

Automated Hadoop cluster deployment on clouds with Occopus

Enikő Nagy József Kovács <u>Róbert Lovas</u>

[robert.lovas@sztaki.mta.hu]

Óbuda University John von Neumann Faculty of Informatics

Topics

- Goals and background (projects)
- Occopus orchestration tool
- Hadoop deployment: implementation
- Performance
- Related work
- Future work

Introduction

• Motivation:

 Easy to use Hadoop cluster deployment for MTA Cloud and Agrodat.hu data scientists

Main design goals

- 1. Portable
- 2. Scalable
- 3. Does not require any prepared image
- 4. For advanced users: fine-tune the configuration of the Hadoop components
- 5. Supports short or long-term usage scenarios

Agrodat.hu project

Main objective: knowledge centre and decision support system

- based on data gathered by an innovative, *complex sensor* system and from international *open repositories*
- relying on *big data, cloud*, and *HPC* technologies
 to support precision agriculture.

Duration: 2014-2017 Budget: appr. 8 MEUR URL: www.agrodat.hu

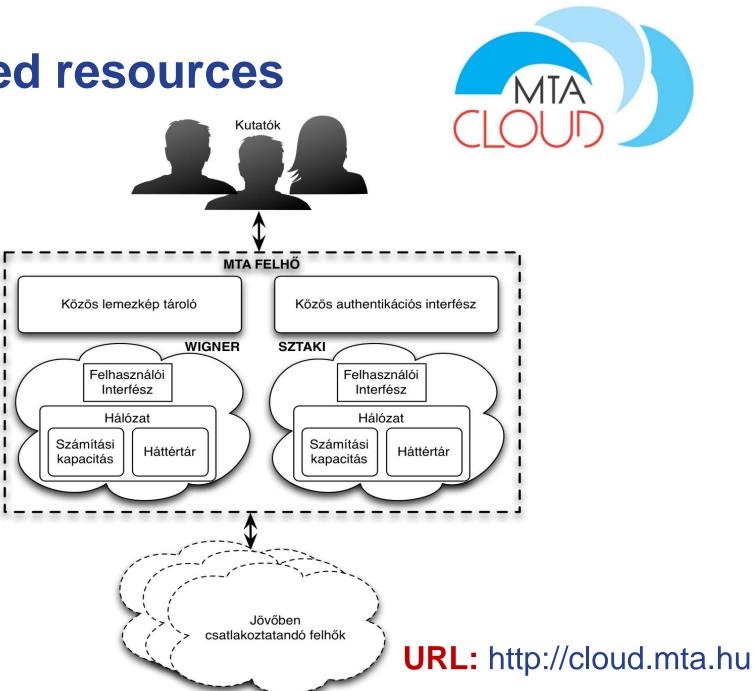
Consortium:

Big Data center:

844 CPU Core 5274 GB Memory 564 TB SSD/HD

GPGPU: 21504 CUDA Core 488 Xeon Phi Core

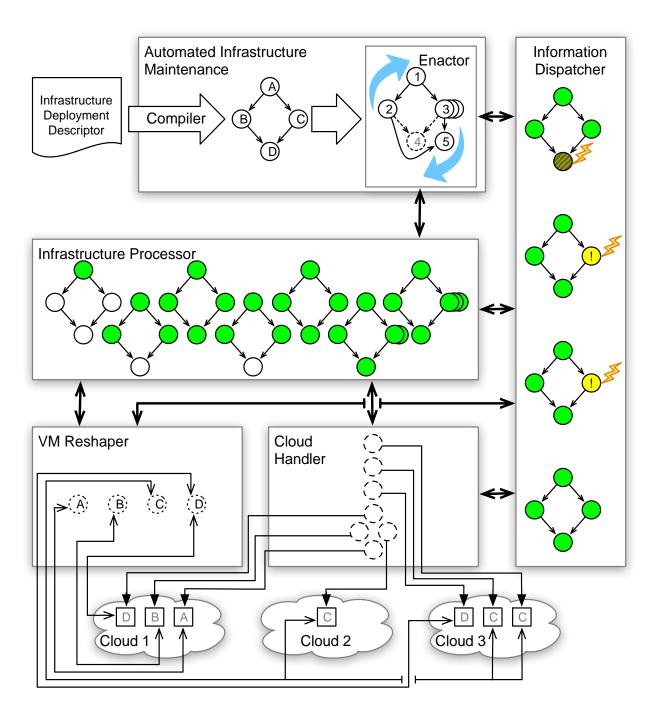
Network:

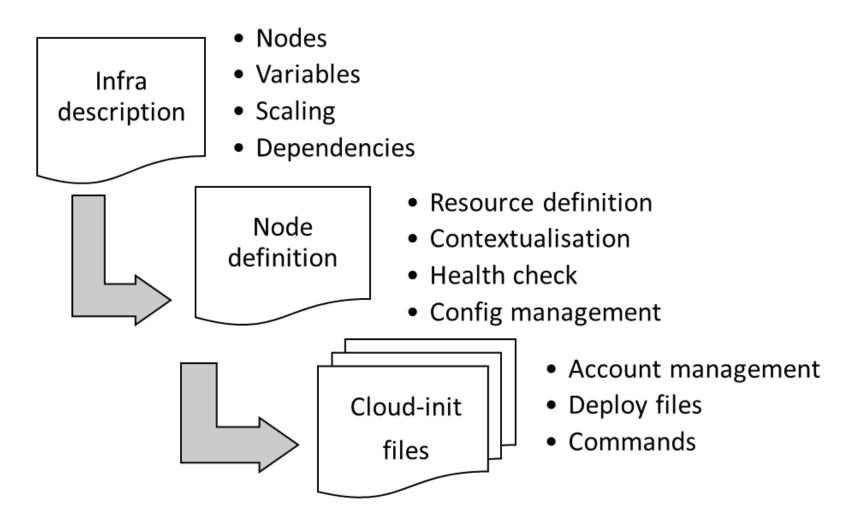

40 Gb Infiniband for HPC10 Gb copper1 Gb copper for mgm.8/16 Gb FC for SANConnected to HBONE

Cloud middleware OpenStack / HPE Helion

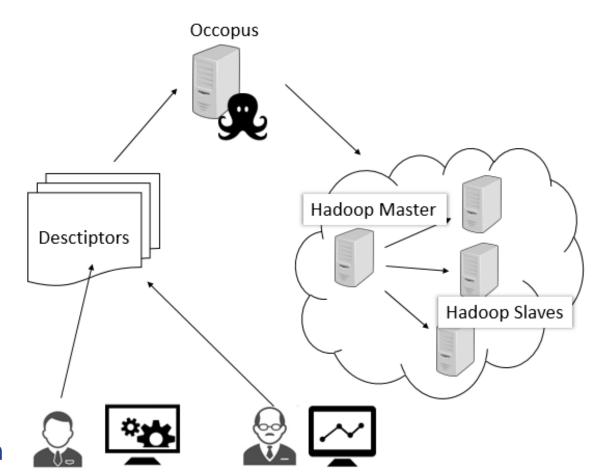
Power consumption 8-16 kW

MTA Cloud: federated resources


- Dedicated for academic research teams
- Fully operational from 1st Oct
- Wigner data center:
 - 800 vCPU
 - -2.5 TB RAM
 - -400 TB HDD
- MTA SZTAKI
 - 360 vCPU
 - 832 GB RAM
 - 164 TB HDD
- Based on OpenStack


Occopus

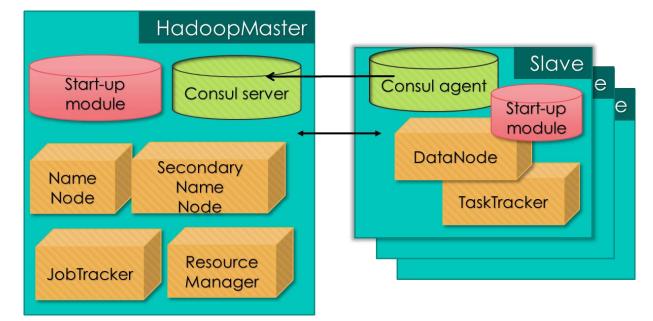
- Hybrid, cloud orchestrator tool by MTA SZTAKI
- Why Occopus?
 - -Multi-cloud solution
 - -Contextualization with cloudinit
 - -Portable descriptor file
 - -Enable scaling
 - -No vendor lock-in



Describing an infrastructure by Occopus

Implementation Architecture at large

- Advanced virtual infrastructure operators can create descriptors
- End-users apply them to create virtual infrastructures
- Occopus builds the Hadoop virtual infrastructure based on descriptors
 - 1st step: building Hadoop Master
 - 2nd step: simultaneous building of Hadoop Slaves
- Hadoop Master node
 - Supervise the mechanism of data storing in HDFS
 - Running parallel computations (MapReduce) on all that data
- Hadoop Slave nodes
 - Store data
 - Run the computations

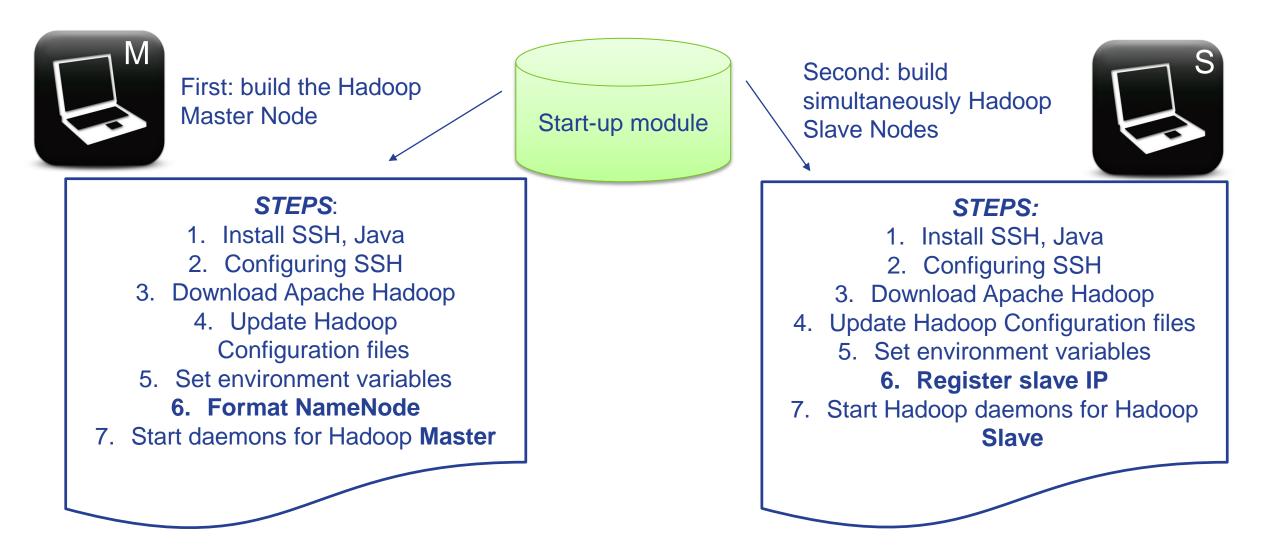

Implementation II. Overview of the Hadoop cluster architecture Running Hadoop deamons and modules

On Hadoop Master node:

- NameNode: oversees and coordinates the data storage function
- JobTracker: oversees and coordinates the parallel processing of data using MapReduce
- Secondary NameNode: checkpoint in HDFS, helper node for NameNode
- **ResourceManager:** helps manage the distributed application by arbitrating all available cluster resources in the system
- Start-up module: prepare the Hadoop Master of the Hadoop cluster

Consul server:

 For Hadoop Slave node list, works as a Name Service

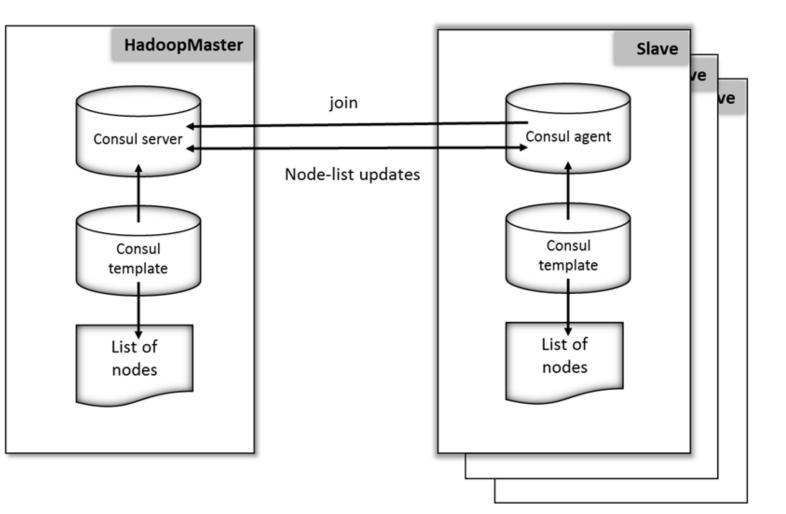


On Hadoop Slave nodes:

DataNode: serve read/write requests, perform block creation, deletion, replication
TaskTracker: accepts tasks - Map, Reduce and Shuffle operations - from a JobTracker.
Start-up module:
prepare the Hadoop Slave podes of the Hadoop cluster.

prepare the Hadoop Slave nodes of the Hadoop cluster
 Consule agent

Implementation III. Start-up module (at large)


Consul service

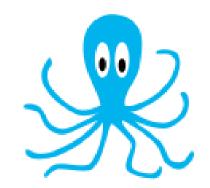
Difficulties:

- 1. Scaling down Hadoop cluster?
- 72 hours deadline → service
- 2. Deployment sequence
- Consul first?
- Hadoop first?
- Initially with code?

3. Race situation

• Public IP queury

How to build Hadoop infrastructure with Occopus?


1. Install Occopus

-Follow the steps: http://occopus.lpds.sztaki.hu/get-started

2. Obtain Hadoop infrastructure descriptors

3. Make sure Occopus is activated:

- \$ source ~/occopus/bin/activate
- 4. Import node definitions:
 - -\$ occopus-import nodes/node_definitions.yaml
- **5. Start building process:**
 - -\$ occopus-build --parallelize infra-hadoop.yaml (you will get INFRA_ID)

How to scale-up & scale-down with Occopus?

Scaling is a two-phase operation: register the scaling request + scale up/down the selected infrastructure by building new nodes /destroying old ones

1. \$ occopus-scale

- Registers scaling requests
- Usage: occopus-scale -n hadoop_slave -c COUNT -i INFRA_ID
- Count: positive/negative number expressing the direction and magnitude of scaling

2. \$ occopus-maintain

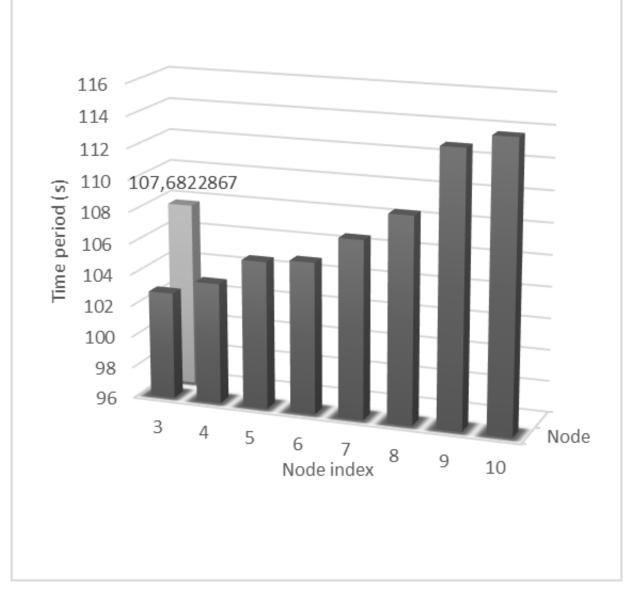
- Requests are handled and realized by this command
- Usage: occopus-maintain -i INFRA_ID

For more information visit: http://occopus.lpds.sztaki.hu/

Results tested on various platforms

- SZTAKI Cloud (https://cfe2.lpds.sztaki.hu) (Amazon – EC2)
- MTA Cloud (https://sztaki.cloud.mta.hu) (NOVA)

• In progress: Microsoft Azure



openstack

Performance

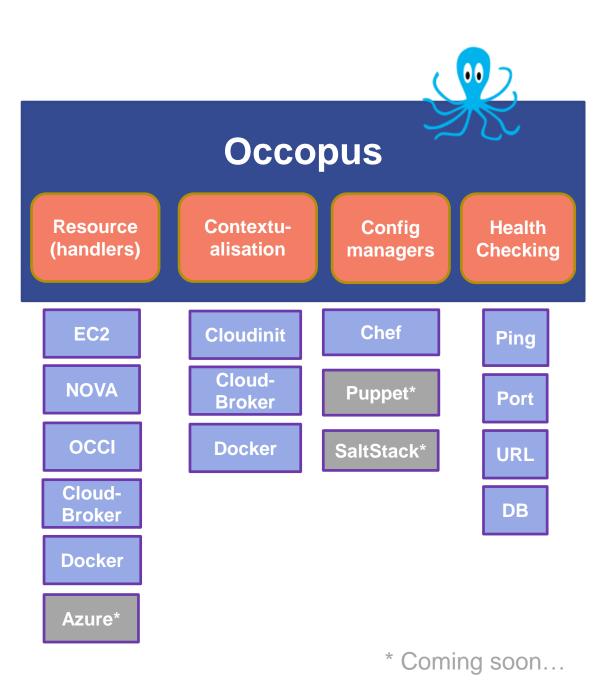
- Performance measurement:
 - Deployment implementation
- Scenario: scale up a cluster from 2 slave nodes to 10
- On MTA Cloud
- Diagram about the scaling-up performance (elasticity)
- Average mean time: 107,8 second

Related work

University of Westminster

WS-PGRADE portal – workflow based Hadoop deployment solution Works on EGI-FedCloud and with Cloudbroker Designed for short term Hadoop jobs

Amazon Web Services – Elastic MapReduce


- Vendor lock-in
- **Commercial cloud**
- **Black-box services**

Current state of Occopus

- Open-source (License: Apache v2)
- 6 releases so far (latest in August 2016)
- Now: Release v1.2 (3rd production release)
- Based on Python 2.7
- Webpage: http://occopus.lpds.sztaki.hu
- Git: https://github.com/occopus
- Documentation:
 - Users' Guide
 - Developers' Guide
 - Tutorials (e.g. building docker/swarm cluster)
- Package repository: <u>http://pip.lpds.sztaki.hu/packages</u>

Conclusion and future work

Conclusion:

- Portable
- Scalable
- Not depends on precompiled images
- Fully automatized infrastructure deployment by Occopus (one command)
- For data scientists

Future work:

- Automatic protection for scaling down too fast (data loss)
- Automatic scaling of overloaded Hadoop cluster
- Web UI to help users

THANK YOU!

http://occopus.lpds.sztaki.hu

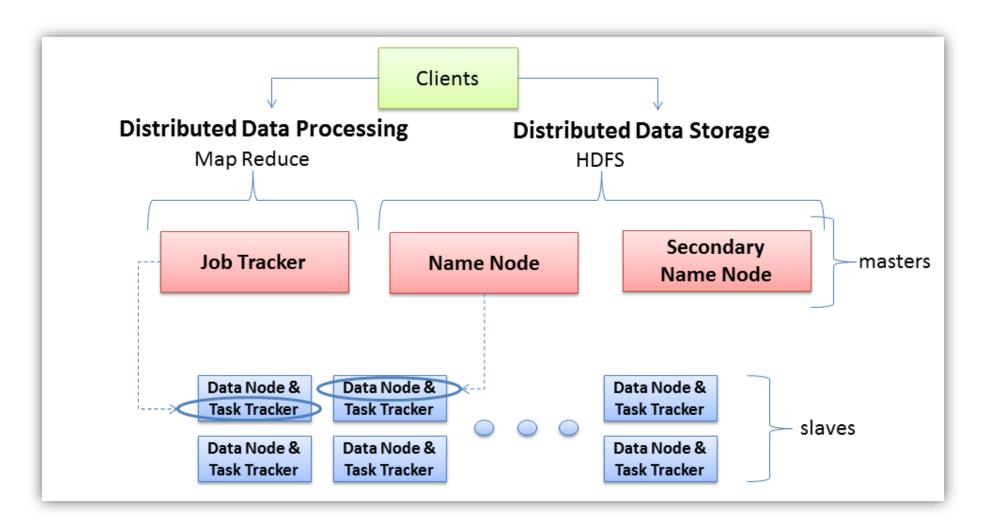
Robert.Lovas@sztaki.mta.hu

Óbuda University John von Neumann Faculty of Informatics

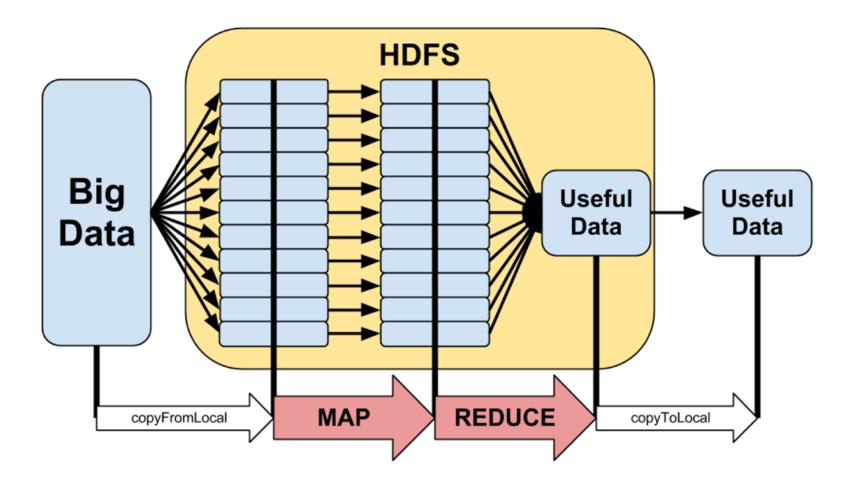
=== SPARE SLIDES ====

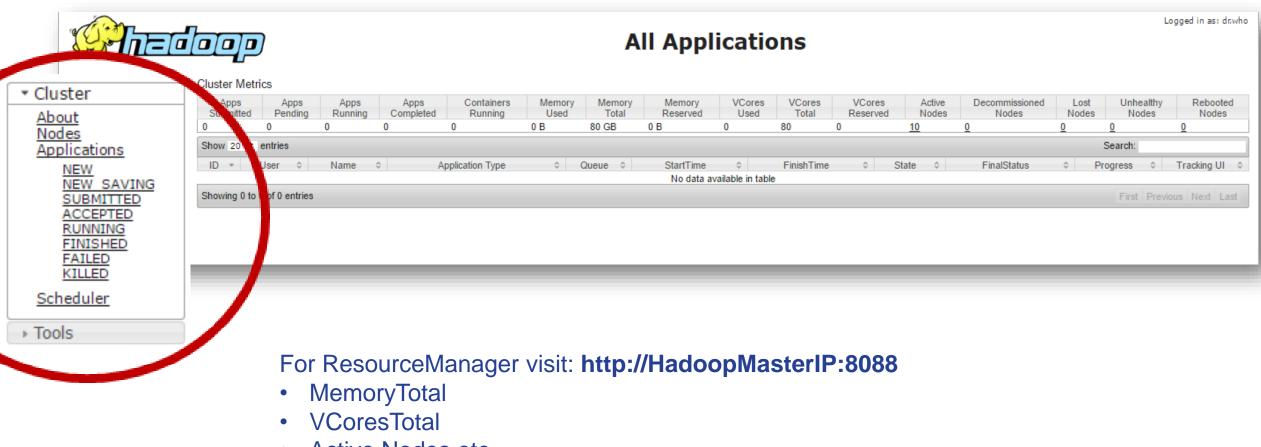
Big Data and cloud computing

- Meaning of Big Data
- Benefits of Cloud
 - -Cost effective
 - -Increased storage
 - -Scalability
 - -Mobility
 - -Always-on availability

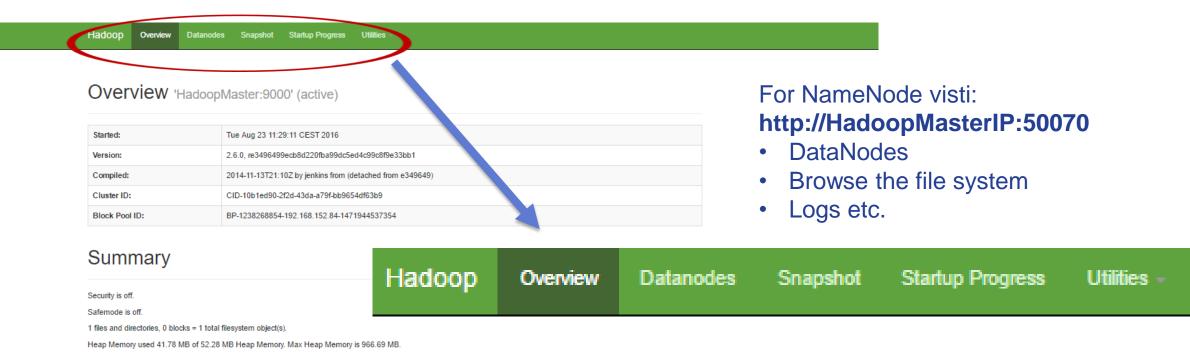


Hadoop - 5 major advantages


- Fast
- Flexible
- Resilient to failure
- Cost effective
- Scalable


Hadoop - Roles

Hadoop- HDFS and MapReduce process



Hadoop Master Web User interfaces 1.

• Active Nodes etc.

Hadoop Master Web User interfaces 2.

Non Heap Memory used 47.37 MB of 48.63 MB Committed Non Heap Memory. Max Non Heap Memory is -1 B.

Configured Capacity:	147.37 GB
DFS Used:	264 KB
Non DFS Used:	33.91 GB
DFS Remaining:	113.46 GB
DFS Used%:	0%

How to run a Hadoop MapReduce job? 1. Inputs – on Hadoop Master node

After building-up a virtual Hadoop infrastructure we can run MapReduce job on it, follow these steps:

- **1.SSH to HadoopMaster node**
- 2.Use commands as hduser
- **3.Sample text-files as input:**
 - Hduser:\$ cat input/file01
 - Hello World, Bye World!
 - A wordcount.jar file
- **4.Import inputs to HDFS:**
 - \$HADOOP_HOME/bin/hadoop fs -mkdir /input
 - \$HADOOP_HOME/bin/hadoop fs -put /home/hduser/input/file01.txt /input

How to run a Hadoop MapReduce job? 2. Run a Hadoop job – on Hadoop Master node

- Use this command as hduser on Hadoop Master node:
- \$HADOOP_HOME/bin/hadoop jar /home/hduser/input/wordcount.jar org.myorg.WordCount /input /output
- To check, read console or visite: http://HadoopMasterIP:8088:

All Applications

Logged in as: dr.who

 Cluster 	Cluster Metr	ics														
About Nodes Applications	Apps	Apps	Apps	Apps	Containers	Memory	Memory	Memory	VCores	VCores	VCores	Active	Decommissioned	Lost	Unhealthy	Rebooted
Nodes	Submitted	Pending	Running	Completed	Running	Used	Total	Reserved	Used	Total	Reserved	NOP	INCRES	Nodes	Nodes	Nodes
	1	0	0	1 (0 B	88 GB	0 B	0	88	0	_17	0	0	<u>0</u>	<u>0</u>
NEW SAVING	Show 20 • entries Search:															
SUBMITTED ACCEPTED		ID		er 🌣 Name	0	Application Ty	/pe 🌼	Queue 0	StartTime	\$	FinishTime	State	FinalStatu	0	Progress 0	Tracking UI 0
RUNNING FINISHED	application 1471944584008 0001 hduser WordCount MAPREDUCE default Tue 23 Aug 2016 Tue 23 Aug 2016 EINISHED SUCCEEDED History												History			
FAILED KILLED													1 Next Last			
Scheduler																
→ Tools																
	State															
	FINISHED SUCCEEDED															

How to run a Hadoop MapReduce job? 2. Run a Hadoop job – on Hadoop Master node

- To check the **output** of the MapReduce job visit web UI of the NameNode: http://HadoopMasterIP:50070
- Choose: Utilities -> Browse the file system -> select /output -> download part-r-00000

Hadoop Overview	Datanodes S	Snapshot Startup F	Progress Utilities –				
Browse Di	rectory						Name
/output						Gol	_SUCCESS
Permission	Owner	Group	Size	Replication	Block Size	Name	part-r-00000
-IW-II	hduser	supergroup	0 B	1	128 MB	_SUCCESS	parties
-rw-r—r—	hduser	supergroup	67 B	1	128 MB	part-r-00000	

Implementation Inputs

Hadoop configuration files:

- Cores-site.xml
 - Site-specific configuration for a given Hadoop installation
- Hdfs-site.xml:
 - Configurations for NameNode and DataNode
- Yarn-site.xml
 - Configurations for ResourceManager, NodeManager and History Server
- Mapred-site.xml
 - Configurations for MapReduce Applications and MapReduce **JobHistory Server**
- Hadoop-env.sh
 - Control the Hadoop scripts by setting site-specific values

Hdfs-site.xml

SSH public key

- Yarn-site.xml
- Mapred-site.xml

Core-site.xml

Hadoop-env.sh

SSH public key SSH private key Hadoop environment variables HadoopMaster IP

- Configuration files:
- Core-site.xml
- Hdfs-site.xml
- Yarn-site.xml
- Mapred-site.xml
- Hadoop-env.sh ٠