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ABSTRACT

In recent years, Massively Parallel Processors (MPPs) have gained
ground enabling vast amounts of data processing. In such environ-
ments, data is partitioned across multiple compute nodes, which re-
sults in dramatic performance improvements during parallel query
execution. To evaluate certain relational operators in a query cor-
rectly, data sometimes needs to be re-partitioned (i.e., moved) across
compute nodes. Since data movement operations are much more
expensive than relational operations, it is crucial to design a suit-
able data partitioning strategy that minimizes the cost of such ex-
pensive data transfers. A good partitioning strategy strongly de-
pends on how the parallel system would be used. In this paper we
present a partitioning advisor that recommends the best partitioning
design for an expected workload. Our tool recommends which ta-
bles should be replicated (i.e., copied into every compute node) and
which ones should be distributed according to specific column(s) so
that the cost of evaluating similar workloads is minimized. In con-
trast to previous work, our techniques are deeply integrated with
the underlying parallel query optimizer, which results in more ac-
curate recommendations in a shorter amount of time. Our experi-
mental evaluation using a real MPP system, Microsoft SQL Server
2008 Parallel Data Warehouse, with both real and synthetic work-
loads shows the effectiveness of the proposed techniques and the
importance of deep integration of the partitioning advisor with the
underlying query optimizer.

Categories and Subject Descriptors
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select *

from A, B
where Ax =B.y
group by A.z

Figure 1: Sequential vs. parallel query execution.

INTRODUCTION

High-performance computing has undergone many changes in
recent years. One of the major trends has been the wide adoption
of massively parallel processing (MPP) systems. An MPP system
is a distributed computer system which consists of many individual
nodes, each of which is essentially an independent computer in it-
self. Each node, in turn, consists of at least one processor, its own
memory, and a link to the network that connects all nodes together.
Queries executed in such environments tend to be complex, involv-
ing many joins, nested sub-queries and aggregation and are usually
long-running and resource-intensive (see Figure 1). During query
execution, data often needs to be transferred across nodes, which
is a relatively expensive operation compared to relational opera-
tors. Excessive data transfers can significantly slow down query
execution, deteriorate the performance of the overall system, and
negatively impact the user experience. If data is originally parti-
tioned in an adequate way, such expensive data transfer operations
can be minimized. Clearly, the selection of the best way to partition
the data in a distributed environment is a critical physical database
design problem.

Previous studies on automated partitioning design can be roughly
classified into two categories: optimizer-independent (which inter-
pret and model the optimization information outside of the database
to perform the tuning [29, 31]), and “shallowly-integrated” with
query optimizer (which largely use the optimizer as a black-box
to perform the what-if optimization calls [25]). The problem with
such loosely-integrated approaches is two-fold: first, the quality of
the resulting partitioning recommendations is likely to suffer when
the tuning tools are not completely in-sync with optimizer’s de-
cisions, and second, the performance of a tuning tool is likely to
diminish due to narrow APIs between the tool and the DBMS.

We propose to address the problem of partition design tuning for
parallel databases by introducing an advisor that is deeply-integrated
with parallel query optimizer. Specifically, our partitioning advisor
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exploits the optimizer’s cost model as well as its internal data struc-
ture, called the MEMO, to efficiently find the best possible partition-
ing configuration. Furthermore, we leverage the MEMO structure to
infer lower bounds on partial partitioning configurations — the prop-
erty that enables a very efficient branch and bound search strategy
through the combinatorial search space of all feasible partition con-
figurations.

In addition to using the partitioning advisor when loading a brand-
new database into a distributed environment, a new partitioning
strategy may also be recommended whenever:

- data is migrated to a new system.
- the workload on a database changes substantially.

- the database has been heavily updated (e.g., tables are added
or removed, or statistical information changes).

- performance has significantly degraded.

We’ve implemented our partitioning advisor in Microsoft SQL
Server 2008 Parallel Data Warehouse [4], a real MPP systeml,
which is a scalable distributed engine that delivers performance at
low cost through massive parallel processing. In summary, the pri-
mary contributions of our work include:

We exploit the concept of a “shell appliance” to simulate a
physically distributed database with various partitioning con-
figurations stored on a single machine as if it were a regular
database (but with no actual data).

We leverage the MPP optimizer’s concise optimization search
space (the MEMO) to infer lower bounds on partial configura-
tions and exploit this property for a better traversal of the
partitioning configuration search space.

We evaluate our partitioning advisor against the shallow in-
tegration approaches like genetic- and rank-based techniques
from [25] to enumerate the search space.

- We implemented our partitioning advisor in a real MPP sys-
tem and present our experimental evaluation using the TPC-H,
TPC-DS benchmarks and several real-life datasets.

The rest of the paper is structured as follows. Section 2 provides
the background necessary to better understand the technical aspects
of this work. Section 3 gives the problem definition and states
our main assumptions. Section 4 reviews shallowly-integrated ap-
proaches for finding the best partitioning configuration. Section 5
describes the details of our proposed deeply-integrated approach to
partition design tuning. Section 6 reports our experimental evalu-
ation, and Section 7 discusses possible extensions to the advisor.
Section 8 reviews the related work.

2. BACKGROUND

In this section we provide the background information necessary
to understand the remainder of the paper.

2.1 Overview of PDW

Many enterprises today use MPP architectures and vendors are
focusing on making them faster and more scalable [1, 2, 3, 4, 5].
Shared-nothing parallel database systems are an example of such
MPP systems. An installation of a shared-nothing parallel database

! For brevity, we will refer to it as PDW in the rest of the paper.
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Figure 2: Overview of a 4 node appliance.

system like PDW is often called an appliance. An appliance con-
sists of a single control node that manages one or more compute
nodes. Figure 2 illustrates an appliance with three compute nodes
and one control node. The key characteristics of a PDW appliance
that we consider in this paper include:

- Running DBMS instances on the control and compute nodes
to manage data locally.

- Leveraging DBMS functionality for authentication, autho-
rization, query parsing and validation, schema management
and locking instead of duplicating it in the middleware.

- Using the “shell appliance” abstraction of a distributed database
to simulate it on a single machine as if it were a standard
(non-distributed) database.

- Employing a statistics-driven, cost-based parallel query opti-
mizer exploiting the shell appliance for optimization of par-
allel queries (an approach similar in spirit to what-if opti-
mization technology [13]).

‘We describe the role of the control and compute nodes in an appli-
ance architecture next.

2.2 Compute and Control Nodes in an
Appliance

The Control Node: The control node provides the external inter-
face to the appliance. All user interaction with the appliance flows
through the control node, which is responsible for query parsing,
creating a parallel execution plan for evaluating the query, distribut-
ing the plan steps to the compute nodes, tracking the execution
steps of the plan, and assembling the individual “pieces” of the
final results and packaging them up into the single result set that
is returned to the user. As such, the control node masks the dis-
tributed nature of the system and presents users with a single sys-
tem image of the appliance. This is a powerful abstraction, because
it allows users to treat the appliance as if it were a standard, single-
box DBMS. The control node has a DBMS instance running on it,
but the only data stored permanently in this instance is the system
metadata (no user data is stored permanently on the control node).
The Compute Nodes: Compute nodes provide the data storage and
the query processing backbone of the appliance. Each compute
node also has a DBMS instance running on it, and all permanent
user data is stored there. All user queries, therefore, must access
data stored in DBMS on some (or all) of the compute nodes.
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2.3 Plan Generation and Execution

The parallel query optimizer in PDW employs the following query

optimization approach (graphically depicted in Figure 4).
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Figure 4: Parallel query optimization flow (all on the control
node).

The DBMS instance on the control node contains the shell ver-
sion of the actual physical appliance (i.e., an exact copy of all infor-
mation including schemas, statistics, authorizations, but excluding
the actual data tuples). Queries are parsed and validated semanti-
cally against the schemas and access privileges, and get optimized
in a cost-based manner against the shell appliance.

For a given input query (Step 1), the MPP optimizer first issues
a single optimization call against the shell appliance stored in the
control node’s DBMS (Step 2), and obtains back a compact repre-
sentation of the serial optimization search space known as the MEMO
[18, 19] (Step 3). Then, the parallel optimizer augments the ex-
tracted MEMO with the relevant partitioning information and the data
movement operations and finds the best parallel query plan based
on the cost-model tuned to the characteristics of the PDW archi-
tecture and the latest statistics (Step 4). Note that this approach
generalizes the techniques that parallelize the best serial plan, by
attempting the parallel versions of every serial plan considered by
the optimizer and returned in the serial MEMO. Also note, that most of
the work is done in the control node’s DBMS (e.g., serial plan gen-
eration); the post-processing that parallelizes the MEMO is a relatively
much smaller task. The main steps of MEMO parallelization consist
of: (1) parallelization-specific MEMO “cleaning” and simplification;
(2) interesting column propagation; (3) MEMO groups’ optimization
(enumeration, costing, pruning) done in a bottom-up manner; and
finally, (4) best plan extraction. We omit the details of the parallel
optimization, since it is outside the scope of this paper.

Parallel Query Execution: To execute a query, the control node
transforms the query plan produced by the optimizer into a parallel
execution plan (called DSQL plan) that consists of a sequence of
steps (called DSQL Operations). At a high-level, every DSQL plan
is composed of two types of DSQL operations: (1) the SQL oper-
ations, and (2) the Data movement operations. A SQL operation
is simply an SQL statement to be executed against the underlying
compute node’s DBMS instance, and data movement operations are

1139

used to transfer data between DBMS instances on different nodes.
A data movement operation specifies the source data to be moved,
the strategy to use for distributing records among nodes (e.g., by
replication or by hash-partitioning, etc.?), the name and the schema
of the table to insert the records into upon arrival.

Example: Consider the following SQL query:

SELECT *

FROM CUSTOMER C, ORDERS O

WHERE C.C_CUSTKEY = 0.0_CUSTKEY
AND O.O_TOTALPRICE > 1000

Figure 3 visually depicts the flow of parallel query optimization
for the above query. We first parse the input query (Figure 3(a))
and transform it into a tree of logical operators (Figure 3(b)). Tra-
ditional query optimization is performed producing a final serial
MEMO, which is augmented to additionally consider parallelism (see
Figure 3(c)). A MEMO consists of two mutually recursive data struc-
tures, called groups and groupExpressions. A group represents all
equivalent operator trees producing the same output. To reduce
memory requirements, a group does not explicitly enumerate all
its operator trees. Instead, it implicitly represents all the operator
trees by using groupExpressions. A groupExpression is an opera-
tor having other groups (rather than other operators) as children. As
an example, consider Figure 3(c), which shows a MEMO for the query
example above (logical operators are shaded and physical operators
have white background). In the figure, group 1 represents all equiv-
alent expressions that return the contents of table Customer (or C,
for short). Some operators in group 1 are logical (e.g., Get C), and
some are physical (e.g., Table Scan, which reads the contents of C
from the primary index or heap, and Sorted Index Scan, which does
it from an existing secondary index). In turn, group 4 contains all
the equivalent expressions for C 0 O. Note that groupExpression
4.1 (i.e., Join(1,3)), represents all operator trees whose root is Join,
first child belongs to group 1, and second child belongs to group
3. In this way, a MEMO compactly represents a potentially very large
number of operator trees. Children of physical groupExpressions
point to the most efficient groupExpression in the corresponding
groups. For instance, groupExpression 4.6 represents a hash join
operator whose left-hand-child is the fourth groupExpression in
group 1 and whose right-hand-child is the third groupExpression
in group 2. In addition to enabling memoization (a variant of dy-
namic programming), a MEMO provides duplicate detection of op-
erator trees, cost management, and other supporting infrastructure
needed during query optimization. Additional details on the orga-
nization of the MEMO structure can be found in the literature [18, 19].

2For example, the data movement operation that re-partitions data across the compute
nodes is called a shuffle operation in PDW.



Once the serial memo has been generated, the MPP optimizer
augments the final serial ¥EMO with new data movement groups and
operations with respect to the underlying data distributions, e.g.,
see groups 5 and 6 in the figure. Group 5, for instance, represents
the data movement of the output of group 1 (i.e., the tuples from C).
Assuming, C and O are distribution-incompatible, this operation
would be considered by the parallel optimizer as one of the options
in order to make both C and O distribution-compatible to perform
the join C < O. Alternatively, group 6 depicts the data movement of
the opposite input to the join, namely O. Similar, to relational op-
erations, logical data movement operations may have a number of
physical implementations, such as Shuffle (or re-distribution of data
on a column(s)), Replication, and so on. The final execution plan,
which consists of a tree of physical operators, is extracted from the
MEMO (shown in Figure 3(d)). Finally, the plan is transformed into
an executable DSQL plan that will be run in the appliance (shown
in Figure 3(e)).

After generating DSQL plan, the control node distributes the
plan to the compute nodes, one DSQL operation at a time. Con-
trary to the control node, whose sole responsibility is to execute
DSQL operations, a compute node does not have knowledge of ei-
ther the original user query or of the full execution plan for evaluat-
ing that query; it simply executes DSQL operations requested from
the control node.

3. AUTOMATED PARTITIONING DESIGN
PROBLEM

Although each MPP system may have its own unique features
and characteristics, the problem of automated partitioning design
in a parallel DBMS environment is common to all of them and can
be generally stated as follows:

Given a database D, a query workload W, and a storage bound
B, find a partitioning strategy (or configuration) for D such that
(i) the size of replicated tables fits in B, and (ii) the overall cost
of W is minimized.

Next we describe some simplifying assumptions that we con-
sider in the rest of the paper. These assumptions are based on the
current capabilities of the MPP engine we consider, and do not limit
the applicability of our approach in general. First, we assume that
tables can either be replicated or partitioned on the nodes in the
appliance. When a table is partitioned, it is hash-partitioned on a
single column across all compute nodes in an appliance (in Sec-
tion 7 we describe how to relax these assumptions). Extending the
partitioning approach to a subset of appliance nodes could be done
similar to [25]. Finally, we assume that database statistics for cost
estimation are always available. Statistics can be collected when
data has already been loaded in the system, or alternatively, the
DBA can supply statistics by generating them on the external data
using one of the available tools provided by most database vendors.

4. TUNING WITH SHALLOW OPTIMIZER
INTEGRATION

Figure 5 shows a generic and high-level architecture of the par-
titioning advisor interacting with the parallel query optimizer>. It
consists of three key components: (1) the complex search space
of all feasible partition configurations (depicted by the green cloud
in the Figure), (2) the search algorithm to navigate the space of all
possible partition configurations, and (3) the evaluation mechanism

3Wf: want to note that the partitioning advisor is a separate client tool from the opti-
mizer irrespective of how it is integrated with the optimizer.
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Figure 5: Partitioning advisor architecture.

to quantitatively compare the enumerated partitioning configura-
tions. The complex search space needs to be traversed and for effi-
ciency purposes a typical approach is to use a what-if optimization
mode [13], which simulates hypothetical partition configurations
for the appliance in the shell database without actually materializ-
ing them. This architecture is possible, because the query optimizer
does not require the presence of fully materialized physical design
structures in order to be able to generate plans that consider them.
To search for the best partitioning configuration, we can apply vari-
ous strategies from the field of combinatorial optimization, such as
genetic search, simulated annealing, hill-climbing search, etc., or
apply more tailored to the problem search algorithm, which is what
we adopt in our work.

Current state-of-the-art physical design tuners can be described
as shallowly-integrated with their underlying query optimizers. These
tuners typically focus on speeding up the generation of feasible par-
titioning configurations (i.e., the search space), but afterwards only
use the optimizer to perform the what-if optimization largely treat-
ing the optimizer as a black box. We next discuss two approaches
that exhibit this shallow integration behavior with the underlying
query optimizer in the context of parallel database tuning.

4.1 Rank-Based Algorithm

Rao et al. introduced a shallowly-integrated approach for parti-
tioning tuning design in [25]. The idea is to first generate candidate
configurations by invoking the optimizer to evaluate all workload
statements in a special “recommend” mode. In this mode, the opti-
mizer accumulates a list of partitions for each table that are poten-
tially beneficial to processing of a given query and generates plans
corresponding to each of these partitions. Optimization then pro-
ceeds normally to evaluate all of the alternative plans. Once the op-
timizer finds a plan that it considers optimal for the query, it extracts
the partition of each base table and adds it to the candidate partition
set. Subsequently, the advisor performs partition expansion to gen-
erate additional candidate partitions that might have been missed
by each individual statement. Finally, the advisor combines candi-
date partitions from different tables and evaluates the workload in
the regular what-if mode for each combination, returning at the end
the best configuration for the entire workload.

For a search strategy, the technique uses a rank-based enumera-
tion search, where partitions are first ranked based on their benefit
value, which is approximated as the sum of the differences between
the estimated cost of the query evaluated in the regular mode versus
in the recommend mode. Then all configurations are ranked and or-
ganized into an ordered queue. The ranking function (referred to as
rank_best) assigns the cost of a configuration to be the cost of its



parent* minus the benefit of the changed partition, weighted by the
relative table size. Since a partitioning configuration can be de-
rived from multiple parents, the technique tries to always pick the
higher rank for the configuration. The enumeration process evalu-
ates configurations in the order of their benefit rank until a stopping
condition is reached.

4.2 Genetic Algorithm

Another example of a shallowly-integrated parallel database tun-
ing approach uses genetic algorithm (GA), a traditional combina-
torial optimization technique. GA has several advantages: (1) it
combines the elements of directed and stochastic search; (2) it tends
to balance the two search objectives: exploiting the best solution(s)
and exploring the search space; (3) it usually maintains a pool (pop-
ulation) of potential solutions while almost all other methods pro-
cess only a single point in the search space. This property has two
important implications: first, it efficiently “parallelizes” the search;
and second, GA provides not only the best solution, but also a pool
of good solutions that shed light on the effects of available alter-
natives. The major aspects of GA applied to partitioning design
problem are described next, and Figure 6 depicts GA’s execution
flow.

Representation. To represent a chromosome (a candidate partition
configuration), an array of ‘genes’, where each gene depicts the
partitioning for a table in the database can be used. For instance,
a chromosome for the TPC-H benchmark could be represented as
follows: {nation, supplier, region, lineitem, orders, partsupp,
customer, part} — {R,R,R,D{,D,,D{,D{,D;}, where R stands for
replicated, and D for distributed® (i.e., hash-partitioned), and the in-
dex next to D depicts the index of the column in the table’s schema
that serves as the distribution column. For instance, nation is repli-
cated and lineitem is distributed on the first column (1_orderkey)
here. Usually chromosomes tend to be represented at the lowest
possible level: for a given order of tables, and a given order of
columns for a table, a chromosome can be simply represented as
an array of numbers, where each number represents a column for
a table (if the number is 0, it means replication, otherwise, it is the
index in the list of columns for the table).

Fitness function. The fitness function interprets the chromosome
and evaluates its ‘fitness’. The definition of fitness function is cru-
cial, because it must accurately measure the desirability of chromo-
some, and its evaluation should be as efficient as possible due the
large number of invocations. We use the optimizer’s estimated cost
as the fitness function (or oo, if the configuration does not satisfy
the storage constraint).

Reproduction. The reproduction process includes the selection,
crossover, and mutation of the chromosomes briefly described next.
Selection. Chromosomes are selected from the population and then
recombined, producing offsprings. Parents are randomly chosen
from the population favoring fitter chromosomes.

Crossover. Crossover cuts a pair of chromosomes at some ran-
domly chosen point. The ‘tail’ segments of the two strings are then
exchanged to generate new chromosomes, inheriting some genes
(characteristics) from each parent.

Mutation. After crossover is completed, mutation is applied to each
offspring individually. Mutation alters each gene with a typically
small probability. For example, Mutate({R,R,R,D{,D,,D1,D1,D1})
={D,,R,R,D{,D,,D1,D{,D; } results in changing the first table from
being replicated to partitioned on the 2nd column. Crossovers tend

‘A parent configuration corresponds to the configuration with a higher benefit than
the current configuration C that differs from C in exactly one partition.

5Wf: use the verbs “distributed” and “partitioned” interchangeably. Both mean the
same thing in the context of this paper.
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Figure 6: Flowchart for genetic algorithm.

to be more important than mutations for exploring the search space
rapidly. Mutations provide a small amount of random search and
are used to ensure that selection and crossover do not lose poten-
tially useful genetic characteristics. Furthermore, mutations can
help ensure that all points in the search space would eventually be
examined.

4.3 Disadvantages of Shallowly-Integrated
Approaches

A typical database is likely to have a large number of tables and
a workload may contain many queries. Thus, the search space of all
feasible partitioning configurations is likely to be extremely large
due to combinatorial explosion of possibilities. Furthermore, each
evaluation of a partitioning configuration is expensive because it in-
volves optimizing (in the what-if mode) all queries in the workload.
An unguided enumeration of partitioning configurations won’t scale
with respect to the number of tables and the workload size. Further-
more, a shallowly-integrated approach, while not requiring any (or
little) changes to the MPP optimizer may result in substantial dupli-
cation of work each time a new partitioning configuration needs to
be evaluated (this includes query parsing, validation, binding, secu-
rity handling, join reordering, and any other partition-independent
work) and only a little amount of configuration-specific work [10].
In the next section we present a different way to conduct the search
for the best partition configuration for parallel databases that ad-
dresses these problems by means of a deeper integration with the
query optimizer.

S. TUNING WITH DEEP OPTIMIZER
INTEGRATION

In this section we propose a partition configuration tuning ap-
proach that exploits the parallel query optimizer in a deeply inte-
grated manner. Specifically, we propose a new algorithm called
the Memo-Based Search Algorithm (or MESA for short), which is
based on two key components: (1) leveraging the optimizer’s inter-
nal MEMO data structure to perform the what-if optimization more ef-
ficiently, and (2) a bounding technique on the quality of partial par-
titioning solutions, which forms the basis for our branch and bound
search enumeration. We describe these two components next.

5.1 Workload MEMO Data Structure

The parallel query optimization (described in Section 2.3) con-
sists of two phases: (1) the serial optimization against the shell
appliance, and (2) the parallelization of the search space, from
which the best parallel execution plan is extracted. As discussed
in Section 2, the MEMO provides a compact representation of the
search space of plans. We extend the idea of MEMO further, and cre-
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ate a “workload MEMO” data structure, which can be described as the
“union” of the individual MEMOs for the queries in the workload. Fig-
ure 7 graphically shows the workload MEMO for three queries (Q1-
Q3). To form a workload MEMO the following steps are executed: (1)
we obtain an individual MEMO for every query in the workload; (2)
we attach the global root node with the outgoing edges to each in-
dividual MEMO (the black node at the top of Figure 7); (3) we merge
the leaf nodes — which represent the various access paths to the ta-
bles in the database by the workload queries. After the merge, we
obtain distinct leaf nodes (one per each table) that are shared by the
individual MEMOs in the workload MEMO (the nodes at the bottom of
Figure 7).

The overall algorithm to re-optimize a query under an arbitrary
partitioning configuration is similar to the parallel post-optimization
step and proceeds as follows: plans (along with their required par-
titioning properties) are identified top-down starting with the root
group; costs, in turn, are computed bottom-up. The required par-
titioning property of a node depends on its parent (e.g., a hash-
join node induces required partitioning on join columns to each of
its children). If a node does not satisfy its required properties, a
data movement operator (e.g., a shuffle or a replication operator)
is added to the plan. The cost of a MEMO groupExpression depends
on its type: if it corresponds to a leaf node, we identify the par-
titioning of the underlying base table and estimate the cost of the
operation with respect to it. If it is an internal node, we derive the
required partitioning properties for the children nodes and calculate
the best cost by adding to the local cost of the groupExpression the
sum of the best costs of each of its children (calculated recursively).
Among all alternative plans in a MEMO group, we pick the one that
satisfies the required properties and has the lowest cost. More de-
tails on the cost computations and the best plan extraction from the
MEMO, the interested reader is referred to [10, 18].

Note, that by leveraging the MEMO data structure, we can simulate
the optimization of the workload under arbitrary configurations by
simply repeating the parallel post-processing step on the MEMO by
simply adjusting the initial partitioning configuration for the MEMO
leaf nodes. In addition to this fast evaluation mode, we can also
infer additional properties, described next.

5.2 Interesting Columns

Interesting columns in the parallel query optimizer represent an
extension of the notion of interesting orders introduced in System
R [23] (e.g., a subplan that returns results partitioned in a certain
way can be preferable to a cheaper alternative, because later in the
plan the partitioning is leveraged obtaining a globally optimum so-
lution). The parallel query optimizer considers the following parti-
tioning columns to be interesting: (a) columns referenced in equal-
ity join predicates, and (b) any subset of group-by columns. Join
columns are interesting because they make local and directed joins
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possible®, and group-by columns are interesting because aggrega-
tions can be done locally at each node and then combined. By
definition, only such interesting columns should be considered as
partitioning candidates. Other columns would not be useful as par-
titioning columns by any operator in the MEMO and thus can be safely
omitted from consideration.

5.3 *-partitioning

We introduce a special type of partitioning in MESA, the so-
called *-partitioning, which means that “every” partition or repli-
cation option for a base table is simultaneously available. If a table
is *-partitioned, the parallel optimizer can pick the concrete parti-
tioning column that is best suited for every given partitioning re-
quest (i.e., one that does not requires moving data around) during
parallelization post-processing. If the table size is below the stor-
age bound, the optimizer can also consider replication. In this way,
the optimizer simultaneously considers all possible partitioning al-
ternatives for *-partitioned tables during a single post-processing
step, and returns the execution plans with the smaller overall cost.
Of course, not all resulting plans are valid when using *-partitioned
tables. Specifically, if the same table delivers different concrete par-
titioning columns (for the same table) in the final execution plans
of queries in the workload, the resulting configuration is not valid
because in reality each table can be physically partitioned in a sin-
gle way. However, this mechanism enables the optimizer to al-
ways pick the best concrete partition scheme for a *-partitioned
table, and thus obtain lower bounds on the cost of configurations
that are partially specified (i.e., configurations that include some *-
partitions), and do so without issuing additional optimization calls.
This bounding function is an important aspect of our search strat-
egy, described next.

5.4 Branch and Bound Search

The branch and bound method [21, 22] is one of the most fre-
quently used approaches to address large search space enumeration
problems. The method is based on the observation that the enumer-
ation of solutions has a tree structure, and the main idea in branch
and bound is to avoid growing the whole tree as much as possible
(see Figure 8). Instead branch and bound grows trees in stages, and
grows only the most promising nodes at any stage. It determines
which node is the most promising by estimating a bound on the best
value of the objective function that can be obtained by growing that
node to later stages. Another important aspect of branch and bound
is pruning, which discards whole subtrees when a node or any its
descendants will never be either feasible or optimal. Pruning pre-
vents the search tree from growing too much.

To describe branch and bound in detail, we first need to introduce
some terminology:

- Node: any partial or complete solution. Specifically, a node
associates each table with either a concrete partitioning strat-
egy, replication, or the *-partitioning option.

- Leaf: a complete solution in which no table is allowed to be
*-partitioned (e.g., S3 in Figure 8).

- Bud: apartial solution with some *-partitioned tables. This is
anode that might yet grow further by replacing a *-partitioned
table with either a concrete partitioning scheme or replication
(e.g., S1 and S in Figure 8).

6Local Jjoin is a join between tables that can be performed locally at each node. Di-
rected join can be performed when one of the tables is already partitioned on the join
key, and the other table can be dynamically re-partitioned on the join key to make it
distribution-compatible.



MESA (W:workload, B:storage bound)

01 wMemo = CreateWorkloadMemo (W, B)

02 incumbent = null

03 bbTree = CreateRoot (wMemo)

04 while (!stop_condition())

05 currConfig = SelectNode (bbTree) // DFS policy
06 newConfig = CreateChildConfig(currConfig)

07 if (newConfig violates B constraint)

08 prune (newConfig)

09 else

10 cost = ParallelPostProcess(wMemo, newConfig)
11 if (newConfig is leaf or can be promoted)

12 if (cost < incumbent.cost)

13 incumbent = newConfig

14 prune (newConfig)

15 else // partially defined configuration

16 if (incumbent.cost < cost)

17 prune (newConfig)

18 return incumbent

// table/column selection policy

Figure 9: Memo-based search algorithm using branch and bound enumeration.
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Figure 8: Branch and bound enumeration tree for partitioning
configuration search problem.

- Bounding function: a lower bound on the cost of the work-
load under a given (partially specified) configuration. If the
configuration is fully specified (i.e., without *-partitioned ta-
bles), the bounding function is exactly the expected cost of
the workload under such configuration.

- Incumbent: the best fully specified (i.e., feasible) solution
that satisfies the space constraint found at a given point dur-
ing the execution of the algorithm.

Figure 8 shows an example of the enumeration tree for a par-
titioning configuration search problem. The root of the tree la-
beled “all solutions” consists of all *-partitioned tables. Leaf nodes
represent fully specified partitioning configurations with associated
costs. A bud node, e.g., S| represents a partial solution, where the
first table is partitioned on the first column (in the table’s schema)
and the rest of the tables are *-partitioned.

5.5 Branch and Bound Policies

In order to fully specify our search strategy, we need to define
the following policies:

Node selection policy: The node selection policy governs how to
choose the next bud node for expansion. There are several pop-
ular policies, and we use one based on depth-first search. That
is, at each iteration we pick the last node we’ve expanded. When
we reach a leaf node, we backtrack to the earliest ancestor that is
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not fully explored and continue from there. A good property of
this policy is that the first incumbent is reached quickly, which in
turn enables more aggressive pruning of subsequent portions of the
search space, and speeds up the overall search (as described in Sec-
tion 6).

Table/column selection policy: Once a bud node has been cho-
sen for expansion, the next question that must be addressed is how
to pick a *-partitioned table to instantiate, and how to partition or
whether to replicate that table. For that purpose, we rank all in-
teresting columns (defined in Section 5.2) and pick them in order.
The ranking of a column c is the total cost of all queries that have ¢
as an interesting column (more advanced ranking functions can be
used [25], but this simple strategy already gives good experimen-
tal results). Note that before trying any partitioning on a table we
attempt to replicate it (for small tables it is usually a good idea to
use replication, and large tables would immediately fail the storage
constraint and such configuration would not be searched further).

Pruning strategy: There are two main reasons to prune a bud
node. The first case is when no descendent node will be feasi-
ble. Specifically, if the total space used for replication exceeds the
storage constraint, we know that no descendant of the current bud
would fit either, and we can prune the subtree. The second case
is when no descendant will be optimal. If the bounding function
of the current bud node is worse than the objective function of the
current incumbent, we know that no feasible solution that is a de-
scendant of the current bud would be optimal, and we can prune the
subtree as well.

Bud Node Promotion: The procedure described in Section 5.3 not
only returns a lower bound on the cost of a partially specified con-
figuration, but in some cases, can fully specify the optimal config-
uration as well. Specifically, if every table in the database delivers
a unique partitioning column for all execution plans in the work-
load, then this is the optimal configuration that would eventually
be found by the branch and bound technique after instantiating all
remaining *-partitioned tables. In such case, it is not necessary
to actually conduct the search, but we can instead replace the bud
node b with the corresponding leaf node that is optimal when vary-
ing all of b’s *-partitioned tables, and, in effect, fully prune the
corresponding subtree.

Stopping condition: This condition stops the search and returns
the incumbent in case it is not possible to exhaustively enumerate
the whole search space. This policy could be either time-based, or



iteration-based, or if no improvement over a certain period of time
has been obtained.

5.6 MESA Algorithm

Figure 9 depicts a pseudocode of the MESA algorithm. First,
we create the workload MEMO and set the current incumbent to null
(lines 1-2 in the figure). Next, we create the branch and bound
tree root, which contains all *-partitioned tables (line 3). Until the
stop condition is met (line 4), we perform the following steps. We
first select the next promising configuration based on the DFS pol-
icy (line 5). Then, we pick a *-partitioned table and create a child
configuration by either replicating or partitioning such table based
on the table selection policy (line 6). If the resulting configuration
does not fit in the storage bound B, we prune it. The reason is that
after we exceed the budget B, the remaining *-partitions would be
subsequently resolved into replication — adding more space still —
or partitioning, which would not change the space consumed by
replicated tables, thus keeping the configuration invalid. If oth-
erwise the configuration satisfies the replication space budget, we
perform the parallelization post-processing of the MEMO with respect
to the new configuration as explained in Section 5.3 (line 10). If the
configuration is a leaf node (or can be promoted to one), it is fully
specified, and the value of cost represents the actual cost of eval-
uating the workload under such configuration. In this case (lines
12-14) if the cost of the new configuration is smaller than that of
the incumbent we make the incumbent equal to the new configu-
ration (note that cost of null is o). In line 14, we prune the new
configuration in case it was promoted from a bud, since we already
inferred the optimal configuration and thus do not need to continue
searching from that point. If, instead, the configuration is partially
specified in line 10, the value of cost represents a lower bound on
the cost of any configuration derived from the new one. If cost is
worse than that of the incumbent, we prune the new configuration
(lines 16-17), because no solution derived from it would be better
than the current incumbent. When the stopping condition is met,
we return in line 18 the current incumbent solution, which satis-
fies the storage constraint with minimum cost among the explored
partition configurations.

One of the key benefits of our approach is that we do not call
the optimizer multiple times, but instead gather all the common in-
formation once, and then perform the light-weight parallelization
using the MEMO data structure considering various partition configu-
rations. Furthermore, the by-product of the MEMO analysis and our
newly introduced *-partitioning scheme gives us the capability to
compute a lower bound on the costs of partial configurations that
allow the pruning of many alternatives without loss in quality of the
resulting partitioning recommendations.

6. EXPERIMENTAL EVALUATION

In this section we report our experimental evaluation of the tech-
niques presented in the paper. We implemented our approach in a
real MPP system, namely the Microsoft SQL Server 2008 Parallel
Data Warehouse, with 8 compute nodes. The partitioning advisor
was run on a machine with 12GB, Intel(R) Xeon(R) CPU E5540
@2.53GHz, with Windows 7 OS. For our experiments, we use sev-
eral real and synthetic benchmarks shown in Table 1. Based on
the current capabilities of the parallel optimizer we consider, we’ve
picked a subset of queries from some benchmarks (e.g., TPC-DS,
MSSales).

The goal of the experimental evaluation is to:

- Compare the partitioning advisor with shallow and deep in-
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Benchmark (scale) # Tables Workload (# queries)
TPC-H (1TB) 8 22
TPC-DS (1TB) 25 50
L’ Oreal (88GB) 573 29
MSSales (800GB) 346 27

Table 1: Experimental benchmarks

tegration approaches in terms of quality of recommendations
and performance efficiency.

- Measure the internal overheads and the scalability of our pro-
posed MESA algorithm.

There are several control parameters that govern the GA approach,
which we list in Table 2. Parameters for the Rank-based approach
are the same as in [25], and default MESA parameter values are
depicted in Table 3.

Parameter Value  Description

#of 100 # of times the population will be replaced through

generations reproduction.

Population size 30 # of chromosomes available for use during the
search. If the size is too big, GA will spend unnec-
essarily long time evaluating chromosomes, if it is
too small, GA may have no chance to adequately
cover the search space.

Crossover rate 0.1 the probability of crossover between two chromo-
somes.

Mutation rate 0.1 the probability that values of genes of a newly
created (or selected) off-springs will be randomly
changed.

Selection rate 0.2 the percentage of the worst of the current popula-

tion that will be discarded (after re-generation)

Table 2: GA parameters

Parameter Value Description
Node DFS the forward- and the back-tracking policy in
selection the branch and bound tree
Variable replicate, See Section 5.5 for details.
selection distribute
by rank
Stop 150 the number of iterations after which the search
condition terminates

Table 3: MESA parameters
6.1 Shallow Vs. Deep Integration Approaches

We first measure the quality of the techniques discussed in Sec-
tion 4 and Section 5, namely, the rank-based search, the genetic
search and our proposed MESA algorithm. In the rest of the sec-
tion, we will refer to them as Shallow (Rank), Shallow (GA), and
Deep (MESA). We compare the quality of the recommendations
produced by each technique using the optimizer’s estimated cost
for the best partitioning configuration. We go with the notion that
the optimizer’s costs represent an accurate measure of the quality of
the final execution plans and are considered as a viable evaluation
mechanism in physical design tuning tools (without the need to ac-
tually execute the queries in the appliance). This is a de facto stan-
dard both in the industry and academia for estimating the quality of
physical design tuning’. In the experiment, we set the replication
storage bound to 0, so that all tables are required to be partitioned
in the final configuration recommendation.

Table 4 shows the relative quality of the final recommendations
produced by the three techniques. The third column (“Quality(Q)”)

8

7However, in practice, we’ve observed that optimizers’ query cost estimates may con-
tain errors, as the optimizer need to be correct about relative plan costs, not actual costs
(to correctly rank the plans and choose good plans over bad ones).

SHere, we let each approach run to its completion.



Approach  Quality(Q) MESA Total Time(T) MESA
Visual Depict. Imp(Q) Imp(T)
RANK 1.1x 6 min 42 sec 1.73x
TPC-H GA 1.3x 4 hrs 28 min 69.3x
MESA — 3 min 52 sec -
RANK o — 1.1x 3 h 53 min 7.13x
TPC-DS GA 1.6x 25 h 28 min 46.7x
MESA - p— - 32 min 42 sec -
RANK 1.2x 45 min 25 sec 9.05x
L’Oreal GA 1.2x 14 h 12 min 169x
MESA — - 5 min 1 sec -
RANK 1.1x 6h 11 min 3.37x
MSSales  GA 1.2x 27 h 39 min 15.1x
MESA - - 1 h 50 min -

Table 4: Comparison of techniques
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Figure 10: Quality over time: TPC-H.

visually illustrates the relative quality of each technique, and the
fourth column (“MESA Improvement (Q)”) summarizes the im-
provement in the quality by MESA (over the shallow approaches)
quantitatively. We note that if time is not a constraint, each algo-
rithm eventually converges to a relatively good recommendation.
However, even without the time restriction, we’ve observed that in
some cases both RANK and GA might still not get to the best rec-
ommendations as compared to MESA?) (even after hours of execu-
tion). At the same time, MESA takes significantly less time to ar-
rive to good quality partitioning configurations due to the efficient
reoptimization strategy reusing the workload MEMO structure. The
last column “MESA Imp(T)” in the table depicts the improvement
by MESA over these shallowly-integrated approaches. As one can
observe, it is several orders of magnitude for various workloads.
We give detailed explanation for MESA’s efficiency compared to
the alternatives in Section 6.3.

Figures 10-13 depict the quality over time of the three techniques
with the workloads we’ve considered. We observe that MESA pro-
duces high quality recommendations in a much shorter period of
time. This is due to faster evaluation of configurations using work-
load MEMO and branch and bound pruning which results in evalu-
ating fewer sub-optimal partitioning configurations. Also, notice
that if we were to abrupt the search early (and not let the shallow
approaches run to their completion), the relative quality of MESA
would be several orders of magnitude higher (e.g., 3-4x higher for
TPC-H at 80 seconds). This can be explained as follows. GA
enumerates and evaluates a large number of chromosomes (where
each chromosome represents a partitioning configuration) to main-
tain the required population size and continuously performs ran-
dom changes to the chromosomes (through mutation and crossover
operations). Given that GA is a randomized search, it can often

9Furthermore, note that some workloads contain a few queries that, even under an
optimal partitioning strategy, fully dominate the cost of the workload. Removing these
queries from the workload would increase the gap between MESA and the remaining
techniques (in some cases, significantly so).
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Figure 12: Quality over time: L’Oreal.

lead to trying various partitioning configurations that have little or
no improvement. Rank-based approach, on the other hand, relies
on the high quality of benefit values of the candidate partitions in
the candidate set. Obtaining these values accurately is a challenge.
It requires multiple calls to the optimizer to re-optimize queries un-
der various partitions (to obtain those benefit values to associate
with each partitioning scheme). The more choices per table there
are, the larger this overhead becomes. Furthermore, RANK still
uses regular what-if optimization calls to estimate the cost of each
possible partitioning configuration, which is expensive in terms of
elapsed time and slows down the overall search.

6.2 Impact of Replication Bounds

Figure 14 shows the impact of the storage bound B (from the
Problem Definition in Section 3) on the quality of the partition rec-
ommendations for the TPC-H workload when using MESA. From
Figure 14 we can see that 1GB and 5GB replication bounds im-
prove the quality of the recommendations by MESA over 0GB
(when no replication is allowed). This is due to replicating nation
and region (which are under 1GB bound) and additionally supplier
(under 5GB bound). However, the subsequent increases in the stor-
age bound do not result in smaller cost final recommendations.
While customer and part tables could be replicated under 30GB
and 50GB bounds, the optimizer returns higher costs for such con-
figurations.

6.3 Performance of MESA

In this section we report several experimental results on the per-
formance aspects of our technique.

6.3.1 Workload MEMO Construction Overhead

To evaluate the overhead of creating the workload MEMO, we op-
timize each of the workloads in normal mode and compared it
to the overhead of the first optimization with MESA (which in-
cludes creating workload MEMO). Figure 15 shows the overheads of
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the workload MEMO construction compared to the total optimization
time. While this overhead is specific to the MESA algorithm and
does not appear in alternative approaches, the subsequent speedup
in reoptimization time quickly amortizes this initial overhead. We
can see that the workload MEMO construction time is no more than
1.4 times that of a regular what-if optimization call (and in most
cases is around 1.2x). Assuming that subsequent optimization calls
for the same query using workload MEMO are cheap (see the next
sub-section), after just a couple of optimization calls we can com-
pletely amortize the additional overhead of creating workload MEMO.
In contrast, shallow integration approaches, like GA and RANK,
will incur a traditional optimization call overhead (depicted in red
in Figure 15) for every new partitioning configuration.
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Figure 15: Time overhead of workload MEMO creation.

6.3.2 Subsequent Reoptimization Calls

We now measure the average time to produce plans and costs
in regular optimization mode and when using workload veMO0. For
that purpose, we compared the time to optimize each of the queries
under the workload MEMO against the regular optimizer. We used
several different configurations considered by partitioning advisor
and averaged the results. Figure 16 shows that obtaining the work-
load MEMO is effective in reducing the total time spent in producing
a parallel query plan. We can see from Figure 16 that the average
speedup per query when using workload MEMO varies from 3.5x to
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19x. To put these numbers in perspective, Table 5 shows the total
number of optimizations with the workload MEMO that are possible
per regular optimization for a randomly picked set of queries (from
various workloads), including the first call to obtain the workload
MEMO. From Table 5 we can see that we get 6x improvement for
TPCH-H(Q2), 90x for TPC-DS(Q4), 15x for L’Oreal(Q3) and 14x
for MSSales(Q5) when using MESA’s fast evaluation mechanism.
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at-if Opt. Time 27 queries
200

50 queries

150
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Figure 16: Speedup of subsequent optimizations

using workload MEMO.
Orig. TPCH-H(Q2) TPC-DS(Q4) LOreal(Q3) MSSales(Q5)
1 0 0 0 0
2 13 180 30 28
3 20 270 46 3
4 27 360 61 57
5 34 450 77 71

Table 5: Total number of optimizations with workload MEMO
per regular optimization call

7. EXTENSIONS

For ease of presentation, we so far have addressed a slightly sim-
plified scenario. We now discuss extensions that generalize the ap-
plicability of our approach.

Updates: Throughout the presentation we assumed that workloads
do not contain updates. While shared-nothing parallel systems are
typically used for mostly read workloads, we still need to address
updates in the partitioning tool. The main impact of an update is
that some (or all) partitions of a distributed table must be updated,
and if a table is replicated, all copies must be kept in sync with
each other. The cost estimations by the parallel optimizer take this
aspect into account when evaluating a given partitioning configura-
tion. The only variation applies to *-partitioned tables. To obtain
the lower bounds, we do not assign an update cost to tables that are
*-partitioned in the input configuration, but instead calculate the
minimum update cost for such table (under any possible configura-
tion) and use that value to obtain the lower bound.

Multi-Column Partitioning: The original MESA algorithm con-
siders single-column partitioning strategies to align with the current
query processing capabilities of the underlying MPP engine. In
general, however, we can partition a table using multiple columns.
During parallel post-processing step, we identify candidate column
sets that we can use to partition each table (e.g., multi-join pred-
icates or group-by clauses). Then, during the branch-and-bound
algorithm, we additionally instantiate such alternatives in Line 6
(in Figure 9). An important consideration is that some partitioning
strategies which are not optimal for any query in the workload can
be part of the globally optimal configuration. Suppose that some
query requires partitioning on columns (a,c) and another query re-
quires (a,d). If one of such strategies is implemented, one query
would not be able to leverage the layout and would resort to large



data movements. Alternatively, if we partition by column (a), both
queries would be able to leverage such strategy resulting in bet-
ter performance. To incorporate such candidates, we intersect the
original partitioning column sets and incorporate the results as new
candidates in line 6 (such merged candidates are always ranked af-
ter the original ones). This candidate generation can be done by the
merging technique of [25], or by lazily generating alternatives.
Range Partitioning: So far, we considered hash-based partition-
ing strategies. However, other partitioning methods could be useful
in an appliance as well. In range partitioning, rows are mapped to
partitions based on ranges of column values. This type of partition-
ing is useful when dealing with data that has logical partitioning
ranges (e.g., months of the year). Performance is best when the
data evenly distributes across the range. If partitioning by range
causes partitions to vary dramatically in size because of unequal
distribution, then other partitioning methods should be considered.
Similar to hash-based partitioning, range-based partitioning option
can be considered in MESA. To represent range partitions, we need
to additionally specify the partition bounds (which can be obtained
by leveraging equi-depth histograms).

Interaction With Other Physical Design Structures: Modern
database systems support a number of different physical structures,
such as indexes, materialized views, etc. These structures can con-
tribute substantially to the combinatorial explosion of physical de-
sign search space, and can be recommended either in isolation or
integrated into a combined search space together with partitioning.
Some studies in the literature suggest that the degree of dependency
among different physical structures can be leveraged in tuning [14].
Specifically, some physical structures can be strongly dependent on
each other (if a change in selection of the former affects the latter),
while others weakly depend on each other. Mutual strong depen-
dencies are difficult to break and thus are better handled by using
a combined approach. If only B strongly depends on A, we can it-
eratively search A followed by B, so that B is properly influenced
by A. Weakly coupled components can be scheduled separately
in any order. In [14], it is argued that partitioning (specially in
the context of a MPP) weakly interacts with indexes. Therefore, a
practical design advisor might choose to recommend partitioning
(using MESA) followed by a subsequent index tuning step.

8. RELATED WORK

While there has been a lot of work done in the area of automat-
ing physical database design on a single database server [8, 12, 9,
25, 10, 27], much less attention has been given to the problem of
database tuning in distributed environments [11, 31, 25]. To the
best of our knowledge, the closest study to this paper is by Rao
et.al [25]. Section 4 contains a detailed description of this work.

Vertica Database Designer [5] automatically selects physical de-
sign for vertically partitioned tables, specifically, it finds a good set
of overlapping projections for a table based on representative work-
load. It determines projections that optimize performance of sam-
ple workload, which columns and joins they will contain, and how
each projection should be sorted and compressed. Unfortunately,
the technical details of the Vertica DB Designer are not public.

Agrawal et.al introduced an approach that integrates vertical and
horizontal partitioning into automated physical database design on
a single node environment [9]. The focus of this work significantly
varies from our problem statement, because [9] focuses on manage-
ability on a single node machine, focusing on the index alignment
aspect, where indexes are horizontally partitioned in the same way
as the underlying tables. This problem is orthogonal to the problem
we address in this paper. Our work and [9] are complementary, and
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we could integrate their approach to incorporate alignment together
with partitioning on multiple nodes.

Recently, Curino et.al proposed Schism partitioning system for
OLTP workloads [11]. The main idea in Schism is to represent a
database and its workload as a graph, where tuples (or groups of tu-
ples) are represented by nodes and transactions are represented by
edges connecting the tuples used within the transaction. The idea
is to apply a graph partitioning algorithm to find balanced parti-
tions that minimize the weight of cut edges (to minimize the num-
ber of multi-sited transactions). While the proposed approach is
targeting a related problem, its focus is on extremely fine-grained
partitioning beneficial for OLTP workloads, where transactions are
short-running and touch very few tuples. We, however, focus on
complex long-running SQL queries that access large amounts of
data (a typical scenario in large data warehouse environments).

Ghandeharizadeh et.al proposed the hybrid-range partitioning strat-
egy in [26], which is a hybrid approach to hash- and range-partitioning
based on query analysis. The approach attempts to decluster (run in
parallel on several nodes) long-running queries and localize small
range queries. The applicability, however, is limited to single-table
range queries over one dimension, and do not consider replication.

The second broad area that relates to our work includes dis-
tributed architectures and distributed query processing [15, 17, 7,
20, 16, 30, 24, 28, 6]. While most of these techniques focus on
optimizing parallel query execution in distributed environments,
largely they assume that databases have been optimally partitioned
to start with. However, if initially data is placed in sub-optimal
way, the subsequent query executions may be performing a lot of
data movements and the overall system performance may dramati-
cally decrease.

9. CONCLUSION

In this paper we describe techniques for finding the best parti-
tioning configuration in distributed environments. Our approach
relies on deep integration with the parallel query optimizer, using
its internal MEMO data structure for faster evaluation of partition-
ing configurations and to provide lower bounds during a branch
and bound search strategy. Our experiments show that MESA pro-
duces high-quality recommendations in reasonable amounts of time
outperforming shallowly-integrated tuning approaches, which face
long delays waiting for the optimizer to perform “what-if” opti-
mizations.
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