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ABSTRACT. Effective traffic management has always been one of the &esiderations in dat-
acenter design. It plays an even more important role todtheifece of increasingly widespread
deployment of communication intensive applications amidibased services, as well as the
adoption of multipath datacenter topologies to cope withgéhormous bandwidth requirements
arising from those applications and services. Of centrglartance in traffic management for
multipath datacenters is the problem of timely detectioaelephant flows - flows that carry huge
amount of data - so that the best paths can be selected fer floes, which otherwise might
cause serious network congestion.

In this paper, we propose FuzzyDetec, a novel control achite for the adaptive detection
of elephant flows in multipath datacenters based on fuzzig.lo@/e develop, perhaps for the
first time, a close loop elephant flow detection frameworkveih automated fuzzy inference
module that can continually compute an appropriate thiddbo elephant flow detection based
on current information feedback from the network. The ntyvahd practical significance of
the idea lie in allowing multiple imprecise and possibly flimting criteria to be incorporated
into the elephant flow detection process, through simpleyfuales emulating human expertise
in elephant flow threshold classification. The proposed @ggr is simple, intuitive and easily
extensible, providing a promising direction towards ilgeint datacenter traffic management for
autonomous high performance datacenter networks. Siionlasults show that, in comparison
with an existing state-of-the-art elephant flow detecti@mfework, our proposed approach can
provide considerable throughput improvements in dataeergtwork routing.

Keywords: Datacenters, Traffic Management, Fuzzy Logic

1. INTRODUCTION. Endowed with a precise mathematical formalism to accomiteoata
certainty or resolve conflict arising from impreciseness ambiguity, fuzzy logic enables ap-
proximate reasoning [1-3] that entails drawing infererfcesy fuzzy rules emulating human
judgments based on domain expert knowledge. This humarriisoning capability makes
it particularly attractive for addressing engineering laggtion problems, where it is impracti-
cal or impossible to precisely assess a situation in whiehrtformation accessible for quality
decision making is inherently ambiguous or conflicting. Agations of fuzzy logic include
medical decision supports [4—6], bioinformatics [7], finar{8, 9] and planning and manage-
ment [10, 11]. In this paper, we present a novel applicaticiuzrzy logic to intelligent traffic
management of datacenter networks - a problem of centrabritaupce in today’s ubiquitous
cloud computing environments.
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In coping with the increasingly enormous bandwidth demaargsng from scientific com-
puting [12], communication intensive cloud-based sewif&3] and web search engine ap-
plications [14], new datacenter network designs with rplétpaths between pairs of sources
and destinations have been proposed to replace conveltienarchical tree topologies [15].
The basic premise is that if flows can be distributed propodily among available paths then
hosts can communicate with other hosts at the maximum sgebdionetwork interface cards
(NICs), maximizing the aggregate bisection bandwidth [18ewly proposed architectures,
such as Fat-tree [16], HyperX [17] and Flattened Butterf§][have been shown to provide
much higher aggregate bisection bandwidth than conveaitioge architectures, provided fine-
grained routing techniques are employed for load balarambdistributing flows among avail-
able paths [19].

Until recently, static routing techniques, of which the mpepular one is ECMP (Equal
Cost Multipath) [20], are employed in multipath datacestier load balancing. ECMP is an
oblivious routing technique, which distributes flows usardy flow hashing. It is simple to im-
plement, requires low computational effort, and can delingh aggregate bisection bandwidth
when flows are uniform in size [21]. However, using ECMP, eats arise when flow sizes
vary, which is often the case in datacenter traffics [22]hla tase, a relatively small number of
elephant flows - flows that carry huge amount of data - oftery@large fraction of datacenter
traffics [22]. Without considering flow size and the currestwork utilization, ECMP may
inadvertently place two elephant flows onto the same coadqgsith in the network, creating
unnecessary long-lived collision.

To remedy ECMP but still retain its useful features, an imnaiapproach is to only use EMCP
to route non-elephant flows. Elephant flows would then nedx tdetected as soon as possible
upon entering the network, and routed dynamically baseti@wcurrent network utilization. In
implementing this approach, however, a challenging prabtehow to detect elephant flows in
a timely manner. Detecting elephant flows too late may createcessary network congestion
since ECMP might have already been inadvertently used te tbem. This problem is further
exacerbated by the lack of preciseness in the definitionepient flows, namely, how big and
when is a flow size considered “elephant™? As a simple ilatgin, if a network has a current
bandwidth capacity of 100 Gbps, a 1 GB flow might be safelysifeesl as “non-elephant”, but
if the same network has a bandwidth capacity of only 1 Gbpsaneimg, possibly due to high
network utilization, a 1 GB flow should be better treated dspkant”.

Against this background, this paper develops a simple, ffetteve fuzzy inference archi-
tecture called FuzzyDetec to tackle the challenging prabdé timely detection of elephant
flows. Through an innovative application of fuzzy logic, wentbnstrate the role of incorpo-
rating human expertise and judgments as fuzzy rules to bahdlimpreciseness of flow size
classification for elephant flow detection, and propose aecloop control framework for the
adaptive detection of elephant flows. The proposed apprigaimple, intuitive and easily ex-
tensible, providing a promising direction towards inggint datacenter traffic management for
autonomous high performance datacenter networks. Impubrtaver Mahout [23], an existing
state-of-the-art elephant flow detection framework, weeexpentally show that FuzzyDetec
can provide considerable throughput improvements in éatac network routing.

To the best of our knowledge, this paper presents perhagsshattempt that applies fuzzy
logic reasoning to intelligent traffic management of datdeenetworks. Apart from our work,
to date, fuzzy logic has surprisingly found little applicatin the field of datacenter networks,
other than managing virtual computing resources in datacei4, 25] and selecting one from
multiple datacenters to service applications [26].

The rest of the paper is organized as follows. Section 2 pteshe motivation and main
contributions of our work. In Section 3, we review relevaatkground and related work in
datacenter network topologies, routing and traffic managgmWe then present the design
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of FuzzyDetec in Section 4. In laying a clear and unclutteesgarch foundation for Fuzzy-
Detec, only the most basic and fundamental concepts anaiteeds in fuzzification, fuzzy
inference and defuzzification are presented in this papemadke this paper self-contained,
these concepts and techniques are briefly reviewed in ®ett&s necessary. In Section 5, we
experimentally evaluate FuzzyDetec. Finally, Section didudes the paper.

2. Motivation and Contributions. Our research is performed within the increasingly popular
model of simple-switch/smart-controller datacenter, @ppsed in the OpenFlow framework
[27]. Within this model, non-elephant flows are handled by state-of-the-art routing mech-
anism using ECMP modules implemented at every switch in #teark, while notifications
of elephant flow detections are directed to a center coetrallhich dynamically computes the
best paths for these flows based on the current networkattdiz. In order to do so, the center
controller is connected to all switches in the network anad all statistics to estimate buffer
and link utilizations as well as receive elephant flow ndaditiion.

Existing approaches in detecting elephant flows can be yotaksified as using one of the
following strategies:

1. Modify and enable applications to identify whether thkaws are elephants [28].

2. Use switches to maintain per-flow statistics, and thearazuntroller to periodically poll
these statistics and identify a flow as elephant when sontistgtal conditions are met
[21].

3. Use the center controller to sample packets from indalidwitches and identify a flow
as elephant after it has seen a sufficient number of packedlearinom the flow [29].

4. Use every end-host to monitor the number of bytes in itkebfibr every flow and identify
a flow as elephant as soon as the number of bytes in its buffgeater than a threshold
that is set [23].

Modifying existing applications and forcing new applicats to incorporate features to detect
elephant flows, as proposed in the first strategy, are oftgmaiatical [23]. Polling per-flow
statistics and sampling packets from switches, as propws#te second and third strategy,
respectively, incur high monitoring cost for the centertcolter, consume significant network
communication bandwidth and switch resources, and migiuire long detection time. An
elephant flow detection architecture called Mahout [23] be@sn developed to implement the
fourth strategy. Compared with the rest, the work is prongdor its demonstrated merits of
shorter detection time, low monitoring cost and low constiompof switch resources, laying
a good foundation for datacenter traffic management. Howvl@hout is essentially an open
loop architecture, without an automated decision-makiogute that can continually compute
an appropriate threshold for elephant flow detection baseithformation feedback from the
network. This is a key limitation of Mahout for continuoustaieenter operation. Besides,
threshold setting faces a dilemma: On the one hand, settthgeahold that is too low will
cause too many flows to be recognized as elephants, overtp#luie center controller with
tasks of computing paths for these flows. On the other hatiihgea threshold that is too high
will cause too many flows to be recognized as non-elephaassilply creating long-lived but
actually avoidable collisions in the network when only ECMeployed to distribute them.

We assert that a threshold for use in elephant flow detectgorithms should be dynami-
cally set, based on important criteria such as current n&twilization and center controller
load. If network utilization is already high, for exampleetcost incurred for dynamically rout-
ing elephant flows might exceed the benefits gained since tingght be no path that could
accommodate the flows. In this case, a large threshold valmaéld be set, so that less flows
are identified as elephant flows. Similarly, if the centertoalfer is lightly loaded, it should
consider more flows for routing instructions, and a smatshold value should be set.
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Without a suitable formalism, incorporating the abovenerdd criteria in threshold setting
for elephant flow detection is difficult. This is becausenigdbased mostly on human expertise
and judgments, firstly, describing the problem in terms efc¢hteria and threshold decisions to
take are imprecise or vague. Such vagueness of descripts&s &n general due to fuzziness [1]
in the semantic meanings of events and phenomena. For exastgiements such as “current
network utilization is high”, “current controller load isw”, “set a large elephant flow detection
threshold” and “this flow is elephant” are vague because teammgs of high, low, large and
elephant (or non-elephant) are not precise and depend daxtorin datacenter operations,
this context is characterized by the bisection bandwidffabdity of the datacenter network,
the computational capability of the center controller amel tharacteristics of the datacenter
traffic patterns. Secondly, the criteria could be conflgtwmth each other. For example, when
network utilization is high and controller load is low, ithard to decide whether a low or a high
threshold value should be set, since the former conditigilién a high threshold setting while
the latter implies a low threshold setting.

In an application context where criteria cannot be sharglynéd, fuzzy logic provides a
powerful conceptual formalism for reasoning, learning dedision making. The theory has
been demonstrated to be effective in handling multiple axiinfy criteria as well as their vague-
ness in a natural way [1]. In this paper, we propose a fuzziclbgsed architecture called
FuzzyDetec. The architecture closes the elephant flow ti@teloop in Mahout with a fuzzy
logic inference module resident in the center controlldre Thodule reasons based on simple
fuzzy rules incorporating datacenter network criteria imanner emulating human expertise,
and computes appropriate elephant flow threshold decigicscordance to information feed-
back on current network conditions. This threshold, whglcommunicated by the center
controller to every end-host for elephant flow detectioransaggregation of various criteria
related to the current network environment. As an illugtrgtwe present and justify several
rules for setting a threshold value based on current netwblikation and current controller
load, and evaluate our approach with extensive simulations

In equipping the center controller with a fuzzy logic infiece module for automatically com-
puting appropriate thresholds for elephant flow detectiia@pvercome Mahout's key limitation
of an open loop architecture that only allows some pre-detexd, static value for the elephant
flow threshold. Closing the elephant flow detection loopalsuzzyDetec, is an essential step
towards fully automating datacenter network operationad,Ao the best of our knowledge,
this work is the first attempt on classifying flows based orrenir datacenter network condi-
tions. Since different treatments of elephant flows areagdyt needed for different network
conditions, we believe this is a promising direction for noyang the performance of datacen-
ters. Importantly, the proposed approach of using fuzziclbgsed elephant flow detection is
simple and intuitive, allows multiple criteria to be flexthcorporated in the detection process,
and is easily extensible.

3. Background and Related Work.

3.1. Multipath Topologies. Traditionally, datacenter topologies are hierarchicaésrwith a
layer of racks of hosts at the bottom, with all hosts in a rasknecting directly to a Top of
Rack (ToR) switch, and a layer of core switches at the top. IafRches are connected to
aggregation switches, and these switches are aggregatkdrficonnecting to core switches
[15]. Moving up the hierarchy, ToR switches are the smaléest cheapest with the lowest
speed, while core switches are the densest in port numbdrsast expensive, and have the
highest speed (see Fig. 1).
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FIGURE 1. A conventional network topology for datacenters

Due to the high costs of port-dense and high speed switchespuer-subscription ratio
increases rapidly as we go up the hierarchy. At the bottoralldvwsts typically have 1:1
over-subscription to other hosts in the same rack, allowhegn to communicate intra-rack at
the maximum speed of their NICs. However, up-links from TaRer-subscription ratios are
typically 1:5 to 1:20, and paths through the core switcheshza1:240 over-subscribed [30].
These large over-subscription ratios severely limit th@cwnication bandwidth between hosts
in different racks [30].

With the increasing deployment of communication intensipplications and cloud-based
services in datacenters, new topologies, such as Fatié¢eHyperX [17] and Flattened But-
terfly [18], are proposed to cope with the enormous bandvadthands. Fat-tree topology [16],
for example, enables commodity switches to be connectednaraner that maintains 1:1 over-
subscription across the whole network, allowing hosts temially communicate with other
arbitrary hosts at the maximum speed of their NICs (see Big. 2

One common feature of the newly proposed datacenter tojgslag that they are all de-
signed with multiple data paths with equal length betweanepair of source and destination
switches, providing the possibility for managing netwookigestion and maximizing aggregate
bisection bandwidth. To extract the best aggregate barbvinoim these multipath topologies,
fine-grained routing techniques must be designed for lo&thbang, namely, distributing flows
among available paths so that none of these paths are aded®@ile others are underloaded.
Traditional shortest path routing protocols, such as OSREF, fre not suitable for this purpose
since they might concentrate traffics going to a given dasbn in a single port of an aggrega-
tion switch and a single port of a core switch, even thougkrthoices exist, causing avoidable
network congestion [21].

3.2. Static vs. Dynamic Routing. In one extreme, load balancing can be done with minimal
computational efforts using ECMP [20], a static, obliviaositing technique. In essence, an
ECMP-enabled switch is configured with multiple paths foneeg destination. When a packet
with multiple candidate paths arrives, it is forwarded toathpthat corresponds to a hash of
selected fields in the packet header, modulo the number b$ pht this way, flows between a
pair of source and destination switches are split acrossptaipaths. ECMP works well when
flows are small and uniform in size [21]. When elephant flones @nesent, however, its key

LOver-subscription ratio is the ratio of the worst-case eible aggregate bandwidth among end-hosts to the total
bisection bandwidth of a particular network topology.
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FIGURE 2. A 4-array Fat-tree topology for datacenters. Ik-array fat-tree
network there arék?/4 identical k-port switches, withk? /4 core switches and
the remainingk? switches are organized into pods, each of which contains
one layer ofk/2 aggregation switches and one layerkgP edge switches. In
each pod, each-port edge switch is connectedi@2 hosts and: /2 aggregation
switches in the same pod. The remaini)@ ports of each aggregation switch
is connected td:/2 core switches in an order similar to the one shown in the
figure. By scarifying compact wiring, a fat-tree network @res that the number
of input links to any switch is equal to the number of linksmggpout of it, thereby
maintaining 1:1 over-subscription ratio across the whaework and allowing
hosts to potentially communicate with arbitrary other bastthe full speed of
their NICs. See [16] for a detailed discussion of fat-trgeotogy.

limitation is that two elephant flows might collide in them$h and route through the same path
in the network, resulting in long-lived congestion.

In the other extreme, load balancing can be done in a contypbteamic fashion, with every
new flow placed in the best path selected online by a routiggrahm, taking into account
the current utilization of every link and buffer in the netko Such a routing algorithm is
often run by a center controller, which is connected to altdves and can poll statistics from
them to estimate the utilization of every link and bufferisrapproach, however, requires high
computational efforts and introduces unacceptable satlgysifor latency-sensitive flows, such
as those generated from interactive applications [21, 23].

Modern datacenter routing mechanisms for multipath togiel® often combine both static
and dynamic routings: Paths for elephant flows are compundidey while paths for non-
elephant flows are selected using ECMP. It has been showrnHatlby detecting and dynam-
ically placing elephant flows in carefully selected pathsdshon current network utilization,
as much as 113 % higher aggregate throughput can be achiewesigared to using ECMP
alone.

3.3. Elephant Flow Detection. Of central importance to effectively selecting and depigyi
routing algorithms for multipath topologies is the probleftimely detection of elephant flows.
Curtis et al. [23] propose Mahout, an architecture for enstlibased elephant flow detection
which has proven to be superior to previous approaches fIn2erms of early detection
and low computational overload. The Mahout architectureictv subscribes to the popular
simple switch/smart controller model as proposed in Opanf27], is shown in Fig 3. In this
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FIGURE 3. Mahout - An end-host based elephant flow detection system

architecture, end-hosts are responsible for the timelgdiien of elephant flows and a center
controller connecting to every switch in the network is i@sgible for computing the best paths
for newly detected elephant flows. An end-host detects alefffows through what is called a
shim layer implemented in its network stack, enabling thst bh@ monitor the socket buffer of
every flow originating from it. An end-host will identify a floas an elephant as soon as the
number of bytes in its buffer is greater than a threshold. gCarcend-host detects an elephant
flow, it sets the Differentiated Services (DS) Field bits wéiy packet in this flow to 00001100,
to inform the edge switch that is directly connected to ie(gdégorithm 1). The edge switch
notifies the center controller of the arrival of a new eleghbow, which in turn computes the
best path for this elephant flow, and installs flow-specifigirgg entry to every necessary switch
in the network.

Algorithm 1: Pseudo-code for end-host shim layer

begin
L When sending a packet, the number of bytes in buffer Threshold then

| Mark the packet as belonging to an elephant flow by setting&®it to 00001100;

However, a key limitation of Mahout for continuous dataegrperation is that it is es-
sentially an open loop architecture, without an automatetsibn-making module that can
continually compute an appropriate threshold for eleplilamt detection based on informa-
tion feedback from the network. Besides, threshold seftngs a dilemma: On the one hand,
setting a threshold that is too low will cause too many flomsdaecognized as elephants, over-
loading the center controller. On the other hand, settingesthold that is too high will cause
too many flows to be recognized as non-elephants, resulassgilply in long-lived but actually
avoidable collisions in the network.

4. Fuzzy Logic Based Elephant Flow Detection.The proposed FuzzyDetec architecture is
shown in Fig. 4. In FuzzyDetec, the center controller is ppad with a fuzzy logic infer-
ence module that computes appropriate values for the el¢fibev threshold based on current
network conditions. It then communicates the computedevéduevery end-host in the data-
center which in turn inputs the new threshold value to Altjon 1 for elephant flow detection.
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FIGURE 4. FuzzyDetec - A fuzzy logic based elephant flow detectiatesy

In equipping the center controller with a fuzzy logic infece module for automatic elephant
flow threshold computation based on information feedbackwmnent network conditions, we
close the control loop in Mahout, an essential step towantisdutomating datacenter network
operations.

In the following, we describe the design of the fuzzy logitenence module. We present
how T'hreshold can be determined based on the current network utilizatietV etUtil, and
the current controller loadurCtrioad. The approach can easily be extended to incorporate
new criteria other than network utilization and controlkmad.

4.1. Linguistic Variables and Membership Functions. Ordinary Boolean logic deals with
exact reasoning where a variable can only take a value ddretithe or false. Fuzzy logic is an
extension of Boolean logic to deal with approximate reasgnt his is achieved by introducing
linguistic variables that can take numerical values, asg@@ating each of these variables with
a collection of linguistic values. A linguistic value repemnts what is called a linguistic set
containing a subrange of the numerical values defined forgaistic variable. Every linguistic
value of a linguistic variable is associated with a memhgr&inction that takes values between
0 and 1, denoting the degree that the linguistic value reptssvery specific numerical value
in the linguistic set (that it represents) for the variable.

In FuzzyDetec, there are two input linguistic variabtes NetUtil andcurCtrload, and one
output linguistic variablél'hreshold. The objective of FuzzyDetec is to deduce a numerical
value forT' hreshold from the numerical values etir NetUtil andcurCtrioad. The numerical
values ofcur NetUtil andcurCtrload are provided by the center controller and the numerical
value of T'hreshold is deduced by fuzzy inferencing (see Fig. 4).

The linguistic variablesur NetUtil and curC'trload can take linguistic values of either
LOW, MEDIUM or HIGH, andT hreshold can take linguistic values of either SMALL, MEDIUM
or LARGE. We define the network utilizatiamr NetUtil as the average of all link utilizations
in the datacenter. The current controller laadCtrioad is estimated by the current number
of elephant flows that the center controller has to computéing paths for. An example of
membership functions for the linguistic valuesaf- NetUtil, curCtrload andT hreshold is
shown in Fig 5.

The shape of a membership function emulates human expeértesearticular application
context. Membership functions can often be constructedldyessing questions such as the fol-
lowing: To what degree is a 20% network utilization consatklow and medium? To what de-
gree is a 60% network utilization considered medium andhigh answering these questions,
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FIGURE 5. lllustration of membership functions for fuzzy valuedtuzzyDetec

pairs of numerical values and the degrees that these valaeg@esented by each linguistic
value (low, medium or high) are defined, forming the respedinguistic sets and correspond-
ing membership functions. The membership functions candnstoucted using curve-fitting

methods such as trapezoidal approximation. In fuzzy logmieations, it is common practice

to use trapezoidal and triangular shapes for membershigifuns due to their computational
efficiency, such as those presented in Fig. 5; but other shegealso be used [1].

4.2. Fuzzification and Fuzzy Rule Base.The center controller in FuzzyDetec collects sta-
tistics from switches in the datacenter and estimates nuoaleralues ofcur NetUtil and
curCtrload. These values are then converted to linguistic sets in aepsocalled fuzzifica-
tion. This is done by a procedure called fuzzifier (see Figthd) takes the numerical value
of a linguistic variable and converts it to a collection afduistic sets using the membership
functions associated with the linguistic variable. Theesinold setting strategy is expressed in
terms of a set of if-then rules that maps linguistic varighitelinguistic variables. These rules
are normally constructed by datacenter experts, incotipgrtheir experiences on classification
of elephant flow threshold as small, medium or large. As astithtion, we present in Table 1
concise threshold classification rules that essentiallg tha linguistic values ofur NetUtil
andcurCtrload to those ofl'hreshold.

Intuitively, when the network utilization is already higi,s often hard to find a path that
could accommodate elephant flows. Therefore, we would veaset a large threshold, so that
less flows are identified as elephant. Similarly, if the centatroller load is high, less flows
should be directed to it for routing instructions, hencergdalephant flow threshold should be
set. This intuition is expressed by the rule in the last rowadfle 1, namely, itur NetUtil is
HIGH andcurCtrioad is HIGH, T hreshold is LARGE. In the other extreme and by the same
intuition, if the network utilization is low and the centesrgroller load is low, a small threshold
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TABLE 1. The Rule Base for Threshold Classification

curNetUtil curCtrload Threshold
Low Small

Low Medium Small
High Medium
Low Medium

Medium Medium Medium
High Large
Low Medium

High Medium Large
High Large

should be set, namely, duir NetUtil is LOW andcurCtrioad is LOW, T hreshold is SMALL,
as expressed by the rule in the first row of Table 1.

Other rules in Table 1 can be interpreted similarly. For epigthe rule in the third row of
Table 1 states that ffur NetUtil is LOW andcurCtrioad is HIGH, T hreshold is MEDIUM.
This rule attempts to balance the two conflicting conditioin@quiring a small threshold setting
on the one hand, as prescribed by a low network utilizatiod,& requiring a large threshold
setting on the other, as prescribed by a high controller.load

4.3. Fuzzy Inference. The membership functions associated with linguistic valnea fuzzy
inference system normally overlap. Therefore, severabrtypically contribute to determining
the linguistic value of an output linguistic variable. Thesult of executing each if-then rule is a
fuzzy linguistic set, which is represented by a membersimgtion derived from membership
functions (for the linguistic values) of the linguistic vatnles specified in the if-then rule. Fuzzy
linguistic sets need to be aggregated into a final lingusticthrough a process called fuzzy
inference. This is done by aggregating membership funstafnindividual linguistic sets to
arrive at a final membership function representing the fimgiuistic set. This final linguistic
set is then mapped into a specific numerical value of the outgoiable by applying an operator
called “defuzzification” on its membership function (seg.H).

Key to the fuzzy inference process is how linguistic setaiaty if-then rules are determined
and aggregated. In fuzzy set theory [1], there are altogetiglt important considerations for
designing the output linguistic sets of fuzzy if-then rutesl the aggregation operators. These
considerations have led to the development of standard teaysplement the fuzzy inference
process. A detailed discussion of this development is, kieweutside the scope of this paper.

Let X, y, z be three linguistic variables and A, B, C be thregliistic values associated with
them in order. In the following, we briefly describe how theAu rule “if x is Aand y is B then
z is C” is normally realized in fuzzy logic applications.

Let a4, 1g, o be membership functions associated with the linguistioeslA, B and C,
andz, andy, be numerical values af andy, respectively. The fuzzy statement “if x is A and
y is B” is often realized by a minimum operator on the membigrébnctions, namely, it is
interpreted as the crisp valu® = min(ua(xo), 15(yo)). The linguistic set of the rule “if x is
AandyisBthen zis C”is then defined by the membership fumgtio (z) = min(Z°, uc(z)).

If there are several rules, each rule is evaluated indiVigluging the minimum operator as
described above, and their results are aggregated usingianara operator on the member-
ship functions obtained for the individual rules. The olemresult is a membership function
representing the final linguistic set, aggregating indraildinguistic sets.



AUTOMATED FUZZY INFERENCING FOR ELEPHANT FLOW DETECTION 11

The inference procedure described is called “min-max’enrgig to operators applied on
membership functions. Other inference procedures canbaassed. For example, the alge-
braic product operator can be used in place of the min opeaatbthe algebraic sum operator
can be used in place of the max operator, resulting in a “@bBsum” inference procedure.
Combinations of these operations, such as “min-sum” anaddipct-max”, are also possible. In
FuzzyDetec, we implement the fuzzy inference process ubmfmin-max” procedure.

4.4. Defuzzification. Fuzzy inference in FuzzyDetec results in a linguistic seheflinguistic
variableT hreshold. This linguistic set is represented by a membership funcflo compute a
numerical value of the elephant flow threshold for the enstsdhe linguistic set obtained must
be converted to a numerical value. This is done by applyindeduzzification” operator on a
linguistic set ofT'hreshold. Defuzzification methods are often developed based on steuri
ideas, such as “taking the value that corresponds to thermamimembership” or “taking the
value that is at the center of two peaks”. They can also beelkthrough rigorous analysis
processes, such as fuzzy linear programming or multi citaralysis [1].

In the literature, the most common method used in defuzaidicas the Center of Gravity
method. This method computes a numerical value for the tbtdsrom a linguistic sef” as
follows.

[ Tug(T)dr
J ()T

wherey; is the membership function representing the linguisticset

Other methods for defuzzification include the “Max Criterionethod, the “Mean of Max-
ima” method and the “Bisector of Area” method [1]. In compan with other methods, the
Center of Gravity method has one important advantage ofagtiaeing that every if-then rule
contributes to determining the final output. In this pape,use the Center of Gravity method
for defuzzification in FuzzyDetec.

threshold =

4.5. Discussion.

4.5.1. Dynamic Routing AlgorithmsOnce presented with a set of elephant flows, there are
several ways for the center controller to compute and akopaths to these flows. Correa and
Goemans [32] propose an increasing first fit algorithm, whitdcates the least congested path
among possible paths to elephant flows, one at a time in aa@ogeorder of flow rates. Al-
Fares et al. [21] propose two algorithms for computing p&thelephant flows: one greedily
assigns a flow to the first path that can accommodate it andthez © based on Simulated
Annealing [33], a population-based, probabilistic seaatgorithm. Either of the algorithms
can be incorporated into FuzzyDetec for dynamically conmgupaths for detected elephant
flows. In a concrete implementation of FuzzyDetec, for theppse of comparison with Ma-
hout, we chose to implement the same algorithm as used in Mam@amely, the increasing first
fit algorithm proposed in [32].

4.5.2. Threshold CommunicationThe elephant flow detection threshold is updated contipuall
in response to changes in the values of the network utitimadind center controller load. If
every updated value is immediately communicated to theherstis, bandwidth resources might
be consumed unnecessarily. To mitigate this problem, theeceontroller in FuzzyDetec only
informs the end-hosts whenever there is a significant chantgee threshold value, such as a
change oftl0% or more. An alternative is to use in-band signaling by pigmpking updated
threshold values in OpenFlow protocol messages that thterceontroller frequently sends to
individual switches. Further study is needed to investighis alternative.
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5. Performance Study. We now experimentally compare the performance of FuzzyOsith
that of Mahout [23] to show the effectiveness of FuzzyDetethroughput improvement for
datacenter traffic routing. In the following we describe design of our simulator, the method-
ology used to generate simulated traffics and simulatiantses

5.1. Simulator. For the same time consuming reason given in [21], it is inefficto use
existing packet level simulators, such as ns-2, ns-3 or OMNi& our performance study. As
described therein, for a moderate size fat-tree networkd@aBhosts, each sending at 1Gbps, it
would take around 71 hours to simulate just one test case @fséond datacenter run.

We designed and implemented an event-based flow level gionulbn our design, a data-
center network was modeled by a directed graph, with hostsaitches represented by nodes
in the graph and links represented by capacitated edgegxpéiriments were run on directed
graphs modeling a fat-tree network of 8192 hosts, with akdihaving capacity of 1Gbps.

For simplicity and without bias effect on the network thrbpgt performance, we simulated
ECMP by configuring every switch with multiple paths for eweestination, and when a flow
with multiple candidate paths arrives at a switch, we foedathe flow to a path selected ran-
domly from the candidate paths.

Whenever a flow starts or completes, the simulator recorsghterate of each flow. Similar
to the idea described in [21], the rate is regulated by TCP.

Like [23], we model the OpenFlow protocol by only accountiiog the time delay that a
switch incurs in notifying the center controller of a newp#ant flow and receiving a routing
table entry setup from the center controller in turn. Thidasie by setting up a 10Mbps link
(a typical bandwidth of OpenFlow links) between the centartoller with every switch in the
network and assuming that a notification message of 1508 lfiyte maximum transfer unit of
Ethernet) is sent from a switch to the controller on this livikenever the switch needs to inform
the center controller of the presence of a new elephant floswufing table entry setup message
of 1500 byptes is then sent back from the center controlldréswitch on the same link. Other
times consumed in computing paths for elephant flows anthgetp routing table entries are
ignored. As a result, it is likely that an OpenFlow datacemglementing our FuzzyDetec
module will perform worse than predicted by our simulatotarms of throughput. However,
this reduction in throughput performance is mostly attidoLto the detailed implementation of
the OpenFlow protocol and dynamic routing algorithms usgthle center controller, and not
the design of our fuzzy logic inference module.

5.2. Traffic Patterns. Inthe absence of data on commercial datacenter networstréee na-
ture of datacenter traffics is not completely understooda fesult, generating simulated traffics
to evaluate the performance of datacenters has always be#larging. In the literature, traf-
fics are often generated from either synthetic communiogigtterns, or application-specific
communication patterns such as those generated by Map&edscientific computing appli-
cations. However, both synthetic and simulated applicasipecific communication patterns are
not guaranteed to be representative of datacenter trafffish are often composed of traffics
from a variety of distributed applications [34].

Recent work [22,30] has attempted to empirically captuté bwacroscopic and microscopic
measurements of datacenter traffics. The former specifieshwabsts communicate with which
other hosts and when, while the latter characterizes thelidisons of datacenter flows’ statis-
tics such as durations, sizes, and inter-arrival timesh@macroscopic level, Kanula et al. [22]
observe that within a rack, a host communicates either Wlithtlzer hosts or less thatb% of
the total number of hosts. Furthermore, a host either doesamemunicate with other hosts in
different racks, or communicate with— 10% of them. At the microscopic level, it is reported
[22,30] thato0% of flows carry less than 1MB of data and more tafi; of bytes transferred
are in flows of sizes greater than 100MB.
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To incorporate recent research results on the nature afelatier traffics into our performance
study, we generated the simulated traffics as follows. Téffids were generated as mixtures
of application-specific traffics, namely, those generatgdhe MapReduce application in its
shuffle phase, and other background traffics. To generatdRBldyce traffics, we applied the
methodology presented in [23]. Therein, each host sendsB2® every other host during
MapReduce’s shuffle phase. A host does so by simultaneowasigferring five flows, each
of size 128MB, to five other hosts; and once one of these flowsomspleted, it will start
transferring another 128MB flow to one of the remaining ho3tise order in which a host is
selected for receiving simulated MapReduce traffics isarmfy random. Other background
traffics were generated following the macroscopic and rsmopic measurements reported in
[22,30].

5.3. Simulation Methodology and Performance Metrics. For each experiment, we gener-
ated traffics as described in the previous section, and ipeei traffic routing in Mahout and
FuzzyDetec separately. In each experiment, MapRedudesrgieneration was started only
five minutes after background traffics generation, to allbes background traffics to reach a
somewhat steady state. To track the performance of MahauFeanzyDetec, we aggregated
the throughputs of all flows in each experiment, and recottiedaverage throughput of 50
experiments for each architecture.

5.4. Membership Functions. We used standard trapezoidal and triangular shapes forghe m
bership functions ofurUtil, curCtrload andT hreshold in FuzzyDetec and put them in differ-
ent configurations, as presented in Fig. 6. The membershiiitins associated witturUtil
are characterized by four parametegs =1, zo, andxzs. Similarly, those ofcurCtrioad and
Threshold were characterized by, y1, y2, y3 andz, z1, 22, 23, respectively. For each set of
specific values of;, y; andz; (0 < i < 3), we have a specific configuration of membership
functions forcurUtil, curCtrload andT hreshold.

LOW MEDIUM HIGH

0
0% Xo % 50% X, X3 100%
(a) Membership functions for linguistic values@fr N etUtil

LOW MEDIUM HIGH

0 Yo Y1 Y2 Y3
Number of elephant flows being processed (in thousand

(b) Membership functions for linguistic values @frCtrioad

SMALL MEDIUM LARGE

Zy Z Z Z3

(c) Membership functions for linguistic values Bhreshold

FIGURE 6. Membership functions used for performance study
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TABLE 2. Parameter configurations for membership functionscwfUtil,
curCtrload andT hreshold

Utilization in % | No. of flows in thousands Threshold in MB

Configuration To |T1 | T2 | X3 [ Yo |Y1 | Y2 | Y3 20 | 21 | 22 | %3

1 20 (40 |60 | 80 | 100 200 70Q 800 0.5]1 |20 |50

2 30 [45 |75 {90 | 200[ 400/ 800| 900 1 120 |50 |80

3 40 149 190 |99 | 200| 600] 600| 900 20 |50 | 80 |99
5.5. Results.

5.5.1. Throughput performanceéNe compared the throughput performances of using ECMP
alone, using Mahout and using FuzzyDetec. We used five diftethresholds for Mahout,
namely, 128KB, 1MB, 20MB, 50MB and 100MB, and different cguifiations of membership
functions for FuzzyDetec as described in the previous@ecfihe center controller in Fuzzy-
Detec only informs the end-hosts whenever there is a chahg@®©or more in the threshold
value. Fig. 7 summarizes the representative results feettifferent configurations of mem-
bership functions for FuzzyDetec, as detailed in Table 2.

3500

3000

2500
2000
1500 +——
1000 +——

o
=]
]

Mean aggregated throughput (Gbps)

o ECMP 128K 1MB 20MB 50MB 100MB Configuration 1 Configurati@ Configuration 3
Sta.nd_ardZO.BGbps 27.6Gbps 40.3Gbps 35.2Gbps  45.3Gbps 70.1GbpOGHEs 10.3Gbps  50.8Gbps
Variation

Mahout (with different thresholds) FuzzyDetec (with different
membership function
configurations)

FIGURE 7. Mean and standard variation of throughput of 50 expertséar
ECMP, Mahout and FuzzyDetec

As can be seen from Fig. 7, the throughput performance of Mtaisodependent on the
chosen threshold value. Setting a threshold too low (i2Z8KB in our experiment) or too high
(i.e., 100 MB in our experiment) will reduce throughput merhance of Mahout significantly,
to almost that of using ECMP alone.

As expected, FuzzyDetect performed better than Mahout aaaés. This increase in perfor-
mance is attributed to both the intelligent fuzzy rules iempénted in FuzzyDetec (see Table )
and the shapes of the membership functions:d@ltil, curCtrioad andT hreshold. To con-
firm this, we repeated our experiments with arbitrary, ntamdard membership functions for
curUtil, curCtrload andT hreshold in FuzzyDetec, and found that in some extreme cases, the
throughput performance was reduced significantly, anddcbaleven worse than that of using
ECMP alone. Using arbitrary non-intelligent rules alsodqueced the same negative outcome.
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value is updated
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Configurations of membership functions experimemtét in
FuzzyDetec (with 1, 2 and 3 presented in Table II)

FIGURE 8. Number of times the threshold value is updated and thei¢jimout
(in Gbps) achieved (indicated on top of each bar) for eachstiuld change-
setting of at least 5%, 10% and 20%

5.5.2. Control overhead.We examined the communication overheads versus perfomteade-
offs of FuzzyDetect, by counting the number of times theshotd value changed by at least
5%, 10% and 20% for different configurations of membershipcfions, and recording the
throughput achieved for each such threshold-change gefilee number of times the threshold
value changed as set indicates how many threshold updasagessthe center controller in
FuzzyDetect needed to communicate to the end-hosts. Tuksrase presented in Fig 8. Not
unexpectedly, the higher the threshold-change settiegpthier the communication overheads.
It can also be inferred from Fig. 8 that the throughput peniance can be improved, but at the
expense of higher communication overheads. Finally, we tiatt the throughput performance
for all the configurations considered was better than thatiout depicted in Fig. 7.

6. CONCLUSION. Timely detection of elephant flows is essential for selectind deploy-
ing routing algorithms for datacenter networks with mutip topologies. In this paper, we
have proposed FuzzyDetec, a novel close loop control aaiite for the adaptive detection
of elephant flows. By using fuzzy inference rules to intahgy incorporate human expertise
and judgments in classifying elephant flow thresholds, ffDetec is practically simple but
crucial towards making feasible the autonomous operatitigh performance end-host based
elephant flow detection in datacenter networks. Our expartal results show that, over a well-
known state-of-the-art architecture called Mahout [23]zEyDetec can achieve considerable
improvement in throughput performance.

In conclusion, FuzzyDetec provides a new intelligent freumidx for datacenter network de-
signers on the one hand, and serves as an important emegptigaéion for fuzzy systems
researchers on the other. The framework development isregsic, and is currently based on
the most fundamental theory of fuzzy systems [1]. In futuoekythe framework would benefit
from more advanced treatments in fuzzy systems, such agpm@ting data mining techniques
for efficient design of fuzzy inference rule sets [35], ugimgbabilistic reasoning for automated
selection of fuzzification schemes [36], and managing mesfiye functions actively to enable
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robust on-line self-adaptation of fuzzy controllers [3We believe FuzzyDetec opens up rich
opportunities for further theoretical and practical irigetion.
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