Automated Extraction of Security Policies from
Natural-Language Software Documents

Xusheng Xiao* Amit Paradkar?

Suresh Thummalapenta® Tao Xie!

'Dept. of Computer Science, North Carolina State University, Raleigh, NC, USA
2IBM T. J. Watson Research Center, Hawthorne, NY, USA
3|BM Research, Bangalore, India
Ixxiao2@ncsu.edu, *paradkar@us.ibm.com, *surthumm@in.ibm.com, 'xie@csc.ncsu.edu

ABSTRACT

Access Control Policies (ACP) specify which principals such as
users have access to which resources. Ensuring the correctness
and consistency of ACPs is crucial to prevent security vulnerabil-
ities. However, in practice, ACPs are commonly written in Natu-
ral Language (NL) and buried in large documents such as require-
ments documents, not amenable for automated techniques to check
for correctness and consistency. It is tedious to manually extract
ACPs from these NL documents and validate NL functional re-
quirements such as use cases against ACPs for detecting inconsis-
tencies. To address these issues, we propose an approach, called
Text2Policy, to automatically extract ACPs from NL software doc-
uments and resource-access information from NL scenario-based
functional requirements. We conducted three evaluations on the
collected ACP sentences from publicly available sources along with
use cases from both open source and proprietary projects. The re-
sults show that Text2Policy effectively identifies ACP sentences
with the precision of 88.7% and the recall of 89.4%, extracts ACP
rules with the accuracy of 86.3%, and extracts action steps with the
accuracy of 81.9%.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection — Access

Control; D.2.1 [Software Engineering]: Requirements/Specifications

Keywords

Access control, natural language processing, requirements analysis

1. INTRODUCTION

Access control is one of the most fundamental and widely used
privacy and security mechanisms. Access control is often governed
by an Access Control Policy (ACP) [36] that includes a set of rules
specifying which principals (such as users or processes) have ac-
cess to which resources. ACPs are crucial in preventing security
vulnerabilities, since decisions (such as accept or deny) on user re-
quests are based on ACPs. In ACP practice, there exist two major
issues that can result in serious consequences such as allowing an

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGSOFT’12/FSE-20, November 10 - 18 2012, Cary, NC, USA

Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

unauthorized user to access protected resources: incorrect specifi-
cation of ACPs and incorrect enforcement of ACP specifications in
the system implementation.

The first issue of incorrect specification of ACPs is primarily
due to two reasons. First, ACPs contain a large number of com-
plex rules to meet various security and privacy requirements. One
way to ensure the correctness of such complex rules is to leverage
systematic testing and verification approaches [20, 29] that accept
ACPs in a form of formal specification. In practice, ACPs are com-
monly written in Natural Language (NL) and are supposed to be
written in security requirements, a type of non-functional require-
ments. However, often ACPs are buried in NL documents such as
requirement documents. For example, consider the following ACP
sentence (i.e., sentence describing ACP rules) for iTrust [5,41], an
open source health-care application: “The Health Care Personnel
(HCP) does not have the ability to edit the patient’s security ques-
tion and password”. This ACP sentence is not amenable for auto-
mated verification, requiring manual effort in extracting the ACP
from this sentence into an enforceable format such as the eXten-
sible Access Control Markup Language (XACML) [3]. Second,
NL software documents could be large in size, often consisting of
hundreds or even thousands of sentences (iTrust consists of 37 use
cases [23] with 448 use-case sentences), where a portion of the sen-
tences describing ACPs (117 sentences in iTrust) are buried among
other sentences. Thus, it is very tedious and error-prone to man-
ually inspect these NL documents for identifying and extracting
ACPs for policy modeling and specification.

The second issue of incorrect enforcement of ACP specifications
is primarily due to the inherent gap between ACPs specified us-
ing domain concepts and the actual system implementation devel-
oped using programming concepts. Functional requirements, such
as scenario-based requirements (e.g., use cases) that specify se-
quences of action steps', bridge the gap, since they describe func-
tionalities to be implemented by developers using domain concepts.
For example, an action step “The patient chooses to view his or her
access log.” in Use Case 8 of iTrust implies that the system shall
have the functionality for patient (domain concepts) to view his
or her access log. These action steps typically describe that actors
(principals) access different resources for achieving some function-
alities and help developers determine what system functionalities
to implement. Therefore, policy authors can validate action steps
against provided ACPs to detect inconsistencies of resource access,
also helping the policy authors construct consistent ACPs for the
system. In practice, manually inspecting large functional require-
ments to extract resource-access information is also labor-intensive
and tedious. For example, a proprietary IBM enterprise application

"We use the term of an action step rather than action to distinguish
the term from an action in the access control model described later.

(that we used in our evaluations) includes 659 use cases with 8,817
sentences.

In general, like other types of NL documents, NL requirements
written in English are unstructured and can be ambiguous or in-
clude implicit information, posing significant challenges for Natu-
ral Language Processing (NLP). However, in software documents
such as functional and non-functional requirements, ACP sentences
(i.e., NL security requirements for describing ACP rules) tend to
follow specific styles such as: [subject] [can/cannot/is allowed to]
[action] [resource] for role-based ACPs [16]. For example, based
on our manual inspection of 217 ACP sentences collected from the
iTrust requirements and various security requirements in published
articles and web sites [6], about 85% of the ACP sentences follow
this style. Similarly, to provide communication values, functional
requirements such as use cases are usually written in a relatively
simple, consistent, and straightforward style [12,24].

To tackle the problem, in this paper, we propose a novel ap-
proach, called Text2Policy, which adapts NLP techniques designed
around a model (such as the ACP model and the action-step model)
to automatically extract model instances from NL software doc-
uments and produce formal specifications. Our general approach
consists of three main steps: (1) apply linguistic analysis to parse
NL documents and annotate words and phrases in sentences from
NL documents with semantic meanings, (2) construct model in-
stances using annotated words and phrases in the sentences, and
(3) transform these model instances into formal specifications.

Specifically, we provide techniques to concretize our general ap-
proach for extracting role-based ACPs and action steps from NL
software documents and functional requirements, respectively. From
the extracted ACPs, our approach automatically generates machine-
enforceable ACPs in specification languages such as XACML. These

ACPs can be used by automatic testing and verification approaches [20,

29] for checking policy correctness or serve as an initial version of
ACPs for policy authors to improve. From each extracted action
step, our approach automatically derives an access control request.
An example request could be that a principal requests access to a
resource with the expected permit or deny decision. Such derived
requests can be used for automatic validation against specified or
extracted ACPs for detecting inconsistencies.
This paper makes the following main contributions:

e A novel approach, called Text2Policy, which provides a gen-
eral framework that incorporates syntactic and semantic NL
analyses to extract model instances from NL software docu-
ments and produces formal specifications. Our work demon-
strates that manual effort can be reduced with automated ex-
traction of security policies from NL documents in a spe-
cific domain such as security requirements written in specific
styles.

e Analysis techniques that concretize our general approach for
extracting role-based ACP rules and action steps from NL
documents and functional requirements (such as use cases),
respectively.

e Three evaluations of Text2Policy on 37 iTrust [5, 41] use
cases, 25 use cases from a module in a proprietary IBM enter-
prise application (in the financial domain), and the collected
115 ACP sentences from 18 publicly available sources (pub-
lished papers and public web sites). The results show that (1)
Text2Policy effectively identifies ACP sentences from 927
use-case sentences with the precision of 88.7% and the re-
call of 89.4%, (2) Text2Policy effectively extracts ACP rules
from 241 ACP sentences with the accuracy of 86.3%, (3)

ACP-1: An HCP should not change a patient’s account.
ACP-2: An HCP is disallowed to change a patient’s
account.

Figure 1: Example ACP sentences written in NL.

Text2Policy effectively extracts action steps from 767 action-
step sentences with the accuracy of 81.9%,” and (4) Text2Policy
helps us identify a name inconsistency of iTrust use cases us-
ing the extracted ACP rules and action steps.

2. BACKGROUND AND EXAMPLES

In this section, we first introduce the background of the ACP
model used for representing ACPs in our approach, and then de-
scribe the background of the action-step model used for represent-
ing action steps in our approach.

2.1 ACP Model and XACML

This section provides the background information about our ACP
model and XACML.

2.1.1 ACP Model

An ACP consists of a set of ACP rules. A typical role-based
ACP rule consists of four elements: subject, action, resource, and
effect [3, 16]. Figure 1 shows two example ACP rules. The subject
element describes a principal such as a user or process that may
request to access resources (e.g., an HCP in ACP-1). The action
element describes an action (e.g., change in ACP-1) that the prin-
cipal may request to perform. The resource element describes the
resource (e.g., a patient’s account in ACP-1) to which access is re-
stricted. A rule can have one of various effects (i.e., permit, deny,
oblige, or refrain). In this paper, we focus on permit rules and deny
rules (i.e., rules with permit or deny effects), which are commonly
used in various software systems for granting or blocking accesses
to protected resources. A permit rule allows a principal to access a
resource, whereas a deny rule, such as ACP-1 and ACP-2, prevents
a principal from accessing a resource.

2.1.2 XACML

The eXtensible Access Control Markup Language (XACML) [3]
is an XML-based general-purpose language used to describe poli-
cies, requests, and responses for ACPs, recognized as a standard by
the Organization for the Advancement of Structured Information
Standards (OASIS). XACML is designed to replace application-
specific and proprietary ACP languages, thus enabling communi-
cation among applications created by different application vendors.

In an application deployed with XACML-based access control,
before a principal can perform an action on a particular resource,
a Policy Enforcement Point (PEP) sends a request formulated in
XACML to the Policy Decision Point (PDP) that stores principal-
specific XACML ACP rules. The PDP determines whether the
request should be permitted or denied by evaluating the policies
whose subject, action, and resource elements match the request.
Finally, the PDP formulates its decision in the XACML response
language and sends it to the PEP, which enforces the decision.

Currently, XACML has been widely supported by all the main
platform vendors and extensively used in a variety of applications [28].
Recent research also provides systematic testing and verification
approaches [20,29] for ensuring the correct specification of XACML
rules. There also exist XACML-based research tools used in vari-

The evaluation artifacts and detailed results of the iTrust use cases
and the collected ACP sentences are publicly available on our
project web site [6].

AS-1: An HCP creates an account.

AS-2: He edits the account.

AS-3: The system updates the account.

AS-4: The system displays the updated account.

Figure 2: An example use case.

ous agencies/labs and companies [21]. Thus, we choose XACML
as the formal specification to model ACP.

2.2 Action-Step Model

Use cases [22] are scenario-based requirements specifications
that consist of sequences of action steps for illustrating behaviors of
software systems. These action steps describe how actors interact
with software systems for exchanging information. Actors are en-
tities outside software systems (such as users) that interact with the
systems by providing input to the systems (e.g., in Action Step AS-
2 shown in Figure 2) or receiving output from the systems (e.g.,
in AS-4 shown in Figure 2). Since action steps describe how ac-
tors access or update information (resources) of the systems, each
action step can be considered to encode an access control request
that an actor requests to access the resources and expect the request
to be permitted. Using the access control requests with expected
permit decisions derived from action steps, we can automatically
validate such requests with expected decisions against specified or
extracted ACPs to detect inconsistencies.

We represent the contents of use cases (sequences of action steps)
in a formal representation. The content of a NL use case contains a
list of sentences, each of which in turn contains one or more action
steps initiated by some actor (e.g., an HCP in AS-1 shown in Figure
2). Each action step has an action associated with a classification,
such as the INPUT classification for the action of providing infor-
mation (e.g., edits in AS-2 shown in Figure 2) and the OUTPUT
classification for the action of receiving information (e.g., display
in AS-4 shown in Figure 2). An action step is also associated to
one or more actors and has a set of parameters. These parameters
represent the resources created, modified, or used by the actions. In
Figure 2, AS-2 shows a resource account that is modified.

3. CHALLENGES AND EXAMPLES

In this section, we first describe the technical challenges faced by
ACP extraction and action-step extraction. We next use examples
to illustrate how Text2Policy extracts ACPs and action steps from
NL documents and NL use cases, respectively.

3.1 Technical Challenges

As a common technical challenge for both ACP extraction and
action-step extraction, 7CI-Anaphora refers to identifying and re-
placing pronouns with noun phrases based on the context. For ex-
ample, the pronoun /e in AS-2 shown in Figure 2 needs to be re-
placed with the HCP from AS-1. For ACP extraction, there are two
unique technical challenges: (1) TC2-Semantic-Structure Variance.
ACP-1 and ACP-2 in Figure 1 use different ways (semantic struc-
tures) to describe the same ACP rule; (2) TC3-Negative-Meaning
Implicitness. An ACP sentence may contain negative expressions,
such as ACP-1. Additionally, the verb in the sentence may have
negative meaning, such as disallow in ACP-2. For action-step ex-
traction, there are two unique challenges: (1) TC4-Transitive Actor.
AS-3 implies that an HCP (the actor from AS-2) is the initiating
actor of AS-3; (2) TC5-Perspective Variance. AS-4 implies that an
HCP views the updated account, requiring a conversion to replace
the actor and action of AS-4.

To address TCI-Anaphora, we adapt the technique Anaphora

<Policy PolicyId="2" RuleCombAlgId="...">
<Target/>
<Rule Effect="Deny" RuleId="rule-1">
<Target>

<Subjects><Subject>
<SubjectMatch MatchId="string-equal">
<AttrValue>HCP</AttrValue>
<SubjectAttrDesignator AttrId="subject:role"/>
</SubjectMatch></Subject></Subjects>
<Resources><Resource>
<ResourceMatch MatchId="string-equal">
<AttrValue>patient.account</Attrvalue>
<ResourceAttrDesignator AttrId="resource-id"/>
</ResourceMatch></Resource></Resources>
<Actions><Action>
<ActionMatch MatchId="string-equal">
<AttrValue>UPDATE</AttrvValue>
<ActionAttriDesignator AttrId="action-id"/>
</ActionMatch></Action></Actions></Target>
</Rule></Policy>

Figure 3: Generated XACML ACP for ACP-2 in Figure 1.

et al. [27] to identify and replace pronouns with noun phrases based
on the context. To address TC2-Semantic-Structure Variance, we
propose a technique, called Semantic-Pattern Matching, which uses
different semantic patterns based on the grammatical functions (sub-
ject, main verb, and object) to match different semantic structures
of ACP sentences. To address TC3-Negative-Meaning Implicitness,
we propose an inference technique, called Negative-Meaning Infer-
ence, which infers negative meaning by using patterns to identify
negative expressions and a domain dictionary to identify negative
meaning of verbs. To address TC4-Transitive Actor, we propose
an analysis technique, called Actor-Flow Tracking. This technique
first tracks non-system actors in action steps. Later, when the anal-
ysis encounters action steps that have only system actors, it re-
places system actors with tracked non-system actors. To address
TCS5-Perspective Variance, we propose an analysis technique, Per-
spective Conversion. This technique tracks non-system actors of
action steps. Later when the analysis encounters action steps that
have only system actors and output information from the system,
it replaces the system actors with tracked non-system actors and
replaces output actions with read actions (such as view).

3.2 Example of ACP Extraction

Text2Policy adapts NLP techniques that incorporate syntactic
and semantic analyses to parse NL software documents, constructs
ACP model instances, and produces formal specifications.

In particular, Text2Policy first applies shallow parsing [32] that
annotates sentences with phrases, clauses, and grammatical func-
tions of phrases, such as subject, main verb, and object. For exam-
ple, the shallow-parsing component parses ACP-1 in Figure 1 as
[subject: An HCP] [main verb group: should not change] [object:
a patient’s account.]. Text2Policy then uses the domain dictionary
to associate verbs with pre-defined semantic classes. For example,
in ACP-2, the domain dictionary is used to associate change with
the UPDATE semantic class, and disallow with the NEGATIVE
semantic class.

To determine whether a sentence describes an ACP rule (i.e., is
an ACP sentence) and extract elements of subject, action, and re-
source, Text2Policy composes semantic patterns using the identi-
fied grammatical functions of phrases and clauses extracted by the
shallow-parsing component. For example, ACP-1 can be matched
by the semantic pattern Modal Verb in Main Verb Group, and the
constructed model instance of ACP-1 is [Subject: HCP] [Action:
change - UPDATE] [Resource: patient.account].

To infer the effect for an ACP rule, Text2Policy checks whether
the corresponding sentence contains any negative expression and

Resolution, specializing the anaphora algorithm introduced by Kennedy =~ whether the main verb group is associated with the NEGATIVE

| Action Step |
| Actor | | Action | | Resource |
l l [
HCP CREATE — account
create

Figure 4: An example action step.

semantic class. For example, Text2Policy identifies the negative
expression of should not change in ACP-1 and infers the effect of
ACP-1 as deny.

Using the extracted ACP-model elements and the inferred ef-
fect, Text2Policy constructs an ACP model instance for each ACP
sentence and generates ACP rules in XACML. Figure 3 shows the
generated XACML ACP for ACP-2.

3.3 Example of Action-Step Extraction

Action-step extraction uses similar linguistic analyses as ACP
extraction. First, the techniques of shallow parsing and domain dic-
tionary are used to parse and annotate each sentence in use cases.
Next, the technique of anaphora resolution is used to identify and
replace pronouns (from the sentence) with the noun phrases based
on the context. For example, He in AS-2 is replaced with HCP.
Text2policy then uses a syntactic pattern to check whether the sen-
tence has required elements (subject, main verb group, and object)
for constructing an action step, and constructs a model instance if
all the elements are found.

Consider the example use case shown in Figure 2. Since all sen-
tences include the required elements, Text2policy constructs model
instances of these action steps associated with actors (the system,
HCP), action types representing the classification of the actions
(e.g., the classification of display in AS-4 as OUTPUT), and pa-
rameters (the account). For example, the model instance of AS-1
is shown in Figure 4. In addition, since AS-3 and AS-4 have the
system as the actor, Text2policy further applies the techniques for
TC4-Transitive Actor and TC5-Perspective Variance on AS-3 and
AS-4 to replace the actors and actions.

4. APPROACH

In this section, we describe our general approach for extracting
model instances from NL documents and producing formal spec-
ification. Our approach consists of three main steps: Linguistic
Analysis, Model-Instance Construction, and Transformation.

Figure 5 shows the overview of our approach. Our approach ac-
cepts NL software documents as input and applies linguistic anal-
ysis to parse the NL software documents and annotates their sen-
tences with semantic meanings for words and phrases. Using the
annotated sentences, our approach constructs model instances. Based
on provided transformation rules, our approach transforms the model
instances to formal specifications, which can be automatically checked
for correctness and consistencies.

4.1 Linguistic Analysis

The linguistic-analysis component includes adapted NLP tech-
niques that incorporate syntactic and semantic NL analyses to parse
the NL software documents and annotate the words and phrases in
the document sentences with semantic meaning. We next describe
the common linguistic-analysis techniques used for both ACP ex-
traction and action-step extraction, and describe the unique analysis
techniques proposed for ACP extraction and action-step extraction,
respectively.

Annotated
Sentences QI
Model

Instance
Construction

Model
Instances &

Linguistic
e
Documents
Formal .
Specifications <:I <:I

Figure 5: Overview of our approach.

4.1.1 Common Linguistic-Analysis Techniques

In this section, we describe the common linguistic-analysis tech-
niques used in our general approach: shallow parsing and domain
dictionary.

Shallow Parsing. Shallow parsing determines the syntactic struc-
tures of sentences in NL documents. Research [18,40] has shown
the efficiency of shallow parsing based on finite-state techniques
and the effectiveness of using finite-state techniques for lexical lookup,
morphological analysis, Part-Of-Speech (POS) determination, and
phrase identification. Sinha et al.’s work [39] also shows that the
shallow-parsing analysis is effective and efficient for semantic and
discourse processing. Therefore, our approach chooses a shallow
parser that is fully implemented as a cascade of several Finite-State
Transducers (FSTs), described in detail by Boguraev [8].

In the shallow parser, an FST identifies phrases, clauses, and
grammatical functions of phrases by recognizing patterns of POS
tags and already identified phrases and clauses in the text. The
lowest level of the cascade recognizes simple Noun Group (NP)
and Verb Group (VG) grammars. For example, ACP-1 is parsed as
[NP: An HCP] [VG: should not change] [NP: patient’s account.].
Later stages of the cascade try to build complex phrases and iden-
tify clause boundaries based on patterns of already identified tokens
and phrases. For example, fo change patient’s account in ACP-2 is
recognized as a to-infinitive clause. The final set of FSTs marks
grammatical functions such as subjects, main verb group, and ob-
jects. As an example, the shallow parser finally parses and anno-
tates ACP-1 as [subject: An HCP] [main verb group: should not
change] [object: patient’s account.].

Domain Dictionary. The domain dictionary is used to associate
verbs with pre-defined semantic classes. There are two benefits
of associating verbs with semantic classes. The first benefit is to
help address TC3-Negative-Meaning Implicitness. Consider ACP-
2 shown in Figure 1. Without the NEGATIVE semantic class asso-
ciated with the main verb group (is disallowed), our analysis would
incorrectly infer the effect as permit instead of deny. The second
benefit is to identify verb synonyms, such as change and update.
During validation of action-step information against ACPs, our ap-
proach uses verb synonyms to match access requests (transformed
from action steps) with an applicable ACP rule.

The domain dictionary is used to associate each verb entry with
a semantic class. Besides the NEGATIVE class that we mentioned
earlier, a verb entry can be associated with a semantic class that is
a kind of operation [38, 39], e.g., OUTPUT (view or display) and
UPDATE (change or edit). To achieve so, we populate the domain
dictionary with an initial set of commonly used verb entries and
their respective semantic classes. We then use WordNet [15], a
large lexical database of English, to further expand the entries with
their synonyms.

Currently, we implement the domain dictionary as an extensible
and externalizable XML Blob and the content is populated manu-
ally. One major limitation of using an XML Blob is that unmatched
verbs (i.e., ones without matched entries in the dictionary) are as-

Table 1: Identified subject, action, and resource elements in sentences matched with semantic patterns for ACP sentences.

Semantic Pattern

Examples

Modal Verb in Main Verb Group

AnHCP [gypject] €AN VIEW [4c450n) the patient’s account .csource]-

An admin 4,pjec¢) Should not update r,.¢;,,,) patient’s acCOUNt [r.source]-

Passive Voice followed by To-infinitive Phrase

An HCP (4 pject] is disallowed to update ;) patient’s account p,.csourcel-

AnHCP (4 pject] is allowed to View ,.4i0y,) patient’s account e source]-

Access Expression

AnHCP (¢ypject) has read [4.4i0,) access to patient’s acCOUNt [r.source]-

A patient’s account ¢ soyce] iS accessible 1,¢450n) t0 an HCP 44 et

Ability Expression

AnHCP [pject) is able to read [4.1;0,,) patient’s account (. ource]-

AnHCP (., pjecq) has the ability to read [4.1;0,,) patient’s account ¢ ource]-

signed with the UNCLASSIFIED semantic class. In future work,
we plan to extend our technique to query WordNet dynamically
when an unmatched verb or adjective is encountered. For exam-
ple, by querying WordNet for synonyms, we can assign to an un-
matched verb the semantic class of its most similar verb among its
matched synonyms. Alternatively, we can assign to an unmatched
verb the semantic class that is most common among the unmatched
verb’s k-nearest neighbors.

Anaphora Resolution. To address TCI-Anaphora, our approach
includes the anaphora-resolution technique to identify and replace

pronouns with the noun phrases that they refer to. To resolve anaphora

encountered during use-case parsing, we adapt the anaphora algo-
rithm introduced by Kennedy et al. [27] with an additional rule: a
pronoun in the position of a subject is replaceable only by noun
phrases that also appear as subjects of a previous sentence. As an
example, he in AS-2 shown in Figure 2 is replaced by the HCP, the
actor of AS-1.

4.1.2 ACP Linguistic Analysis

In this section, we describe unique linguistic-analysis techniques
proposed for ACP extraction.

Semantic-Pattern Matching. To address TC2-Semantic-Structure

Variance, we provide the technique of semantic-pattern matching
to identify whether a sentence is an ACP sentence. We compose
different semantic patterns based on the grammatical function of
phrases identified by shallow parsing. These semantic patterns are
more general and more accurate than templates written using low-
level syntactical structures, such as POS tags [14]. Our approach
uses this technique while identifying subject, action, and resource
elements for an ACP rule.

Table 1 shows the semantic patterns used in our approach. The
text in bold shows the part of a sentence that matches a given se-
mantic pattern. The first pattern, Modal Verb in Main Verb Group,
identifies sentences whose main verb contains a modal verb. This
pattern can identify ACP-1 shown in Figure 1. The second pattern,
Fassive Voice followed by To-infinitive Phrase, identifies sentences
whose main verb group is passive voice and is followed by a to-
infinitive phrase. This pattern can identify ACP-2 shown in Figure
1. The third pattern, Access Expression, captures different ways of
expressing that a principal can have access to a particular resource.
The fourth pattern, Ability Expression, captures different ways of
expressing that a principal has the ability to access a particular re-
source. Using the semantic patterns, our approach filters out NL-
document sentences that do not match with any of these provided
patterns.

Negative-Expression Identification. Negative expressions in
sentences can be used to determine whether the sentences have neg-
ative meaning. To identify negative expressions in a sentence, our

approach composes patterns to identify negative expressions in a
subject and main verb group. For example, “No HCP can edit pa-
tient’s account.” has no in the subject. As another example, “An
HCP can never edit patient’s account.” has never in the main verb
group. ACP-1 in Figure 1 contains a negative expression in the
main verb group. Our approach uses the negative-expression iden-
tification while inferring policy effect for an ACP rule.

4.1.3 Use-Case Linguistic Analysis

In this section, we describe a unique linguistic-analysis tech-
nique proposed for action-step extraction.

Syntactic-Pattern Matching. To identify whether a sentence
is an action-step sentence (i.e., describing an action step), our ap-
proach includes the technique of syntactic-pattern matching that
identifies sentences with syntactic elements (subject, main verb
group, and object) required for constructing an action step. To im-
prove precision in identifying sentences describing users access-
ing resources, our approach further checks whether the subject is
a user of the system and whether the object is a resource defined
in the system. For example, our approach ignores the sentence
“The prescription list should include medication, the name of the
doctor...” [5,41], since its subject prescription list is not a user
of the system. Moreover, our approach also uses the technique
of negative-meaning inference (described later in Section 4.3.1)
to filter out sentences that contain negative meaning, since these
negative-meaning sentences tend not to describe action steps.

4.2 Model-Instance Construction

After our approach uses linguistic-analysis techniques to parse
the input NL documents, words and phrases in the sentences of the
NL documents are annotated with semantic meaning. For example,
shallow parsing annotates phrases as subjects, main verb groups,
and objects. To construct model instances from these sentences,
our approach uses the annotated information of words and phrases
to identify necessary elements for a given model.

4.2.1 ACP-Model Construction

To construct model instances for ACP rules, our approach iden-
tifies subject, action, resource elements based on the matched se-
mantic patterns and infers the policy effect based on the presence
or absence of negative expressions in sentences.

Model-Element Identification. Based on the matched semantic
patterns, our approach identifies subject, action, resource elements
from different syntactic structures in sentences.

Table 1 shows the identified subject, action, and resource ele-
ments (underlined words) in the sentences matched with semantic
patterns. For a sentence that matches the first pattern, Modal Verb
in Main Verb Group, our approach identifies the subject of the sen-

tence as a subject element, the verb (not the modal verb) in the main
verb group as an action element, and the object of the sentence as
a resource element. For a sentence that matches the second pat-
tern, Passive Voice followed by To-infinitive Phrase, our approach
identifies the subject of the sentence as a subject element and iden-
tifies action and resource elements from the verb and object in the
to-infinitive phrase, respectively. For the first example of the third
pattern, Access Expression, our approach identifies the subject of
the sentence as a subject element, the noun read in the main verb
group as an action element, and the noun phrase patient’s account
in the prepositional phrase fo patient’s account as a resource ele-
ment. For the second example of the third pattern, our approach
identifies the subject patient’s account as the resource element, the
adjective accessible as an action, and the object HCP as the sub-
ject element. For the sentences that match the fourth pattern, our
approach identifies the subject of the sentence as a subject element
and identifies action and resource elements from the verb and ob-
ject in the to-infinitive phrase, respectively.

Policy-Effect Inference. To address TC3-Negative-Meaning Im-
plicitness, our approach includes the technique of negative-meaning
inference. If an ACP sentence contains negative meaning, we infer
the policy effect to be deny (permit otherwise). To infer whether a
sentence has negative meaning, the technique of negative-meaning
inference considers two factors: negative expression and negative-
meaning words in the main verb group. Recall that negative ex-
pressions is identified using the technique of negative-expression
identification in Section 4.1.2. ACP-1 in Figure 1 contains a nega-
tive expression in the main verb group. To determine whether there
are negative meaning words in the main verb group, our approach
checks the semantic class associated with the verb in the main verb
group. If the semantic class is NEGATIVE, we consider the sen-
tence has negative meaning. ACP-2 has a negative meaning word,
disallow, in the main verb group, and therefore its inferred policy
effect is deny.

Model-Instance Construction. Using the identified elements
(subject, action, and resource) and inferred policy effect, our ap-
proach constructs an ACP-model instance for an ACP sentence.
Moreover, our approach provides techniques to deal with a posses-
sive noun phrase, such as patient’s account or the account of pa-
tient. Our approach extracts the possessor as an entity and the pos-
sessed item as its property. As a complete example, the constructed
model instance of ACP-2 is [Subject: HCP] [Action: change -
UPDATE] [Resource: patient.account.] [Effect: deny]. Here the
technique of domain dictionary associates the verb change with the
semantic class UPDATE.

4.2.2 Action-Step-Model Construction

To construct model instances for action steps described in sen-
tences, our approach identifies actor, action, and parameter ele-
ments based on the use-case patterns. Our approach includes two
additional new techniques to address TC4-Transitive Actor and TC5-
Perspective Variance.

Model-Element Identification. Our approach uses known pat-
terns of use-case action steps to identify action, actor, and param-
eter elements for action steps. We devise these patterns based on
industry use cases [39], iTrust use cases, and use cases collected
from published articles [35]. One of the most used patterns is to
identify the subject of a sentence as an actor element, the verb in
the main verb group as an action element, and the object of the
sentence as a parameter element. These patterns could be easily
updated or extended based on the domain characteristics of the use
cases for improving the precision of extracting actor, action, and
parameter elements.

Model-Instance Construction. Using the identified actor, ac-
tion, and parameter elements in a sentence, our approach constructs
action-step model instances for action steps described in the sen-
tence. For example, the model instance for A patient views access
log is [Actor: patient] [Action: view - READ] [Parameter: access
log]. Here the technique of domain dictionary associates the verb
view with the semantic class READ.

Algorithm 1 Actor-Flow Tracking

Require: AS's for action steps in a use case
1: trackedActor = NULL
2: for ASin ASs do
3: Actors = getActors(AS)

4 onlySystemActor = TRUE
5 for actor in Actors do
6: if lisSystemActor(actor) then
7 onlySystemActor = FALSE
8: break
9: end if
10: end for
11: iflonlySystemActor then
12 trackedActor = get NonSystemActor(Actors)
13: continue
14: endif
15: if trackedActor! = NULL then
16: replace Actors(AS, trackedActor)
17: endif
18: end for

Actor-Flow Tracking. To address TC4-Transitive Actor, we ap-
ply data-flow tracking on non-system actors of an action step. We
consider subjects (such as the system in AS-3) with some specific
names as system actors. Non-system actors can usually be obtained
from the glossary of requirements documents. Algorithm 1 shows
the Actor-Flow Tracking (AFT) algorithm.

We next illustrate the algorithm using the example shown in Fig-
ure 1. AFT first checks AS-1 and tracks the actor of AS-1 since its
actor is a non-system actor (HCP) (satisfying the condition at Line
11). AFT then checks AS-2 and tracks the actor of AS-2 (HCP,
replaced by anaphora resolution) since its actor is also HCP. When
AFT checks AS-3, AFT finds that AS-3 has only the system as its
actor (satisfying the condition at Line 15) and replaces the system
with HCP as the actor of AS-3.

Perspective Conversion. To address TC5-Perspective Variance,
we use a similar algorithm as AFT. The only difference is to re-
place the condition at Line 15 as trackActor | = NULL AND
getActionType(AS) == OUTPUT, and to replace the state-
ment at Line 16 as convertPerspective(AS, trackActor). Con-
sider the same example shown in Figure 1. When the algorithm
reaches AS-4, the tracked actor is HCP. Since AS-4 has system as
its only subject and its action type is OUTPUT (displays), our ap-
proach converts AS-4 into An HCP views the updated account by
replacing its actor elements with the tracked actors and its action
element with a verb entry whose classification is READ in the do-
main dictionary, such as view. Such conversion helps our approach
to correctly extract access requests from action steps.

4.3 Transformation

With the formal model of ACPs, our approach can use differ-
ent transformation rules to transform model instances into formal
specifications, such as XACML [3].

ACP Model. Currently, our approach supports the transforma-
tion of each ACP rule into an XACML policy rule. Our approach

Table 2: Metrics for addressing research questions.

RQ Metrics
ision — —JL L — _ TP _ — 2xPrecisionkRecall
RQ1 | Precision = TP+FP> .Recall = TPHFN’ F1-Score = Precision+Recall
T P: True positives, F'P: False positives, F'N: False negatives
RQ2 Accuracy = %

C': Number of correct ACP rules extracted by Text2Policy
T': Total number of ACP rules

RQ3 Accuracy = =
C': Number of correct action-step sentences extracted by Text2Policy
T Total number of action-step sentences

o]
T

transforms subject, action, and resource elements as the correspond-
ing subject, action, and resource sub-elements of the target element
for an XACML policy rule. Our approach then assigns the value of
the effect element to the value of the effect attribute of the XACML
policy rule to complete the construction of an XACML policy rule.
Figure 3 shows the extracted XACML rule of ACP-2. More exam-
ples can be found on our project web site [6]. With more trans-
formation rules, our approach can easily transform the ACP model
instances into other specification languages, such as EPAL [7].

Action-Step Model. Currently, our approach supports the trans-
formation of each action step into an XACML request [3] with the
expected permit decision. For each action step, our approach trans-
forms actor, action, and parameter elements as subject, action, and
resource elements of the request, respectively.

S. EVALUATIONS

In this section, we present three evaluations conducted to assess
the effectiveness of Text2Policy. For our evaluations, we collected
use cases from an open source project iTrust [5,41], 115 ACP sen-
tences from 18 sources (published papers, public web sites, and
iTrust), and 25 use cases from a module in a proprietary IBM en-
terprise application. We specifically seek to answer the following
research questions:

e RQ1: How effectively does Text2Policy identify ACP sen-
tences in NL documents?

e RQ2: How effectively does Text2Policy extract ACP rules
from ACP sentences?

e RQ3: How effectively does Text2Policy extract action steps
from action-step sentences (i.e., sentences describing action
steps)?

Table 2 shows metrics used to address our research questions.
To address RQ1, we used three metrics: precision, recall, and F;-
Score. The first row in Table 2 shows formulas for computing these
metrics. In these formulas, T'P represents the number of correct
ACP rules identified by Text2Policy, whereas F'P and F'N repre-
sent the number of incorrect and missing ACP rules, respectively,
identified by Text2Policy. To address RQ2 and RQ3, we used the
accuracy metric shown in the second and third rows of Table 2,
respectively.

5.1 Subjects and Evaluation Setup

In our evaluations, we used three categories of subjects for ad-
dressing the three research questions. First, we used 37 use cases
from iTrust [5,41]. iTrust is an open source health-care application
that provides various features such as maintaining medical history
of patients, storing communications with doctors, identifying pri-
mary caregivers, and sharing satisfaction results. The requirements
documents and source code of iTrust are publicly available on its
web site. iTrust requirements specification has 37 use cases, 448

use-case sentences, 10 non-functional-requirement sentences, and
8 constraint sentences. The iTrust requirements specification also
has a section, called Glossary, that describes the roles of users who
interact with the system.

We preprocessed the iTrust use cases so that the format of the use
cases can be processed by Text2Policy. In particular, we removed
symbols (e.g., [E1] and [S1]) that cannot be parsed by our ap-
proach. We replaced some names with comments quoted in paren-
thesis. For example, when we see A user (an LHCP or patient), we
replaced A user with an LHCP or patient. We separated sentences
by replacing / with or. We also separated long sentences that span
more than 2 or 3 lines, since such style affects the precision of shal-
low parsing. The preprocessed documents of the iTrust use cases
are available on our project web site [6].

Second, we collected 100 ACP sentences from 17 sources (pub-
lished articles and public web sites). These ACP sentences and 117
NL ACP rules from the iTrust use cases are the subjects for our
evaluation to address RQ2. The document that contains the col-
lected ACP sentences and their original sources can be downloaded
from our project web site [6].

Third, we used 25 use cases from a module in a proprietary IBM
enterprise application. Due to confidentiality, we refer to this ap-
plication as IBMApp. This module belongs to the financial domain.

We next discuss the results of our evaluations in terms of the
effectiveness of Text2Policy in identifying ACP sentences and ex-
tracting ACP rules from NL documents and in extracting action
steps from use cases.

5.2 RQ1: ACP-Sentence Identification

In this section, we address the research question RQ1 of how
effectively Text2Policy identifies ACP sentences in NL documents.
To address this question, we first manually inspected the use cases
of iTrust to identify ACP sentences. We then applied Text2Policy to
identify ACP sentences and compared those results with our results
of manual inspection to identify the numbers of true positives, false
positives, and false negatives. We further computed precision and
recall values based on these numbers.

Among 448 use-case sentences in the iTrust use cases, we man-
ually identified 117 ACP sentences. Among 479 use-case sen-
tences in the /BMApp use cases, we manually identified 24 ACP
sentences. We then manually classified these ACP sentences iden-
tified by Text2Policy as correct sentences and false positives, and
manually identified false negatives.

Table 3 shows the results of RQ1 for both the subjects. Column
“Subjects” lists the name of the subjects. Columns “# Sent.” and
“# ACP Sent.” show the number of use-case sentences and the
number of ACP sentences. Column “# Ident.” shows the number
of identified ACP sentences, and Columns “F' P” and “F' N show
the numbers of false positives and false negatives. Based on these
numbers, Columns “Prec”, “Rec”, and “F;” show the computed
precision, recall, and Fi-score. For iTrust, the results show that
Text2Policy identified 119 sentences with 16 false positives and 14

Table 3: Evaluation results of RQ1.

Subjects | # Sent. | # ACP Sent. | #1Ident. | FP | FFN Prec Rec Fy

iTrust 448 117 119 16 14| 86.6% | 83.0% | 87.3

IBMApp 479 24 23 0 1] 100.0% | 95.8% | 97.9

Total 927 141 142 16 15 88.7% | 89.4% | 89.1

Table 4: Evaluation results of RQ2. Table 5: Evaluation results of RQ3.

Subjects | # ACP Sent. | # Extracted | Accu. Subjects | # AS Sent. | # Extracted | Accu.
iTrust 217 187 | 86.2% iTrust 312 258 | 82.7%
TBMApp 24 21 | 875% TBMApp 455 370 | 81.3%
Total 241 208 | 86.3% Total 767 628 | 81.9%

false negatives. For IBMApp, Text2Policy identified 23 sentences
with O false positive and 1 false negative. The results show that our
semantic patterns help identify ACP sentences more precisely on
the IBMApp use cases. One explanation could be that proprietary
use cases are often of higher quality compared to open-source use
cases and conform to simple grammatical patterns.

We first provide an example to describe how Text2Policy cor-
rectly identifies ACP sentences. One of the ACP sentences that
Text2Policy correctly identifies ACP rules is “HCPs can modify or
delete the fields of the office visit information.” [5,41]. Our seman-
tic pattern Modal Verb in Main Verb Group helps identify that the
main verb contains the modal verb can and correctly identify the
sentence as an ACP sentence.

We next provide some examples to describe how Text2Policy
produces false positives and negatives. One false positive produced
by Text2Policy is “The instructions can contain numbers, charac-
ters...” [5,41], which matches the pattern Modal Verb in Main
Verb Group. However, this sentence describes a requirement on
password setting, instead of an ACP rule. These false positives can
be reduced by expanding the domain dictionary to include com-
monly used nouns that are unlikely to be systems or system ac-
tors. The sentence that cannot be identified by Text2Policy is “The
LHCP can select a patient to obtain additional information about
a patient.” [5,41]. Due to precision in parsing long phrases, the
underlying shallow parser fails to identify to obtain additional in-
formation about a patient as a to-infinitive phrase, causing a false
negative for our approach. These false negatives can be reduced by
improving the underlying shallow parser using more training cor-
pus in future work.

5.3 RQ2: Accuracy of ACP Extraction

In this section, we address the research question RQ2 of how ef-
fectively Text2Policy extracts ACP rules from ACP sentences. To
address this question, we manually extracted ACP rules from these
ACP sentences. We next applied Text2Policy and compared the
results with our manually extracted results. We compute the ac-
curacy of the ACP extraction using the number of ACP sentences
from which Text2Policy correctly extracts ACPs and the total num-
ber of ACP sentences.

Table 4 shows the results of RQ2. Column “Subject” lists the
name of the subjects. Columns “# ACP Sent.” and “# Extracted”
show the total number of ACP sentences and the number of ACP
sentences from which Text2Policy correctly extracts ACPs. The
statistics shown by these two columns are used to compute the ac-
curacy shown in Column “Accu.”. Among 217 ACP sentences of
iTrust (including 117 from iTrust use cases), Text2Policy correctly
extracts ACP rules from 187 ACP sentences, achieving the accu-
racy of 86.2%. Among 24 ACP sentences in the 25 use cases of
IBMApp, Text2Policy correctly extracts ACP rules from 21 ACP
sentences, achieving the accuracy of 87.5%.

We first provide an example to describe how Text2Policy cor-
rectly extracts some ACP rules. One of the sentences from which
Text2Policy correctly extracts ACP rules is “The administrator is
not allowed through the system interface to delete an existing en-
try.” [5,41]. Our semantic pattern Passive Voice followed by To-
infinitive Phrase helps correctly identify this ACP sentence, and
correctly extract subject (administrator), action (delete), and re-
source (an existing entry) elements. Our technique of negative-
meaning inference also correctly infers the policy effect to be deny.

We next provide examples to describe how Text2Policy fails to
extract some ACP rules. One of the sentences from which Text2Policy
cannot correctly extract ACP rules is “Any subject with an e-mail
name in the med.example.com domain can perform any action on
any resource.” [4]. The subject of this sentence Any subject is a
noun phrase followed by two prepositional phrases (with an e-mail
name and in the med.example.com domain). These two preposi-
tional phrases constrain the subject Any subject, which is not cor-
rectly handled by our current implementation. Moreover, due to
the imprecision in parsing long phrases, Text2Policy fails to extract
some resources from ACP sentences. In future work, we plan to
develop techniques to analyze the effects of prepositional phrases
and long phrases for improving the accuracy of ACP extraction.

5.4 RQ3: Accuracy of Action-Step Extraction

In this section, we address the research question RQ3 of how
effectively Text2Policy extracts action steps from action-step sen-
tences. First, we manually extracted actions steps from these action-
step sentences. We next used Text2Policy to automatically extract
actions steps and compared the results with our manually extracted
results. We computed the accuracy of the action-step extraction by
using the number of correctly extracted action-step sentences and
the total number of action-step sentences.

Table 5 shows the results of RQ3. Column “Subject” lists the
name of the subjects. Columns “# AS Sent.” and “# Extracted”
show the total number of action-step sentences and the number of
action-step sentences from which Text2Policy correctly extracts ac-
tion steps. The statistics shown by these two columns are used
to compute the accuracy shown in Column “Accu.”. Among 312
action-step sentences in the iTrust use cases, Text2Policy correctly
extracts action steps from 258 action-step sentences, resulting in an
accuracy of 82.7%. Among 455 action-step sentences in the 25 use
cases of IBMApp, Text2Policy correctly extracts action steps from
370 action-step sentences, resulting in an accuracy of 81.3%.

We next provide examples to describe how Text2Policy fails to
extract action steps. One of the action-step sentences from which
Text2Policy fails to extract action steps is “The HCP must provide
instructions, or else they cannot add the prescription.” [5,41]. The
reason is that the current implementation of our approach does not
handle the subordinate conjunctions or else. Another example sen-
tence is “The public health agent can send a fake email message

to the adverse event reporter to gain more information about the
report.” [5,41]. For such long sentences with prepositional phrases
to the adverse event reporter to gain more information about the
report after the object of the sentence a fake email message, the
underlying shallow parser of our approach cannot correctly iden-
tify the grammatical functions. We plan to study more use cases on
health-care applications and improve the underlying shallow parser
with more patterns to identify grammatical functions of action-step
sentences.

5.5 Detected Inconsistency

Our approach validates the extracted access requests against the
extracted ACPs. Although our approach does not detect violations
of the extracted ACPs in our evaluations, our approach identifies a
few action steps that do not match any extracted ACPs. To study
why these action steps do not match any ACPs, we further apply
union on the specifications of action steps to collect the information
of what users perform what actions on what resources. From this
information, we find that editor, one of the system users, is not
matched with any subjects in the extracted ACPs. We then check
the glossary of the iTrust requirements and the use-case diagram.
‘We confirm that editor in fact refers to HCP, admin, and all users
in use cases 1, 2, and 4, respectively. Such name inconsistencies
can be easily identified by combining validation of ACP rules and
using the union information of extracted action steps.

6. THREATS TO VALIDITY

The threats to external validity include the representativeness of
the subjects and the underlying shallow parser used by the current
implementation of our approach. To evaluate ACP extraction and
action-step extraction from use cases, we applied our approach on
37 use cases of iTrust. The iTrust use cases were created based
on the use cases in the U.S. Department of Health & Human Ser-
vice (HHS) [2] and Office of the National Coordinator for Health
Information Technology (ONC) [1], and evolved and revised by
about 70 students and teaching assistants as well as instructors each
semester since the iTrust requirements were initially created. Al-
though the public availability and activeness make the iTrust use
cases suitable for our subjects, we evaluated our approach only on
these limited use cases. To reduce the threats, for the evaluation
of ACP extraction, we further collected 100 ACP sentences from
other 17 publicly available sources. Furthermore, we also applied
our approach on 25 use cases of a module in a proprietary IBM
enterprise application that belongs to the financial domain.

The threats to internal validity include human factors for deter-
mining correct identification of ACP sentences from NL software
documents, correct extraction of ACP rules from these sentences,
and correct extraction of action steps from use cases. In our eval-
uations, we inspected the whole subject documents and manually
identified ACP sentences, and extracted ACPs and action steps as
the comparison base in the evaluations. To reduce the human-
factor threats, we did the extraction carefully and referred to exist-
ing ACPs and other use cases for determining correct identification
of ACP sentences, and correct extraction of ACPs and action steps.
These threats could be further reduced by involving two or more
people who have experiences on ACPs to manually extract ACPs
and action steps and integrating their manual-extraction results with
our manual-extraction results as the comparison base.

7. DISCUSSION AND FUTURE WORK

In this section, we discuss applications and limitations of our
current approach and propose directions for future work.

Construction of Complete ACPs. From the extracted ACPs,
our approach automatically generates formal specifications of ACPs.
These formal ACPs can assist the construction of complete ACPs
in three ways: (1) these formal ACPs can be used to validate manu-
ally specified ACPs for identifying inconsistencies; (2) these formal
ACPs can serve as an initial version of ACPs for policy authors to
improve, greatly reducing manual effort in extracting ACPs from
NL software documents; (3) combined with specified ACPs, these
formal ACPs can be fed to automated ACP-verification approaches
for checking correctness, such as static verification [20] and dy-
namic verification via access-request generation [29, 30].

ACP Modelling in the Absence of Security Requirements. In
the absence of security requirements, our approach can still provide
a solution to assist policy authors to model ACPs for a system. Our
approach first extracts deny ACPs and action steps from functional
requirements. Besides deriving access requests from action steps,
we can also derive a permit ACP rule from each action step. With
the extracted and derived ACPs, policy authors have two ways to
model ACPs: (1) the policy authors can apply the extracted deny
ACPs and add a policy rule to permit all other accesses; (2) the pol-
icy authors can combine the extracted deny ACPs and the derived
permit ACPs, and add a policy rule to deny all other accesses.

Cooperation Between Tool and Human. The extracted poli-
cies can serve as an initial version of ACPs for policy authors to
improve, advocating cooperation between the tool and the user [42,
43]: the tool reports policies extracted with low confidence and the
user can refine them to get better results. Currently, our imple-
mentation is built on an Eclipse-based IDE and can provide visual
feedback of extracted policies, e.g., extracted subjects, actions, and
resources. We plan to improve the IDE to better support the co-
operation between the tool and the user. In addition, to improve
the precision of the semantic analysis (such as anaphora resolu-
tion), we can apply ambiguity-analysis techniques [11,44] on the
NL software documents to identify nocuous ambiguities, and ask
the user to resolve the ambiguities before our approach is applied
to extract policies.

ACP-Rule Ordering. Our current approach extracts ACP rules
from sentences without considering the ordering of the rules. Do-
ing so may cause security holes in the extracted ACP rules. We
plan to study the extracted ACP rules and develop new techniques
to extract ordering for the ACP rules.

Context-aware Analysis in Action-Step Extraction. A sequence
of action steps may have several state transitions. The techniques
of actor-flow tracking and perspective conversion in our approach
partially address the context-aware analysis in action-step extrac-
tion. For example, a customer may not pay the order if he has not
selected an order. We plan to develop techniques to deal with state
transitions during action-step extraction.

Other Policy Models. In our evaluations, we encountered some
ACP sentences that describe conditions for ACP rules. For exam-
ple, the ACP sentence “During the meeting phase, reviewer can
read the scores for paper if reviewer has submitted a review for
paper.” [13] contains an if-condition to constrain the ACP rule.
Without correct extraction of the condition, the produced specifi-
cation of ACP rules is incomplete and requires policy authors to
manually fix the incompleteness issue. Besides the issue of condi-
tions, our current approach cannot handle multi-level models [17]
or workflow models [37] for access control. We plan to extend our
approach to support these new models and provide new semantic
patterns for identifying new styles. In addition, our approach can
be extended to support privacy policies, such as HIPAA privacy

policies®. Supporting extraction of HIPPA policies requires more
sophisticated semantic models to address new challenges, such as
condition rules, rule combination, and rule ordering. We plan to
investigate techniques to deal with new challenges of extracting
HIPAA privacy policies.

8. RELATED WORK

Manual Extraction of ACPs from NL Documents. He and An-
ton [19] propose a manual approach, called Requirements-based
Access Control Analysis and Policy Specification (ReCAPS), to
extract ACPs from various NL documents, including requirements
documents, design documents and database design, and security
and privacy requirements. During the extraction, their approach
also clarifies ambiguities in requirements documents and identi-
fies inconsistencies among requirements documents and database
design. Their objective is to derive a comprehensive set of ACP
rules, similar to our approach. However, our approach adapts NLP
techniques and provides new analysis techniques to automate the
process of ACP extraction, while their approach is manual.

Template Matching. Etzioni et al. [14] propose an approach
to extract lists of named entities found on the web using a set of
patterns. Their approach is related to the ACP extraction of our ap-
proach, since both use patterns to extract information. However,
their patterns are based on the low-level POS tags (such as NP
and NPList), while our semantic patterns are based on grammatical
functions of phases (such as subject, main verb group, and object).
Our semantic patterns are more general and provide high precision
in identifying ACP sentences as shown in our evaluations.

NLP to Analyze API Documents. Pandita et al. [34] propose
an approach that analyzes the meta-data of API descriptions, pro-
gramming keywords, and semantic patterns from POS tags to infer
method specifications from API documents. Zhong et al. [45] pro-
pose an approach that builds action-resource pairs from API docu-
ments via NLP analysis based on machine learning, and infers au-
tomata for resources from action-resource pairs and class/interface
hierarchies. Both of these approaches focus on parsing API doc-
uments, and use the specific characteristics of API documents to
improve the NLP analysis. For example, different parts of API doc-
uments can be mapped to different parts of code structures, such as
class/method names, return values, and parameter names. How-
ever, the contents of requirements documents usually cannot be
mapped directly to code structures, thus making their approaches
inappropriate on analyzing requirements documents. Moreover,
these two approaches do not include techniques to address the unique
challenges of ACP extraction and action-step extraction, such as

TC3-Negative-Meaning Implicitness, TC4-Transitive Actor, and TCS-

Perspective Variance.

NLP to Assist Privacy-Policy Authoring. The SPARCLE Pol-
icy Workbench [9, 10, 25, 26] employs the shallow-parsing tech-
nique [32] to parse privacy rules and extract the elements of privacy
rules based on a pre-defined syntax. These elements are then used
to form policies in a structured form, so that policy authors can
review it and then produce policies in a machine-readable form,
such as EPAL [7] and XACML (3, 33] with a privacy-policy pro-
file. Michael et al. [31] propose an approach to map NL policy
statements to an equivalent computational format suitable for fur-
ther processing by a policy workbench. However, neither of these
approaches can identify sentences describing a policy rule. These
approaches parse all the input statements for policy extraction by
assuming that the input statements are policy statements, while our
approach identifies ACP sentences from requirements documents

*http://crypto.stanford.edu/privacy/HIPAA/

using semantic patterns. Both of these approaches provide simple
templates to extract elements for constructing policy rules, while
our approach provides more general semantic patterns. Addition-
ally, their approaches cannot infer negative meaning of sentences.

Use-Case Analysis. Sinha et al. [38,39] adapt NLP techniques
to parse and represent use-case contents in use-case models. The
extraction of use-case contents to formal models is similar to the
action-step extraction in our approach. However, our approach
focuses on extracting access requests for validation against speci-
fied and extracted ACPs and provides corresponding analysis tech-
niques to address the TC4-Transitive Actor and TC5-Perspective
Variance challenges.

9. CONCLUSION

In this paper, we have proposed an approach, called Text2Policy,
which extracts ACPs from NL software documents and produces
formal specifications. Our approach incorporates syntactic and se-
mantic NL analyses around models such as ACP and action-step
models and extracts model instances from NL software documents.
From the extracted ACPs, our approach automatically generates
machine-enforceable ACPs (in formal languages such as XACML)
that can be automatically checked for correctness. From the ex-
tracted action steps, our approach automatically extracts resource-
access information, which can be used for automatic validation
against specified or extracted ACPs for detecting inconsistencies.
‘We conducted evaluations on iTrust use cases, ACP sentences col-
lected from 18 sources, and 25 proprietary use cases. The evalua-
tion results show that with customized NLP techniques, automated
extraction of security policies from NL documents in a specific do-
main helps effectively reduce manual effort and assist policy con-
struction and understanding.

Acknowledgment

This work is supported in part by NSF grants CCF-0845272, CCF-
0915400, CNS-0958235, ARO grant W911NF-08-1-0443, an NSA
Science of Security Lablet grant, and a NIST grant.

10. REFERENCES

[1] Office of the National Coordinator for Health Information
Technology (ONC). http://www.hhs.gov/healthit/.

[2] U.S. department of Health & Human Service (HHS).

http://www.hhs.gov/.

eXtensible Access Control Markup Language (XACML),

2005. http://www.oasis-open.org/committees/xacml.

eXtensible Access Control Markup Language (XACML)

specification, 2005.

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-

2.0-core-spec-os.pdf.

iTrust: Role-based healthcare, 2008.

http://agile.csc.ncsu.edu/iTrust/wiki/.

Text2Policy, 2012.

http://research.csc.ncsu.edu/ase/projects/text2policy/.

P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter.

Enterprise privacy architecture language (EPAL 1.2), 2003.

http://www.w3.org/Submission/EPAL/.

[8] B. K. Boguraev. Towards finite-state analysis of lexical

cohesion. In Proc. INTEX-3, 2000.

C. Brodie, C.-M. Karat, J. Karat, and J. Feng. Usable

security and privacy: A case study of developing privacy

management tools. In Proc. SOUPS, pages 35-43, 2005.

3

—

[4

—_

[5

—

[6

—_

[7

—

[9

—

[10] C. A. Brodie, C.-M. Karat, and J. Karat. An empirical study
of natural language parsing of privacy policy rules using the
sparcle policy workbench. In Proc. SOUPS, pages 8-19,
2006.

[11] E. Chantree, B. Nuseibeh, A. de Roeck, and A. Willis.
Identifying nocuous ambiguities in natural language
requirements. In Proc. RE, pages 56—65, 2006.

[12] A. Cockburn. Writing Effective Use Cases. Addison-Wesley
Longman Publishing Co., Inc., 1st edition, 2000.

[13] D.J. Dougherty, K. Fisler, and S. Krishnamurthi. Specifying
and reasoning about dynamic access-control policies. In
Proc. IJCAR, pages 632—-646, 2006.

[14] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu,

T. Shaked, S. Soderland, D. S. Weld, and A. Yates.
Unsupervised named-entity extraction from the web: An
experimental study. Artif. Intell., pages 91-134, 2005.

[15] C. Fellbaum, editor. WordNet An Electronic Lexical
Database. The MIT Press, 1998.

[16] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed NIST standard for role-based
access control. TISSEC, 4(3):224-274, 2001.

[17] M. L. Gofman, R. Luo, J. He, Y. Zhang, and P. Yang.
Incremental information flow analysis of role based access
control. In Security and Management, pages 397-403, 2009.

[18] G. Grefenstette. Light parsing as finite state filtering. In
A. Kornai, editor, Extended finite state models of language,
pages 86-94. Cambridge University Press, 1999.

[19] Q. He and A. I. Ant6n. Requirements-based access Control
Analysis and Policy Specification (ReCAPS). Inf. Softw.
Technol., 51(6):993-1009, 2009.

[20] V. C. Hu, D. R. Kuhn, T. Xie, and J. Hwang. Model checking
for verification of mandatory access control models and
properties. IJSEKE, 21(1):103-127, 2011.

[21] J. Hwang, T. Xie, V. C. Hu, and M. Altunay. ACPT: A tool
for modeling and verifying access control policies. In Proc.
POLICY, pages 40-43, 2010.

[22] 1. Jacobson. Object-Oriented Software Engineering: A Use
Case Driven Approach. Addison Wesley Longman
Publishing Co., Inc., 2004.

[23] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard.
Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison Wesley Longman Publishing Co., Inc.,
1992.

[24] D. Jagielska, P. Wernick, M. Wood, and S. Bennett. How
natural is natural language?: How well do computer science
students write use cases? In Proc. OOPSLA, pages 914-924,
2006.

[25] C.-M. Karat, J. Karat, C. Brodie, and J. Feng. Evaluating
interfaces for privacy policy rule authoring. In Proc. CHI,
pages 83-92, 2006.

[26] J. Karat, C.-M. Karat, C. Brodie, and J. Feng. Designing
natural language and structured entry methods for privacy
policy authoring. In Proc. INTERACT, pages 671-684, 2005.

[27] C. Kennedy. Anaphora for everyone: Pronominal anaphora
resolution without a parser. In Proc. COLING, pages
113-118, 1996.

[28] A.X. Liu, F. Chen, J. Hwang, and T. Xie. XEngine: a fast
and scalable XACML policy evaluation engine. In Proc.

SIGMETRICS, pages 265-276, 2008.
[29] E. Martin, J. Hwang, T. Xie, and V. Hu. Assessing quality of

policy properties in verification of access control policies. In
Proc. ACSAC, pages 163172, 2008.

[30] E.Martin and T. Xie. A fault model and mutation testing of
access control policies. In Proc. WWW, pages 667-676,
2007.

[31] J. B. Michael, V. L. Ong, and N. C. Rowe. Natural-language
processing support for developing policy-governed software
systems. In Proc. TOOLS, pages 263-274, 2001.

[32] M. S. Neff, R.J. Byrd, and B. K. Boguraev. The talent
system: Textract architecture and data model. Nat. Lang.
Eng., 10(3-4):307-326, 2004.

[33] OASIS. Privacy policy profile of XACML v2.0., 2005.
http://docs.oasis-
open.org/xacml/2.0/privateprofile/access_control-xacml-2.0-
privacy_profile-specos.pdf.

[34] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and
A. Paradkar. Inferring method specifications from natural
language API descriptions. In Proc. ICSE, pages 815-825,
2012.

[35] C. Rolland and C. B. Achour. Guiding the construction of
textual use case specifications. Data Knowl. Eng.,
25(1-2):125-160, 1998.

[36] P. Samarati and S. D. C. d. Vimercati. Access control:
Policies, models, and mechanisms. In Proc. FOSAD, pages
137-196, 2001.

[37] A. Schaad, V. Lotz, and K. Sohr. A model-checking approach
to analysing organisational controls in a loan origination
process. In Proc. SACMAT, pages 139-149, 2006.

[38] A. Sinha, S. M. S. Jr., and A. Paradkar. Text2Test:
Automated inspection of natural language use cases. In Proc.
ICST, pages 155-164, 2010.

[39] A. Sinha, A. M. Paradkar, P. Kumanan, and B. Boguraev. A
linguistic analysis engine for natural language use case
description and its application to dependability analysis in
industrial use cases. In Proc. DSN, pages 327-336, 2009.

[40] M. Stickel and M. Tyson. FASTUS: A cascaded finite-state
transducer for extracting information from natural-language
text. In Proc. Finite-State Language Processing, pages
383-406, 1997.

[41] L. Williams and Y. Shin. Work in progress: Exploring
security and privacy concepts through the development and
testing of the iTrust medical records system. In Proc. FIE,
pages 30-31, 2006.

[42] X. Xiao, T. Xie, N. Tillmann, and J. de Halleux. Precise
identification of problems for structural test generation. In
Proc. ICSE, pages 611-620, 2011.

[43] T. Xie. Cooperative testing and analysis: Human-tool,
tool-tool, and human-human cooperations to get work done.
In Proc. SCAM, Keynote, 2012.

[44] H. Yang, A. de Roeck, V. Gervasi, A. Willis, and
B. Nuseibeh. Extending nocuous ambiguity analysis for
anaphora in natural language requirements. In Proc. RE,
pages 25-34, 2010.

[45] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource
specifications from natural language API documentation. In
Proc. ASE, pages 307-318, 2009.

