductive step: Assume IH is true for strings shorter than w,
where |w| ≥ 1.
• Because w is not empty, we can write w = xa, where a is the

last alphabet of w and x is the string that precedes.
• IH is true for x.

q q
1 2

1

0

0

q
3

1

0,1

Mridul Aanjaneya Automata Theory 57/ 64



Part 1: L ⊆ T

1 If δ(q1,w)=q1, then w has no consecutive 1’s and does not
end in 1.

2 If δ(q1,w)=q2, then w has no consecutive 1’s and ends in a
single 1.

• Inductive step: Assume IH is true for strings shorter than w,
where |w| ≥ 1.

1 for w is δ(q1,w) = q1.

• Since δ(q1,w) = q1, δ(q1,x) must be q1 or q2 and a must be 0.

q q
1 2

1

0

0

q
3

1

0,1
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Part 1: L ⊆ T

1 If δ(q1,w)=q1, then w has no consecutive 1’s and does not
end in 1.

2 If δ(q1,w)=q2, then w has no consecutive 1’s and ends in a
single 1.

• Inductive step: Assume IH is true for strings shorter than w,
where |w| ≥ 1.

2 for w is δ(q1,w) = q2.

• Since δ(q1,w) = q2, δ(q1,x) must be q1 and a must be 1.

q q
1 2

1

0

0

q
3

1

0,1
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Part 2: T ⊆ L

• To prove: If w has no consecutive 1’s, then w ∈ L.

• We prove the contrapositive.

• Note: p ⇒ q is equivalent to ¬q ⇒ ¬p.

• To prove (contrapositive): If w /∈ L, then w has no 11’s.
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Part 2: T ⊆ L

• Simple induction on length of w.

• The only way w is not accepted is if it gets to q3.

• The only way to get to q3 is if w = x1y.

• If δ(q1,x) = q2, then surely x = z1 (from Part 1: L ⊆ T).

• ⇒ w = z11y!

q q
1 2

1

0

0

q
3

1

0,1
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Regular languages

Definition

A DFA M = (Q,Σ, δ, q0,F ) accepts w if there exists a sequence of
states r0, r1, . . . , rn in Q with three conditions:

• r0 = q0

• δ(ri ,wi+1) = ri+1 for i = 0, . . . , n − 1, and

• rn ∈ F

• Condition 1 says that M starts in the start state q0.

• Condition 2 says that M follows δ between two states.

• Condition 3 says that last state is an accept state.

• We say that M recognizes L if L = {w | M accepts w}.
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Regular languages

• A language L is regular if it is the language of some DFA.

Note: the DFA must accept only the strings in L.

• Some languages are not regular (more later).

Intuitively, DFA’s are memoryless.
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A regular language

Example

Let L = {w | w ∈ {0,1}∗ and w, viewed as a binary integer, is
divisible by 5.}

q q
0

1

2

0

1

1

0

1
0

1

0

0

q q

q

1 3

4
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