MATLAB EXPO 2019

Automated Driving with MATLAB and Simulink

GianCarlo Pacitti Senior Application Engineer, MathWorks

Some common questions from automated driving engineers

How can I synthesize scenarios to test my designs? How can I discover and design in multiple domains? How can I integrate with other environments?

How can I design with virtual driving scenarios?

Scenes	Cuboid
Testing	Controls, sensor fusion, planning
Authoring	Driving Scenario Designer App Programmatic API (drivingScenario)
Sensing	Probabilistic radar (detection list) Probabilistic vision (detection list) Probabilistic lane (detection list)

How can I design with virtual driving scenarios?

Scenes	Cuboid	3D Simulation
	Ego-Centric View Scenario Carnos	Ratolititiin (64-bit PCD3D 5340)
Testing	Controls, sensor fusion, planning	Controls, sensor fusi
Authoring	Driving Scenario Designer App Programmatic API (drivingScenario)	Unreal Engine Editor
Sensing	Probabilistic radar (detection list) Probabilistic vision (detection list) Probabilistic lane (detection list)	Probabilistic radar (d Monocular camera (i Fisheye camera (ima Lidar (point cloud)

ion, planning, perception

letection list) image, labels, depth) age)

Simulate controls with perception

Lane-Following Control with Monocular Camera Perception

- Author target vehicle trajectories
- Synthesize monocular camera and probabilistic radar sensors
- Model lane following and spacing control in Simulink
- Model lane boundary and vehicle detectors in MATLAB code

Model Predictive Control ToolboxTM Automated Driving ToolboxTM Vehicle Dynamics BlocksetTM

Visit the Demo Station to see more...

Visualize logged simulation detection and camera data

Lane-Following Control with Monocular Camera Perception

- Author target vehicle trajectories
- Synthesize monocular camera and probabilistic radar sensors
- Model lane following and spacing control in Simulink
- Model lane boundary and vehicle detectors in MATLAB code

Model Predictive Control ToolboxTM Automated Driving ToolboxTM Vehicle Dynamics BlocksetTM Updated R2019b

How can I design with virtual driving scenarios?

Scenes	Cuboid	3D Simulation	
	Ego-Centric View Scenario Carros	Autovitérin (64-84, PC030, 5445) ×	
Testing	Controls, sensor fusion, planning	Controls, sensor fusion, planning, perception	
Authoring	Driving Scenario Designer App Programmatic API (drivingScenario)	Unreal Engine Editor	
Sensing	Probabilistic radar (detection list) Probabilistic vision (detection list) Probabilistic lane (detection list)	Probabilistic radar (detection list) Monocular camera (image, labels, depth) Fisheye camera (image) Lidar (point cloud)	

Synthesize driving scenarios to test sensor fusion algorithms

Sensor Fusion Using Synthetic Radar and Vision Data

- Create scenario
- Add probabilistic radar and vision sensors
- Create tracker
- Visualize coverage area, detections, and tracks

Automated Driving Toolbox[™] R2017a

Graphically author driving scenarios

Driving Scenario Designer

- Create roads and lane markings
- Add actors and trajectories
- Specify actor size and radar cross-section (RCS)
- Explore pre-built scenarios
- Import OpenDRIVE roads

Automated Driving Toolbox[™] R2018a

Programmatically author driving scenarios

```
scenario = drivingScenario;
1
2
       road( scenario, [0 0; 10 0; 53 -20], ...
 3
             'lanes', lanespec(2) );
 4
 5
       plot( scenario, 'Waypoints', 'on' );
 6
7
       idleCar = vehicle( scenario, ...
8
                           'Position', [25 -5.5 0], ...
9
                           'Yaw',-22 );
10
11
12
       passingCar = vehicle( scenario, 'ClassID', 1 );
13
       waypoints = [1 -1.5; 16.36 -2.5; 17.35 -2.765; ...
14
                    23.83 -2.01; 24.9 -2.4; 50.5 -16.7];
15
16
       velocity = 15;
17
18
       trajectory( passingCar, waypoints, velocity );
19
```


Programmatically create variations of a driving scenario that was built using the Driving Scenario Designer app.

Open Live Script

Synthesize driving scenarios from recorded data

Scenario Generation from Recorded Vehicle Data

- Visualize video
- Import OpenDRIVE roads
- Import GPS
- Import object lists

Automated Driving Toolbox[™] R2019a

Enhancements to driving scenarios

Create Driving Scenario Variations Programmatically

- Export the scenario code to MATLAB® and generate scenario variations programmatically
- Export the scenario and sensors to Simulink® and use them to test your driving algorithms.

Automated Driving Toolbox[™] R2019b

Integrate driving scenario into closed loop simulation

Lane Following Control with Sensor Fusion

- Integrate scenario into system
- Design lateral (lane keeping) and longitudinal (lane spacing) model predictive controllers
- Visualize sensors and tracks
- Generate C/C++ code
- Test with software in the loop (SIL) simulation

Model Predictive Control Toolbox[™] Automated Driving Toolbox[™] Embedded Coder[®]

Design lateral and longitudinal controls

Lane Following Control with Sensor Fusion

- Integrate scenario into system
- Design lateral (lane keeping) and longitudinal (lane spacing) model predictive controllers
- Visualize sensors and tracks
- Generate C/C++ code
- Test with software in the loop (SIL) simulation

Model Predictive Control Toolbox[™] Automated Driving Toolbox[™] Embedded Coder[®]

Automate testing against driving scenarios

Testing a Lane Following Controller with Simulink Test

Specify driving scenario

Simulink TestTM Automated Driving ToolboxTM Model Predictive Control ToolboxTM R2018b

How can I design with virtual driving scenarios?

	Scenes	Cuboid	3D S
		Ego-Centric View Scenario Camos	
	Testing	Controls, sensor fusion, planning	Cont
	Authoring	Driving Scenario Designer App Programmatic API (drivingScenario)	Unre
	Sensing	Probabilistic radar (detection list) Probabilistic vision (detection list) Probabilistic lane (detection list)	Prob Mon Fish

3D Simulation

Controls, sensor fusion, planning, perception

Unreal Engine Editor

Probabilistic radar (detection list) Monocular camera (image, labels, depth) Fisheye camera (image) Lidar (point cloud)

Select from prebuilt 3D simulation scenes

3D Simulation for Automated Driving

- Straight road
- Curved road
- Parking lot
- Double lane change
- Open surface
- US city block
- US highway
- Virtual Mcity

Automated Driving Toolbox[™] R2019b

Customize 3D simulation scenes

Support Package for Customizing Scenes

- Install Unreal Engine
- Set up environment and open Unreal Editor
- Configure configuration Block for Unreal Editor co-simulation
- Use Unreal Editor to customize scenes

Vehicle Dynamics Blockset[™] R2019b

Model sensors in 3D simulation environment

3D Simulation for Automated Driving

- Monocular camera
- Fisheye camera
- Lidar
- Probabilistic radar

Automated Driving Toolbox[™] R2019b

Synthesize monocular camera sensor data

Visualize Depth and Semantic Segmentation Data in 3D Environment

- Synthesize RGB image
- Synthesize depth map
- Synthesize sematic segmentation

Automated Driving ToolboxTM

Synthesize fisheye camera sensor data

Simulate a Simple Driving Scenario and Sensor in 3D Environment

- Scaramuzza camera model
 - parameters for distortion center, image size and mapping coefficients

Automated Driving Toolbox[™] R2019b

Synthesize lidar sensor data

Simulate Lidar Sensor Perception Algorithm

- Record and visualize
- Develop algorithm
- Build a 3D map
- Use algorithm within simulation environment

Automated Driving Toolbox[™]

R2019b

Synthesize radar sensor data

Simulate Radar Sensors in 3D Environment

- Extract the center locations
- Use center location for road
 creation using driving scenario
- Define multiple moving vehicles
- Export trajectories from app
- Configure multiple probabilistic radar models
- Calculate confirmed track

Automated Driving Toolbox™

R2019b

Communicate with the 3D simulation environment

Send and Receive Double-Lane Change Scene Data

- Simulation 3D Message Set
 - Send data to Unreal Engine
 - Traffic light color
- Simulation 3D Message Get
 - Retrieve data from Unreal Engine
 - Number of cones hit

Vehicle Dynamics BlocksetTM

New Examples for 3D Simulation in Automated Driving Toolbox

Unreal Engine Driving Scenario Simulation

Select Waypoints for 3D Simulation

Select waypoints from a scene and visualize the path of a vehicle following these waypoints in a 3D simulation environment.

Open Script

Open Model

Design of Lane Marker Detector in 3D Simulation Environment

Use a 3D simulation environment to record synthetic sensor data and develop and test a lane marker detection system.

Open Script

Visualize Automated Parking Valet Using 3D Simulation

Visualize vehicle motion in a 3D simulation environment using an automated parking valet system constructed in Simulink.

Open Script

Simulate Lidar Sensor Perception Algorithm

Develop a lidar perception algorithm using data recorded from a 3D simulation environment, and simulate within that environment.

Open Script

Simulate Radar Sensors in 3D Environment

Implement a synthetic data simulation for tracking and sensor fusion using Simulink and a 3D simulation environment.

Simulate a Simple Driving Scenario and Sensor in 3D Environment

Learn the basics of configuring and simulating scenes, vehicles, and sensors in a 3D environment powered by the Unreal Engine from Visualize Depth and Semantic Segmentation Data in 3D Environment

> Visualize depth and semantic segmentation data captured from a camera sensor in a 3D simulation environment.

Open Model

Simulating automated driving systems with MATLAB and Simulink

Simulating automated driving systems with MATLAB and Simulink

Integrate components and model scenarios

Specify equivalent 3D Simulation scenery

Scenery:

- Equivalent straight and curved roads in Simulation 3D Scene Configuration and Scenario Reader

Supported Scenery:

- ✓ Straight road
- ✓ Curved road segment
- Curved road (not exposed in example, but available)

Specify 3D Simulation actor trajectories

Lane Following with Mono Camera Detector

Test Bench

system_time

📣 MathWorks

Specify 3D Simulation vehicles

Synthesize scenarios to test your design

Lane Following Control with Sensor Fusion

Model Predictive Control Toolbox[™] Automated Driving Toolbox[™] Embedded Coder[®]

Design of Lane Marker Detector in 3D Simulation Environment

Use a 3D simulation environment to record synthetic sensor data and develop and test a lane marker detection system.

Design of Lane Marker Detector in 3D Simulation Environment

Automated Driving Toolbox[™] R2019b

Lane-Following Control with Monocular Camera Perception

Model Predictive Control Toolbox[™] Automated Driving Toolbox[™] Vehicle Dynamics Blockset[™]

Some common questions from automated driving engineers

How can I synthesize scenarios to test my designs? How can I discover and design in multiple domains? How can I integrate with other environments?

Design camera, lidar, and radar perception algorithms

Detect vehicle with camera

Object Detection Using YOLO v2 Deep Learning Computer Vision ToolboxTM Deep Learning ToolboxTM R2019C Detect ground with lidar

Segment Ground Points from Organized Lidar Data Computer Vision ToolboxTM

Detect pedestrian with radar

Introduction to Micro-Doppler Effects Phased Array System Toolbox[™]

R2019a

Interoperate with neural network frameworks

Open Neural Network Exchange Visit the Demo Stations to see more...

Simulate lane detection and lane following system with MATLAB and Simulink

Monocular Camera Lane detector example

_

helperMonoSensor.m +classdef helperMonoSensor < handle</pre> properties % Sensitivity for the lane segmentation 1 LaneSegmentationSensitivity = 0.25.

40 41

42

43

44

45 -

46

47

48 -

Visual Perception Using Monocular Camera Automated Driving ToolboxTM R2017a

system_time

Design detector for lidar point cloud data

Track Vehicles Using Lidar: From Point Cloud to Track List

- Design 3-D bounding box detector
- Design tracker (target state and measurement models)
- Generate C/C++ code for detector and tracker

Sensor Fusion and Tracking Toolbox™

Computer Vision Toolbox[™] R2019a

📣 MATLAB R2019a					– 0 X
HOME PLOTS APPS E	DITOR PUBLISH VIEW			🔓 🕤 🔄 🔁 🕐 💿 Search Documentation	🔎 🌲 Sign In
Image: New Open Save Image: Compare → Print → P	nsert E, fx Fx ▼ E. C.	Insert State Insert State Analyze Syste Block	Breakpoints	Exp Dut Function Call Stack: Function Call Stack: HelperBoundingBoxDe	Quit Debugging
← → T	amples R2019a driving fusion vision	TrackVehiclesUsingLidar	Example	2200	م •
Current Folder Workspace Z Editor - Hel	perBoundingBoxDetector.m 💿 🗙 [🛋 Fir	gures - Figure 1			⊙ ×
t1 TrackVehiclesUsingLidarExample.m × Helper	BoundingBoxDetector.m 🗶 🕂	igure 1 🗙			
47 48 methods (Access 49 function [bb 50 % Crop p 51 [pcSurvi: 52 % Remove 53 [pcObsta 54 % Form c 55 detBBoxe 56 % Assemb	= protected) oxDets, obstacle oint cloud ved, survivedIne ground plane cles, obstacleIn lusters and ge § = getBoundine letBroves: 6x10 since	de matrix =		ی چ 20	50
57 - DoboxDets	deebboxes: owro sing	IC MOULT	2	N Ocertan	
58 – – end	Columns 1 through	4	~	X-Center	
59 end 60 end 61 Command Window K>> pcshow (pcObstacles)	12.8921 -22.6758 -3.9148 -3.7233 0.7299 0.6966 2.8747 2.6390	-46.8280 -: -3.5872 -0.6705 0.0816	21.1414 0.0260 0.7558 2.2517	Y-Center Z-Center Length Width	
<i>f</i> x K>>	1.7510 1.7391	0.8562	1.6446	Height	
	1.0838 0.5916	0.0068	0.5503		
2 usages of "bboxDets" found				HelperBoundingBoxDetector / stepImpl	Ln 5/ Col 13

Design tracker for lidar point cloud data

<u>Track Vehicles Using Lidar:</u> <u>From Point Cloud to Track List</u>

- Design 3-D bounding box detector
- Design tracker (target state and measurement models)
- Generate C/C++ code for detector and tracker

Sensor Fusion and Tracking Toolbox™

Computer Vision Toolbox[™] R2019c

Design trackers

Automated Driving Toolbox[™] R2017c

Design trackers

Automated Driving ToolboxTM

Sensor Fusion and Tracking ToolboxTM

R2019

Evaluate error metrics

Extended Object Tracking

- Design multi-object tracker
- Design extended object trackers
- Evaluate tracking metrics
- Evaluate error metrics
- Evaluate desktop execution time

Sensor Fusion and Tracking Toolbox[™] Automated Driving Toolbox[™] Updated **R2019**C

Compare relative execution times of object trackers

Extended Object Tracking

- Design multi-object tracker
- Design extended object trackers
- Evaluate tracking performance
- Evaluate error metrics
- Evaluate desktop execution time

Sensor Fusion and Tracking ToolboxTM Automated Driving ToolboxTM Updated R2019C

Multi-object tracker
 Probability Hypothesis Density tracker
 Extended object (size and orientation) tracker

Design track level fusion systems

Design track level fusion systems

Design track level fusion systems

Track-level fusion

For more on Sensor Fusion and Tracking...

Visit Marc Willerton's presentation later this afternoon

	Technical Computing	Model-Based Design	Getting Started with MATLAB and Simulink	Master Classes	Innovation Auditorium				
15:15	Break								
15:45	Developing Smart IoT Sensors Using the MathWorks Toolchain Samuel Bailey, Skyrad Consulting	Synchronous Machine Modelling Using Simscape Peenki Rani, Cummins Generator Technologies	Sensor Fusion and Tracking for Autonomous Systems Marc Willerton, MathWorks	Simplifying Requirements-Based Verification with Model-Based Design Fraser Macmillen, MathWorks	Predictive Maintenance with MATLAB Phil Rottier, MathWorks				
16:15	Industrial IoT and Digital Twins Coorous Mohtadi, MathWorks	Developing Fit-For-Purpose Simscape Models to Support System and Control Design <i>Rick Hyde, MathWorks</i>							
17:00	End of Day								

Some common questions from automated driving engineers

How can I synthesize scenarios to test my designs? How can I discover and design in multiple domains? How can I integrate with other environments?

Read road and speed attributes from HERE HD Live Map data

<u>Use HERE HD Live Map Data</u> to Verify Lane Configurations

- Load camera and GPS data
- Retrieve speed limit
- Retrieve lane configurations
- Visualize composite data

Automated Driving Toolbox[™] R2019a

Read lane attributes from HERE HD Live Map data

<u>Use HERE HD Live Map Data</u> to Verify Lane Configurations

- Load camera and GPS data
- Retrieve speed limit
- Retrieve lane configurations
- Visualize composite data

Automated Driving Toolbox[™] R2019a

Visualize HERE HD Live Map recorded data

<u>Use HERE HD Live Map Data</u> to Verify Lane Configurations

- Load camera and GPS data
- Retrieve speed limit
- Retrieve lane configurations
- Visualize composite data

Automated Driving Toolbox[™] R2019a

Design path planner

Automated Parking Valet

- Create cost map of environment
- Inflate cost map for collision checking
- Specify goal poses
- Plan path using rapidly exploring random tree (RRT*)

Automated Driving ToolboxTM

Design path planner and controller

<u>Automated Parking Valet with</u> <u>Simulink</u>

- Integrate path planner
- Design lateral controller (based on vehicle kinematics)
- Design longitudinal controller (PID)
- Simulate closed loop with vehicle dynamics

Visualize Automated Parking Valet Using 3D Simulation

Automated Driving Toolbox[™] R2018b R2019b

Some common questions from automated driving engineers

How can I synthesize scenarios to test my designs? How can I discover and design in multiple domains? How can I integrate with other environments?

Train reinforcement learning networks for ADAS controllers

<u>Train Deep Deterministic Policy</u> <u>Gradient (DDPG) Agent for</u> <u>Adaptive Cruise Control</u>

- Create environment interface
- Create agent
- Train agent
- Simulate trained agent

Reinforcement Learning Toolbox[™] R2019a

Visit the Demo Stations to see more...

Simulate lane detection and lane following system with MATLAB and Simulink

Lane Following Controller Algorithm

Lane Following with Mono Camera Detector

Test Bench

Components of lane following with spacing control algorithm

Goal

Maintain the driver-set velocity and keep a safe distance from lead vehicle.

- Keep the ego vehicle in the middle of the lane.

Slow down the ego vehicle when road is curvy.

Model predictive control (MPC)

MPC for Lane Following Control

Components

Estimate lane center

Four cases are considered:

- 1) Both left and right lanes are detected
- 2) Left lane is detected
- 3) Right lane is detected
- 4) No lane is detected

Estimate MIO (lead vehicle)

MPC: Path following controller

Path Following Control Block

Model Predictive Control ToolboxTM

			눰 Bloc	ck Parameters: Path Following Control S	System	×			
		- Path fo	ollowing control (PFC) system (mask	() (link)	_				
Driver setting			Keep the lead ve	he ego vehicle traveling along the ce ehicle by adjusting the longitudinal a	enter of a straight or curved road, track a set velocity and maintain a safe distance from acceleration and the front steering angle of the ego vehicle.	а			
		Para	meters Controller Block	↗ Bicycle model r	oarar				
	Time gap		– Ego	Vehicle	Bioyele Meder	Jaran			
	ongitudinal acceleration	Linea (m/s	ar model from [longitudinal accelera a) and yaw angle rate (rad/s)]	ition (m/s^2) and front steering angle (rad) to [longitudinal velocity (m/s), lateral veloci	ity				
	Beletius distance				✓ Vehicle parameters				
	Relative distance				Total mass (kg) 1575				
Measurement			۲	Use vehicle parameters	Yaw moment of inertia (mNs^2) 2875				
	Relative velocity				Longitudinal distance from center of gravity to front tires (m) 1.2				
	,				Longitudinal distance from center of gravity to rear tires (m) 1.6				
			0	Use vehicle model	Cornering stiffness of front tires (N/rad) 19000				
	Longitudinal velocity				Cornering stiffness of rear tires (N/rad) 33000				
Curvature Lateral deviation						1			
					Longitudinal acceleration tracking time constant (s)	1			
	Curvature		Initia	al longitudinal velocity (m/s) 15					
		Stearing apple	Tran	nsport lag between model inputs and	d outputs (s) 0	Ξ			
		Steering angle	- Space	ring Control		i l			
	Lateral deviation								
			M M	Maintain safe distance between lead vehicle and ego vehicle Default spacing (m) 10					
rtual lane 📈	Balation								
r lana change	Relative yaw angle				OK Cancel Help Ap	ply			
n lane change	Path Following C	ontrol System	₩						
			Delay or	latency in the sy	vstem * Disable distance keepi	ing			

Path Following Control Block

	Block Parameters: Path Following Control System	×						
Set velocity	Path following control (PFC) system (mask) (link)	Actuator limits						
oo volouky	Keep the ego vehicle traveling along the center of a straight or curved road, track a set velocity and maintain a safe distance from a lead vehicle by adjusting the longitudinal acceleration and the front steering angle of the ego vehicle.							
	Parameters Controller Block							
Time gap	Path Following Controller Constraints							
Longitudinal acceleration	Minimum steering angle (rad) -0.26	Use external source						
Relative distance	Maximum steering angle (rad) 0.26	Use external source						
	Minimum longitudinal acceleration (m/s^2) -3	Use external source						
	Maximum longitudinal acceleration (m/s^2) 2	Use external source						
Relative velocity	Model Predictive Controller Settings							
	Sample time (s) 0.1							
Longitudinal velocity	Prediction horizon (steps) 30	Control horizon (steps) 3						
	Controller Behavior							
	Weight on velocity tracking 0.1	Weight on change of longitudinal acceleration 0.1						
Curvature	Weight on lateral error 1	Weight on change of steering angle 0.1						
Steering angle								
Lateral deviation								
		une MPC performance						
Relative yaw angle		· · · · · · · · · · · · · · · · · · ·						
Path Following Control System		OK Cancel Help Apply						

Path Following Control Block

2 days locity	🎦 E	Block Paramete	ers: Path Follov	ving Con	trol System				×
Set velocity	Path	h following co	ontrol (PFC) s	ystem (n	mask) (link)				
	Kee lead	ep the ego ver d vehicle by a	hicle traveling djusting the le	along th ongitudir	he center of a st nal acceleration	raight or curve and the front	ed road, track a set velocity steering angle of the ego ve	and maintain a safe distance fro hicle.	m a
Time gap	Pa	arameters	Controller	Block					
		Optimization –							
Longitudinal acceleration		Use subopti	imal solution				Maximum iteration number	10	:
Relative distance	D	Data Type							
		double					⊖ single		
	-0	Optional Inpor	ts						
Relative velocity		Use external signal to enable or disable optimization							
		Use external control signal for bumpless transfer between PFC and other controllers							
	- C	Customization							
Longitudinal velocity	Tr th ex	To customize your controller, generate an PFC subsystem from this block and modify it. The controller configuration data is exported as a structure in the MATLAB workspace.					PFC subsystem		
Curvature									
Steering angle							Change MP	C design	
Relative yaw angle							OK	Cancel Help	Apply

Path Following Control System

Simulate controls with perception

Lane-Following Control with Monocular Camera Perception

- Author target vehicle trajectories
- Synthesize monocular camera and probabilistic radar sensors
- Model lane following and spacing control in Simulink
- Model lane boundary and vehicle detectors in MATLAB code

Model Predictive Control ToolboxTM Automated Driving ToolboxTM Vehicle Dynamics BlocksetTM

Design lateral and longitudinal Model Predictive Controllers

Longitudinal Control

Lateral Control

Adaptive Cruise Control with Sensor Fusion Automated Driving ToolboxTM Model Predictive Control ToolboxTM

Embedded Coder®

R2017**b**

Lane Keeping Assist with Lane Detection

Automated Driving ToolboxTM Model Predictive Control ToolboxTM Embedded Coder[®]

Longitudinal + Lateral

Lane Following Control with Sensor Fusion and Lane Detection

Automated Driving ToolboxTM Model Predictive Control ToolboxTM Embedded Coder[®]

Some common questions from automated driving engineers

How can I synthesize scenarios to test my designs? How can I discover and design in new domains? How can I integrate with other environments?

ROS Toolbox - NEW!

- Communicate with <u>ROS</u> and <u>ROS 2</u> nodes
- Multiplatform support
- <u>Connect to live ROS data</u>
- Replay logged data
- <u>Generate standalone ROS nodes</u> <u>through code generation</u>

Call C++, Python, and OpenCV from MATLAB

Call C++	Call Python	Call OpenCV & OpenCV GPU
.hpp .mlx	<pre>tw = py.textwrap.TextWrapper(pyargs('initial_indent', '% ', 'subsequent_indent','% ', 'width', int32(30)))</pre>	cv::Rect cv::KeyPoint cv::Size cv::Mat cv::Ptr

Import C++ Library Functionality into MATLAB MATLAB® R2019C

Call Python from MATLAB

MATLAB®

R2014a

Install and Use Computer Vision Toolbox OpenCV Interface Computer Vision System ToolboxTM OpenCV Interface Support Package

Updated R2018b

Call C code from Simulink

Bring Custom Image Filter Algorithms as Reusable Blocks in Simulink Simulink[®] R2017b Import Structure and Enumerated Types Simulink[®]

R2017a

Custom C Code Verificationwith Simulink TestSimulink Test™Simulink Coverage™R2019c

Cross-release simulation through code generation

Integrate Generated Code by Using Cross-Release Workflow

- Generate code from previous release (R2010a or later)
- Import generated code as a block in current release
- Tune parameters
- Access internal signals

Embedded Coder R2016a

Previous Release

Connect to third party tools

152 Interfaces to 3rd Party Modeling and Simulation Tools (as of March 2019)

Some common questions from automated driving engineers

Synthesize scenarios to test my designs

Discover and design in multiple domains

Integrate with other environments

Thank You!