
International Journal of Innovative
Computing, Information and Control ICIC Internationalc©2011 ISSN 1349-4198
Volume00, Number0, Xxxx XXXX pp. 000–000

TOWARDS INTELLIGENT DATACENTER TRAFFIC MANAGEMENT: USING
AUTOMATED FUZZY INFERENCING FOR ELEPHANT FLOW DETECTION

MANH TUNG PHAM 1 , K IAM TIAN SEOW1 , AND CHUAN HENG FOH2

1School of Computer Engineering
Nanyang Technological University

Republic of Singapore 639798
Email: {pham0028,asktseow}@ntu.edu.sg.

2Centre for Communication Systems Research
University of Surrey

Guildford, Surrey, GU2 7XH, United Kingdom
Email:c.foh@surrey.ac.uk

ABSTRACT. Effective traffic management has always been one of the key considerations in dat-
acenter design. It plays an even more important role today inthe face of increasingly widespread
deployment of communication intensive applications and cloud-based services, as well as the
adoption of multipath datacenter topologies to cope with the enormous bandwidth requirements
arising from those applications and services. Of central importance in traffic management for
multipath datacenters is the problem of timely detection ofelephant flows - flows that carry huge
amount of data - so that the best paths can be selected for these flows, which otherwise might
cause serious network congestion.

In this paper, we propose FuzzyDetec, a novel control architecture for the adaptive detection
of elephant flows in multipath datacenters based on fuzzy logic. We develop, perhaps for the
first time, a close loop elephant flow detection framework with an automated fuzzy inference
module that can continually compute an appropriate threshold for elephant flow detection based
on current information feedback from the network. The novelty and practical significance of
the idea lie in allowing multiple imprecise and possibly conflicting criteria to be incorporated
into the elephant flow detection process, through simple fuzzy rules emulating human expertise
in elephant flow threshold classification. The proposed approach is simple, intuitive and easily
extensible, providing a promising direction towards intelligent datacenter traffic management for
autonomous high performance datacenter networks. Simulation results show that, in comparison
with an existing state-of-the-art elephant flow detection framework, our proposed approach can
provide considerable throughput improvements in datacenter network routing.

Keywords: Datacenters, Traffic Management, Fuzzy Logic

1. INTRODUCTION. Endowed with a precise mathematical formalism to accommodate un-
certainty or resolve conflict arising from impreciseness and ambiguity, fuzzy logic enables ap-
proximate reasoning [1–3] that entails drawing inferencesfrom fuzzy rules emulating human
judgments based on domain expert knowledge. This human-like reasoning capability makes
it particularly attractive for addressing engineering application problems, where it is impracti-
cal or impossible to precisely assess a situation in which the information accessible for quality
decision making is inherently ambiguous or conflicting. Applications of fuzzy logic include
medical decision supports [4–6], bioinformatics [7], finance [8, 9] and planning and manage-
ment [10, 11]. In this paper, we present a novel application of fuzzy logic to intelligent traffic
management of datacenter networks - a problem of central importance in today’s ubiquitous
cloud computing environments.

1



2 MANH TUNG PHAM, KIAM TIAN SEOW AND CHUAN HENG FOH

In coping with the increasingly enormous bandwidth demandsarising from scientific com-
puting [12], communication intensive cloud-based services [13] and web search engine ap-
plications [14], new datacenter network designs with multiple paths between pairs of sources
and destinations have been proposed to replace conventional hierarchical tree topologies [15].
The basic premise is that if flows can be distributed proportionally among available paths then
hosts can communicate with other hosts at the maximum speed of their network interface cards
(NICs), maximizing the aggregate bisection bandwidth [16]. Newly proposed architectures,
such as Fat-tree [16], HyperX [17] and Flattened Butterfly [18], have been shown to provide
much higher aggregate bisection bandwidth than conventional tree architectures, provided fine-
grained routing techniques are employed for load balancingand distributing flows among avail-
able paths [19].

Until recently, static routing techniques, of which the most popular one is ECMP (Equal
Cost Multipath) [20], are employed in multipath datacenters for load balancing. ECMP is an
oblivious routing technique, which distributes flows usingonly flow hashing. It is simple to im-
plement, requires low computational effort, and can deliver high aggregate bisection bandwidth
when flows are uniform in size [21]. However, using ECMP, problems arise when flow sizes
vary, which is often the case in datacenter traffics [22]. In this case, a relatively small number of
elephant flows - flows that carry huge amount of data - often carry a large fraction of datacenter
traffics [22]. Without considering flow size and the current network utilization, ECMP may
inadvertently place two elephant flows onto the same congested path in the network, creating
unnecessary long-lived collision.

To remedy ECMP but still retain its useful features, an intuitive approach is to only use EMCP
to route non-elephant flows. Elephant flows would then need tobe detected as soon as possible
upon entering the network, and routed dynamically based on the current network utilization. In
implementing this approach, however, a challenging problem is how to detect elephant flows in
a timely manner. Detecting elephant flows too late may createunnecessary network congestion
since ECMP might have already been inadvertently used to route them. This problem is further
exacerbated by the lack of preciseness in the definition of elephant flows, namely, how big and
when is a flow size considered “elephant”? As a simple illustration, if a network has a current
bandwidth capacity of 100 Gbps, a 1 GB flow might be safely classified as “non-elephant”, but
if the same network has a bandwidth capacity of only 1 Gbps remaining, possibly due to high
network utilization, a 1 GB flow should be better treated as “elephant”.

Against this background, this paper develops a simple, yet effective fuzzy inference archi-
tecture called FuzzyDetec to tackle the challenging problem of timely detection of elephant
flows. Through an innovative application of fuzzy logic, we demonstrate the role of incorpo-
rating human expertise and judgments as fuzzy rules to handle the impreciseness of flow size
classification for elephant flow detection, and propose a close loop control framework for the
adaptive detection of elephant flows. The proposed approachis simple, intuitive and easily ex-
tensible, providing a promising direction towards intelligent datacenter traffic management for
autonomous high performance datacenter networks. Importantly, over Mahout [23], an existing
state-of-the-art elephant flow detection framework, we experimentally show that FuzzyDetec
can provide considerable throughput improvements in datacenter network routing.

To the best of our knowledge, this paper presents perhaps thefirst attempt that applies fuzzy
logic reasoning to intelligent traffic management of datacenter networks. Apart from our work,
to date, fuzzy logic has surprisingly found little application in the field of datacenter networks,
other than managing virtual computing resources in datacenters [24,25] and selecting one from
multiple datacenters to service applications [26].

The rest of the paper is organized as follows. Section 2 presents the motivation and main
contributions of our work. In Section 3, we review relevant background and related work in
datacenter network topologies, routing and traffic management. We then present the design



AUTOMATED FUZZY INFERENCING FOR ELEPHANT FLOW DETECTION 3

of FuzzyDetec in Section 4. In laying a clear and unclutteredresearch foundation for Fuzzy-
Detec, only the most basic and fundamental concepts and techniques in fuzzification, fuzzy
inference and defuzzification are presented in this paper. To make this paper self-contained,
these concepts and techniques are briefly reviewed in Section 4 as necessary. In Section 5, we
experimentally evaluate FuzzyDetec. Finally, Section VI concludes the paper.

2. Motivation and Contributions. Our research is performed within the increasingly popular
model of simple-switch/smart-controller datacenter, as proposed in the OpenFlow framework
[27]. Within this model, non-elephant flows are handled by the state-of-the-art routing mech-
anism using ECMP modules implemented at every switch in the network, while notifications
of elephant flow detections are directed to a center controller, which dynamically computes the
best paths for these flows based on the current network utilization. In order to do so, the center
controller is connected to all switches in the network and can poll statistics to estimate buffer
and link utilizations as well as receive elephant flow notification.

Existing approaches in detecting elephant flows can be broadly classified as using one of the
following strategies:

1. Modify and enable applications to identify whether theirflows are elephants [28].
2. Use switches to maintain per-flow statistics, and the center controller to periodically poll

these statistics and identify a flow as elephant when some statistical conditions are met
[21].

3. Use the center controller to sample packets from individual switches and identify a flow
as elephant after it has seen a sufficient number of packet samples from the flow [29].

4. Use every end-host to monitor the number of bytes in its buffer for every flow and identify
a flow as elephant as soon as the number of bytes in its buffer isgreater than a threshold
that is set [23].

Modifying existing applications and forcing new applications to incorporate features to detect
elephant flows, as proposed in the first strategy, are often impractical [23]. Polling per-flow
statistics and sampling packets from switches, as proposedin the second and third strategy,
respectively, incur high monitoring cost for the center controller, consume significant network
communication bandwidth and switch resources, and might require long detection time. An
elephant flow detection architecture called Mahout [23] hasbeen developed to implement the
fourth strategy. Compared with the rest, the work is promising for its demonstrated merits of
shorter detection time, low monitoring cost and low consumption of switch resources, laying
a good foundation for datacenter traffic management. However, Mahout is essentially an open
loop architecture, without an automated decision-making module that can continually compute
an appropriate threshold for elephant flow detection based on information feedback from the
network. This is a key limitation of Mahout for continuous datacenter operation. Besides,
threshold setting faces a dilemma: On the one hand, setting athreshold that is too low will
cause too many flows to be recognized as elephants, overloading the center controller with
tasks of computing paths for these flows. On the other hand, setting a threshold that is too high
will cause too many flows to be recognized as non-elephants, possibly creating long-lived but
actually avoidable collisions in the network when only ECMPis deployed to distribute them.

We assert that a threshold for use in elephant flow detection algorithms should be dynami-
cally set, based on important criteria such as current network utilization and center controller
load. If network utilization is already high, for example, the cost incurred for dynamically rout-
ing elephant flows might exceed the benefits gained since there might be no path that could
accommodate the flows. In this case, a large threshold value should be set, so that less flows
are identified as elephant flows. Similarly, if the center controller is lightly loaded, it should
consider more flows for routing instructions, and a small threshold value should be set.



4 MANH TUNG PHAM, KIAM TIAN SEOW AND CHUAN HENG FOH

Without a suitable formalism, incorporating the abovementioned criteria in threshold setting
for elephant flow detection is difficult. This is because, being based mostly on human expertise
and judgments, firstly, describing the problem in terms of the criteria and threshold decisions to
take are imprecise or vague. Such vagueness of description arises in general due to fuzziness [1]
in the semantic meanings of events and phenomena. For example, statements such as “current
network utilization is high”, “current controller load is low”, “set a large elephant flow detection
threshold” and “this flow is elephant” are vague because the meanings of high, low, large and
elephant (or non-elephant) are not precise and depend on context. In datacenter operations,
this context is characterized by the bisection bandwidth capability of the datacenter network,
the computational capability of the center controller and the characteristics of the datacenter
traffic patterns. Secondly, the criteria could be conflicting with each other. For example, when
network utilization is high and controller load is low, it ishard to decide whether a low or a high
threshold value should be set, since the former condition implies a high threshold setting while
the latter implies a low threshold setting.

In an application context where criteria cannot be sharply defined, fuzzy logic provides a
powerful conceptual formalism for reasoning, learning anddecision making. The theory has
been demonstrated to be effective in handling multiple conflicting criteria as well as their vague-
ness in a natural way [1]. In this paper, we propose a fuzzy logic based architecture called
FuzzyDetec. The architecture closes the elephant flow detection loop in Mahout with a fuzzy
logic inference module resident in the center controller. The module reasons based on simple
fuzzy rules incorporating datacenter network criteria in amanner emulating human expertise,
and computes appropriate elephant flow threshold decisionsin accordance to information feed-
back on current network conditions. This threshold, which is communicated by the center
controller to every end-host for elephant flow detection, isan aggregation of various criteria
related to the current network environment. As an illustration, we present and justify several
rules for setting a threshold value based on current networkutilization and current controller
load, and evaluate our approach with extensive simulations.

In equipping the center controller with a fuzzy logic inference module for automatically com-
puting appropriate thresholds for elephant flow detection,we overcome Mahout’s key limitation
of an open loop architecture that only allows some pre-determined, static value for the elephant
flow threshold. Closing the elephant flow detection loop, as in FuzzyDetec, is an essential step
towards fully automating datacenter network operations. And, to the best of our knowledge,
this work is the first attempt on classifying flows based on current datacenter network condi-
tions. Since different treatments of elephant flows are certainly needed for different network
conditions, we believe this is a promising direction for improving the performance of datacen-
ters. Importantly, the proposed approach of using fuzzy logic based elephant flow detection is
simple and intuitive, allows multiple criteria to be flexibly incorporated in the detection process,
and is easily extensible.

3. Background and Related Work.

3.1. Multipath Topologies. Traditionally, datacenter topologies are hierarchical trees with a
layer of racks of hosts at the bottom, with all hosts in a rack connecting directly to a Top of
Rack (ToR) switch, and a layer of core switches at the top. ToRswitches are connected to
aggregation switches, and these switches are aggregated further, connecting to core switches
[15]. Moving up the hierarchy, ToR switches are the smallestand cheapest with the lowest
speed, while core switches are the densest in port numbers and most expensive, and have the
highest speed (see Fig. 1).



AUTOMATED FUZZY INFERENCING FOR ELEPHANT FLOW DETECTION 5

Racks 
of 

hosts

Top of Rack 
Switches

Aggregation 
Switches

Core Switch

…… …

FIGURE 1. A conventional network topology for datacenters

Due to the high costs of port-dense and high speed switches, the over-subscription ratio1

increases rapidly as we go up the hierarchy. At the bottom level, hosts typically have 1:1
over-subscription to other hosts in the same rack, allowingthem to communicate intra-rack at
the maximum speed of their NICs. However, up-links from ToRsover-subscription ratios are
typically 1:5 to 1:20, and paths through the core switches can be 1:240 over-subscribed [30].
These large over-subscription ratios severely limit the communication bandwidth between hosts
in different racks [30].

With the increasing deployment of communication intensiveapplications and cloud-based
services in datacenters, new topologies, such as Fat-tree [16], HyperX [17] and Flattened But-
terfly [18], are proposed to cope with the enormous bandwidthdemands. Fat-tree topology [16],
for example, enables commodity switches to be connected in amanner that maintains 1:1 over-
subscription across the whole network, allowing hosts to potentially communicate with other
arbitrary hosts at the maximum speed of their NICs (see Fig. 2).

One common feature of the newly proposed datacenter topologies is that they are all de-
signed with multiple data paths with equal length between every pair of source and destination
switches, providing the possibility for managing network congestion and maximizing aggregate
bisection bandwidth. To extract the best aggregate bandwidth from these multipath topologies,
fine-grained routing techniques must be designed for load balancing, namely, distributing flows
among available paths so that none of these paths are overloaded while others are underloaded.
Traditional shortest path routing protocols, such as OSPF [31], are not suitable for this purpose
since they might concentrate traffics going to a given destination in a single port of an aggrega-
tion switch and a single port of a core switch, even though other choices exist, causing avoidable
network congestion [21].

3.2. Static vs. Dynamic Routing. In one extreme, load balancing can be done with minimal
computational efforts using ECMP [20], a static, obliviousrouting technique. In essence, an
ECMP-enabled switch is configured with multiple paths for a given destination. When a packet
with multiple candidate paths arrives, it is forwarded to a path that corresponds to a hash of
selected fields in the packet header, modulo the number of paths. In this way, flows between a
pair of source and destination switches are split across multiple paths. ECMP works well when
flows are small and uniform in size [21]. When elephant flows are present, however, its key

1Over-subscription ratio is the ratio of the worst-case achievable aggregate bandwidth among end-hosts to the total
bisection bandwidth of a particular network topology.



6 MANH TUNG PHAM, KIAM TIAN SEOW AND CHUAN HENG FOH

Core Switch

Hosts

Edge 
Switches

Aggregation 
Switches

Pod 1 Pod 2 Pod 3 Pod 4

FIGURE 2. A 4-array Fat-tree topology for datacenters. In ak-array fat-tree
network there are5k2/4 identicalk-port switches, withk2/4 core switches and
the remainingk2 switches are organized intok pods, each of which contains
one layer ofk/2 aggregation switches and one layer ofk/2 edge switches. In
each pod, eachk-port edge switch is connected tok/2 hosts andk/2 aggregation
switches in the same pod. The remainingk/2 ports of each aggregation switch
is connected tok/2 core switches in an order similar to the one shown in the
figure. By scarifying compact wiring, a fat-tree network ensures that the number
of input links to any switch is equal to the number of links going out of it, thereby
maintaining 1:1 over-subscription ratio across the whole network and allowing
hosts to potentially communicate with arbitrary other hosts at the full speed of
their NICs. See [16] for a detailed discussion of fat-tree topology.

limitation is that two elephant flows might collide in their hash and route through the same path
in the network, resulting in long-lived congestion.

In the other extreme, load balancing can be done in a completely dynamic fashion, with every
new flow placed in the best path selected online by a routing algorithm, taking into account
the current utilization of every link and buffer in the network. Such a routing algorithm is
often run by a center controller, which is connected to all switches and can poll statistics from
them to estimate the utilization of every link and buffer. This approach, however, requires high
computational efforts and introduces unacceptable setup delays for latency-sensitive flows, such
as those generated from interactive applications [21,23].

Modern datacenter routing mechanisms for multipath topologies often combine both static
and dynamic routings: Paths for elephant flows are computed online, while paths for non-
elephant flows are selected using ECMP. It has been shown [21]that by detecting and dynam-
ically placing elephant flows in carefully selected paths based on current network utilization,
as much as 113 % higher aggregate throughput can be achieved as compared to using ECMP
alone.

3.3. Elephant Flow Detection. Of central importance to effectively selecting and deploying
routing algorithms for multipath topologies is the problemof timely detection of elephant flows.
Curtis et al. [23] propose Mahout, an architecture for end-host based elephant flow detection
which has proven to be superior to previous approaches [21, 29] in terms of early detection
and low computational overload. The Mahout architecture, which subscribes to the popular
simple switch/smart controller model as proposed in OpenFlow [27], is shown in Fig 3. In this



AUTOMATED FUZZY INFERENCING FOR ELEPHANT FLOW DETECTION 7

Core Switches

Aggregation 
Switches

End-hosts

Edge 
Switches

Mahout 
Controller

Applications

OS

Mahout Shim layer

…

An end-host structure

FIGURE 3. Mahout - An end-host based elephant flow detection system

architecture, end-hosts are responsible for the timely detection of elephant flows and a center
controller connecting to every switch in the network is responsible for computing the best paths
for newly detected elephant flows. An end-host detects elephant flows through what is called a
shim layer implemented in its network stack, enabling the host to monitor the socket buffer of
every flow originating from it. An end-host will identify a flow as an elephant as soon as the
number of bytes in its buffer is greater than a threshold. Once an end-host detects an elephant
flow, it sets the Differentiated Services (DS) Field bits of every packet in this flow to 00001100,
to inform the edge switch that is directly connected to it (see Algorithm 1). The edge switch
notifies the center controller of the arrival of a new elephant flow, which in turn computes the
best path for this elephant flow, and installs flow-specific routing entry to every necessary switch
in the network.

Algorithm 1: Pseudo-code for end-host shim layer

begin
When sending a packet,if the number of bytes in buffer≥ Threshold then

Mark the packet as belonging to an elephant flow by setting itsDS bit to 00001100;

However, a key limitation of Mahout for continuous datacenter operation is that it is es-
sentially an open loop architecture, without an automated decision-making module that can
continually compute an appropriate threshold for elephantflow detection based on informa-
tion feedback from the network. Besides, threshold settingfaces a dilemma: On the one hand,
setting a threshold that is too low will cause too many flows tobe recognized as elephants, over-
loading the center controller. On the other hand, setting a threshold that is too high will cause
too many flows to be recognized as non-elephants, resulting possibly in long-lived but actually
avoidable collisions in the network.

4. Fuzzy Logic Based Elephant Flow Detection.The proposed FuzzyDetec architecture is
shown in Fig. 4. In FuzzyDetec, the center controller is equipped with a fuzzy logic infer-
ence module that computes appropriate values for the elephant flow threshold based on current
network conditions. It then communicates the computed value to every end-host in the data-
center which in turn inputs the new threshold value to Algorithm 1 for elephant flow detection.



8 MANH TUNG PHAM, KIAM TIAN SEOW AND CHUAN HENG FOH

Core Switches

Aggregation 
Switches

End-hosts

Edge 
Switches

Center 
Controller

Applications

OS

Mahout Shim layer

…

An end-host structure

Fuzzifier Inference Engine

Fuzzy rule base

Defuzzifier
curNetUtilization

curCtrload

Threshold

Fuzzy Logic Inference Module

FIGURE 4. FuzzyDetec - A fuzzy logic based elephant flow detection system

In equipping the center controller with a fuzzy logic inference module for automatic elephant
flow threshold computation based on information feedback oncurrent network conditions, we
close the control loop in Mahout, an essential step towards fully automating datacenter network
operations.

In the following, we describe the design of the fuzzy logic inference module. We present
how Threshold can be determined based on the current network utilizationcurNetUtil, and
the current controller loadcurCtrload. The approach can easily be extended to incorporate
new criteria other than network utilization and controllerload.

4.1. Linguistic Variables and Membership Functions. Ordinary Boolean logic deals with
exact reasoning where a variable can only take a value of either true or false. Fuzzy logic is an
extension of Boolean logic to deal with approximate reasoning. This is achieved by introducing
linguistic variables that can take numerical values, and associating each of these variables with
a collection of linguistic values. A linguistic value represents what is called a linguistic set
containing a subrange of the numerical values defined for a linguistic variable. Every linguistic
value of a linguistic variable is associated with a membership function that takes values between
0 and 1, denoting the degree that the linguistic value represents every specific numerical value
in the linguistic set (that it represents) for the variable.

In FuzzyDetec, there are two input linguistic variablescurNetUtil andcurCtrload, and one
output linguistic variableThreshold. The objective of FuzzyDetec is to deduce a numerical
value forThreshold from the numerical values ofcurNetUtil andcurCtrload. The numerical
values ofcurNetUtil andcurCtrload are provided by the center controller and the numerical
value ofThreshold is deduced by fuzzy inferencing (see Fig. 4).

The linguistic variablescurNetUtil and curCtrload can take linguistic values of either
LOW, MEDIUM or HIGH, andThreshold can take linguistic values of either SMALL, MEDIUM
or LARGE. We define the network utilizationcurNetUtil as the average of all link utilizations
in the datacenter. The current controller loadcurCtrload is estimated by the current number
of elephant flows that the center controller has to compute routing paths for. An example of
membership functions for the linguistic values ofcurNetUtil, curCtrload andThreshold is
shown in Fig 5.

The shape of a membership function emulates human expertisein a particular application
context. Membership functions can often be constructed by addressing questions such as the fol-
lowing: To what degree is a 20% network utilization considered low and medium? To what de-
gree is a 60% network utilization considered medium and high? By answering these questions,



AUTOMATED FUZZY INFERENCING FOR ELEPHANT FLOW DETECTION 9

20%0% 40% 60% 80% 100%
0

1
LOW MEDIUM HIGH

(a) Membership functions for linguistic values ofcurNetUtil

2000 400 600 800 1000
0

1
LOW MEDIUM HIGH

Number of elephant flows being processed (in thousands)

(b) Membership functions for linguistic values ofcurCtrload

1M 50M

SMALL MEDIUM LARGE

500K 20M

(c) Membership functions for linguistic values ofThreshold

FIGURE 5. Illustration of membership functions for fuzzy values inFuzzyDetec

pairs of numerical values and the degrees that these values are represented by each linguistic
value (low, medium or high) are defined, forming the respective linguistic sets and correspond-
ing membership functions. The membership functions can be constructed using curve-fitting
methods such as trapezoidal approximation. In fuzzy logic applications, it is common practice
to use trapezoidal and triangular shapes for membership functions due to their computational
efficiency, such as those presented in Fig. 5; but other shapes can also be used [1].

4.2. Fuzzification and Fuzzy Rule Base.The center controller in FuzzyDetec collects sta-
tistics from switches in the datacenter and estimates numerical values ofcurNetUtil and
curCtrload. These values are then converted to linguistic sets in a process called fuzzifica-
tion. This is done by a procedure called fuzzifier (see Fig. 4)that takes the numerical value
of a linguistic variable and converts it to a collection of linguistic sets using the membership
functions associated with the linguistic variable. The threshold setting strategy is expressed in
terms of a set of if-then rules that maps linguistic variables to linguistic variables. These rules
are normally constructed by datacenter experts, incorporating their experiences on classification
of elephant flow threshold as small, medium or large. As an illustration, we present in Table 1
concise threshold classification rules that essentially map the linguistic values ofcurNetUtil
andcurCtrload to those ofThreshold.

Intuitively, when the network utilization is already high,it is often hard to find a path that
could accommodate elephant flows. Therefore, we would want to set a large threshold, so that
less flows are identified as elephant. Similarly, if the center controller load is high, less flows
should be directed to it for routing instructions, hence a large elephant flow threshold should be
set. This intuition is expressed by the rule in the last row ofTable 1, namely, ifcurNetUtil is
HIGH andcurCtrload is HIGH, Threshold is LARGE. In the other extreme and by the same
intuition, if the network utilization is low and the center controller load is low, a small threshold



10 MANH TUNG PHAM, KIAM TIAN SEOW AND CHUAN HENG FOH

TABLE 1. The Rule Base for Threshold Classification

curNetUtil curCtrload Threshold

Low
Low Small
Medium Small
High Medium

Medium
Low Medium
Medium Medium
High Large

High
Low Medium
Medium Large
High Large

should be set, namely, ifcurNetUtil is LOW andcurCtrload is LOW,Threshold is SMALL,
as expressed by the rule in the first row of Table 1.

Other rules in Table 1 can be interpreted similarly. For example, the rule in the third row of
Table 1 states that ifcurNetUtil is LOW andcurCtrload is HIGH, Threshold is MEDIUM.
This rule attempts to balance the two conflicting conditionsof requiring a small threshold setting
on the one hand, as prescribed by a low network utilization, and of requiring a large threshold
setting on the other, as prescribed by a high controller load.

4.3. Fuzzy Inference. The membership functions associated with linguistic values in a fuzzy
inference system normally overlap. Therefore, several rules typically contribute to determining
the linguistic value of an output linguistic variable. The result of executing each if-then rule is a
fuzzy linguistic set, which is represented by a membership function derived from membership
functions (for the linguistic values) of the linguistic variables specified in the if-then rule. Fuzzy
linguistic sets need to be aggregated into a final linguisticset through a process called fuzzy
inference. This is done by aggregating membership functions of individual linguistic sets to
arrive at a final membership function representing the final linguistic set. This final linguistic
set is then mapped into a specific numerical value of the output variable by applying an operator
called “defuzzification” on its membership function (see Fig. 4).

Key to the fuzzy inference process is how linguistic sets of fuzzy if-then rules are determined
and aggregated. In fuzzy set theory [1], there are altogether eight important considerations for
designing the output linguistic sets of fuzzy if-then rulesand the aggregation operators. These
considerations have led to the development of standard waysto implement the fuzzy inference
process. A detailed discussion of this development is, however, outside the scope of this paper.

Let x, y, z be three linguistic variables and A, B, C be three linguistic values associated with
them in order. In the following, we briefly describe how the fuzzy rule “if x is A and y is B then
z is C” is normally realized in fuzzy logic applications.

Let µA, µB, µC be membership functions associated with the linguistic values A, B and C,
andx0 andy0 be numerical values ofx andy, respectively. The fuzzy statement “if x is A and
y is B” is often realized by a minimum operator on the membership functions, namely, it is
interpreted as the crisp valueZ0 = min(µA(x0), µB(y0)). The linguistic set of the rule “if x is
A and y is B then z is C” is then defined by the membership functionµC′(z) = min(Z0, µC(z)).

If there are several rules, each rule is evaluated individually using the minimum operator as
described above, and their results are aggregated using a maximum operator on the member-
ship functions obtained for the individual rules. The overall result is a membership function
representing the final linguistic set, aggregating individual linguistic sets.



AUTOMATED FUZZY INFERENCING FOR ELEPHANT FLOW DETECTION 11

The inference procedure described is called “min-max”, referring to operators applied on
membership functions. Other inference procedures can alsobe used. For example, the alge-
braic product operator can be used in place of the min operator and the algebraic sum operator
can be used in place of the max operator, resulting in a “product-sum” inference procedure.
Combinations of these operations, such as “min-sum” and “product-max”, are also possible. In
FuzzyDetec, we implement the fuzzy inference process usingthe “min-max” procedure.

4.4. Defuzzification. Fuzzy inference in FuzzyDetec results in a linguistic set ofthe linguistic
variableThreshold. This linguistic set is represented by a membership function. To compute a
numerical value of the elephant flow threshold for the end-hosts, the linguistic set obtained must
be converted to a numerical value. This is done by applying a “defuzzification” operator on a
linguistic set ofThreshold. Defuzzification methods are often developed based on heuristic
ideas, such as “taking the value that corresponds to the maximum membership” or “taking the
value that is at the center of two peaks”. They can also be derived through rigorous analysis
processes, such as fuzzy linear programming or multi criteria analysis [1].

In the literature, the most common method used in defuzzification is the Center of Gravity
method. This method computes a numerical value for the threshold from a linguistic set̄T as
follows.

threshold =

∫
τµT̄ (τ)dτ∫
µT̄ (τ)τ

whereµT̄ is the membership function representing the linguistic setT̄ .
Other methods for defuzzification include the “Max Criterion” method, the “Mean of Max-

ima” method and the “Bisector of Area” method [1]. In comparison with other methods, the
Center of Gravity method has one important advantage of guaranteeing that every if-then rule
contributes to determining the final output. In this paper, we use the Center of Gravity method
for defuzzification in FuzzyDetec.

4.5. Discussion.

4.5.1. Dynamic Routing Algorithms.Once presented with a set of elephant flows, there are
several ways for the center controller to compute and allocate paths to these flows. Correa and
Goemans [32] propose an increasing first fit algorithm, whichallocates the least congested path
among possible paths to elephant flows, one at a time in a decreasing order of flow rates. Al-
Fares et al. [21] propose two algorithms for computing pathsfor elephant flows: one greedily
assigns a flow to the first path that can accommodate it and the other is based on Simulated
Annealing [33], a population-based, probabilistic searchalgorithm. Either of the algorithms
can be incorporated into FuzzyDetec for dynamically computing paths for detected elephant
flows. In a concrete implementation of FuzzyDetec, for the purpose of comparison with Ma-
hout, we chose to implement the same algorithm as used in Mahout, namely, the increasing first
fit algorithm proposed in [32].

4.5.2. Threshold Communication.The elephant flow detection threshold is updated continually
in response to changes in the values of the network utilization and center controller load. If
every updated value is immediately communicated to the end-hosts, bandwidth resources might
be consumed unnecessarily. To mitigate this problem, the center controller in FuzzyDetec only
informs the end-hosts whenever there is a significant changein the threshold value, such as a
change of10% or more. An alternative is to use in-band signaling by piggybacking updated
threshold values in OpenFlow protocol messages that the center controller frequently sends to
individual switches. Further study is needed to investigate this alternative.



12 MANH TUNG PHAM, KIAM TIAN SEOW AND CHUAN HENG FOH

5. Performance Study. We now experimentally compare the performance of FuzzyDetec with
that of Mahout [23] to show the effectiveness of FuzzyDetec in throughput improvement for
datacenter traffic routing. In the following we describe thedesign of our simulator, the method-
ology used to generate simulated traffics and simulation results.

5.1. Simulator. For the same time consuming reason given in [21], it is inefficient to use
existing packet level simulators, such as ns-2, ns-3 or OMNET, for our performance study. As
described therein, for a moderate size fat-tree network of 8,192 hosts, each sending at 1Gbps, it
would take around 71 hours to simulate just one test case of a 60-second datacenter run.

We designed and implemented an event-based flow level simulator. In our design, a data-
center network was modeled by a directed graph, with hosts and switches represented by nodes
in the graph and links represented by capacitated edges. Allexperiments were run on directed
graphs modeling a fat-tree network of 8192 hosts, with all links having capacity of 1Gbps.

For simplicity and without bias effect on the network throughput performance, we simulated
ECMP by configuring every switch with multiple paths for every destination, and when a flow
with multiple candidate paths arrives at a switch, we forwared the flow to a path selected ran-
domly from the candidate paths.

Whenever a flow starts or completes, the simulator recomputes the rate of each flow. Similar
to the idea described in [21], the rate is regulated by TCP.

Like [23], we model the OpenFlow protocol by only accountingfor the time delay that a
switch incurs in notifying the center controller of a new elephant flow and receiving a routing
table entry setup from the center controller in turn. This isdone by setting up a 10Mbps link
(a typical bandwidth of OpenFlow links) between the center controller with every switch in the
network and assuming that a notification message of 1500 bytes (the maximum transfer unit of
Ethernet) is sent from a switch to the controller on this linkwhenever the switch needs to inform
the center controller of the presence of a new elephant flow. Arouting table entry setup message
of 1500 byptes is then sent back from the center controller tothe switch on the same link. Other
times consumed in computing paths for elephant flows and setting up routing table entries are
ignored. As a result, it is likely that an OpenFlow datacenter implementing our FuzzyDetec
module will perform worse than predicted by our simulator interms of throughput. However,
this reduction in throughput performance is mostly attributed to the detailed implementation of
the OpenFlow protocol and dynamic routing algorithms used by the center controller, and not
the design of our fuzzy logic inference module.

5.2. Traffic Patterns. In the absence of data on commercial datacenter network traces, the na-
ture of datacenter traffics is not completely understood. Asa result, generating simulated traffics
to evaluate the performance of datacenters has always been challenging. In the literature, traf-
fics are often generated from either synthetic communication patterns, or application-specific
communication patterns such as those generated by MapReduce or scientific computing appli-
cations. However, both synthetic and simulated application-specific communication patterns are
not guaranteed to be representative of datacenter traffics,which are often composed of traffics
from a variety of distributed applications [34].

Recent work [22,30] has attempted to empirically capture both macroscopic and microscopic
measurements of datacenter traffics. The former specifies which hosts communicate with which
other hosts and when, while the latter characterizes the distributions of datacenter flows’ statis-
tics such as durations, sizes, and inter-arrival times. At the macroscopic level, Kanula et al. [22]
observe that within a rack, a host communicates either with all other hosts or less than25% of
the total number of hosts. Furthermore, a host either does not communicate with other hosts in
different racks, or communicate with1 − 10% of them. At the microscopic level, it is reported
[22, 30] that90% of flows carry less than 1MB of data and more than90% of bytes transferred
are in flows of sizes greater than 100MB.



AUTOMATED FUZZY INFERENCING FOR ELEPHANT FLOW DETECTION 13

To incorporate recent research results on the nature of datacenter traffics into our performance
study, we generated the simulated traffics as follows. The traffics were generated as mixtures
of application-specific traffics, namely, those generated by the MapReduce application in its
shuffle phase, and other background traffics. To generate MapReduce traffics, we applied the
methodology presented in [23]. Therein, each host sends 128MB to every other host during
MapReduce’s shuffle phase. A host does so by simultaneously transferring five flows, each
of size 128MB, to five other hosts; and once one of these flows iscompleted, it will start
transferring another 128MB flow to one of the remaining hosts. The order in which a host is
selected for receiving simulated MapReduce traffics is uniformly random. Other background
traffics were generated following the macroscopic and microscopic measurements reported in
[22,30].

5.3. Simulation Methodology and Performance Metrics. For each experiment, we gener-
ated traffics as described in the previous section, and performed traffic routing in Mahout and
FuzzyDetec separately. In each experiment, MapReduce traffics generation was started only
five minutes after background traffics generation, to allow the background traffics to reach a
somewhat steady state. To track the performance of Mahout and FuzzyDetec, we aggregated
the throughputs of all flows in each experiment, and recordedthe average throughput of 50
experiments for each architecture.

5.4. Membership Functions. We used standard trapezoidal and triangular shapes for the mem-
bership functions ofcurUtil, curCtrload andThreshold in FuzzyDetec and put them in differ-
ent configurations, as presented in Fig. 6. The membership functions associated withcurUtil
are characterized by four parametersx0, x1, x2, andx3. Similarly, those ofcurCtrload and
Threshold were characterized byy0, y1, y2, y3 andz0, z1, z2, z3, respectively. For each set of
specific values ofxi, yi andzi (0 ≤ i ≤ 3), we have a specific configuration of membership
functions forcurUtil, curCtrload andThreshold.

x00% x1 x2 x3 100%
0

1
LOW MEDIUM HIGH

50%

(a) Membership functions for linguistic values ofcurNetUtil

y10 y3

0

1
LOW MEDIUM HIGH

Number of elephant flows being processed (in thousands)

y0 y2

(b) Membership functions for linguistic values ofcurCtrload

z1 z3

SMALL MEDIUM LARGE

z0 z2

(c) Membership functions for linguistic values ofThreshold

FIGURE 6. Membership functions used for performance study



14 MANH TUNG PHAM, KIAM TIAN SEOW AND CHUAN HENG FOH

TABLE 2. Parameter configurations for membership functions ofcurUtil,
curCtrload andThreshold

Utilization in % No. of flows in thousands Threshold in MB
Configuration x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3
1 20 40 60 80 100 200 700 800 0.5 1 20 50
2 30 45 75 90 200 400 800 900 1 20 50 80
3 40 49 90 99 200 600 600 900 20 50 80 99

5.5. Results.

5.5.1. Throughput performance.We compared the throughput performances of using ECMP
alone, using Mahout and using FuzzyDetec. We used five different thresholds for Mahout,
namely, 128KB, 1MB, 20MB, 50MB and 100MB, and different configurations of membership
functions for FuzzyDetec as described in the previous section. The center controller in Fuzzy-
Detec only informs the end-hosts whenever there is a change of 10% or more in the threshold
value. Fig. 7 summarizes the representative results for three different configurations of mem-
bership functions for FuzzyDetec, as detailed in Table 2.

0

500

1000

1500

2000

2500

3000

3500

ECMP 128K 1MB 20MB 50MB 100MB Configuration 1 Configuration 2 Configuration 3

Mahout (with different thresholds) FuzzyDetec (with different 
membership function 

configurations)

M
ea

n 
ag

gr
eg

at
ed

 t
hr

ou
gh

pu
t (

G
bp

s)

20.3Gbps 27.6Gbps 40.3Gbps 35.2Gbps 45.3Gbps 70.1Gbps 19.0Gbps 10.3Gbps 50.8Gbps
Standard 
Variation

FIGURE 7. Mean and standard variation of throughput of 50 experiments for
ECMP, Mahout and FuzzyDetec

As can be seen from Fig. 7, the throughput performance of Mahout is dependent on the
chosen threshold value. Setting a threshold too low (i.e., 128KB in our experiment) or too high
(i.e., 100 MB in our experiment) will reduce throughput performance of Mahout significantly,
to almost that of using ECMP alone.

As expected, FuzzyDetect performed better than Mahout in all cases. This increase in perfor-
mance is attributed to both the intelligent fuzzy rules implemented in FuzzyDetec (see Table I)
and the shapes of the membership functions forcurUtil, curCtrload andThreshold. To con-
firm this, we repeated our experiments with arbitrary, non-standard membership functions for
curUtil, curCtrload andThreshold in FuzzyDetec, and found that in some extreme cases, the
throughput performance was reduced significantly, and could be even worse than that of using
ECMP alone. Using arbitrary non-intelligent rules also produced the same negative outcome.



AUTOMATED FUZZY INFERENCING FOR ELEPHANT FLOW DETECTION 15

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5

5%

10%

20%

N
um

be
r 

of
 ti

m
es

 t
he

 th
re

sh
ol

d 
va

lu
e 

is
 u

pd
at

ed

2953 2815 2776 2888 2902

2772

2973

2698

2834
2805

2670

2900

2730

2910

2657

Configurations of membership functions experimented with in 
FuzzyDetec (with 1, 2 and 3 presented in Table II)

FIGURE 8. Number of times the threshold value is updated and the throughput
(in Gbps) achieved (indicated on top of each bar) for each threshold change-
setting of at least 5%, 10% and 20%

5.5.2. Control overhead.We examined the communication overheads versus performance trade-
offs of FuzzyDetect, by counting the number of times the threshold value changed by at least
5%, 10% and 20% for different configurations of membership functions, and recording the
throughput achieved for each such threshold-change setting. The number of times the threshold
value changed as set indicates how many threshold update messages the center controller in
FuzzyDetect needed to communicate to the end-hosts. The results are presented in Fig 8. Not
unexpectedly, the higher the threshold-change setting, the lower the communication overheads.
It can also be inferred from Fig. 8 that the throughput performance can be improved, but at the
expense of higher communication overheads. Finally, we note that the throughput performance
for all the configurations considered was better than that ofMahout depicted in Fig. 7.

6. CONCLUSION. Timely detection of elephant flows is essential for selecting and deploy-
ing routing algorithms for datacenter networks with multipath topologies. In this paper, we
have proposed FuzzyDetec, a novel close loop control architecture for the adaptive detection
of elephant flows. By using fuzzy inference rules to intelligently incorporate human expertise
and judgments in classifying elephant flow thresholds, FuzzyDetec is practically simple but
crucial towards making feasible the autonomous operation of high performance end-host based
elephant flow detection in datacenter networks. Our experimental results show that, over a well-
known state-of-the-art architecture called Mahout [23], FuzzyDetec can achieve considerable
improvement in throughput performance.

In conclusion, FuzzyDetec provides a new intelligent framework for datacenter network de-
signers on the one hand, and serves as an important emerging application for fuzzy systems
researchers on the other. The framework development is systematic, and is currently based on
the most fundamental theory of fuzzy systems [1]. In future work, the framework would benefit
from more advanced treatments in fuzzy systems, such as incorporating data mining techniques
for efficient design of fuzzy inference rule sets [35], usingprobabilistic reasoning for automated
selection of fuzzification schemes [36], and managing membership functions actively to enable



16 MANH TUNG PHAM, KIAM TIAN SEOW AND CHUAN HENG FOH

robust on-line self-adaptation of fuzzy controllers [37].We believe FuzzyDetec opens up rich
opportunities for further theoretical and practical investigation.

REFERENCES

[1] H. H. J. Zimmermann,Fuzzy set theory and its applications, second edition. Kluwer Academic Publishers,
Boston, Dordrect, London, 1995.

[2] M. Mas, M. Monserrat, J. Torrens, and E. Trillas, “A survey on fuzzy implication functions,”IEEE Transac-
tions on Fuzzy Systems, vol. 15, no. 6, pp. 1107 – 1121, 2007.

[3] G. Feng, “A survey on analysis and design of model-based fuzzy control systems,”IEEE Transactions on
Fuzzy Systems, vol. 14, no. 5, pp. 676 – 697, 2006.

[4] C.-S. Lee, M.-H. Wang, and H. Hagras, “A type-2 fuzzy ontology and its application to personal diabetic-diet
recommendation,”IEEE Transactions on Fuzzy Systems, vol. 18, no. 2, pp. 374 – 395, 2010.

[5] C.-S. Lee and M.-H. Wang, “A fuzzy expert system for diabetes decision support application,”IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 41, no. 1, pp. 139 – 153, 2011.

[6] H. Seker, M. O. Odetayo, D. Petrovic, and R. N. G. Naguib, “A fuzzy logic based-method for prognostic de-
cision making in breast and prostate cancers,”IEEE Transactions on Information Technology in Biomedicine,
vol. 7, no. 2, pp. 114 – 122, 2003.

[7] D. Xu, J. M. Keller, M. Popescu, and R. Bondugula,Applications of Fuzzy Logic in Bioinformatics. London,
Imperial College Press, 2008.

[8] K.-H. Huarng, T. H.-K. Yu, and Y. W. Hsu, “A multivariate heuristic model for fuzzy time-series forecasting,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, vol. 37, no. 4, pp. 836 – 846,
2007.

[9] H. Huang, M. Pasquier, and C. Quek, “Financial market trading system with a hierarchical coevolutionary
fuzzy predictive model,”IEEE Transactions on Evolutionary Computation, vol. 13, no. 1, pp. 56–70, 2009.

[10] K. Wang, C. K. Wang, and C. Hu, “Analytic hierarchy process with fuzzy scoring in evaluating multidisci-
plinary r & d projects in china,”IEEE Transactions on Information Technology in Biomedicine, vol. 52, no. 1,
pp. 119 – 129, 2005.

[11] P. Maghouli, S. H. Hosseini, M. O. Buygi, and M. Shahidehpour, “A multi-objective framework for transmis-
sion expansion planning in deregulated environments,”IEEE Transactions on Power Systems, vol. 24, no. 2,
pp. 1051 – 1061, 2009.

[12] L. R. Scott, T. Clark, and B. Bagheri,Scientific Parallel Computing. Princeton University Press, 2005.
[13] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,” inProceedings of the

USENIX Symposium on Operating Systems Design and Implementation (OSDI’04), San Francisco, Califor-
nia, USA, December 2004, p. 137150.

[14] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,”Computer networks and
ISDN systems, vol. 30, no. 1-7, pp. 107–117, 1998.

[15] Cisco Data Center Infrastructure 2.5 Design Guide, December, 2007.
[16] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” in

Proceedings of the ACM SIGCOMM 2008 conference on Data communication, Seattle, WA, USA, August
2008, pp. 63–74.

[17] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber, “Hyperx: topology, routing, and pack-
aging of efficient large-scale networks,” inProceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, Portland, Oregon, USA, November 2009.

[18] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly : A cost-efficient topology for high-radix networks,” in
Proceedings of the 34th annual international symposium on Computer architecture, San Diego, CA, USA,
June 2007, pp. 126–137.

[19] T. Benson, A. Anand, A. Akella, and M. Zhang, “The case for fine-grained traffic engineering in data centers,”
in Proceedings of the 2010 internet network management conference on Research on enterprise networking,
San Jose, CA, USA, April 2010, pp. 51–62.

[20] C. Hopps,Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992, Internet Engineering Task Force.
[21] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, “Hedera: Dynamic flow scheduling

for data center networks,” inProceedings of the 7th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’10), San Jose, CA, USA, April 2010, pp. 19–19.

[22] S. Kandula, S. Sengupta, A. Greenberg, and P. Patel, “The nature of data center traffic: Measurements and
analysis,” inProceedings of the 2009 Internet Measurement Conference 2009, Chicago, Illinois, USA, No-
vember 2009, pp. 202–208.



AUTOMATED FUZZY INFERENCING FOR ELEPHANT FLOW DETECTION 17

[23] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead datacenter traffic management using
end-host-based elephant detection,” inProceedings of the 30th IEEE International Conference on Computer
Communications, Shanghai, China, April 2011, pp. 1629–1637.

[24] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “On the use of fuzzy modeling in virtualized data
center management,” inProceedings of the 30th IEEE Fourth International Conference on Autonomic Com-
puting, June 2007, p. 25.

[25] ——, “Autonomic resource management in virtualized data centers using fuzzy logic-based approaches,”
Cluster Computing: the Journal of Networks, Software Toolsand Applications, vol. 11, no. 3, pp. 213 – 227,
2008.

[26] J. M. Gil, J. H. Park, and Y. S. Jeong, “Data center selection based on neuro-fuzzy inference systems in cloud
computing environments,”The Journal of Supercomputing, 2011.

[27] The OpenFlow Switch Consortium, http://www.openflowswitch.org/.
[28] B. Braden, D. Clark, and S. Shenker,Integrated Service in the Internet Architecture: An Overview. Technical

Report, IETF, Networking Group, June, 1994.
[29] sFlow, http://www.sflow.org/.
[30] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta,

“Vl2: A scalable and flexible data center network,” inProceedings of the ACM SIGCOMM 2009 conference
on Data communication, Barcelona, Spain, August 2009, pp. 51–62.

[31] J. Moy,OSPF Version 2. RFC 2328, Internet Engineering Task Force.
[32] J. R. Correa and M. X. Goemans, “Improved bounds on nonblocking 3-stage clos networks,”SIAM Journal

on Computing, vol. 37, no. 3, pp. 870–894, 2007.
[33] S. Kirkpatrick, C. D. G. Jr, and M. P. Vecchi, “Optimization by simulated annealing,”Science, vol. 220, no.

4598, pp. 671–680, 1983.
[34] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data center traffic characteristics,”ACM

SIGCOMM Computer Communication Review, vol. 40, no. 1, pp. 92–99, 2010.
[35] J. Alcala-Fdez, R. Alcala, and F. Herrera, “A fuzzy association rule-based classification model for high-

dimensional problems with genetic rule selection and lateral tuning,” IEEE Transactions on Fuzzy Systems,
vol. 19, no. 5, pp. 857 – 872, 2011.

[36] F. Diaz-Hermida, D. E. Losada, A. Bugarin, and S. Barro,“A probabilistic quantifier fuzzification mechanism:
The model and its evaluation for information retrieval,”IEEE Transactions on Fuzzy Systems, vol. 13, no. 5,
pp. 688–700, 2005.

[37] A. B. Cara, H. Pomares, and I. Rojas, “A new methodology for the online adaptation of fuzzy self-structuring
controllers,”IEEE Transactions on Fuzzy Systems, vol. 19, no. 3, pp. 449 – 464, 2011.


