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To think is easy, to act is hard.
The hardest is to act in accordance with your thinking.
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Foreword

Over ten years ago, Malik Ghallab, Dana Nau, and Paolo Traverso gave us
the first—and to date only—comprehensive textbook dedicated to the field
of Automated Planning, providing a much needed resource for students,
researchers and practitioners. Since then, this rich field has continued to
evolve rapidly. There is now a unified understanding of what once seemed
disparate work on classical planning. Models and methods to deal with
time, resources, continuous change, multiple agents, and uncertainty have
substantially matured. Cross-fertilization with other fields such as software
verification, optimization, machine learning, and robotics has become the
rule rather than the exception. A phenomenal range of applications could
soon be within reach—given the right future emphasis for the field.

Today, the authors are back with a new book, Automated Planning and
Acting. As the title indicates, this is not a mere second edition of the older
book. In line with the authors’ analysis of where the future emphasis should
lie for the field to realize its full impact, the book covers deliberative compu-
tational techniques for both planning and acting, that is for deciding which
actions to perform and also how to perform them. Automated Planning and
Acting is more than a graduate textbook or a reference book. Not only
do the authors outstandingly discharge their duties of educating the reader
about the basics and much of the recent progress in the field, but they also
propose a new framework from which the community can start to intensify
research on deliberative acting and its integration with planning.

These aims are reflected in the book’s content. The authors put the
integration of planning and acting at the forefront by dedicating an entire
chapter to a unified hierarchical model and refinement procedures that suit
the needs of both planning and acting functions. Each chapter devoted to
a particular class of representations also includes significant material on the
integration of planning and acting using these representations. Overall, the
book is more focused than its predecessor, and explores in even greater depth
models and approaches motivated by the needs of planning and acting in
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the real world, such as handling time and uncertainty. At the same time,
the authors successfully balance breadth and depth by providing an elegant,
concise synthesis of a larger body of work than in their earlier text.

There is no doubt that Automated Planning and Acting will be the text
I require my students to read when they first start, and the goto book on
my shelf for my own reference. As a timely source of motivation for game-
changing research on the integration of planning and acting, it will also help
shape the field for the next decade.

Sylvie Thiébaux
The Australian National University
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Preface

This book is about methods and techniques that a computational agent can
use for deliberative planning and acting, that is, for deciding both which
actions to perform and how to perform them, to achieve some objective.
The study of deliberation has several scientific and engineering motivations.

Understanding deliberation is an objective for most cognitive sciences. In
artificial intelligence research, this is done by modeling deliberation through
computational approaches to enable it and to allow it to be explained. Fur-
thermore, the investigated capabilities are better understood by mapping
concepts and theories into designed systems and experiments to test empir-
ically, measure, and qualify the proposed models.

The engineering motivation for studying deliberation is to build systems
that exhibit deliberation capabilities and develop technologies that address
socially useful needs. A technological system needs deliberation capabilities
if it must autonomously perform a set of tasks that are too diverse — or must
be done in environments that are too diverse — to engineer those tasks into
innate behaviors. Autonomy and diversity of tasks and environments is a
critical feature in many applications, including robotics (e.g., service and
personal robots; rescue and exploration robots; autonomous space stations,
satellites, or vehicles), complex simulation systems (e.g., tutoring, training
or entertainment), or complex infrastructure management (e.g., industrial
or energy plants, transportation networks, urban facilities).

Motivation and Coverage

The coverage of this book derives from the view we advocated in our previous
work [230], which we now briefly summarize.

Automated planning is a rich technical field, which benefits from the
work of an active and growing research community. Some areas in this field
are extensively explored and correspond to a number of already mature
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techniques. However, there are other areas in which further investigation
is critically needed if automated planning is to have a wider impact on a
broader set of applications. One of the most important such areas, in our
view, is the integration of planning and acting. This book covers several
different kinds of models and approaches — deterministic, hierarchical, tem-
poral, nondeterministic and probabilistic — and for each of them, we discuss
not only the techniques themselves but also how to use them in the integra-
tion of planning and acting.

The published literature on automated planning is large, and it is not
feasible to cover all of it in detail in a single book. Hence our choice of what
to cover was motivated by putting the integration of planning and acting
at the forefront. The bulk of research on automated planning is focused
on a restricted form called classical planning, an understanding of which is
prerequisite introductory material, and we cover it in part of Chapter 2. But
we have devoted large parts of the book to extended classes of automated
planning and acting that relax the various restrictions required by classical
planning.

There are several other kind of deliberation functions, such as monitor-
ing, reasoning about one’s goals, reasoning about sensing and information-
gathering actions, and learning and otherwise acquiring deliberation models.
Although these are not our focus, we cover them briefly in Chapter 7.

The technical material in this book is illustrated with examples inspired
from concrete applications. However, most of the technical material is the-
oretical. Case studies and application-oriented work would certainly enrich
the integration of planning and acting view developed in here. We plan to
devote a forthcoming volume to automated planning and acting applications.

Using This Book

This work started as a textbook project, to update our previous textbook
on automated planning [231]. Our analysis of the state of the art led us
quickly to embrace the objective of covering planning and acting and their
integration and, consequently, to face two obstacles:

e The first problem was how to cover a domain whose scope is not easily
amenable to a sharp definition and that requires integrating conceptu-
ally heterogenous models and approaches. In contrast to our previous
book, which was focused on planning, this one proved harder to con-
verge into a reasonably united perspective.

e The second problem was how to combine a textbook approach, that

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.


http://cambridge.org/9781107037274

XX Preface

is, a coherent synthesis of the state of the art, with the development of
new material. Most of this new material is presented in comprehensive
detail (e.g., in Chapter 3) consistent with a textbook use. In a few
parts (e.g., Section 4.5.3), this new material is in preliminary form and
serves as an invitation for further research.

This book can be used as a graduate-level textbook and as an infor-
mation source for scientists and professionals in the field. We assume the
reader to be familiar with the basic concepts of algorithms and data struc-
tures at the level that one might get in an undergraduate-level computer
science curriculum. Prior knowledge of heuristic search techniques would
also be helpful, but is not strictly necessary because the appendices provide
overviews of needed tools.

A complete set of lecture slides for this book and other auxiliary materials
are available online.
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Chapter 1

Introduction

This chapter introduces informally the concepts and technical material de-
veloped in the rest of the book. It discusses in particular the notion of
deliberation, which is at the core of the interaction between planning and
acting. Section 1.1 motivates our study of deliberation from a computa-
tional viewpoint and delineates the scope of the book. We then introduce
a conceptual view of an artificial entity, called an actor, capable of acting
deliberately on its environment, and discuss our main assumptions. Delib-
eration models and functions are presented next. Section 1.4 describes two
application domains that will be simplified into illustrative examples of the
techniques covered in rest of the book.

1.1 Purpose and Motivations

1.1.1 First Intuition

What is deliberative acting? That is the question we are studying in this
book. We address it by investigating the computational reasoning principles
and mechanisms supporting how to choose and perform actions.

We use the word action to refer to something that an agent does, such
as exerting a force, a motion, a perception or a communication, in order to
make a change in its environment and own state. An agent is any entity
capable of interacting with its environment. An agent acting deliberately is
motivated by some intended objective. It performs one or several actions
that are justifiable by sound reasoning with respect to this objective.

Deliberation for acting consists of deciding which actions to undertake
and how to perform them to achieve an objective. It refers to a reasoning
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process, both before and during acting, that addresses questions such as the
following;:

e If an agent performs an action, what will the result be?

e Which actions should an agent undertake, and how should the agent
perform the chosen actions to produce a desired effect?

Such reasoning allows the agent to predict, to decide what to do and how do
it, and to combine several actions that contribute jointly to the objective.
The reasoning consists of using predictive models of the agent’s environment
and capabilities to simulate what will happen if the agent performs an action.
Let us illustrate these abstract notions intuitively.

Example 1.1. Consider a bird in the following three scenes:
e To visually track a target, the bird moves its eyes, head, and body.

e To get some food that is out of reach, the bird takes a wire rod, finds
a wedge to bend the wire into a hook, uses the hook to get the food.

e To reach a worm floating in a pitcher, the bird picks up a stone and
drops it into the pitcher, repeats with other stones until the water has
risen to a reachable level, and then picks up the worm. O

Example 1.1 mentions actions such as moving, sensing, picking, bending
and throwing. The first scene illustrates a precise coordination of motion
and sensing that is called visual servoing. This set of coordinated actions
is certainly purposeful: it aims at keeping the target in the field of view.
But it is more reactive than deliberative. The other two scenes are sig-
nificantly more elaborate: they demand reasoning about causal relations
among interdependent actions that transform objects, and the use of these
actions to achieve an objective. They illustrate our intuitive notion of acting
deliberately.

The mechanisms for acting deliberately have always been of interest to
philosophy.! They are a subject of intense research in several scientific
disciplines, including biology, neuroscience, psychology, and cognitive sci-
ences. The deliberative bird behaviors of Example 1.1 have been observed
and studied from the viewpoint of how deliberative capabilities are devel-
oped, in species of corvids such as crows [597] or rooks [71, 70]. Numerous
other animal species have the ability to simulate their actions and deliber-

In particular, the branch of philosophy called action theory, which explores questions
such as, “What is left over if I subtract the fact that my arm goes up from the fact that
I raise my arm?” [610].
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ate on the basis of such simulations.? The sophisticated human deliberation
faculties are the topic of numerous research, in particular regarding their
development in infants and babies, starting from the work of Piaget (as in
[478, 479]) to the recent diversity of more formal psychology models (e.g.,
[563, 19, 461]).

We are interested here in the study of computational deliberation capa-
bilities that allow an artificial agent to reason about its actions, choose them,
organize them purposefully, and act deliberately to achieve an objective. We
call this artificial agent an actor. This is to underline the acting functions on
which we are focusing and to differentiate them from the broader meaning
of the word “agent.” We consider physical actors such as robots, as well as
abstract actors that act in simulated or virtual environments, for example,
through graphic animation or electronic Web transactions. For both kinds
of actors, sensory-motor functions designate in a broad sense the low-level
functions that implement the execution of actions.

1.1.2 Motivations

We address the issue of how an actor acts deliberately by following the
approaches and methods of artificial intelligence (AI). Our purpose proceeds
from the usual motivations of Al research, namely:

e To understand, through effective formal models, the cognitive capa-
bilities that correspond to acting deliberately.

e To build actors that exhibit these capabilities.
e To develop technologies that address socially useful needs.

Understanding deliberation is an objective for most cognitive sciences.
The specifics of Al are to model deliberation through computational ap-
proaches that allow us to explain as well as to generate the modeled capa-
bilities. Furthermore, the investigated capabilities are better understood by
mapping concepts and theories into designed systems and experiments to
test empirically, measure, and qualify the proposed models. The technologi-
cal motivation for endowing an artificial actor with deliberation capabilities
stems from two factors:

e autonomy, meaning that the actor performs its intended functions
without being directly operated by a person, and

2In the interesting classification of Dennett [150], these species are called Popperian,
in reference to the epistemologist Karl Popper.
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e diversity in the tasks the actor can perform and the environments in
which it can operate.

Without autonomy, a directly operated or teleoperated device does not
usually need to deliberate. It simply extends the acting and sensing capa-
bilities of a human operator who is in charge of understanding and decision
making, possibly with the support of advice and planning tools, for example,
as in surgical robotics and other applications of teleoperation.

An autonomous system may not need deliberation if it operates only
in the fully specified environment for which it has been designed. Man-
ufacturing robots autonomously perform tasks such as painting, welding,
assembling, or servicing a warehouse without much deliberation. Similarly,
a vending machine or a driverless train operates autonomously without a
need for deliberation. For these and similar examples of automation, delib-
eration is performed by the designer. The system and its environment are
engineered so that the only variations that can occur are those accounted for
at the design stage in the system’s predefined functioning envelope. Diver-
sity in the environment is not expected. A state outside of the functioning
envelope puts the system into a failure mode in which a person takes delib-
erate actions.

Similarly, a device designed for a unique specialized task may perform
it autonomously without much deliberation, as long the variations in its
environment are within its designed range. For example, a vacuum-cleaning
or lawn mowing robot does not deliberate, but it can cope autonomously
with its specialized tasks in a reasonable range of lawns or floors. However,
it may cease to function properly when it encounters a slippery floor, a steep
slope, or any condition outside of the range for which it was designed.

When a designer can account, within some functioning envelope, for all
the environments and tasks a system will face and when a person can be in
charge of deliberating outside of this envelope, by means of teleoperation or
reprogramming, then deliberation generally is not needed in the system it-
self. Such a system will be endowed with a library of reactive behaviors (e.g.,
as the bird’s visual target tracking in Example 1.1) that cover efficiently its
functioning envelope. However, when an autonomous actor has to face a
diversity of tasks, environments and interactions, then achieving its purpose
will require some degree of deliberation. This is the case in many robotics
applications, such as service and personal robots, rescue and exploration
robots, autonomous space stations and satellites, or even driverless cars.
This holds also for complex simulation systems used in entertainment (e.g.,
video games) or educational applications (serious games). It is equally ap-
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plicable to many control systems that manage complex infrastructures such
as industrial or energy plants, transportation networks, and urban facilities
(smart cities).

Autonomy, diversity in tasks and environments, and the need for de-
liberation are not binary properties that are either true or false. Rather,
the higher the need for autonomy and diversity, the higher the need for
deliberation. This relationship is not restricted to artificial systems. Nu-
merous natural species (plants and some invertebrates such as sponges or
worms) have been able to evolve to fit into stable ecological niches, appar-
ently without much deliberation. Species that had to face rapid changes in
their environment and to adapt to a wide range of living conditions had to
develop more deliberation capabilities.

1.1.3 Focus and Scope

We address deliberation from an Al viewpoint. Our focus is on the rea-
soning functions required for acting deliberately. This focus involves two
restrictions:

e We are not interested in actions that consists solely of internal com-
putations, such as adding “2 4+ 3” or deducing that “Socrates is mor-
tal.” These computations are not actions that change the state of the
world.> They can be used as part of the actor’s deliberation, but we
take them as granted and outside of our scope.

e We are not concerned with techniques for designing the sensing, ac-
tuation, and sensory-motor control needed for the low-level execution
of actions. Sensory-motor control (e.g., the visual servoing of Exam-
ple 1.1) can be essential for acting, but its study is not within our
scope. We assume that actions are performed with a set of primitives,
which we will call commands, that implement sensory-motor control.
The actor performs its actions by executing commands. To deliberate,
it relies on models of how these commands work.

The scope of this book is not limited to the most studied deliberation
function, which is planning what actions to perform. Planning consists of
choosing and organizing the actions that can achieve a given objective. In
many situations, there is not much need for planning: the actions to perform
are known. But there is a need for significant deliberation in deciding how
to perform each action, given the context and changes in the environment.

3The borderline between computational operations and actions that change the external
world is not as sharp for an abstract actor as for a physical one.
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We develop the view that planning can be needed for deliberation but is
seldom sufficient. We argue that acting goes beyond the execution of low-
level commands.

Example 1.2. Dana finishes breakfast in a hotel restaurant, and starts
going back to his room. On the way, he notices that the elevator is not on
his floor and decides to walk up the stairs. After a few steps he becomes
aware that he doesn’t have his room key which he left on the breakfast table.
He goes back to pick it up. O

In this example, the actor does not need to plan the simple task of going
to his room. He continually deliberates while acting: he makes opportunistic
choices, simulates in advance and monitors his actions, stops when needed
and decides on alternate actions.

Deliberation consists of reasoning with predictive models as well as ac-
quiring these models. An actor may have to learn how to adapt to new
situations and tasks, as much as to use the models it knows about for its de-
cision making. Further, even if a problem can be addressed with the actor’s
generic models, it can be more efficient to transform the explicit computa-
tions with these models into low-level sensory-motor functions. Hence, it is
natural to consider learning to act as a deliberation function. Section 7.3
offers a brief survey on learning and model acquisition for planning and
acting. However, our focus is on deliberation techniques using predefined
models.

1.2 Conceptual View of an Actor

1.2.1 A Simple Architecture

An actor interacts with the external environment and with other actors. In
a simplified architecture, depicted in Figure 1.1(a), the actor has two main
modules: a set of deliberation functions and an execution platform.

The actor’s sensory-motor functions are part of its execution platform.
They transform the actor’s commands into actuations that execute its ac-
tions (e.g., the movement of a limb or a virtual character). The execution
platform also transforms sensed signals into features of the world (e.g., to
recognize a physical or virtual object, or to query information from the
Web). The capabilities of the platform are explicitly described as models of
the available commands.

Deliberation functions implement the reasoning needed to choose, or-
ganize, and perform actions that achieve the actor’s objectives, to react
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Figure 1.1: Conceptual view of an actor (a); its restriction to planning and
acting (b).

adequately to changes in the environment, and to interact with other ac-
tors, including human operators. To choose and execute commands that
ultimately achieve its objectives, the actor needs to perform a number of
deliberation functions. For example, the actor must commit to intermediate
goals, plan for those goals, refine each planned action into commands, re-
act to events, monitor its activities to compare the predicted and observed
changes, and decide whether recovery actions are needed. These deliberation
functions are depicted in Figure 1.1(b) as two main functions: planning and
acting. The acting function is in charge of refining actions into commands,
reacting to events, and monitoring.

1.2.2 Hierarchical and Continual Online Deliberation

The view presented in Section 1.2.1 can be a convenient first approach for
describing an actor, but one must keep in mind that it is an oversimplifica-
tion.

Example 1.3. To respond to a user’s request, a robot has to bring an object
o7 to a location room?2 (see Figure 1.2). To do that, it plans a sequence of
abstract actions such as “navigate to,” “fetch,” and “deliver.” One of these
refines into “move to door,” “open door,” “get out,” and “close door.” Once
the robot is at the door, it refines the “open door” action appropriately for
how it perceives that particular door.
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Figure 1.2: Multiple levels of abstraction in deliberative acting. Each solid
red arrow indicates a refinement of an abstract action into more concrete
ones. Each dashed blue arrow maps a task into a plan of actions.

The robot’s deliberation can be accomplished by a collection of hierar-
chically organized components. In such a hierarchy, a component receives
tasks from the component above it, and decides what activities need to be
performed to carry out those tasks. Performing a task may involve refining
it into lower-level steps, issuing subtasks to other components below it in the
hierarchy, issuing commands to be executed by the platform, and reporting
to the component that issued the task. In general, tasks in different parts
of the hierarchy may involve concurrent use of different types of models and
specialized reasoning functions. O

This example illustrates two important principles of deliberation: hier-
archical organization and continual online processing.
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e Hierarchically organized deliberation. Some of the actions the actor
wishes to perform do not map directly into a command executable
by its platform. An action may need further refinement and plan-
ning. This is done online and may require different representations,
tools, and techniques from the ones that generated the task. A hierar-
chized deliberation process is not intended solely to reduce the search
complexity of offline plan synthesis. It is needed mainly to address
the heterogeneous nature of the actions about which the actor is de-
liberating, and the corresponding heterogeneous representations and
models that such deliberations require.

e Continual online deliberation. Only in exceptional circumstances will
the actor do all of its deliberation offline before executing any of its
planned actions. Instead, the actor generally deliberates at runtime
about how to carry out the tasks it is currently performing. The delib-
eration remains partial until the actor reaches its objective, including
through flexible modification of its plans and retrials. The actor’s pre-
dictive models are often limited. Its capability to acquire and maintain
a broad knowledge about the current state of its environment is very
restricted. The cost of minor mistakes and retrials are often lower
than the cost of extensive modeling, information gathering, and thor-
ough deliberation. Throughout the acting process, the actor refines
and monitors its actions; reacts to events; and extends, updates, and
repairs its plan on the basis of its perception focused on the relevant
part of the environment.

Different parts of the actor’s hierarchy often use different representations
of the state of the actor and its environment. These representations may
correspond to different amounts of detail in the description of the state
and different mathematical constructs. In Figure 1.2, a graph of discrete
locations may be used at the upper levels, while the lower levels may use
vectors of continuous configuration variables for the robot limbs.

Finally, because complex deliberations can be compiled down by learning
into low-level commands, the frontier between deliberation functions and the
execution platform is not rigid; it evolves with the actor’s experience.

1.2.3 Assumptions

We are not seeking knowledge representation and reasoning approaches that
are effective across every kind of deliberation problem and at every level of a
hierarchically organized actor. Neither are we interested in highly specialized
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actors tailored for a single niche, because deliberation is about facing diver-
sity. Instead, we are proposing a few generic approaches that can be adapted
to different classes of environments and, for a given actor, to different levels
of its deliberation. These approaches rely on restrictive assumptions that
are needed from a computational viewpoint, and that are acceptable for the
class of environments and tasks in which we are interested.

Deliberation assumptions are usually about how variable, dynamic, ob-
servable, and predictable the environment is, and what the actor knows and
perceives about it while acting. We can classify them into assumptions re-
lated to the dynamics of the environment, its observability, the uncertainty
managed in models, and how time and concurrency are handled.

e Dynamics of the environment. An actor may assume to be in a static
world except for its own actions, or it may take into account exogenous
events and changes that are expected and/or observed. In both cases
the dynamics of the world may be described using discrete, continu-
ous or hybrid models. Of these, hybrid models are the most general.
Acting necessarily involves discontinuities in the interaction with the
environment,* and these are best modeled discretely. But a purely dis-
crete model abstracts away continuous processes that may also need
to be modeled.

e Observability of the environment. It is seldom the case that all the
information needed for deliberation is permanently known to the ac-
tor. Some facts or parameters may be always known, others may be
observable if specific sensing actions are performed, and others will
remain hidden. The actor may have to act on the basis of reasonable
assumptions or beliefs regarding the latter.

o Uncertainty in knowledge and predictions. No actor is omniscient. It
may or may not be able to extend its knowledge with specific actions.
It may or may not be able to reason about the uncertainty regard-
ing the current state of the world and the predicted future (e.g., with
nondeterministic or probabilistic models). Abstracting away uncer-
tainty during a high-level deliberation can be legitimate if the actor
can handle it at a lower level and correct its course of action when
needed.

o Time and concurrency. Every action consumes time. But delibera-
tion may or may not need to model it explicitly and reason about its
flow for the purpose of meeting deadlines, synchronizing, or handling

4Think of the phases in a walking or grasping action.
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concurrent activities.

Different chapters of the book make different assumptions about time,
concurrency, and uncertainty. Except for Section 7.4 on hybrid models, we’ll
restrict ourself to discrete approaches. This is consistent with the focus and
scope discussed in Section 1.1.3, because it is primarily in sensory-motor
functions and commands that continuous models are systematically needed.

1.3 Deliberation Models and Functions

1.3.1 Descriptive and Operational Models of Actions

An actor needs predictive models of its actions to decide what actions to
do and how to do them. These two types of knowledge are expressed with,
respectively, descriptive and operational models.

e Descriptive models of actions specify the actor’s “know what.” They
describe which state or set of possible states may result from perform-
ing an action or command. They are used by the actor to reason about
what actions may achieve its objectives.

e Operational models of actions specify the actor’s “know how.” They
describe how to perform an action, that is, what commands to execute
in the current context, and how organize them to achieve the action’s
intended effects. The actor relies on operational models to perform
the actions that it has decided to perform.

In general, descriptive models are more abstract than operational mod-
els. Descriptive models abstract away the details, and focus on the main
effects of an action; they are useful at higher levels of a deliberation hierar-
chy. This abstraction is needed because often it is too difficult to develop
very detailed predictive models, and because detailed models require infor-
mation that is unknown at planning time. Furthermore, reasoning with
detailed models is computationally very complex. For example, if you plan
to take a book from a bookshelf, at planning time you will not be concerned
with the available space on the side or on the top of the book to insert your
fingers and extract the book from the shelf. The descriptive model of the
action will abstract away these details. It will focus on where the book is,
whether it is within your reach, and whether you have a free hand with
which to pick it up.

The simplifications allowed in a descriptive model are not possible in an
operational model. To actually pick up the book, you will have to determine
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precisely where the book is located in the shelf, which positions of your
hand and fingers are feasible, and which sequences of precise motions and
manipulations will allow you to perform the action.

Furthermore, operational models may need to include ways to respond
to erogenous events, that is, events that occur because of external factors
beyond the actor’s control. For example, someone might be standing in front
of the bookshelf, the stool that you intended to use to reach the book on a
high shelf might be missing, or any of a potentially huge number of other
possibilities might interfere with your plan.

In principle, descriptive models can take into account the uncertainty
caused by exogenous events, for example, through nondeterministic or prob-
abilistic models (see Chapters 5 and 6), but the need to handle exogenous
events is much more compelling for operational models. Indeed, exogenous
events are often ignored in descriptive models because it is impractical to
try to model all of the possible joint effects of actions and exogenous events,
or to plan in advance for all of the contingencies. But operational models
must have ways to respond to such events if they happen, because they can
interfere with the execution of an action. In the library example, you might
need to ask someone to move out of the way, or you might have to stand on
a chair instead of the missing stool.

Finally, an actor needs descriptive models of the available commands in
order to use them effectively, but in general it does not need their operational
models. Indeed, commands are the lower-level sensory-motor primitives em-
bedded in the execution platform; their operational models correspond to
what is implemented in these primitives. Taking this remark to the extreme,
if one assumes that every known action corresponds to an executable com-
mand, then all operational models are embedded in the execution platform
and can be ignored at the deliberation level. This assumption seldom holds.

1.3.2 Description of States for Deliberation

To specify both descriptive and operational models of actions, we will use
representational primitives that define the state of an actor and its environ-
ment; these are called state variables. A state variable associates a relevant
attribute of the world with a value that changes over time. The definition
of a state with state variables needs to include enough details for the actor’s
deliberations, but it does not need to be, nor can it be, exhaustive.

In a hierarchically organized actor, different deliberative activities may
need different amounts of detail in the state description. For example, in
actions such as “grasp knob” and “turn knob” at the bottom of Figure 1.2,
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to choose the commands for grasping and operating the handle, the actor
needs to reason about detailed parameters such as the robot’s configuration
coordinates and the position and shape of the door handle. Higher up, where
the actor refines “bring o7 to room2” into actions such as “go to hallway”
and “navigate to rooml,” such details are not needed. It is more conve-
nient there to reason about the values of more abstract variables, such as
location(robot) = room1 or position(door) = closed. To establish correspon-
dences between these abstract variables and the detailed ones, the actor
could have definitions saying, for example, that location(robot) = rooml
corresponds to a particular area in an Euclidean reference frame.

The precise organization of a hierarchy of data structures and state rep-
resentations is a well-known area in computer science (e.g., [522]). It may
take different forms in application domains such as robotics, virtual reality,
or geographic information systems. Here, we’ll keep this point as simple as
possible and assume that at each part of an actor’s deliberation hierarchy,
the state representation includes not only the variables used in that part
of the hierarchy (e.g., the robot’s configuration coordinates at the bottom
of Figure 1.2), but also the variables used higher up in the hierarchy (e.g.,
location(robot)).

An important issue is the distinction and correspondence between pre-
dicted states and observed states. When an actor reasons about what might
happen and simulates changes of state to assess how desirable a course of
action is, it uses predicted states. When it reasons about how to perform
actions in some context, it relies on observed states; it may contrast its ob-
servations with its expectations. Predicted states are in general less detailed
than the observed one; they are obtained as a result of one or several pre-
dictions starting from an abstraction of the current observed state. To keep
the distinction clear, we’ll use different notations:

e s € S is a predicted state;

e £ € = is an observed state.

Because of partial and inaccurate observations, there can be uncertainty
about the present observed state as well as about the future predicted states.
Furthermore, information in a dynamic environment is ephemeral. Some of
the values in £ may be out-of-date: they may refer to things that the actor
previously observed but that it cannot currently observe. Thus, £ is the
state of the actor’s knowledge, rather than the true state of the world. In
general, the actor should be endowed with appropriate means to manage
the uncertainty and temporality of the data in &.
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Observability is an additional issue. As underlined in Section 1.2.3, some
information relevant to the actor’s behavior can be momentarily or perma-
nently hidden; it must be indirectly inferred. In the general case, the design
of an actor should include the following distinctions among state variables:

e A variable is invisible if it is not observable but can only be estimated
from observations and a priori information.

e A wvariable is observable if its value can be obtained by performing
appropriate actions. At various points, it may be either wvisible if its
value is known to the actor, or hidden if the actor must perform an
observation action to get its value.

For simplicity, we’ll start out by assuming that the values of all state vari-
ables are precisely known at every moment while acting. Later in the book,
we’ll consider more realistically that some state variables are observable but
can only be observed by performing some specific actions. In Chapter 5,
we deal with a specific case of partial observability: in Section 5.8.4, we
transform a partially observable domain into an abstracted domain whose
states are sets of states. We also examine (in Chapter 6) the case in which
some state variables are permanently or momentarily observable but others
remain hidden. The class of models known as partially observable models,
in which every state variable is assumed to be either always known or always
hidden, is discussed in Section 6.8.3.

1.3.3 Planning Versus Acting

The simple architecture of Figure 1.1(b) introduces planning and acting
as respectively finding what actions to perform and how to refine chosen
actions into commands. Here, we further discuss these two functions, how
they differ, and how they can be associated in the actor’s deliberation.

The purpose of planning is to synthesize an organized set of actions
to carry out some activity. For instance, this can be done by a lookahead
procedure that combines prediction steps (Figure 1.3: when in state s, action
a is predicted to produce state s’) within a search through alternative sets
of actions for a set that leads to a desired goal state.

Planning problems vary in the kinds of actions to be planned for, the
kinds of predictive models that are needed, and the kinds of plans that
are considered satisfactory. For some kinds of problems, domain-specific
planning methods have been developed that are tailor-made for that kind
of problem. For instance, motion planning synthesizes a geometric and
kinematic trajectory for moving a mobile system (e.g., a truck, a robot,
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Figure 1.3: Planning as a combination of prediction steps and a search
mechanism.

or a virtual character); perception planning synthesizes an organized set of
sensing and interpretation actions to recognize an object or to build a three-
dimensional model of a scene; infrastructure planning synthesizes plans to
deploy and organize facilities, such as a public transportation infrastructure,
to optimize their usage or to meet the needs of a community. Many other
such examples can be given, such as flight navigation planning, satellite
configuration planning, logistics planning, or industrial process planning.

There are, however, commonalities to many forms of planning. Domain-
independent planning tries to grasp these commonalities at an abstract level,
in which actions are generic state transformation operators over a widely
applicable representation of states as relations among objects.

Domain-independent and domain-specific planning complement each
other. In a hierarchically organized actor, planning takes place at multi-
ple levels of the hierarchy. At high levels, abstract descriptions of a prob-
lem can be tackled using domain-independent planning techniques. The
example shown in Figure 1.2 may require a path planner (for moving to
locations), a manipulation planner (for grasping the door handle), and a
domain-independent planner at the higher levels of the hierarchy.

Acting involves deciding how to perform the chosen actions (with or
without the help of a planner) while reacting to the context in which the
activity takes place. Each action is considered as an abstract task to be
refined, given the current context, progressively into actions or commands
that are more concrete. Whereas planning is a search over predicted states,
acting requires a continual assessment of the current state £, to contrast it
with a predicted state s and adapt accordingly. Consequently, acting also
includes reacting to unexpected changes and exogenous events, which are
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independent from the actor’s activity.

The techniques used in planning and acting can be compared as fol-
lows. Planning can be organized as an open-loop search, whereas acting
needs to be a closed-loop process. Planning relies on descriptive models
(know-what); acting uses mostly operational models (know-how). Domain-
independent planners can be developed to take advantage of commonalities
among different forms of planning problems, but this is less true for acting
systems, which require more domain-specific programming.

The relationship between planning and acting is more complex than a
simple linear sequence of “plan then act.” Seeking a complete plan before
starting to act is not always feasible, and not always needed. It is feasible
when the environment is predictable and well modeled, for example, as for
a manufacturing production line. It is needed when acting has a high cost
or risk, and when actions are not reversible. Often in such applications, the
designer has to engineer out the environment to reduce diversity as much as
possible beyond what is modeled and can be predicted.

In dynamic environments where exogenous events can take place and
are difficult to model and predict beforehand, plans should be expected to
fail if carried out blindly until the end. Their first steps are usually more
reliable than the rest and steer toward the objectives. Plan modification and
replanning are normal and should be embedded in the design of an actor.
Metaphorically, planning is useful to shed light on the road ahead, not to
lay an iron rail all the way to the goal.

The interplay between acting and planning can be organized in many
ways, depending on how easy it is to plan and how quickly the environment
changes. A general paradigm is the receding horizon scheme, which is illus-
trated in Figure 1.4. It consists of repeating the two following steps until
the actor has accomplished its goal:

(i) Plan from the current state toward the goal, but not necessarily all
the way to the goal.

(ii) Act by refining one or a few actions of the synthesized plan into com-
mands to be executed.

A receding horizon approach can be implemented in many ways. Op-
tions include various planning horizon, number of actions to perform at
each planning stage, and what triggers replanning. Furthermore, the plan-
ning and acting procedures can be run either sequentially or in parallel with
synchronization.

Suppose an actor does a depth-first refinement of the hierarchy in Fig-
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Planning stage
Acting stage

Figure 1.4: Receding horizon scheme for planning and acting.

ure 1.2. Depending on the actor’s planning horizon, it may execute each
command as soon as one is planned or wait until the planning proceeds a
bit farther. Recall from Section 1.3.2 that the observed state ¢ may differ
from the predicted one. Furthermore, £ may evolve even when no commands
are being executed. Such situations may invalidate what is being planned,
necessitating replanning.

The interplay between acting and planning is relevant even if the plan-
ner synthesizes alternative courses of action for different contingencies (see
Chapters 5 and 6). Indeed, it may not be worthwhile to plan for all possible
contingencies, or the planner may not know in advance what all of them are.

1.3.4 Other Deliberation Functions

We have mentioned deliberation functions other than planning and acting:
perceiving, monitoring, goal reasoning, communicating, and learning. These
functions (surveyed in Chapter 7) are briefly described here.

Perceiving goes beyond sensing, even with elaborate signal processing
and pattern matching methods. Deliberation is needed in bottom-up pro-
cesses for getting meaningful data from sensors, and in top-down activities
such as focus-of-attention mechanisms, reasoning with sensor models, and
planning how to do sensing and information gathering. Some of the issues
include how to maintain a mapping between sensed data and deliberation
symbols, where and how to use the platform sensors, or how to recognize
actions and plans of other actors.

Monitoring consists of comparing observations of the environment with
what the actor’s deliberation has predicted. It can be used to detect and in-
terpret discrepancies, perform diagnosis, and trigger initial recovery actions
when needed. Monitoring may require planning what observation actions
to perform, and what kinds of diagnosis tests to perform. There is a strong
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relationship between planning techniques and diagnosis techniques.

Goal reasoning is monitoring of the actor’s objectives or mission, to keep
the actor’s commitments and goals in perspective. It includes assessing their
relevance, given the observed evolutions, new opportunities, constraints or
failures, using this assessment to decide whether some commitments should
be abandoned, and if so, when and how to update the current goals.

Communicating and interacting with other actors open numerous delib-
eration issues such as communication planning, task sharing and delegation,
mixed initiative planning, and adversarial interaction.

Learning may allow an actor to acquire, adapt, and improve through ex-
perience the models needed for deliberation and to acquire new commands to
extend and improve the actor’s execution platform. Conversely, techniques
such as active learning may themselves require acting for the purpose of
better learning.

1.4 Illustrative Examples

To illustrate particular representations and algorithms, we’ll introduce a
variety of examples inspired by two application domains: robotics and oper-
ations management. We’ll use highly simplified views of these applications
to include only the features that are relevant for the issue we’re trying to
illustrate. In this section, we provide summaries of the real-world context
in which our simple examples might occur.

1.4.1 A Factotum Service Robot

We will use the word factotum to mean a general-purpose service robot that
consists of a mobile platform equipped with several sensors (lasers, cameras,
etc.) and actuators (wheels, arms, forklift) [329]. This robot operates in
structured environments such as a mall, an office building, a warehouse or
a harbor. It accomplishes transportation and logistics tasks autonomously
(e.g., fetching objects, putting them into boxes, assembling boxes into con-
tainers, moving them around, delivering them or piling them up in storage
areas).

This robot platform can execute parameterized commands, such as local-
ize itself in the map, move along a path, detect and avoid obstacles, identify
and locate items, grasp, ungrasp and push items. It knows about a few ac-
tions using these commands, for example, map the environment (extend or
update the map), goto a destination, open a door, search for or fetch an
item.
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These actions and commands are specified with descriptive and opera-
tional models. For example, move works if it is given waypoints in free space
or an obstacle-free path that meet kinematics and localization constraints;
the latter are, for example, visual landmarks required by action localize.
These conditions need to be checked and monitored by the robot while per-
forming the actions. Concurrency has to be managed. For example, goto
should run in parallel with detect, avoid, and localize.

Factotum needs domain-specific planners, for example, a motion planner
for move, a manipulation planner for grasp (possibly using locate, push, and
move actions). Corresponding plans are more than a sequence or a partially
ordered set of commands; they require closed-loop control and monitoring.

At the mission-preparation stage (the upper levels in Figure 1.2), it is
legitimate to view a logistics task as an organized set of abstract subtasks
for collecting, preparing, conveying, and delivering the goods. Each subtask
may be further decomposed into a sequence of still abstract actions such
as goto, take, and put. Domain-independent task planning techniques are
needed here.

However, deliberation does not end with the mission preparation stage.
A goto action can be performed in many ways depending on the environment
properties: it may or may not require a planned path; it may use different lo-
calization, path following, motion control, detection, and avoidance methods
(see the “goto” node in Figure 1.2). A goto after a take is possibly different
from the one before because of the held object. To perform a goto action in
different contexts, the robot relies on a collection of skills defined formally
by methods. A method specifies a way to refine an action into commands.
The same goto may start with a method (e.g., follow GPS waypoints) but
may be pursued with more adapted methods when required by the environ-
ment (indoor without GPS signal) or the context. Such a change between
methods may be a normal progression of the goto action or a retrial due to
complications. The robot also has methods for take, put, open, close, and
any other actions it may need to perform. These methods endow the robot
with operational models (its know-how) and knowledge about how to choose
the most adapted method with the right parameters.

The methods for performing actions may use complex control constructs
with concurrent processes (loops, conditionals, semaphores, multithread and
real-time locks). They can be developed from formal specifications in some
representation and/or with plan synthesis techniques. Different represen-
tations may be useful to cover the methods needed by the factotum robot.
Machine learning techniques can be used for improving the methods, acquir-
ing their models, and adapting the factotum to a new trade.
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In addition to acting with the right methods, the robot has to monitor
its activity at every level, including possibly at the goal level. Prediction of
what is needed to correctly perform and monitor foreseen activities should be
made beforehand. Making the right predictions from the combined models
of actions and models of the environment is a difficult problem that involves
heterogeneous representations.

Finally, the robot requires extended perception capabilities: reasoning
on what is observable and what is not, integrating knowledge-gathering ac-
tions to environment changing actions, acting in order to maintain sufficient
knowledge for the task at hand with a consistent interpretation of self and
the world.

1.4.2 A Complex Operations Manager

A Harbor Operations Manager (HOM) is a system that supervises and con-
trols all the tasks performed in a harbor.” Examples of such tasks include
unloading cars from ships, parking them in storage areas, moving them to
a repair area, performing the repair, preparing the delivery of cars accord-
ing to orders, and loading them onto trucks when the trucks arrive at the
harbor. Some of these operations are performed by human workers, others
automatically by machines such as the factotum robot of previous section.
This complex environment has several features that require deliberation:

o It is customizable: for example, delivery procedures can be customized
according to the car brand, model, or retailer-specific requirements.

e It is variable: procedures for unloading/loading cars depend on the car
brands; storage areas have different parking procedures, for example.

o It is dynamic: ships, cars, trucks, and orders arrive dynamically.

o It is partially predictable and controllable: cars may be damaged and
need repair, storage areas may not be available, orders have unpre-
dictable requirements, ships and trucks have random delays, for ex-
ample.

At a high level, an HOM has to carry out a simple sequence of abstract
tasks: (unload, unpack, store, wait-for-order, treatment, delivery) (see Fig-
ure 1.5). This invariant plan is easily specified by hand. The deliberation
problem in an HOM is not in the synthesis of this plan but in the dynamic
refinement of its tasks in more concrete subtasks. For example, an HOM

®Example inspired from a facility developed for the port of Bremen, Germany [76, 100].
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Figure 1.5: Deliberation components for a Harbor Operations Manager.

refines the abstract task store of Figure 1.5 into subtasks for registering a
car to be stored, moving it, and other tasks, down to executable commands.

Moreover, the tasks to be refined and controlled are carried out by differ-
ent components, for example, ships, gates, and storage or repair areas. Each
ship has its own procedure to unload cars to a gate. A gate has its own pro-
cedure to accept cars that are unloaded to the deck. A natural design option
is therefore to model the HOM in a distributed way, as a set of interacting
deliberation components. The interactions between ships and gates, gates
and trucks, and trucks and storage areas must be controlled with respect
to the global constraints and objectives of the system. To do that, HOM
must deal with uncertainty and nondeterminism due to exogenous events,
and to the fact that each component may — from the point of view of the
management facility — behave nondeterministically. For instance, in the task
to synchronize a ship with a gate to unload cars, the ship may send a re-
quest for unloading cars to the unloading manager, and the gate may reply
either that the request meets its requirements and the unloading operation
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can proceed according to some unloading specifications, or that the request
cannot be handled. The management facility may not know a priori what
the request, the unloading specifications, and reply will be.

In summary, an HOM relies on a collection of interacting components,
each implementing its own procedures. It refines the abstract tasks of the
high-level plan into a composition of these procedures to address each new
object arrival and adapt to each exogenous event. The refinement and adap-
tation mechanisms can be designed through an approach in which the HOM
is an actor organized into a hierarchy of components, each abstract action
is a task to be further refined and planned for, and online planning and
acting are performed continually to adapt and repair plans. The approach
embeds one or several planners within these components, which are called
at run-time, when the system has to refine an abstract action to adapt to
a new context. It relies on refinement mechanisms that can be triggered at
run-time whenever an abstract action in a procedure needs to be refined or
an adaptation needs to be taken into account.

1.5 Outline of the Book

This chapter has provided a rather abstract and broad introduction. Chap-
ter 2 offers more concrete material regarding deliberation with deterministic
models and full knowledge about a static environment. It covers the “clas-
sical planning” algorithms and heuristics, with state-space search, forward
and backward, and plan-space search. It also presents how these planning
techniques can be integrated online with acting.

Chapter 3 is focused on refinement methods for acting and planning.
It explores how a unified representation can be used for both functions, at
different levels of the deliberation hierarchy, and in different ways. It also
discusses how the integration of planning and acting can be performed.

Chapter 4 is about deliberation with explicit time models using a rep-
resentation with timelines and chronicles. A temporal planner, based on
refinement methods, is presented together with the constraint management
techniques needed for handling temporal data. Using the techniques from
Chapter 3, we also discuss the integration of planning and acting with tem-
poral models.

Uncertainty in deliberation is addressed in Chapters 5 and 6. The main
planning techniques in nondeterministic search spaces are covered in Chap-
ter 5, together with model checking and determinization approaches. In this
chapter, we present online lookahead methods for the interleaving of plan-
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ning and acting. We also show how nondeterministic models can be used
with refinements techniques that intermix plans, actions, and goals. We
discuss the integration of planning and acting with input/output automata
to cover cases such as the distributed deliberation in the HOM example.

We cover probabilistic models in Chapter 6. We develop heuristic search
techniques for stochastic shortest path problems. We present online ap-
proaches for planning and acting, discuss refinement methods for acting
with probabilistic models, and analyze the specifics of descriptive models
of actions in the probabilistic case together with several practical issues for
modeling probabilistic domains.

Chapters 2 through 6 are devoted to planning and acting. Chapter 7
briefly surveys the other deliberation functions introduced in Section 1.3.4:
perceiving, monitoring, goal reasoning, interacting, and learning. It also
discusses hybrid models and ontologies for planning and acting.
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Chapter 2

Deliberation with
Deterministic Models

Having considered the components of an actor and their relation to the
actor’s environment we now need to develop some representational and al-
gorithmic tools for performing the actor’s deliberation functions. In this
chapter we develop a simple kind of descriptive model for use in planning,
describe some planning algorithms that can use this kind of model, and
discuss some ways for actors to use those algorithms.

This chapter is organized as follows. Section 2.1 develops state-variable
representations of planning domains. Sections 2.2 and 2.3 describe forward-
search planning algorithms, and heuristics to guide them. Sections 2.4
and 2.5 describe backward-search and plan-space planning algorithms. Sec-
tion 2.6 describes some ways for an actor to use online planning. Sections
2.7 and 2.8 contain the discussion and historical remarks, and the student
exercises.

2.1 State-Variable Representation

The descriptive models used by planning systems are often called planning
domains. However, it is important to keep in mind that a planning domain
is not an a priori definition of the actor and its environment. Rather, it
is necessarily an imperfect approximation that must incorporate trade-offs
among several competing criteria: accuracy, computational performance,
and understandability to users.
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2.1.1 State-Transition Systems

In this chapter, we use a simple planning-domain formalism that is similar
to a finite-state automaton:

Definition 2.1. A state-transition system (also called a classical planning
domain) is a triple ¥ = (S, A, ) or 4-tuple ¥ = (S, A, 7, cost), where

e S is a finite set of states in which the system may be.
e A is a finite set of actions that the actor may perform.

e v:S5x A — S is a partial function called the prediction function
or state-transition function. If (s,a) is in 7’s domain (i.e., y(s,a) is
defined), then a is applicable in s, with v(s,a) being the predicted
outcome. Otherwise a is inapplicable in s.

e cost : S x A— [0,00) is a partial function having the same domain as
~. Although we call it the cost function, its meaning is arbitrary: it
may represent monetary cost, time, or something else that one might
want to minimize. If the cost function isn’t given explicitly (i.e., if
Y =(S,A4,7)), then cost(s,a) = 1 whenever (s, a) is defined. O

To avoid several of the difficulties mentioned in Chapter 1, Definition 2.1
requires a set of restrictive assumptions called the classical planning assump-
tions:

1. Finite, static environment. In addition to requiring the sets of states
and actions to be finite, Definition 2.1 assumes that changes occur
only in response to actions: if the actor does not act, then the current
state remains unchanged. This excludes the possibility of actions by
other actors, or exogenous events that are not due to any actor.

2. No explicit time, no concurrency. There is no explicit model of time
(e.g., when to start performing an action, how long a state or action
should last, or how to perform other actions concurrently). There is
just a discrete sequence of states and actions (sg, a1, 1, ag, s, ...).!

3. Determinism, no uncertainty. Definition 2.1 assumes that we can
predict with certainty what state will be produced if an action a is
performed in a state s. This excludes the possibility of accidents or

1This does not prohibit one from encoding some kinds of time-related information
(e.g., timestamps) into the actions’ preconditions and effects. However, to represent and
reason about actions that have temporal durations, a more sophisticated planning-domain
formalism is usually needed, such as that discussed in Chapter 4.
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Figure 2.1: A two-dimensional network of locations connected by roads.

execution errors, as well as nondeterministic actions, such as rolling a
pair of dice.

In environments that do not satisfy the preceding assumptions, classical
domain models may introduce errors into the actor’s deliberations but this
does not necessarily mean that one should forgo classical models in favor of
other kinds of models. The errors introduced by a classical model may be
acceptable if they are infrequent and do not have severe consequences, and
models that do not use the above assumptions may be much more complex
to build and to reason with.

Let us consider the computational aspects of using a state-transition
system. If S and A are small enough, it may be feasible to create a lookup
table that contains 7(s,a) and cost(s,a) for every s and a, so that the
outcome of each action can be retrieved directly from the table. For example,
we could do this to represent an actor’s possible locations and movements
in the road network shown in Figure 2.1.

In cases in which ¥ is too large to specify every instance of v(s, a) explic-
itly, the usual approach is to develop a generative representation in which
there are procedures for computing (s, a) given s and a. The specification
of ¥ may include an explicit description of one (or a few) of the states in .S;
other states can be computed using ~.

The following is an example of a domain-specific representation, that
is, one designed specifically for a given planning domain. We then develop
a domain-independent approach for representing any classical planning do-
main.
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(a)

Figure 2.2: Geometric model of a workpiece, (a) before and (b) after com-
puting the effects of a drilling action.

Example 2.2. Consider the task of using machine tools to modify the
shape of a metal workpiece. Each state might include a geometric model
of the workpiece (see Figure 2.2), and information about its location and
orientation, the status and capabilities of each machine tool, and so forth.
A descriptive model for a drilling operation might include the following:

e The operation’s name and parameters (e.g., the dimensions, orienta-
tion, and machining tolerances of the hole to be drilled).

e The operation’s preconditions, that is, conditions that are necessary for
it to be used. For example, the desired hole should be perpendicular to
the drilling surface, the workpiece should be mounted on the drilling
machine, the drilling machine should have a drill bit of the proper size,
and the drilling machine and drill bit need to be capable of satisfying
the machining tolerances.

e The operation’s effects, that is, what it will do. These might include
a geometric model of the modified workpiece (see Figure 2.2(b)) and
estimates of how much time the action will take and how much it will
cost. O

The advantage of domain-specific representations is that one can choose
whatever data structures and algorithms seem best for a given planning
domain. The disadvantage is that a new representation must be developed
for each new planning domain. As an alternative, we now develop a domain-
independent way to represent classical planning domains.

2.1.2 Objects and State Variables

In a state-transition system, usually each state s € S is a description of the
properties of various objects in the planner’s environment. We will say that
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a property is rigid if it remains the same in every state in S, and it is varying
if it may differ from one state to another. To represent the objects and their
properties, we will use three sets B, R, and X, which we will require to be
finite:

e B is a set of names for all of the objects, plus any mathematical con-
stants that may be needed to represent properties of those objects.
We will usually divide B into various subsets (robots, locations, math-
ematical constants, and so forth).

e To represent X’s rigid properties, we will use a set R of rigid relations.
Each r € R will be an n-ary (for some n) relation over B.

e To represent X’s varying properties, we will use a set X of syntactic
terms called state variables, such that the value of each x € X depends
solely on the state s.

Which objects and properties are in B, R, and X depends on what parts
of the environment the planner needs to reason about. For example, in
Figure 1.2, the orientation of the robot’s gripper may be essential for de-
liberating about a low-level task such as “open door,” but irrelevant for a
high-level task such as “bring 07 to room2.” In a hierarchically organized
actor, these tasks may be described using two state spaces, S and S’ whose
states describe different kinds of objects and properties.

Here are examples of B and R. We will say more about X shortly.

Example 2.3. Figure 2.3 depicts some states in a simple state-transition
system. B includes two robots, three loading docks, three containers, three
piles (stacks of containers), the Boolean constants T and F, and the constant
nil:

B = Robots U Docks U ContainersJ Piles U Booleans U {nil};
Booleans = {T,F};
Robots = {r1,r2};
Docks = {dy1,da,ds};
Containers = {c1, ca,C3};

Piles = {pla P2, p3}

We will define two rigid properties: each pair of loading docks is adjacent if
there is a road between them, and each pile is at exactly one loading dock.
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move(r,,d,,d,)

move(r,,d,,d;)

Figure 2.3: A few of the states and transitions in a simple state-transition
system. Each robot can hold at most one container, and at most one robot
can be at each loading dock.

To represent these properties, R = {adjacent, at}, where

adjacent = {(dy, ds), (da,d1), (da,ds3), (d3, d2), (d3, d1), (d1,d3)};
at = {(pl? dl), (p27 d2)7 (p37 d2)}

In the subsequent examples that build on this one, we will not need to reason
about objects such as the roads and the robots’ wheels, or properties such
as the colors of the objects. Hence B and R do not include them. O

Definition 2.4. A state variable over B is a syntactic term
x = sv(by,...,bg), (2.1)

where svis a symbol called the state variable’s name, and each b; is a member
of B. Each state variable x has a range,? Range(x) C B, which is the set of
all possible values for x. ]

2We use range rather than domain to avoid confusion with planning domain.
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Example 2.5. Continuing Example 2.3, let

X = {cargo(r), loc(r), occupied(d), pile(c), pos(c), top(p)
| 7 € Robots,d € Docks, c € Containers,p € Piles},

where the state variables have the following interpretations:

e Each robot r can carry at most one container at a time. We let
cargo(r) = c if r is carrying container ¢, and cargo(r) = nil otherwise.
Hence Range(cargo(r)) = Containers U {nil}.

e loc(r) is robot r’s current location, which is one of the loading docks.
Hence Range(loc(r)) = Docks.

e Each loading dock d can be occupied by at most one robot at a time.
To indicate whether d is occupied, Range(occupied(d)) = Booleans.

e pos(c) is container ¢’s position, which can be a robot, another con-
tainer, or nil if ¢ is at the bottom of a pile. Hence Range(pos(c)) =
Containers U Robots U {nil}.

e If container c is in a pile p then pile(¢) = p, and if ¢ is not in any pile
then pile(c) = nil. Hence Range(pile(c)) = Piles U {nil}.

e Each pile p is a (possibly empty) stack of containers. If the stack is
empty then top(p) = nil, and otherwise top(p) is the container at the
top of the stack. Hence Range(top(p)) = ContainersU {nil}. O

A wariable-assignment function over X is a function s that maps each

x; € X into a value z; € Range(z;). If X = {z1,...,z,}, then because a
function is a set of ordered pairs, we have

s=A{(z1,21),-- -, (Tn,2n)}s (2.2)
which we often will write as a set of assertions:
s={r1=21,x2=29, ..., Tn=2n} (2.3)

Because X and B are finite, so is the number of variable-assignment func-
tions.

Definition 2.6. A state-variable state space is a set S of variable-assignment
functions over some set of state variables X. Each variable-assignment func-
tion in S is called a state in S. O
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If the purpose of S is to represent some environment E, then we will
want each state in s to have a sensible interpretation in £. Without getting
into the formal details, an interpretation is a function Z that maps B, R,
and X to sets of objects, rigid properties, and variable properties in some
environment F, in such a way that each s € S corresponds to a situation
(roughly, a combination of the objects and properties in the image of 7)
that can occur in E.? If a variable-assignment function does not correspond
to such a situation, then should not be a state in S.*

Example 2.7. Continuing Example 2.5, let us define the state-variable
state space S depicted in Figure 2.3. The state sg is the following variable-
assignment function:

sop = {cargo(ry)=nil,  cargo(ry) =nil, (2.4)
|OC(I’1)=d1, |OC(r2)=d2,
occupied(d;) =T, occupied(d2) =T, occupied(ds) = F,
pile(c1) =py, pile(c2) =py, pile(cz) = pa,
pos(cy) = ca, pos(cg) = nil, pos(csz) = nil,
top(py) =c1, top(py) =3, top(pz) = nil}.

In the same figure, the state s is identical to sg except that cargo(r1) = cq,
pile(c1) = nil, pos(ci) = r1, and top(p;) = ca.
In Example 2.5, the sizes of the state variables’ ranges are

|Range(cargo(r1))| = |Range(cargo(rs))| = 4,
|Range(loc(r1))| = |Range(loc(r2))| = 3,
|Range(occupied(d;))| = |Range(occupied(ds))| = |Range(occupied(ds))| = 2,

(

(

(

|Range(pile(cy))| = |Range(pile(cz))| = |Range(pile(cs))| = 4,

|Range(pos(c1))| = |Range(pos(cz))| = |Range(pos(cs))| = 6,
(

|Range(top(p;))| = |[Range(top(py))| = [Range(top(psz))| = 4.

Thus the number of possible variable-assignment functions is

42 % 3% x 23 x 43 x 63 x 43 = 1,019, 215, 872.

3The details are quite similar to the definition of an interpretation in first-order logic
[635, 517]. However, in first-order logic, F is a static domain rather than a dynamic
environment, hence the interpretation maps a single state into a single situation.

4This is ideally how an interpretation should work, but in practice it is not always
feasible to define an interpretation that satisfies those requirements completely. As we
said in Section 2.1, a planning domain is an imperfect approximation of the actor and its
environment, not an a priori definition.
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However, fewer than 750 of these functions are states in S. A state-variable
assignment function is a state in S if and only if it has an interpretation in
the environment depicted in Figure 2.3.

One way to specify the members of S is to give a set of consistency
constraints (i.e., restrictions on what combinations of variable assignments
are possible) and to say that a state-variable assignment function is a state
in S if and only if it satisfies all of the constraints. Here are some examples
of consistency constraints for S. A state s cannot have both loc(r;) =d;
and loc(ry) = d1, because a loading dock can only accommodate one robot
at a time; s cannot have both pos(ci;) = c3 and pos(cz) = c3, because two
containers cannot have the same physical location; and s cannot have both
pos(ci) =cy and pos(cy) =cj, because two containers cannot be on top of
each other. Exercise 2.2 is the task of finding a complete set of consistency
constraints for S. 0

The preceding example introduced the idea of using consistency con-
straints to determine which variable-assignment functions are states but said
nothing about how to represent and enforce such constraints. Throughout
most of this book, we avoid the need to represent such constraints explicitly,
by writing action models in such a way that if s is a state and « is an action
that is applicable in s, then (s, a) is also a state. However, in Chapter 4, we
will use a domain representation in which some of the constraints are rep-
resented explicitly and the planner must make sure never to use an action
that would violate them.

2.1.3 Actions and Action Templates

To develop a way to write action models, we start by introducing some
terminology borrowed loosely from first-order logic with equality:

Definition 2.8. A positive literal, or atom (short for atomic formula), is
an expression having either of the following forms:

rel(z1,...,2n) or sv(21, ...y 2n) = 20,

where el is the name of a rigid relation, sv is a state-variable name, and
each z; is either a variable (an ordinary mathematical variable, not a state
variable) or the name of an object. A negative literal is an expression having
either of the following forms:

—rel(z1, ...y 2n) or su(z1, ...y 2n) 7 20

A literal is ground if it contains no variables, and unground otherwise. [

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.


http://cambridge.org/9781107037274

Section 2.1 33

In the atom sv(z1,...,2,) = 20, we will call sv(z1,...,z,) the atom’s
target. Thus in Equation 2.3, a state is a set of ground atoms such that
every state variable x € X is the target of exactly one atom.

Definition 2.9. Let [ be an unground literal, and Z be any subset of the
variables in I. An instance of | is any expression I’ produced by replacing
each z € Z with a term 2’ that is either an element of Range(z) or a variable
with Range(z’) C Range(z). O

Definition 2.9 generalizes straightforwardly to any syntactic expression
that contains literals. We will say that such an expression is ground if it
contains no variables and it is unground otherwise. If it is unground, then
an instance of it can be created as described in Definition 2.9.

Definition 2.10. Let R and X be sets of rigid relations and state variables
over a set of objects B, and S be a state-variable state space over X. An
action template® for S is a tuple a = (head(a), pre(a), eff(a), cost(a)) or
a = (head(«), pre(a), eff(«)), the elements of which are as follows:

e head(a) is a syntactic expression® of the form
act(z1,22, ..., 2k),

where act is a symbol called the action name, and 21, 22, ..., 2; are
variables called parameters. The parameters must include all of the
variables (here we mean ordinary variables, not state variables) that
appear anywhere in pre(a) and eff(«). Each parameter z; has a range
of possible values, Range(z;) C B.

e pre(a) = {p1,...,pm} is a set of preconditions, each of which is a
literal.
o eff(a) = {e1,...,e,} is a set of effects, each of which is an expression
of the form
S’U(tl, BN ,t]’> 1o (25)
where su(tq,...,t;) is the effect’s target, and ¢y is the value to be

assigned. No target can appear in eff(a) more than once.

5In the artificial intelligence planning literature, these are often called planning opera-
tors or action schemas; see Section 2.7.1.

5The purpose of head(«) is to provide a convenient and unambiguous way to refer to
actions. An upcoming example is load(r1,c1,c2, py,d1) at the end of Example 2.12.
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e cost(a) is a number ¢ > 0 denoting the cost of applying the action.”

If it is omitted, then the default is cost(a) = 1.

We usually will write action templates in the following format (e.g., see
Example 2.12). The “cost” line may be omitted if ¢ = 1.

act(z1,29, ..., 2k)
pre: pi, ..., Pm
eff: e1,...,ep
cost: ¢ 0

Definition 2.11. A state-variable action is a ground instance a of an action
template a that satisfies the following requirements: all rigid-relation literals
in pre(a) must be true in R, and no target can appear more than once in
eff(a). If a is an action and a state s satisfies pre(a), then a is applicable in
s, and the predicted outcome of applying it is the state

v(s,a) = {(z,w) | eff(a) contains the effect z + w}
U{(z,w) € s |z is not the target of any effect in eff(a)}. (2.6)

If a isn’t applicable in s, then (s, a) is undefined. O

Thus if a is applicable in s, then

w, if eff(a) contains an effect =+ w,

(v(s,a))(z) = { (2.7)

s(z), otherwise.

Example 2.12. Continuing Example 2.5, suppose each robot r has an ex-
ecution platform that can perform the following commands:

e if r is at a loading dock and is not already carrying anything, r can
load a container from the top of a pile;

e if r is at a loading dock and is carrying a container, r can unload the
container onto the top of a pile; and

e 7 can move from one loading dock to another if the other dock is
unoccupied and there is a road between the two docks.

To model these commands, let A comprise the following action templates:

"This can be generalized to make cost(c) a numeric formula that involves a’s param-
eters. In this case, most forward-search algorithms and many domain-specific heuristic
functions will still work, but most domain-independent heuristic functions will not, nor
will backward-search and plan-space search algorithms (Sections 2.4 and 2.5).

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.


http://cambridge.org/9781107037274

Section 2.1 35

load(r, ¢, ', p,d)
pre: at(p, d), cargo(r) =nil, loc(r) =d, pos(c) =/, top(p) =c¢
eff: cargo(r) =c¢, pile(c) < nil, pos(c) < r, top(p) + ¢
unload(r, ¢, ', p,d)
pre: at(p,d), pos(c) =r, loc(r) =d, top(p) =¢
eff: cargo(r) < nil, pile(c) « p, pos(c) + ¢, top(p) + ¢
move(r,d,d")
pre: adjacent(d, d'), loc(r) = d, occupied(d') =F
eff: loc(r) «—d', occupied(d) < F, occupied(d') < T

In the action templates, the parameters have the following ranges:

Range(c) = Containers;  Range(c¢’) = Containers U Robots U {nil};
Range(d) = Docks; Range(d') = Docks;
Range(p) = Piles; Range(r) = Robots.

Let a1 be the state-variable action load(ry, c1,c2, py,d1). Then

pre(a) =
{at(p;,dy), cargo(ry) =nil, loc(r;) =dj, pos(ci) =cq, top(p;) =c1}.

Let sg and s; be in Example 2.5 and Figure 2.3. Then a; is applicable in
50, and 7(507 CL]_) = 51 [

2.1.4 Plans and Planning Problems

Definition 2.13. Let B, R, X, and S be as in Section 2.1.2. Let A be a
set of action templates such that for every o € A, every parameter’s range
is a subset of B, and let A = {all state-variable actions that are instances of
members of A}. Finally, let v be as in Equation 2.6. Then X = (S, A, v, cost)
is a state-variable planning domain. O

Example 2.14. If B, R, X, S, A and ~ are as in Examples 2.3, 2.5, 2.7,
and 2.12, then (5, .A,~) is a state-variable planning domain. O

Just after Definition 2.6, we discussed the notion of an interpretation of
a state space S. We now extend this to include planning domains. An inter-
pretation I of a state-variable planning domain ¥ in an environment F is an
interpretation of S in F that satisfies the following additional requirement:
under Z, each a € A corresponds to an activity in F such that whenever
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a is applicable in a state s € S, performing that activity in a situation
corresponding to s will produce a situation corresponding to (s, a).?

Definition 2.15. A plan is a finite sequence of actions

T ={a1,a2,...,0n).

The plan’s length is |w| = n, and its cost is the sum of the action costs:
cost(m) = D i cost(a;).

As a special case, () is the empty plan, which contains no actions. Its
length and cost are both 0. O

Definition 2.16. Let 7 = (a1,...,a,) and 7’ = (a},...,a],) be plans and
a be an action. We define the following concatenations:

m.a={ai,...,an,a);

a.m = {a,ay,...,an);

m' = {a1,...,an,ay,...,al,);

m.()=().m=m. O
Definition 2.17. A plan 7 = (a1, as,...,a,) is applicable in a state sq if
there are states sy, ..., s, such that y(s;—1,a;) = s; for i =1,...,n. In this

case, we define

(80, ™) = 8n;
;)/\(80, 7T) = <30, Ce ;3n>-

As a special case, the empty plan () is applicable in every state s, with
V(s, () = s and 7(s, () = (s). O

In the preceding, 7 is called the transitive closure of 4. In addition to
the predicted final state, it includes all of the predicted intermediate states.

Definition 2.18. A state-variable planning problem is a triple P =
(X, s0,9), where ¥ is a state-variable planning domain, sq is a state called
the initial state, and ¢ is a set of ground literals called the goal. A solution
for P is any plan m = (ay,...,ay) such that the state v(sp, ) satisfies g.
Alternatively, one may write P = (X, sg, S4), where Sy is a set of goal
states. In this case, a solution for P is any plan 7 such that y(sg, 7) € Sy. O

81deally one would like to put a similar requirement on the interpretation of the action’s
cost, but we said earlier that its interpretation is arbitrary.
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Forward-search (3, sq, g)

s<4—s0; T ()

loop
if s satisfies g, then return 7
A"+ {a € A] a is applicable in s}
if A’ = &, then return failure
nondeterministically choose a € A" (i)
s+ (s,a); ™ Ta

Algorithm 2.1: Forward-search planning schema.

For a planning problem P, a solution 7 is minimal if no subsequence
of 7 is also a solution for P, shortest if there is no solution 7’ such that
|7’'| < |7|, and cost-optimal (or just optimal, if it is clear from context) if

cost(m) = min{cost(n’) | 7’ is a solution for P}.
Example 2.19. Let P = (X,s9,9), where ¥ is the planning domain in
Example 2.12 and Figure 2.3, sg is as in Equation 2.4, and g = {loc(r;) =ds}.
Let

™ = <move(r1,d1,d3)>;
Ty = <move(r2, C|2, dg), move(rl, d1, C|2), move(rQ, d3, dl), move(rl, d2, d3)>;

73 = (load(r1, 1, C2, py,d1), unload(ry, c1, c2, py,d1), move(ry, dy, ds)).

Then 71 is a minimal, shortest, and cost-optimal solution for P; 7o is a
minimal solution but is neither shortest nor cost-optimal; and 73 is a solution
but is neither minimal nor shortest nor cost-optimal. O

2.2 Forward State-Space Search

Many planning algorithms work by searching forward from the initial state
to try to construct a sequence of actions that reaches a goal state. Forward-
search, Algorithm 2.1, is a procedural schema for a wide variety of such
algorithms. In line (7), the nondeterministic choice is an abstraction that
allows us to ignore the precise order in which the algorithm tries the alterna-
tive values of a (see Appendix A). We will use nondeterministic algorithms
in many places in the book to discuss properties of all algorithms that search
the same search space, irrespective of the order in which they visit the nodes.
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Deterministic-Search (X, s¢, )
Frontier < {({), s0)} // ({), so) is the initial node
Ezpanded + @
while Frontier # @ do

select a node v = (m,s) € Frontier (7)

remove v from Frontier and add it to Ezpanded

if s satisfies g then (i)
return m

Children < {(m.a,v(s,a)) | s satisfies pre(a)}
prune (i.e., remove and discard) 0 or more nodes
from Children, Frontier and Ezpanded (i)
Frontier < Frontier U Children (iv)
return failure

Algorithm 2.2: Deterministic-Search, a deterministic version of Forward-
search.

Deterministic-Search, Algorithm 2.2, is a deterministic version of Forward-
search. Frontier is a set of nodes that are candidates to be visited, and
Ezpanded is a set of nodes that have already been visited. During each loop
iteration, Deterministic-Search selects a node, generates its children, prunes
some unpromising nodes, and updates Frontier to include the remaining
children.

In the Deterministic-Search pseudocode, each node is written as a pair v =
(m,s), where 7 is a plan and s = y(sg, 7). However, in most implementations
v includes other information, for example, pointers to v’s parent and possibly
to its children, the value of cost(m) so that it will not need to be computed
repeatedly, and the value of h(s) (see Equation 2.8 below). The “parent”
pointers make it unnecessary to store m explicitly in v; instead, v typically
contains only the last action of w, and the rest of 7 is computed when needed
by following the “parent” pointers back to sg.

Many forward-search algorithms can be described as instances of
Deterministic-Search by specifying how they select nodes in line (7) and prune
nodes in line (47). Presently we will discuss several such algorithms; but first,
here are some basic terminology and concepts.

The initial or starting node is ((), sg), that is, the empty plan and the
initial state. The children of a node v include all nodes (7.a,v(s,a)) such
that a is applicable in s. The successors or descendants of v include all of
v’s children and, recursively, all of the children’s successors. The ancestors
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of v include all nodes ¢/ such that v is a successor of /. A path in the search
space is any sequence of nodes (v, v1,...,v,) such that each v; is a child
of v;_1. The height of the search space is the length of the longest acyclic
path that starts at the initial node. The depth of a node v is the length of
the path from the initial node to v. The mazimum branching factor is the
maximum number of children of any node. To expand a node v means to
generate all of its children.

Most forward-search planning algorithms attempt to find a solution with-
out exploring the entire search space, which can be exponentially large.”
To make informed guesses about which parts of the search space are more
likely to lead to solutions, node selection (line (i) of Deterministic-Search)
often involves a heuristic function h : S — R that returns an estimate of
the minimum cost of getting from s to a goal state:

h(s) ~ h*(s) = min{cost(m) | v(s, ) satisfies g}. (2.8)

For information on how to compute such an h, see Section 2.3.
If 0 < h(s) < h*(s) for every s € S, then h is said to be admissible.
Notice that if i is admissible, then h(s) = 0 whenever s is a goal node.
Given a node v = (m,s), some forward-search algorithms will use h to
compute an estimate f(v) of the minimum cost of any solution plan that
begins with 7:

f(v) = cost(m) + h(s) ~ min{cost(m.7’) | v(so, 7.7") satisfies g}.  (2.9)

If h is admissible, then f(v) is a lower bound on the cost of every solution
that begins with .

In many forward-search algorithms, the pruning step (line (%) of
Deterministic-Search) often includes a cycle-checking step:

remove from Children every node (7, s) that has an ancestor
(7', s") such that s’ = s.

In classical planning problems (and any other planning problems where the
state space is finite), cycle-checking guarantees that the search will always
terminate.

2.2.1 Breadth-First Search

Breadth-first search can be written as an instance of Deterministic-Search in
which the selection and pruning are done as follows:

9The worst-case computational complexity is EXPSPACE-equivalent (see Section 2.7),
although the complexity of a specific planning domain usually is much less.
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e Node selection. Select a node (w,s) € Children that minimizes the
length of m. As a tie-breaking rule if there are several such nodes,
choose one that minimizes h(s).

e Pruning. Remove from Children and Frontier every node (m,s) such
that Expanded contains a node (7’, s). This keeps the algorithm from
expanding s more than once.

In classical planning problems, breadth-first search will always terminate
and will return a solution if one exists. The solution will be shortest but
not necessarily cost-optimal.

Because breadth-first search keeps only one path to each node, its worst-
case memory requirement is O(|S]), where |S| is the number of nodes in the
search space. Its worst-case running time is O(b|S]), where b is the maximum
branching factor.

2.2.2 Depth-First Search

Although depth-first search (DFS) is usually written as a recursive algo-
rithm, it can also be written as an instance of Deterministic-Search in which
the node selection and pruning are done as follows:

e Node selection. Select a node (w,s) € Children that maximizes the
length of m. As a tie-breaking rule if there are several such nodes,
choose one that minimizes h(s).

e Pruning. First do cycle-checking. Then, to eliminate nodes that the
algorithm is done with, remove v from Ezpanded if it has no children in
Frontier U Exzpanded, and do the same with each of v’s ancestors until
no more nodes are removed. This garbage-collection step corresponds
to what happens when a recursive version of depth-first search returns
from a recursive call.

In classical planning problems, depth-first search will always terminate and
will return a solution if one exists, but the solution will not necessarily
be shortest or cost-optimal. Because the garbage-collection step removes
all nodes except for those along the current path, the worst-case memory
requirement is only O(bl), where b is the maximum branching factor and [
is the height of the state space. However, the worst-case running time is
O(b!), which can be much worse than O(|S|) if there are many paths to each
state in S.
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2.2.3 Hill Climbing

A hill climbing (or greedy) search is a depth-first search with no backtrack-
ing:

e Node selection. Select a node (m,s) € Children that minimizes h(s).

e Pruning. First, do cycle-checking. Then assign Frontier < &, so that
line (iv) of Algorithm 2.2 will be the same as assigning Frontier <
Children.

The search follows a single path, and prunes all nodes not on that path. It is
guaranteed to terminate on classical planning problems, but it is not guar-
anteed to return an optimal solution or even a solution at all. Its worst-case
running time is O(bl) and its the worst-case memory requirement is O(l),
where [ is the height of the search space and b is the maximum branching
factor.

2.2.4 Uniform-Cost Search

Like breadth-first search, uniform-cost (or least-cost first) search does not
use a heuristic function. Unlike breadth-first search, it does node selection
using the accumulated cost of each node:

e Node selection. Select a node (, s) € Children that minimizes cost ().

e Pruning. Remove from Children and Frontier every node (m,s) such
that Ezpanded contains a node (7', s). In classical planning problems
(and any other problems in which all costs are nonnegative), it can be
proved that cost(n’) < cost(7), so this step ensures that the algorithm
only keeps the least costly path to each node.

In classical planning problems, the search is guaranteed to terminate and to
return an optimal solution. Like breadth-first search, its worst-case running
time and memory requirement are O(b|S|) and O(|S]), respectively.

2.2.5 A*

A* is similar to uniform-cost search, but uses a heuristic function:

e Node selection. Select a node v € Children that minimizes f(v) (de-
fined in Equation 2.9).

e Pruning. For each node (7, s) € Children, if A* has more than one plan
that goes to s, then keep only the least costly one. More specifically,
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let
Vs = {(n',s") € Children U Frontier U Expanded | s’ = s};

and if Vy contains any nodes other than (m, s) itself, let (7', s) be the
one for which cost(7’) is smallest (if there is a tie, choose the oldest
such node). For every node v € V other than (7/,s), remove v and
all of its descendants from Children, Frontier, and FExrpanded.

Here are some of A*’s properties:

e Termination, completeness, and optimality. On any classical planning
problem, A* will terminate and return a solution if one exists; and if
h is admissible, then this solution will be optimal.

e Epsilon-optimality. If h is e-admissible (i.e., if there is an € > 0 such
that 0 < h(s) < h*(s) + € for every s € S), then the solution returned
by A* will be within e of optimal [491].

e Monotonicity. If h(s) < cost(y(s,a))+ h(y(s,a)) for every state s and
applicable action a, then h is said to be monotone or consistent. In
this case, f(v) < f(V') for every child v/ of a node v, from which it
can be shown that A* will never prune any nodes from Fzpanded, and
will expand no state more than once.

e Informedness. Let hy and ho be admissible heuristic functions such
that he dominates hy, i.e., 0 < hi(s) < ha(s) < h*(s) for every s € S.1°
Then A* will never expand more nodes with hs than with hq,'' and
in most cases, it will expand fewer nodes with ho than with h.

A*’s primary drawback is its space requirement: it needs to store every
state that it visits. Like uniform-cost search, A*’s worst-case running time
and memory requirement are O(b|S|) and O(|S|). However, with a good
heuristic function, A*’s running time and memory requirement are usually
much smaller.

2.2.6 Depth-First Branch and Bound

Depth-first branch and bound (DFBB) is a modified version of depth-first
search that uses a different termination test than the one in line (7)) of
Algorithm 2.2. Instead of returning the first solution it finds, DFBB keeps

Dominance has often been described by saying that “hs is more informed than hy,”
but that phrase is somewhat awkward because ho always dominates itself.

"Here, we assume that A* always uses the same tie-breaking rule during node selection
if two nodes have the same f-value.
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searching until Frontier is empty. DFBB maintains two variables 7* and c*,
which are the least costly solution that has been found so far, and the cost
of that solution. Each time DFBB finds a solution (line (7)) of Deterministic-
Search), it does not return the solution but instead updates the values of 7*
and c¢*. When Frontier is empty, if DFBB has found at least one solution
then it returns 7*, and otherwise it returns failure. Node selection and
pruning are the same as in depth-first search, but an additional pruning
step occurs during node expansion: if the selected node v has f(v) > c*,
DFBB discards v rather than expanding it. If the first solution found by
DFBB has a low cost, this can prune large parts of the search space.
DFBB has the same termination, completeness, and optimality proper-
ties as A*. Because the only nodes stored by DFBB are the ones in the
current path, its space requirement is usually much lower than A*’s. How-
ever, because it does not keep track of which states it has visited, it may
regenerate each state many times if there are multiple paths to the state;
hence its running time may be much worse than A*’s. In the worst case, its
running time and memory requirement are O(b') and O(bl), the same as for

DFS.

2.2.7 Greedy Best-First Search

For classical planning problems where nonoptimal solutions are acceptable,
the search algorithm that is used most frequently is Greedy Best-First Search
(GBFS). It works as follows:

e Node selection. Select a node (m,s) € Children that minimizes h(s).
e Pruning. Same as in A*.

Like hill climbing, GBFS continues to expand nodes along its current path
as long as that path looks promising. But like A*, GBFS stores every state
that it visits. Hence it can easily switch to a different path if the current
path dead-ends or ceases to look promising (see Exercise 2.4).

Like A*, GBFS’s worst-case running time and memory requirement are
O(b|S]) and O(]S|). Unlike A*, GBFS is not guaranteed to return optimal
solutions; but in most cases, it will explore far fewer paths than A* and find
solutions much more quickly.

2.2.8 Iterative Deepening

There are several search algorithms that do forward-search but are not in-
stances of Deterministic-Search. Several of these are iterative-deepening al-
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gorithms, which gradually increase the depth of their search until they find
a solution. The best known of these is iterative deepening search (IDS),
which works as follows:

for kK =1 to oo,
do a depth-first search, backtracking at every node of depth k&
if the search found a solution, then return it
if the search generated no nodes of depth k, then return failure

On classical planning problems, IDS has the same termination, complete-
ness, and optimality properties as breadth-first search. Its primary advan-
tage over breadth-first search is that its worst-case memory requirement is
only O(bd), where d is the depth of the solution returned if there is one, or
the height of the search space otherwise. If the number of nodes at each
depth k grows exponentially with k, then IDS’s worst-case running time is
O(b%), which can be substantially worse than breadth-first search if there
are many paths to each state.

A closely related algorithm, IDA*, uses a cost bound rather than a depth
bound:

c+0
loop
do a depth-first search, backtracking whenever f(v) > ¢
if the search found a solution, then return it
if the search did not generate an f(v) > ¢, then return failure
¢ < the smallest f(v) > ¢ where backtracking occurred

On classical planning problems, IDA*’s termination, completeness, and op-
timality properties are the same as those of A*. IDA*’s worst-case memory
requirement is O(bl), where [ is the height of the search space. If the number
of nodes grows exponentially with ¢ (which usually is true in classical plan-
ning problems but less likely to be true in nonclassical ones), then IDA*’s
worst-case running time is O(b%), where d is the depth of the solution re-
turned if there is one or the height of the search space otherwise. However,
this is substantially worse than A* if there are many paths to each state.

2.2.9 Choosing a Forward-Search Algorithm

It is difficult to give any hard-and-fast rules for choosing among the forward-
search algorithms presented here, but here are some rough guidelines.

If a nonoptimal solution is acceptable, often the best choice is to de-
velop a planning algorithm based on GBFS (e.g., [510, 613]). There are no
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guarantees as to GBFS’s performance; but with a good heuristic function,
it usually works quite well.

If one needs a solution that is optimal (or within € of optimal) and has a
good heuristic function that is admissible (or e-admissible), then an A*-like
algorithm is a good choice if the state space is small enough that every node
can be held in main memory. If the state space is too large to hold in main
memory, then an algorithm such as DFBB or IDA* may be worth trying,
but there may be problems with excessive running time.

For integration of planning into acting, an important question is how
to turn any of these algorithms into online algorithms. This is discussed
further in Section 2.6.

2.3 Heuristic Functions

Recall from Equation 2.8 that a heuristic function is a function h that returns
an estimate h(s) of the minimum cost h*(s) of getting from the state s to
a goal state and that h is admissible if 0 < h(s) < h*(s) for every state s
(from which it follows that h(s) = 0 whenever s is a goal node).

The simplest possible heuristic function is ho(s) = 0 for every state s.
It is admissible and trivial to compute but provides no useful information.
We usually will want a heuristic function that provides a better estimate of
h*(s) (e.g., see the discussion of dominance at the end of Section 2.2.5). If
a heuristic function can be computed in a polynomial amount of time and
can provide an exponential reduction in the number of nodes examined by
the planning algorithm, this makes the computational effort worthwhile.

The best-known way of producing heuristic functions is relazation. Given
a planning domain ¥ = (S, A,~) and planning problem P = (X, s, g), re-
laxing them means weakening some of the constraints that restrict what the
states, actions, and plans are; restrict when an action or plan is applicable
and what goals it achieves; and increase the costs of actions and plans. This
produces a relazed domain ¥ = (S’, A’,+') and problem P’ = (¥, s(,q’)
having the following property: for every solution w for P, P’ has a solution
7" such that cost’ (") < cost(m).

Given an algorithm for solving planning problems in ¥/, we can use it to
create a heuristic function for P that works as follows: given a state s € S,
solve (X', s,¢’) and return the cost of the solution. If the algorithm always
finds optimal solutions, then the heuristic function will be admissible.

Just as domain representations can be either domain-specific or domain-
independent, so can heuristic functions. Here is an example of the former:
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Example 2.20. Let us represent the planning domain in Figure 2.1 as
follows. The objects include a set of locations and a few numbers:

B = Locations U Numbers;
Locations = {locy, ..., locg};
Numbers = {1,...,9}.
There is a rigid relation adjacent that includes every pair of locations that
have a road between them, and rigid relations x and y that give each loca-
tion’s x and y coordinates:
adjacent = {(locy, locy), (locy, locg), (locy, locy), (locy, locs), ... };
x = {(locp, 2), (locy, 0), (locg,4), .. .};
y = {(locp, 4), (locy, 3), (locg,4), .. .}.

There is one state variable loc with Range(loc) = Locations, and 10 states:
s;i = {loc =loc;}, i=0,...,9.
There is one action template:

move(l, m)
pre: adjacent(l,m), loc =1
eff: loc+m
cost: distance(l, m)

where Range(l) = Range(m) = Locations, and distance(l,m) is the Eu-
clidean distance between [ and m:

distance(l,m) = v/ (x(1) —x(m))? + (y(1) — y(m))2.

Consider the planning problem (3, sg, sg). One possible heuristic function
is the Euclidean distance from loc to the goal location,

h(s) = distance(s(loc), locg),

which is the length of an optimal solution for a relaxed problem in which
the actor is not constrained to follow roads. This is a lower bound on the
length of every route that follows roads to get to locg, so h is admissible. [J

It is possible to define a variety of domain-independent heuristic func-
tions that can be used in any state-variable planning domain. In the follow-
ing subsections, we describe several such heuristic functions, and illustrate
each of them in the following example.
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Figure 2.4: Initial state and goal for Example 2.21.

Example 2.21. Figure 2.4 shows a planning problem P = (3, sq,g) in a
planning domain ¥ = (B, R, X, .A) that is a simplified version of the one in
Figure 2.3. B includes one robot, one container, three docks, no piles, and
the constant nil:
B = Robots U Docks U Containers U {nil};
Robots = {r1};
Docks = {dl, dg, d3};
Containers = {c1 }.
There are no rigid relations, that is, R = &. There are two state variables,
X = {cargo(rl),loc(cl)}, with
Range(cargo(rl)) = {c1, nil};
Range(loc(cl)) = {d1,d2,d3,rl}.

A contains three action templates:

load(r, ¢, 1)
pre: cargo(r) =nil, loc(c) =1, loc(r) =1
eff: cargo(r) < ¢, loc(c) «r

cost: 1
unload(r, ¢, 1) move(r, d, )
pre: cargo(r) =c, loc(r) =1 pre: loc(r)=d
eff: cargo(r) < nil, loc(c) + 1 eff: loc(r) «e
cost: 1 cost: 1

The action templates’ parameters have the following ranges:

Range(c) = Containers;  Range(d) = Range(e) = Docks;
Range(l) = Locations; Range(r) = Robots.
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P’s initial state and goal are

so = {loc(rl) = d3, cargo(rl) = nil,loc(cl) = d1};
g = {loc(rl) = d3,loc(cl) = r1}.

Suppose we are running GBF'S (see Section 2.2.7) on P. In s, there are two
applicable actions: a; = move(rl,d3,d1) and ay = move(rl,d3,d2). Let

s1 = v(s0,a1) = {loc(rl) = d1,cargo(rl) = nil,loc(cl) = d1}; (2.10)
so = (80, az) = {loc(rl) = d2,cargo(rl) = nil, loc(cl) = d1}. (2.11)

In line (7) of Algorithm 2.2, GBFS chooses between a; and ag by evaluating
h(s1) and h(sg2). The following subsections describe several possibilities for
what h might be. O

2.3.1 Max-Cost and Additive Cost Heuristics

The maz-cost of a set of literals g = {g1,...,gx} is defined recursively as
the largest max-cost of each g¢; individually, where each g¢;’s max-cost is the
minimum, over all actions that can produce g;, of the action’s cost plus the
max-cost of its preconditions. Here are the equations:

AM(s, g) = max A™(s, g;);

gi€g
max 0, if g; € s,
A (S’gi) = . max .
min{A™*(s,a) | a € A and g; € eff(a)}, otherwise;
A" (s, a) = cost(a) + A™¥ (s, pre(a)).

In a planning problem P = (X, sg, g), the maz-cost heuristic is

P(s) = AT (s, g).

h™?* can be visual-

As shown in the following example, the computation of
ized as an And/Or search going backward from g.

At the beginning of Section 2.3, we said that most heuristics are derived
by relaxation. One way to describe h™?% is that it is the cost of an optimal
solution to a relaxed problem in which a goal (i.e., a set of literals such as
g or the preconditions of an action) can be reached by achieving just one of

the goal’s literals, namely, the one that is the most expensive to achieve.

Example 2.22. In Example 2.21, suppose GBFS’s heuristic function is
h™ax Figure 2.5 shows the computation of h™**(s;1) = 1 and h™**(sq) = 2.
Because h™**(s1) < h™**(s2), GBFS will choose s;. O
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g = {loc(r1)=d3, loc(c1)=r1}

h™(s,) = A™*(s,g) = max(1,1) =1
max

|OC(r1)=d3 mln(l,(>1)) =1 |oc(c1)=r1

min(1,(>1),>1)) = 1

0+1=1 0)+1 > 1 0+1 =1
(>0)+1> 1

move(rl,d2,d3) load(rl,c1,d1) (>0) +1\> 1

move(rl,d1,d3) pre: pre: max(0,0,0) = 0 load(r1,c3,d3)
pre: loc(rl)=d2 o ‘
loc(r1)=d1 load(r1,c2,d2) >0
- cargo(rl)=nil loc(cl)=d1 ‘ >0
0 0 loc(rl)=d1 ‘ 0
true in s, true in s 0 trueins,
true in s,
g = {loc(r1)=d3, loc(c1)=r1}
¥ (s,) = A™(s,,g) = max(1,2) = 2
max
loc(rl)=d3 _. _ -
min(1,(>1)) =1 loc(cl)=r1 min(2,(>2).(>2)) = 2
(>0)+1>1 0+1=1 1+1=2
hH+1>2
move(rl,d2,d3) load(rl,cl,d1) 1) +1\>2
move(rl,d1,d3) pre: pre: max(0,1,0) = 1 load(r1,c3,d3)
pre: loc(r1)=d2 > ‘
loc(r1)=d1 load(rl,c2,d2) > 1
cargo(rl)=nil loc(cl)=d1 ‘ -1
loc(rl)=d1 ..
>0 true in s,
0 . 0+1=1 |0
move(rl,d2,d1)
pre:
loc(rl)=d2
true in s, 0 . truein s,
trueins,

Figure 2.5: Computation of h™** (s, g) and h™**(sy, g).
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g = {loc(r1)=d3, loc(c1)=r1}
hdd(s,) = A2d(s . g) = 1+1 =2
add
loc(rl)=d3 . B _
min(1,(>1))=1 loc(c1)=r1 min(1,>1).(>1)) = 1
0+1=1 >0)+1>1 0+1=1
0)+1>1
move(rl,d2,d3) load(rl,c1,d1) (>0) +1\> 1
move(rl,d1,d3) pre: Pre o 000=0 load(r1,c3,d3)
pre: loc(r1)=d2 ‘
loc(r1)=d1 load(r1,c2,d2) >0
- cargo(rl)=nil loc(cl)=d1 ‘ >0
0 o loc(rl)=d1 ‘ 0
true in s, true in s 0 trueins,
true in s,
g = {loc(r1)=d3, loc(c1)=r1}
hadd(sz) = Aadd(sz,g) =142=3
add
loc(rl)=d3 _. _ -
min(1,(>1)) =1 loclel)=rl | in(2,(2),>2)) = 2
(>0)+1>1 0+1=1 1+1=2
hH+1>2
move(rl,d2,d3) load(rl,cl,d1) 1) +1\>2
move(rl,d1,d3) pre: Pre o o= 1 load(r1,c3,d3)
pre: loc(rl)=d2 ‘
loc(r1)=d1 load(rl,c2,d2) > 1
cargo(rl)=nil loc(cl)=d1 ‘ -1
loc(rl)=d1 ..
>0 true in s,
0 . 0+1=1 |0
move(rl,d2,d1)
pre:
loc(rl)=d2
true in s, 0 . truein s,
trueins,

Figure 2.6: Computation of h29(sy, g) and h24d(sy, g).
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Although h™2* is admissible, it is not very informative. A closely related
heuristic, the additive cost heuristic, is not admissible but generally works
better in practice. It is similar to h™#* but adds the costs of each set of
literals rather than taking their maximum. It is defined as

h*(s) = A*H(s, g),

where
A*(s,g) =) A™Md(s,g0);
9i€g
0 if % )
min{A*(s,a) | a € A and g; € eff(a)}, otherwise;

A (s q) = cost(a) + A (s, pre(a)).

As shown in the following example, the computation of h24 can be visualized
as an And/Or search nearly identical to the one for A™2*,

Example 2.23. In Example 2.21, suppose GBFS’s heuristic function is
h2dd . Figure 2.6 shows the computation of A9 (s1) = 2 and h*dd(sy) = 3.
Because h*44(s1) < h2dd(s,5), GBFS will choose s;.

To see that h24 is not admissible, notice that if a single action a could
achieve both loc(rl1)=d3 and loc(c1)=r1, then h*44(g) would be higher than
h*(g), because h*dd would count a’s cost twice. O

Both h™# and h24d have the same time complexity. Their running time
is nontrivial, but it is polynomial in |A|+)__ v |Range(z)|, the total number
of actions and ground atoms in the planning domain.

2.3.2 Delete-Relaxation Heuristics

Several heuristic functions are based on the notion of delete-relazation, a
problem relaxation in which applying an action never removes old atoms
from a state, but simply adds new ones.'?

If a state s includes an atom x =v and an applicable action a has an
effect x + w, then the delete-relaxed result of applying a will be a “state”
vt (s,a) that includes both z=v and z=w. We will make the following
definitions:

12The h*4d and h™2* heuristics can also be explained in terms of delete-relaxation; see
Section 2.7.9.

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.


http://cambridge.org/9781107037274

52 Chapter 2

A relaxed state (or r-state, for short) is any set § of ground atoms such
that every state variable z € X is the target of at least one atom in §.
It follows that every state is also an r-state.

e A relaxed state § r-satisfies a set of literals g if S contains a subset
s C § that satisfies g.

e An action a is r-applicable in an r-state § if § r-satisfies pre(a). In this
case, the predicted r-state is

7T(3,a) = §U~(s,a). (2.12)
e By extension, a plan 7 = (ay,...,a,) is r-applicable in an r-state §g if
there are r-states §1,...,5, such that
81 =7"(30,a1), 52 =7"(81,02), ..., S0 =77 (501, 0n).

In this case, v (89, 7) = &p.

e A plan 7 is a relaxed solution for a planning problem P = (¥, sg, g) if
vt (s0, ) r-satisfies g. Thus the cost of the optimal relaxed solution is

A*(s,g) = min{cost(m) | yT (s, ) r-satisfies g}.

For a planning problem P = (X, s¢, g), the optimal relaxzed solution heuristic
is

ht(s) = At (s, 9).

Example 2.24. Let P be the planning problem in Example 2.21. Let
81 = v (s0, move(rl,d3,d1)) and 8o = v (81, load(rl,cl,dl)). Then

(rl) = d1,loc(rl) = d3, cargo(rl) = nil, loc(cl) = d1};
(r1) = d1,loc(rl) = d3, cargo(rl) = nil, cargo(rl) = cl,
loc(cl) = d1,loc(cl) = rl}.

0> »»

1 = {loc
9 = {loc

The r-state o r-satisfies g, so the plan m = (move(rl,d3,d1), load(rl,cl,dl))

is a relaxed solution for P. No shorter plan is a relaxed solution for P, so
h*(s) = A% (s0,9)- O

Because every ordinary solution for P is also a relaxed solution for P, it
follows that h'(s) < h*(s) for every s. Thus h™ is admissible, so A" can be
used with algorithms such as A* to find an optimal solution for P. On the
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HFF (S, 5,9)
So=s8; Ag=9
for k =1 by 1 until a subset of §j r-satisfies g do ()
Ay + {all actions that are r-applicable in §;_1}
B < v (8p—1, Ar)
if § = 8x—1 then // (¥,s,g) has no solution (i)
return oo

~

9k <=9
for i = k down to 1 do (i)
arbitrarily choose a minimal set of actions
a; C A; such that v (8;, a;) satisfies g
gi—1 < (i — eff(a;)) U pre(a;)
ﬁ'<—<d1,d2,...,&k> (’L"U)
return » {cost(a) | a is an action in 7}

Algorithm 2.3: HFF, an algorithm to compute the Fast-Forward heuristic.

other hand, AT is expensive to compute: the problem of finding an optimal
relaxed solution for a planning problem P is NP-hard [68].13

We now describe an approximation to h™ that is easier to compute. It
is based on the fact that if A is a set of actions that are all r-applicable in a
relaxed state §, then they will produce the same predicted r-state regardless
of the order in which they are applied. This r-state is

7 (3,A) =3U U eff(a). (2.13)
acA

HFF, Algorithm 2.3, starts at an initial r-state §5 = s, and uses Equa-
tion 2.13 to generate a sequence of successively larger r-states and sets of
applicable actions,

§0, Al, §1,A2, Sg... R

until it generates an r-state that r-satisfies g. From this sequence, HFF
extracts a relaxed solution and returns its cost. Line (i) whether the se-
quence has converged to an r-state that does not r-satisfy g, in which case
the planning problem is unsolvable.

The Fast-Forward heuristic, h¥F (s), is defined to be the value returned
by HFF.'* The definition of AFF is ambiguous, because the returned value

131f we restrict P to be ground (see Section 2.7.1), then the problem is NP-complete.
4The name comes from the FF planner in which this heuristic was introduced; see
Section 2.7.9.
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Atoms in §;: Actions in 4;: Atoms in §,:
loc(r1) =d1 ?move(n ,d1,d2)——Iloc(r1) = d2
loc(c1) =di \move(r1 ,d1,d3)—1loc(r1) = d3
cargo(r1) = nil——=load(r1,c1,d1) loc(c1)=r1

\cargo(ﬂ) =c1
- loc(cl)=d1
M S0 oc(r1) =d1 !

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2.7: Computation of HFF(X, s1,g) = 2. The solid lines indicate the
actions’ preconditions and effects. The elements of §g, G1, and g, are shown
in boldface.

may vary depending on HFF’s choices of ay,ax—_1,...,a; in the loop (éii).
Furthermore, because there is no guarantee that these choices are the opti-
mal ones, hFF is not admissible.

As with /™3 and h*d4| the running time for HFF is polynomial in |A| +
> scx|Range(z)|, the number of actions and ground atoms in the planning
domain.

Example 2.25. In Example 2.21, suppose GBFS’s heuristic function is hFF,
as computed by HFF.

To compute hFF(sl), HFF begins with §y = s1, and computes A; and §;
in the loop at line (7). Figure 2.7 illustrates the computation: the lines to
the left of each action show which atoms in §g satisfy its preconditions, and
the lines to the right of each action show which atoms in §; are its effects.
For the loop at line (#i7), HFF begins with §; = ¢ and computes a; and
go; these sets are shown in boldface in Figure 2.7. In line (iv), the relaxed
solution is

T = <€L1> = <{move(r1,d1,d3), |Oad(r1,C1,d1)}>.

Thus HFF returns A" (s;) = cost(7) = 2.

Figure 2.8 is a similar illustration of HFF’s computation of A (sq). For
the loop at line (7), HFF begins with §y = s9 and computes the sets A1, $1,
Ag, and $9. For the loop at line (7i), HFF begins with go = g and computes
as, g1, ai, and gg, which are shown in boldface in Figure 2.8. In line (iv),
the relaxed solution is

T = (a1, az) = ({move(ry,dz,d1))}, {(move(ry,dy,ds), load(ri,c1,d1)}),
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Atoms in §,:

move(ri ’d3’d2)\§~loc(r1) =d2

Atoms in §,: Actionsin4,: Atomsins,:/ move(r1,d1,d2) loc(c1) = d1

|Oc(r1) = d2/mOVe(r1 ,d2,d3)_|0C(|'1) = d3 move(r1 ’d3’d1) § Cargo(r‘]) _ n|| :
loc(c1) = d1\move(r1,d2,d1)—loc(r1) =d1—move(r1,d1,d3)\ loc(r1) = di

move(r1,d2,d1)” Bioc(r1) = d3

loc(c1) = d1 f\move(ﬂ ,d2,d3)” cargo(r1) =ct
cargo(r1) = nil-—load(r1,c1 }d1)Z_joc(c1) =1

cargo(r1) =nil

Figure 2.8: Computation of HFF(X, s, g) = 3. The solid lines indicate the
actions’ preconditions and effects. The atoms and actions in each g; and a;
are shown in boldface.

so HFF returns h¥¥(s9) = cost(#) = 3.
Thus h¥F(s1) < hF¥(s2), so GBFS will choose to expand s; next. O

The graph structures in Figures 2.7 and 2.8 are called relaxed planning
graphs.

2.3.3 Landmark Heuristics

Let P = (X,5s0,9) be a planning problem, and let ¢ = ¢1 V...V ¢y, be
a disjunction of atoms. Then ¢ is a disjunctive landmark for P if every
solution plan produces an intermediate state (i.e., a state other than sy and
g) in which ¢ is true.

The problem of deciding whether an arbitrary ¢ is a disjunctive land-
mark is PSPACE-complete [281]. However, that is a worst-case result; many
disjunctive landmarks can often be efficiently discovered by reasoning about
relaxed planning graphs [281, 509].

One way to to do this is as follows. Let s be the current state, and
g be the goal; but instead of requiring g to be a set of atoms, let it be
a set g = {¢1,...,0x} such that each ¢; is a disjunction of one or more
atoms. For each ¢;, let R; = {every action whose effects include at least
one of the atoms in ¢;}. Let from R; every action a for which we can show
(using a relaxed-planning-graph computation) that a’s preconditions cannot
be achieved without R;, and let N; = {a1,ag,...,ar} be the remaining set of
actions. If we pick a precondition p; of each a; in N, then ¢/ =p; V...V
is a disjunctive landmark. To avoid a combinatorial explosion, we will not
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want to compute every such ¢'; instead we will only compute landmarks
consisting of no more than four atoms (the number 4 being more-or-less
arbitrary). The computation can be done by calling RPG-landmark(s, ¢;)
once for each ¢;, as follows:

RPG-landmark(s, ¢) takes two arguments: a state s, and a disjunction ¢
of one or more atoms such that ¢ is false in s (i.e., s contains none of the
atoms in ¢). It performs the following steps:

1.

The

Let Relevant = {every action whose effects include at least one member
of ¢}. Then achieving ¢ will require at least one of the actions in
Relevant. If some action a € Relevant has all of its preconditions
satisfied in s, then (a) is a solution, and the only landmark is ¢ itself,
so return ¢.

. Starting with s, and using only the actions in A \ Relevant (i.e., the

actions that cannot achieve ¢), construct a sequence of r-states and
r-actions Sg, A1, 81, Ao, 82, ... as in the HFF algorithm. But instead of
stopping when HFF does, keep going until an r-state § is reached such
that §x = Sp_1. Then §; includes every atom that can be produced
without using the actions in Relevant.

. Let Necessary = {all actions in Relevant that are applicable in §}.

Then achieving ¢ will require at least one of the actions in Necessary.
If Necessary = @ then ¢ cannot be achieved, so return failure.

. Consider every disjunction of atoms ¢ = p; V ...V p,, having the

following properties: m < 4 (as we noted earlier, this is an arbitrary
limit to avoid a combinatorial explosion), every p; in ¢ is a precondi-
tion of at least one action in Necessary, every action in Necessary has
exactly one of pi,...,p, as a precondition, and sy contains none of
P1,---,Pm- Then none of the actions in Necessary will be applicable
until ¢’ is true, so ¢’ is a disjunctive landmark.

. For every landmark ¢’ found in the previous step, recursively call

RPG-landmark(s, ¢') to find additional landmarks.!® These landmarks
precede ¢, that is, they must be achieved before ¢'. Return every ¢’
and all of the landmarks found in the recursive calls.

stmple landmark heuristic is

h®!(s) = the total number of landmarks found by the preceding algorithm.

15In implementations, this usually is done only if every atom in ¢’ has the same type,
for example, ¢’ = loc(rl) =d1V loc(r2) =d1.
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Backward-search (32, s¢, go)

T ()i 94 g (4)

loop
if so satisfies ¢ then return
A"+ {a € A] a is relevant for g}
if A’ = & then return failure
nondeterministically choose a € A’
g+ (g,a) (41)
T 4 a.m (1)

Algorithm 2.4: Backward-search planning schema. During each loop itera-
tion, 7 is a plan that achieves g from any state that satisfies g.

Although the algorithm is more complicated than the HFF algorithm, its
running time is still polynomial.

Better landmark heuristics can be devised by doing additional compu-
tations to discover additional landmarks and by reasoning about the order
in which to achieve the landmarks. We discuss this further in Section 2.7.9.

Example 2.26. As before, consider the planning problem in Example 2.21.

To compute h®'(s;), we count the number of landmarks between s; and
g. If we start in s1, then every solution plan must include a state in which
cargo(rl) = cl. We will skip the computational details, but this is the only
landmark that the landmark computation will find for s;. Thus h%(s1) = 1.

If we start in state so, then the landmark computation will find two
landmarks: cargo(sl) = cl as before, and loc(rl) = d1 (which was not a
landmark for s; because it was already true in s1). Thus h¥(s9) = 2. O

2.4 Backward Search

Backward-search, Algorithm 2.4, does a state-space search backward from
the goal. As with Forward-search, it is a nondeterministic algorithm that has
many possible deterministic versions. The variables in the algorithm are as
follows:  is the current partial solution, ¢’ is a set of literals representing all
states from which 7 can achieve g, Solved is a set of literals representing all
states from which a suffix of 7 can achieve g, and A’ is the set of all actions
that are relevant for ¢, as defined next.

Informally, we will consider an action a to be relevant for achieving a
goal g if a does not make any of the conditions in g false and makes at least
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one of them true. More formally:

Definition 2.27. Let g = {z1 = ¢1,...,2x = ¢k}, where each z; is a state
variable and each ¢; is a constant. An action a is relevant for g if the
following conditions hold:

e For at least one i € {1,...,k}, eff, contains z; < ¢;.

e For i =1,....k, eff, contains no assignment statement z; < ¢, such
that ¢, # ¢;.

e For each z; that is not affected by a, pre(a) does not contain the
precondition z; # ¢;, nor any precondition z; = ¢, such that ¢, #
C;. ]

In line (i) of Backward-search, v~ 1(g,a) is called the regression of g
through a. It is a set of conditions that is satisfied by every state s such
that (s, a) satisfies g. It includes all of the literals in pre(a), and all literals
in g that a does not achieve:

7 Y(g,a) = pre(a) U {(zi,¢;) € g | a does not affect x;} (2.14)

We can incorporate loop-checking into Backward-search by inserting the
following line after line (7):

Solved < {g}
and adding these two lines after line (#:):

if g € Solved then return failure
Solved <+ Solved U {g}

We can make the loop-checking more powerful by replacing the preceding
two lines with the following subsumption test:

if g € Solved then return failure
if 3¢’ € Solved s.t. ¢’ C g then return failure

Here, Solved represents the set of all states that are “already solved,” that
is, states from which 7 or one of 7’s suffixes will achieve gg; and ¢’ represents
the set of all states from which the plan a.7m will achieve gg. If every state
that a.7m can solve is already solved, then it is useless to prepend a to w. For
any solution that we can find this way, another branch of the search space
will contain a shorter solution that omits a.
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Example 2.28. Suppose we augment Backward-search to incorporate loop
checking and call it on the planning problem in Example 2.21. The first
time through the loop,

g = {cargo(rl) =cl,loc(rl) = d3},

and there are three relevant actions: move(rl,d1,d3), move(rl,d2,d3),
and load(rl,cl,d3). Suppose Backward-search’s nondeterministic choice is
move(rl, d1,d3). Then in lines 7-10,

g« v (g, move(rl,d1,d3)) = {loc(rl) = d1, cargo(rl) = cl};
7« (move(rl,d1,d3));
Solved < {{cargo(rl) =cl,loc(rl) =d3}, {loc(rl) =d1, cargo(rl) =cl}}.
In its second loop iteration, Backward-search chooses nondeterministically
among three relevant actions in line 6: move(rl,d2,d1), move(rl,d3,dl),

and load(rl,cl,dl). Let us consider two of these choices.
If Backward-search chooses move(rl,d3,dl), then in lines 7-9,

g+ 7 (g, move(rl,d3,d1)) = {loc(rl) =d3, cargo(rl) = cl1};
7 < (move(rl,d3,dl), move(rl,d1,d3));

g € Solved, so Backward-search returns failure.
If Backward-search instead chooses load(rl,cl,dl), then in lines 7-10,

g < 7 1(g,load(r1,c1,d1)) = {loc(rl) =d1, cargo(rl) = nil};
7 < (load(rl,cl,d1), move(rl,dl,d3));
Solved < {{cargo(rl) =cl,loc(rl) =d3}, {loc(rl) = d1, cargo(rl) =cl},
{loc(rl) =d1,cargo(rl) =nil}}.

Consequently, one of the possibilities in Backward-search’s third loop itera-
tion is to set

7 < (move(rl,d1,d3),load(rl, cl,dl), move(rl,d1,d3)).

If Backward-search does this, then it will return 7 at the start of the fourth
loop iteration. O

To choose among actions in A, Backward-search can use many of the
same heuristic functions described in Section 2.3, but with the following
modification: rather than using them to estimate the cost of getting from
the current state to the goal, what should be estimated is the cost of getting
from sg to 77 1(g,a).

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.


http://cambridge.org/9781107037274

60 Chapter 2

2.5 Plan-Space Search

Another approach to plan generation is to formulate planning as a constraint
satisfaction problem and use constraint-satisfaction techniques to produce
solutions that are more flexible than linear sequences of ground actions. For
example, plans can be produced in which the actions are partially ordered,
along with a guarantee that every total ordering that is compatible with this
partial ordering will be a solution plan.

Such flexibility allows some of the ordering decisions to be postponed
until the plan is being executed, at which time the actor may have a better
idea about which ordering will work best. Furthermore, the techniques are
a first step toward planning concurrent execution of actions, a topic that we
will develop further in Chapter 4.

2.5.1 Definitions and Algorithm

The PSP algorithm, which we will describe shortly, solves a planning prob-
lem by making repeated modifications to a “partial plan” in which the ac-
tions are partially ordered and partially instantiated, as defined here.

A partially instantiated action is any instance of an action template. It
may be either ground or unground.

Informally, a partially ordered plan is a plan in which the actions are
partially ordered. However, some additional complication is needed to make
it possible (as it is in ordinary plans) for actions to occur more than once.
The mathematical definition is as follows:

Definition 2.29. A partially ordered plan is a triple # = (V, E, act) in
which V and E are the nodes and edges of an acyclic digraph, and each
node v € V contains an action act(v).'® The edges in E represent ordering
constraints on the nodes in V, and we define v < v’ if v # ¢ and (V, E)
contains a path from v to v’. A total ordering of 7 is any (ordinary) plan
7' = (act(v1), ..., act(vy)) such that v < va < ... < v, and {v1,...,v,} =
V.

A partially ordered solution for a planning problem P is a partially or-
dered plan 7 such that every total ordering of 7 is a solution for P. ]

Definition 2.30. A partial plan is a 4-tuple 7 = (V, E, act,C), where
(V,E, act) is the same as in Definition 2.29 except that each action act(v)

Y8For readers familiar with partially ordered multisets [233], we essentially are defining
a partially ordered plan to be a pomset in which act(.) is the labeling function.
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may be partially instantiated, and C' is a set of constraints. Each constraint
in C is either an inequality constraint or a causal link:

e An inequality constraint is an expression of the form y # z, where y
and z may each be either a variable or a constant.

. . . r=b
e A causal link is an expression vy --» v9, where v1 and vy are two nodes

such that v; < ve, z=0> is a precondition of act(vs), and x <+ b is an
effect of act(vy). O

The purpose of a causal link is to designate act(vi) as the (partially
instantiated) action that establishes act(v2)’s precondition x = b. Conse-
quently, for every node such that v; < v3 < vo, we will say that vs violates
the causal link if z is the target of one of act(vs)’s effects, even if the effect
is & < b.17

A partial plan 7 = (V| E, act,C) is inconsistent if (V,E) contains a
cycle, C' contains a self-contradictory inequality constraint (e.g., y # y) or a
violated causal link, or an action act(v) has an illegal argument. Otherwise
m is consistent.

Definition 2.31. If 7 = (V, E, act,C) is a consistent partial plan, then a
refinement of 7 is any sequence p of the following modifications to =:

e Add an edge (v,v') to E. This produces a partial plan (V, E’, act,C)
in which v < v'.

e Instantiate a variable x. This means replacing all occurrences of x with
an object b € Range(x) or a variable y with Range(y) C Range(x).
This produces a partial plan (V) E, act',C"), where C" and act’ are the
instances of C' and act produced by replacing x.

e Add a constraint c. This produces a partial plan (V, E, act, C U {c}).

e Add a new node v containing a partially instantiated action a. This
produces a partial plan 7’ = (V', E, act',C), where V' = V U {v} and
act' = actU{(v,a)}.

A refinement p is feasible for = if it produces a consistent partial plan. [

17"The reason for calling this a violation even if the effect is z < b is to ensure that PSP
(Algorithm 2.5) performs a systematic search [411, 336], that is, it does not generate the
same partial plan several times in different parts of the search space.
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PSP(X, )
loop
if Flaws(m) = @ then return m
arbitrarily select f € Flaws(m) (4)

R <+ {all feasible resolvers for f}
if R = @ then return failure
nondeterministically choose p € R (i)
™ ¢ p(m)

return 7

Algorithm 2.5: PSP, plan-space planning.

2.5.2 Planning Algorithm

The PSP algorithm is Algorithm 2.5. Its arguments include a state-variable
planning domain ¥ = (B, R, X, A) and a partial plan 7 = (V, E, act, C') that
represents a planning problem P = (X, sg,g). The initial value of 7 is as
follows, where vy and v, are nodes containing two dummy actions that PSP
uses to represent the initial state and goal:

o V ={vy,vy} and E = {(vo,vg)},

e act(vp) is a dummy action ag that has pre(ap) = @ and eff(ag) = so.
e act(vy) is a dummy action ag that has pre(ay) = g and eff(ay) = @.
e C' = o, that is, there are not (yet) any constraints.

The reason for calling ag and a, “dummy actions” is that they look syntac-
tically like actions but are not instances of action templates in A. Their sole
purpose is to represent so and g in a way that is easy for PSP to work with.

PSP repeatedly makes feasible refinements to 7 in an effort to produce a
partially ordered solution for P. PSP does this by finding flaws (things that
prevent 7 from being a solution to P) and for each flaw applying a resolver
(a refinement that removes the flaw).

In PSP, Flaws(m) is the set of all flaws in . There are two kinds of flaws:
open goals and threats. These and their resolvers are described next.

Open goals. If anode v € V has a precondition p € pre(act(v)) for which
there is no causal link, then p is an open goal. There are two kinds of
resolvers for this flaw:

e FEstablish p using an action in w. Let v be any node of 7 such that
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50 g

Figure 2.9: Initial state and goal for Example 2.32.

v £ v, If act(v) has an effect e that can be unified with p (i.e., made
syntactically identical to p by instantiating variables), then the fol-
lowing refinement is a resolver for p: instantiate variables if necessary

to unify p and e; add a causal link v’ AN (where €’ is the unified
expression); and add (v/,v) to E unless v’ < v already.

e Establish p by adding a new action. Let a’ be a standardization of
an action template a € A (i.e., d’ is a partially instantiated action
produced by renaming the variables in a to prevent name conflicts
with the variables already in 7). If eff(a’) has an effect e that can be
unified with p, then the following refinement is a resolver for p: add a
new node v’ to V; add (v/,a’) to act; instantiate variables if necessary

to unify p and e; add a causal link v/ -=» v; make vy < v’ by adding
(vg,v") to E; and add (v, v) to E.

Threats. Let vg fi’ v9 be any causal link in 7, and v3 € V be any node
such that vy A vz and vs £ v1 (hence it is possible for vs to come between
v; and v2). Suppose act(vs) has an effect y < w that is wunifiable with z,
that is, 7 has an instance (here we extend Definition 2.9 to plans) in which
both x and y are the same state variable). Then vg is a threat to the causal
link. There are three kinds of resolvers for such a threat:

e Make v3 < v1, by adding (v3,v;) to E.
e Make v9 < v3, by adding (ve,vs3) to E.

e Prevent z and y from unifying, by adding to C' an inequality constraint
on their parameters.

Example 2.32. Figure 2.9 shows the initial state and goal for a simple
planning problem in which there are two robots and three loading docks, that
is, B = Robots U Docks, where Robots = {rl,r2} and Docks = {d1,d2,d3}.
There are no rigid relations. There is one action template,
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loc(rl) = d2
loc(r2) =d1
loc(rl) =d1
loc(r2) =d2

occupied(d3) = nil
occupied(dl) =rl
occupied(d2) =r2

Figure 2.10: The initial partial plan contains dummy actions ag and a4 that
represent sop and g. There are two flaws: a,’s two preconditions are open
goals.

move(r,d,d")
pre: loc(r) =d, occupied(d’) =F
eff: loc(r) < d',

where r € Robots and d,d" € Docks. The initial state and the goal (see
Figure 2.9) are

s = {loc(rl) =d1,loc(r2) = d2, occupied(dl) =T,
occupied(d2) =T, occupied(d3) =F};
g = {loc(rl) =d2,loc(r2) =d1}.

Figure 2.10 shows the initial partial plan, and Figures 2.11 through 2.14
show successive snapshots of one of PSP’s nondeterministic execution traces.
Each action’s preconditions are written above the action, and the effects
are written below the action. Solid arrows represent edges in E, dashed
arrows represent causal links, and dot-dashed arrows represent threats. The
captions describe the refinements and how they affect the plan. O

2.5.3 Search Heuristics

Several of the choices that PSP must make during its search are very sim-
ilar to the choices that a backtracking search algorithm makes in order to
solve constraint-satisfaction problems (CSPs); for example, see [517]. Conse-
quently, some of the heuristics for guiding CSP algorithms can be translated
into analogous heuristics for guiding PSP. For example:

e Flaw selection (line (i) of PSP) is not a nondeterministic choice, be-
cause all of the flaws must eventually be resolved, but the order in
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loc(rl)=d
occupied(d2) = nil
ﬂ’al = move(rl,d,d2)

loc(rl) =d2---___ -

occupied(d) = nil  Soo----- >loc(rl) = d2

occupied(d2) =rl _»loc(r2) =d1
a, ‘\ =@|
loc(rl) =d1
loc(r2) =d2 occupied(dl) = nil Xo-<_
occupied(d3) = nil loc(r2) =d' \
occupied(dl) =r1 a, = move(r2,d',d1) /,"
occupied(d2) = r2 loc(r2) =d1----"~ -

occupied(d') = nil
occupied(dl) =r2

Figure 2.11: Resolving a4’s open-goal flaws. For one of them, PSP adds a;
and a causal link. For the other, PSP adds as and another causal link.

___wloc(rl) =d1
s <coccupied(d2) = nil

loc(rl) = d2---____
occupied(dl) = nil  TUNg----- »loc(rl) = d2
occupied(d2) =rl »loc(r2) =d1

T
\

aO L \ ~<_ v — ag
loc(r1) = d1’ \ /,/'“\
loc(r2) = d2 log(r) = d2 occupied(d1) = nil  Nc-._

_Aloc(r2) =d’ \

occupied(d") = nil
a, = move(r2,d',d1){" |}

ay = move(r,d2,d") (°*
= \

occupied(d3) = nil
occupied(dl) =r1

_-

occupied(d2) =r2 Moc(r)=d"— ! loc(r2) =d1---—7~ .
occupied(d2) = nil”’ occupied(d’) = nil
occupied(d") =r occupied(d1l) =r2

Figure 2.12: Resolving a1’s open-goal flaws. For one of them, PSP substi-
tutes d1 for d (which also resolves a;’s free-variable flaw) and adds a causal
link from ag. For the other, PSP adds a3 and a causal link. The new action
a3 causes two threats (shown as red dashed-dotted lines).
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__-wloc(rl) =d1
s coccupied(d2) = nil

loc(rl) = d2~~\_‘\
occupied(dl) = nil~ | T ----- »loc(rl) =d2
occupied(d2) =rl »loc(r2) =d1

a, - — > d,

loc(rl) =d1-

loc(r2) =d2 loc(r2) =d2 -

occupied(d3) = nil occupied(d') = nil \

occupied(dl) =r1 a; = move(r2,d2,d") a, = move(r2,d’,d1) ,"

occupied(d2) = r2 loc(r2)=d' —— 1 loc(r2) =d1---"""~ g
occupied(d2) = nil”’ occupied(d’) = nil
occupied(d') =r2 occupied(dl) =r2

Figure 2.13: Resolving as’s open-goal flaws. For one of them, PSP substi-
tutes r2 for r and d’ for d’, and adds a causal link from a3. For the other,
PSP adds a causal link from a;. As a side effect, these changes resolve the
two threats.

__-wloc(rl) =d1
o «occupied(d2) = nil
. a, = move(rl,d1,d2)
loc(rl) =d2---____
occupied(dl) = niI\: ———————— »loc(rl) =d2
occupied(d2)=r1 | .»loc(r2) =d1

occupied(dl) =rl a, = move(r2,d2,d3)

occupied(d2) = r2 loc(r2) =d3---"" /‘;/ loc(r2) =d1---"""~ g
occupied(d2) = nil occupied(d3) = nil
occupied(d3) =r2 occupied(dl) =r2

Figure 2.14: Resolving a3’s open-goal flaws. For one of them, PSP adds a
causal link. For the other, PSP substitutes d3 for d’ and adds a causal link.
The resulting partially ordered plan contains no flaws and hence solves the
planning problem.
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which PSP selects the flaws can affect the size of the search space gen-
erated by PSP’s nondeterministic choices in line (4i). Flaw selection is
analogous to variable ordering in CSPs, and the Minimum Remaining
Values heuristic for CSPs (choose the variable with the fewest remain-
ing values) is analogous to a PSP heuristic called Fewest Alternatives
First: select the flaw with the fewest resolvers.

e Resolver selection (line (i) of PSP) is analogous to value ordering in
CSPs. The Least Constraining Value heuristic for CSPs (choose the
value that rules out the fewest values for the other variables) translates
into the following PSP heuristic: choose the resolver that rules out the
fewest resolvers for the other flaws.

The preceding heuristic ignores an important difference between plan-
space planning and CSPs. Ordinarily, the number of variables in a CSP
is fixed in advance, hence the search tree is finite and all solutions are
at exactly the same depth. If one of PSP’s resolvers introduces a new
action that has n new preconditions to achieve, this is like introducing
n new variables (and a number of new constraints) into a CSP, which
could make the CSP much harder to solve.

One way of adapting this heuristic to PSP is by first looking for re-
solvers that do not introduce open goals, and if there are several such
resolvers, then to choose the one that rules out the fewest resolvers for
the other flaws.

Although the preceding heuristics can help speed PSP’s search, imple-
mentations of PSP tend to run much more slowly than the fastest state-
space planners. Generally the latter are GBFS algorithms that are guided
by heuristics like the ones in Section 2.3, and there are several impediments
to developing an analogous version of PSP. Because plan spaces have no ex-
plicit states, the heuristics in Section 2.3 are not directly applicable, nor is
it clear how to develop similar plan-space heuristics. Even if such heuristics
were available, a depth-first implementation of PSP would be problematic
because plan spaces generally are infinite. Consequently, for solving prob-
lems like the ones in the International Planning Competitions [291], most
automated-planning researchers have abandoned PSP in favor of forward-
search algorithms.

On the other hand, some important algorithms for temporal planning
(see Chapter 4) are extensions of PSP and are useful for maintaining flex-
ibility of execution in unpredictable environments. An understanding of
PSP is useful to provide the necessary background for understanding those
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go(r, 1, 1')
pre: adjacent(l,!'), loc(r)=1  take(r,l,0)
eff: loc(r) <1’ pre: loc(r) =1, pos(o) =1,
cargo(r) =nil
navigate(r, [, 1) eff: pos(0) <—r, cargo(r) <o
pre: —adjacent(l,1"), loc(r) =1
eff: loc(r) <1’

Figure 2.15: Action templates for Example 2.33.
algorithms.

2.6 Incorporating Planning into an Actor

We now consider what is needed for actors to utilize the planning algorithms
in this chapter. Because it is quite unlikely that the environment will satisfy
all of the assumptions in Section 2.1.1, a planning domain will almost never
be a fully accurate model of the actor’s environment. Hence if a planning
algorithm predicts that a plan 7 will achieve a goal ¢, this does not ensure
that 7w will achieve g when the actor performs the actions in .

Example 2.33. To illustrate some of the things that can go wrong, suppose
a robot, rbt, is trying to accomplish the task “bring o7 to loc2” near the top
of Figure 1.2. To create an abstract plan for this task, suppose rbt calls a
planner on a planning problem P = (X, sg, g) in which ¥ contains the action
templates shown in Figure 2.15, and

so = {loc(rbt) =loc3, pos(o7) =locl, cargo(rbt) = nil },
g = {pos(o7) =loc2}.

The planner will return a solution plan 7 = (ay, as, as, a4, as) in which the
actions are slightly more detailed versions of the ones near the top of Fig-
ure 1.2:

a; = go(rbt,loc3,hall), as = navigate(rbt,hall,locl),
a3 = take(rbt,locl,07), a4 = navigate(rbt,locl,loc2),
as = put(rbt,loc2,07).

When rbt tries to perform 7, several kinds of problems may occur:
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1. Ezecution failures. Suppose rbt’s refinement of a; involves opening a
door, as in Figure 1.2. Then a; will succeed if the lower-level actions
work correctly or if there is a fixable problem (e.g., rbt’s gripper may
slip on the doorknob, but rbt may be able to reposition its gripper and
continue). However, if there is a problem that rbt cannot fix (e.g., the
door is locked or broken), then a; will fail, and rbt will need to revise
7 (e.g., by taking an alternate route to locl).

2. Unexpected events. Suppose that once rbt finishes a; and reaches the
hallway, someone puts an object 06 onto rbt. Then as is still appli-
cable, but a3 is not, because rbt can only hold one object at a time.
Depending on what 06 is and why it was put there, some possible
courses of action might be to remove 06 and then go to locl, to take
06 to locl and remove it there, or to take 06 somewhere else before
going to locl.

3. Incorrect information. Suppose that when rbt tries to perform as, a
navigation error causes it to go to a different location, loc4. To recover,
it will need to navigate from loc4 to locl.

4. Partial information. Suppose locl is where o7 is normally stored,
but rbt cannot observe whether o7 is there except by going there.
Because state-variable representations assume that the current state
is always fully known, a planner that uses this formalism cannot create
a conditional plan such as

look for o7 in locl; and if it’s not there then look for it in loc4.

As a work-around, if rbt thinks o7 is likely to be at locl, then it could
include pos(o7) =locl in sy when calling the planner. If rbt reaches
locl and o7 is not there, then rbt could call the planner with another
guess for o7’s location; and so forth.

Alternatively, we might want to give rbt a planner that can create
conditional plans or policies (see Chapters 5 and 6). But even then,
situations can arise in which the planner did not plan for all of the
possible contingencies because it did not know they were possible.
Thus rbt may still need work-arounds such as that just described. [J

Consequently, actors need ways to change their plans when problems are
detected. The following section describes some ways to do that.
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Run-Lookahead(X, g)
while (s < abstraction of observed state §) %= g do
7 < Lookahead(X, s, g)
if m = failure then return failure
a < pop-first-action(w); perform(a)

Algorithm 2.6: Run-Lookahead replans before every action.

Run-Lazy-Lookahead(X, g)
s < abstraction of observed state &
while s [~ g do
7 < Lookahead(X, s, g)
if m = failure then return failure
while 7 # () and s [~ ¢g and Simulate(X, s, g, ) # failure do
a < pop-first-action(); perform(a)
s < abstraction of observed state &

Algorithm 2.7: Run-Lazy-Lookahead replans only when necessary.

Run-Concurrent-Lookahead(X, g)
m 4 (); s < abstraction of observed state &
thread 1: // threads 1 and 2 run concurrently
loop
7 < Lookahead(2, s, g)
thread 2:
loop
if s = g then return success
else if m = failure then return failure
else if m # () and Simulate(X, s, g, m) # failure then
a <— pop-first-action(); perform(a)
s < abstraction of observed state &

Algorithm 2.8: Run-Concurrent-Lookahead does acting and replanning con-
currently.

2.6.1 Repeated Planning and Replanning

Algorithms 2.6 through 2.8 illustrate some ways for an actor to use a plan-
ner. In each of them, (3,s,¢) is a planning problem, and Lookahead is an
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online planning algorithm, that is, a planning algorithm that incorporates
modifications (which we discuss in Section 2.6.2) to facilitate interaction
between planning and acting. An important consequence of these modifi-
cations is that the plan returned by Lookahead is not guaranteed to solve
(X, s,9). Ideally we might like it to be at least a partial solution, that is, a
plan that can be extended to produce a solution—but even that cannot be
guaranteed.

Recall from Section 1.3.2 that the planner’s initial state s is an abstrac-
tion that may differ from the actor’s current state £. It may omit parts
of £ that are irrelevant for planning and may include hypothesized values
of state variables that the actor cannot currently observe, or it may be a
hypothetical future state. Similarly, the goal g in Algorithms 2.6-2.8 is for
planning purposes and may sometimes differ from what the actor ultimately
wants to achieve. For example, it may be a subgoal (see Section 2.6.2).

In each algorithm, pop-first-action removes and returns the first action
in 7; and perform calls the actor’s acting component—which may execute
the action if it is a command to the execution platform or else refine it into
lower-level actions and commands.

Here are some comparisons among the procedures:

e Run-Lookahead is a simple version of the receding-horizon approach
in Figure 1.4. Each time it calls Lookahead, it performs only the first
action of the plan that Lookahead returned. This is useful, for example,
in unpredictable or dynamic environments in which some of the states
are likely to be different from what the planner predicted.

The biggest disadvantage of Run-Lookahead is that repeatedly waiting
for Lookahead may be impractical if Lookahead has a large running
time, and may be unnecessary if the action models are known to give
very accurate predictions.

e Run-Lazy-Lookahead executes each plan 7 as far as possible, calling
Lookahead again only when 7 ends or a plan simulator says that m will
no longer work properly. This can be useful in environments where it
is computationally expensive to call Lookahead and the actions in 7
are likely to produce the predicted outcomes.

Simulate is the plan simulator, which may use the planner’s prediction
function v or may do a more detailed computation (e.g., a physics-
based simulation) that would be too time-consuming for the planner
to use. Simulate should return failure if its simulation indicates that
7w will not work properly — for example, if it finds that an action in 7
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will have an unsatisfied precondition or if 7 is supposed to achieve g
and the simulation indicates that it will not do so.

The biggest disadvantage of Run-Lazy-Lookahead is that sometimes it
can be difficult to predict that replanning is needed without actually
doing the replanning to find out. In such cases, Run-Lazy-Lookahead
may fail to detect problems until it is too late to fix them easily. For
example, in Example 2.33, suppose rbt uses Run-Lazy-Lookahead, and
Lookahead returns the partial solution (ai,ag). In problem 2 of the
example, rbt will take 06 to locl without considering whether to leave
06 in the hallway or take it elsewhere.

e Run-Concurrent-Lookahead is a receding-horizon procedure in which
the acting and planning processes run concurrently. Each time an
action is performed, the action comes from the most recent plan that
Lookahead has provided. This avoids Run-Lookahead’s problem with
waiting for Lookahead to return. Like Run-Lazy-Lookahead, it risks
continuing with an old plan in situations where it might be better to
wait for a new one, but the risk is lower because the plan is updated
more frequently.

The foregoing procedures are not the only possibilities. For example, there
are variants of Run-Lazy-Lookahead that maintain information [196] about
which actions in 7 establish the preconditions of other actions in 7. This
information can be used to detect situations where an action can be removed
from 7 because it is no longer needed, or where a specific part of 7 needs to
be revised.

2.6.2 Online Planning

Most of the planning algorithms earlier in this chapter were designed to
run off-line. We now discuss how to adapt them for use with the acting
procedures in Section 2.6.1, which need to interact with planners that run
online. The biggest issue is that the planning algorithms were designed
to find plans that (according to the planner’s domain model) are complete
(and in some cases, optimal) solutions to the planning problem. In online
planning, the actor may need to start acting before such a plan can be found.

Most of the planning algorithms presented earlier — especially the ones
that use forward search — can be modified to end their search early and
return the best “partial solution” that they have found, and we will now
discuss several techniques for how to do that.

The term partial solution is somewhat misleading because there is no
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guarantee that the plan will actually lead to a goal. But neither can we
guarantee that an actor will reach the goal if it uses a purported “complete
solution plan.” As we discussed in Section 2.6.1, acting procedures may need
to deal with a variety of problems that were not in the planner’s domain
model.

Subgoaling. In each of the algorithms in the previous section, the goal ¢’
given to the planner does not have to be the actor’s ultimate goal g; instead
it may be a subgoal. If ¢’ is a subgoal, then once it has been achieved, the
actor may formulate its next subgoal and ask the planner to solve it.

How to formulate these subgoals is somewhat problematic, but one can
imagine several possible techniques. The elements of a compound goal g =
{91, ..., 9x} could be used as subgoals, if one can decide on a reasonable order
in which to try to achieve them. Another possibility may be to compute an
ordered set of landmarks and choose the earliest one as a subgoal.

In practical applications, ¢’ usually is selected in a domain-specific man-
ner. For example, subgoaling with short-term objectives such as “get to
shelter” is used to plan actions for the computerized opponents in Killzone
2, a “first-person shooter” video game [585, 113]. The acting algorithm
is similar to Run-Concurrent-Lookahead, and the planner is similar to the
SeRPE algorithm that we discuss in Chapter 3. The actor runs the planner
several times per second, and the planner generates plans that are typi-
cally about four or five actions long. The main purpose of the planner is
to generate credible humanlike actions for the computerized opponents, and
it would not work well to do more elaborate planning because the current
state changes quickly as the game progresses.

Limited-horizon planning. Recall that in the receding-horizon tech-
nique, the interaction between the actor and planner is as depicted in Fig-
ure 1.4. Each time the actor calls Lookahead, the planner starts at the
current state and searches until it either reaches a goal or exceeds some
kind of limit, and then it returns the best solution or partial solution it has
found. Several of the algorithms in this section can easily be modified to do
that. Following are some examples.

We can modify A* (Section 2.2.5) to return if the least costly node in
Frontier has a cost that exceeds a limit cpyax, by putting the following step
immediately after line (¢) of Algorithm 2.2:

if cost(m) + h(s) > cmax, then return =
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Here is a modified version of IDS (Section 2.2.8) that uses a depth limit,

kmax:

for k =1 to kpax:
do a depth-first search, backtracking at every node of depth
k, and keeping track of which node v = (7, s) at depth k
has the lowest value f(v)
if the search finds a solution, then return it
return m

Both A* and IDS can also be modified to use a time limit, by having them
throw an exception when time runs out. When the exception is thrown,
IDS would return the plan 7 mentioned in the preceding pseudocode, and
A* would return the plan found in the node v = (m,s) € Frontier that
minimizes f(v).

Sampling. In a sampling search, the planner uses a modified version of
hill climbing (see Section 2.2.3) in which the node selection is randomized.
The choice can be purely random, or it can be weighted toward the actions in
Actions that produce the best values for h(v(s,a)), using techniques similar
to the ones that we describe later in Section 6.4.4. The modified algorithm
could do this several times to generate multiple solutions and either return
the one that looks best or return the n best solutions so that the actor
can evaluate them further. Such a technique is used in the UCT algorithm
(Algorithm 6.20) in Chapter 6.

2.7 Discussion and Historical Remarks

2.7.1 Classical Domain Models

Classical representations. Problem representations based on state vari-
ables have long been used in control-system design [244, 528, 161] and oper-
ations research [559, 4, 285], but their use in automated-planning research
came much later [29, 31, 215]. Instead, most automated-planning research
has used representation and reasoning techniques derived from mathemat-
ical logic. This began with the early work on GPS [451] and the situation
calculus [413] and continued with the STRIPS planning system [197] and
the widely used classical'® representations [460, 472, 384, 231, 517].

8These are also called STRIPS representations but are somewhat simpler than the
representation used in the STRIPS planner [197].
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In a classical representation, all atoms have the same syntax as our rigid
relations. Each state s is represented as the set of all atoms that are true in
s, hence any atom not in this set is false in s. Each planning operator (the
classical counterpart of an action template) has preconditions and effects
that are literals.

Example 2.34. Here is a classical representation of sy in Equation 2.4:

so = {loc(ri,dy), loc(ra,d2),
occupied(d; ), occupied(ds),
pi|E(C1, pl)7 pile(c27 pl)) p”e(c37 p2)7
pos(ci,c2), pos(ca,nil), pos(cs, nil),
top(py, 1), top(py;c3),  top(ps,nil)}.

Here is a classical planning operator corresponding to the load action tem-
plate in Example 2.12:

load(r, ¢, ', p,d)
pre: at(p,d), —cargo(r), loc(r,d), pos(c, '), top(p, c)
eff: cargo(r), —pile(c, p), pile(c, nil), —pos(c, ), pos(c, ),
—top(p, ¢), top(p, ) O

The well-known PDDL planning language ([204, 216]) is based on a clas-
sical representation but incorporates a large number of extensions.

Classical planning domains can be translated to state-variable planning
domains, and vice versa, with at most a linear increase in size:

e Translating a classical planning operator into an action template in-
volves converting each logical atom p(t1,...,t,) into a Boolean-valued
state variable zp(t1,...,t,). This can be done by replacing each neg-
ative literal —p(ti,...,t,) with x,(t1,...,t,) = F, and each positive
literal p(t1,...,t,) with zp(t1,...,t,) = T. This produces an action
template that has the same numbers of parameters, preconditions, and
effects as the classical operator.

e Translating an action template « into a classical planning operator
involves converting each state-variable z(t1, ..., t,) into a set of logical
atoms

{pz(t1,...,tn,v) | v € Range(x(t1,...,tn)}.

The conversion can be done as follows. For each expression
x(ti,...,ty) = v or z(t1,...,t,) # v in «’s preconditions, replace
it with py(t1,...,tn,v) or =pz(t1,...,tn,v), respectively. For each ex-
pression z(ty,...,t,) < v’ in o’s effects, replace it with p,(t1, ..., tn, V'),
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and also do the following. If a’s preconditions include py(t1,...,tn,v)
for some v, then add to a a new effect —p,(t1,...,tn,v). Otherwise,
add to o a new parameter u, a new precondition p,(t1,...,t,,u), and
a new effect —p,(t1,...,zn,u).

Note that the planning operator may have twice as many effects and
parameters as the action template. The reason is that each state vari-
able z(t1,...,t,) has only one value at a time, so the planning operator
must ensure that pg(t1,...,t,,v) is true for only one v at a time. In
the state-variable representation, this happens automatically; but in
the classical representation, asserting a new value requires explicitly
deleting the old one.

The classical and state-variable representation schemes are EXPSPACE-
equivalent [182, 231]. In both of them, the time needed to solve a classical
planning problem may be exponential in the size of the problem descrip-
tion. We emphasize, however, that this is a worst-case result; most classical
planning problems are considerably easier.

Ground representations. A classical representation is ground if it con-
tains no unground atoms. With this restriction, the planning operators have
no parameters; hence each planning operator represents just a single action.
Ground classical representations usually are called propositional represen-
tations [105], because the ground atoms can be rewritten as propositional
variables.

Every classical representation can be translated into an equivalent propo-
sitional representation by replacing each planning operator with all of its
ground instances (i.e., all of the actions that it represents), but this incurs a
combinatorial explosion in the size of the representation. For the load oper-
ator in Example 2.34, if r, ¢, p, and d are the numbers of robots, containers,
piles, and locations, then the the number of load actions represented by the
operator is rc?pd.

More generally, if a planning operator has p parameters and each param-
eter has v possible values, then there are vP ground instances. Each of them
must be written explicitly, so the ground classical representation is larger
by a multiplicative factor of vP.

A ground state-variable representation is one in which all of the state
variables are ground. Each ground state variable can be rewritten as a state
variable that has no arguments (like an ordinary mathematical variable)
[31, 267, 510]. Every state-variable representation can be translated into an
equivalent ground state-variable representation, with a combinatorial explo-

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.


http://cambridge.org/9781107037274

Section 2.7 it

sion like the one in the classical-to-propositional conversion. If an action
template has p parameters and each parameter has v possible values, then
the ground representation is larger by a factor of vP.

The propositional and ground state-variable representation schemes are
both PSPACE-equivalent [104, 30]. They can represent exactly the same set
of planning problems as classical and state-variable representations; but as
we just discussed, they may require exponentially more space to do so. This
lowers the complexity class because computational complexity is expressed
as a function of the size of the input.

In a previous work [231, Section 2.5.4], we claimed that propositional and
ground state-variable representations could each be converted into the other
with at most a linear increase in size, but that claim was only partially cor-
rect. Propositional actions can be converted to state-variable actions with
at most a linear increase in size, using a procedure similar to the one we
used to convert planning operators to action templates. For converting in
the reverse direction, the worst-case size increase is polynomial but super-
linear.!?

The literature contains several examples of cases in which the problem
representation and the computation of heuristic functions can be done more
easily with state variables than with propositions [268, 510]. Helmert [267,
Section 1.3] advances a number of arguments for considering ground state-
variable representations superior to propositional representations.

2.7.2 (Generalized Domain Models

The state-variable representation in Section 2.1 can be generalized to let
states be arbitrary data structures, and an action template’s preconditions,
effects, and cost be arbitrary computable functions operating on those data
structures. Analogous generalizations can be made to the classical repre-
sentation by allowing a predicate’s arguments to be functional terms whose
values are calculated procedurally rather than inferred logically (see Fox and
Long [204]). Such generalizations can make the domain models applicable
to a much larger variety of application domains.

19We believe it is a multiplicative factor between lgv and v, where v is the max-
imum size of any state variable’s range. The lower bound follows from the obser-
vation that if there are n state variables, then representing the states may require
nlgwv propositions, with commensurate increases in the size of the planning opera-
tors. The upper bound follows from the existence of a conversion procedure that
replaces each action’s effect z(c1,...,cn) < d with the following set of literals:
{pz(ciy... cn,d)} U{=z(c1,...,cn,d") | d € Range(z(ci,...,cn)) \ {d}}.
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With the preceding modifications, the forward-search algorithms in Sec-
tion 2.2 will still work correctly [460, 357, 287], but they will not be able to
use the domain-independent heuristic functions in Section 2.3, because those
heuristics work by manipulating the syntactic elements of state-variable and
classical representations. Instead, domain-specific heuristic functions will be
needed.

One way to generalize the action model while still allowing the use of
domain-independent heuristics is to write each action as a combination of
two parts — a “classical” part that uses a classical or state-variable represen-
tation and a “nonclassical” part that uses some other kind of representation
— and write separate algorithms to reason about the classical and nonclas-
sical parts. Ivankovic et al. [295] coordinate the two parts in a manner
somewhat like planning with abstraction (see Section 2.7.6). Gregory et al.
[246] use a “planning modulo theories” approach that builds on recent work
on SAT modulo theories [456, 41].

The action models in Section 2.1.3 can also be generalized in several
other ways, for example, to explicitly model the actions’ time requirements
or to model uncertainty about the possible outcomes. Such generalizations
are discussed in Chapters 4, 5, and 6.

2.7.3 Heuristic Search Algorithms

Heuristic functions that estimated the distance to the goal were first devel-
oped in the mid-1960s [450, 387, 160], and the A* algorithm was developed a
few years later by Hart et al. [255, 256]. A huge amount of subsequent work
has been done on A* and other heuristic search algorithms. Nilsson [460]
and Russell and Norvig [517]?° give tutorial introductions to some of these
algorithms, and Pearl [467] provides a comprehensive analysis of a large
number of algorithms and techniques. Our definition of problem relaxation
in Section 2.3 is based on Pearl’s.

Branch-and-bound algorithms have been widely used in combinatorial
optimization problems [373, 33, 425, 508]. DFBB (Section 2.2.6) is the best-
known version, but most forward-search algorithms (including, for example,
A*) can be formulated as special cases of branch-and-bound [290, 356, 447].

Although some related ideas were explored much earlier by Pohl [491],
the first version of GBFS that we know of is the algorithm that Russell and
Norvig [517] called “greedy search.” We believe the name “greedy best-first
search” was coined by Bonet and Geffner [82].

20The version of A* in Russell and Norvig [517] does not guarantee optimality unless h
is monotone (see Section 2.2.5) because of a subtle flaw in its pruning rule.
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Computer programs for games such as chess and checkers typically use
an acting procedure similar to Run-Lookahead (Algorithm 2.8). In these
programs, the Lookahead subroutine is similar to the time-limited version of
depth-first iterative deepening in Section 2.6.2, except that the depth-first
search is the well-known alpha-beta algorithm [338, 460, 517].

The IDA* algorithm in Section 2.2.8 is attributable to Korf [351].
Iterative-deepening algorithms are a special case of node-regeneration al-
gorithms that retract nodes to save space and regenerate them later if they
need to examine them again. There are several other search algorithms (e.g.,
the RBF'S algorithm [353]) that do node regeneration in one way or another.
Zhang [625] provides a survey of such algorithms.

2.7.4 Planning Graphs

A planning graph is similar to HFF’s relaxed planning graphs (see Figures
2.7 and 2.8), but it also includes various muter (i.e., mutual exclusion)
conditions: for example, two actions are mutex if they change the same
state variable to different values. Rather than including all r-applicable
actions, each Ay only includes the ones whose preconditions are not mutex
in §;. Weld [598] gives a good tutorial account of this.

Planning graphs were first used in Blum and Furst’s GraphPlan algo-
rithm [74]. Graphplan does an iterative-deepening search to generate suc-
cessively larger r-states. For each r-state §p such that the atoms of g are
non-mutex in §x, GraphPlan uses a backward-search backtracking algorithm
to look for a relaxed solution 7 such that the actions in each a; are non-
mutex. Such a 7 is often called a parallel plan or layered plan, and it is a
partially ordered solution (although not necessarily an optimal one).

It can be proven that if a planning problem P has a solution, then a suffi-
ciently large planning graph will contain a solution to P. Hence Graphplan is
complete. Furthermore, because GraphPlan’s backward search is restricted
to the planning graph, it usually can solve classical planning problems much
faster than planners based on Backward-search or PSP [598].

GraphPlan inspired a large amount of follow-up research on planning-
graph techniques. These can be classified roughly as follows. Some of them
extend planning graphs in various nonclassical directions, such as confor-
mant planning [548], sensing [600], temporal planning [549, 221, 395], re-
sources [340, 341, 556], probabilities [73], soft constraints [422], and dis-
tributed planning [296].

Others modify the planning-graph techniques to obtain improved per-
formance on classical-planning problems. Kautz and Selman’s BlackBox
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planner [323] translates a planning graph into a satisfiability problem and
searches for a solution using a satisfiability solver. Long and Fox’s STAN
[393] uses a combination of efficient planning-graph implementation and do-
main analysis. Gerevini and Serina’s LPG [225] does a stochastic local search
on a network of the actions in the planning graph.

2.7.5 Converting Planning Problems into Other Problems

Farlier we mentioned BlackBox’s technique of translating a planning graph
into a satisfiability problem. Blackbox can also be configured so that it
instead will translate the planning problem itself into a satisfiability problem
[321]. The basic idea is, for n = 1,2..., to take the problem of finding a
plan of length n, rewrite it as a satisfiability formula f,,, and try to solve f,,.
If the planning problem is solvable, then f,, will be solvable for sufficiently
large n.

Some related approaches involve translating the planning graph into a
constraint-satisfaction problem [45] and translating a network-flow repre-
sentation of the planning problem into an integer programming problem
[571, 572]. Nareyek et al. [443] give an overview of such techniques.

2.7.6 Planning with Abstraction

Planning with abstraction refers not to the kind of abstraction described in
Chapter 1, but instead to a relaxation process in which an abstract planning
problem P' = (¥, s(,¢’) is formed from a classical planning problem P =
(X, s0,9) by removing some of the atoms (and any literals that contain
those atoms) from P [519, 335, 333, 616, 235]. If a planner finds a solution
' = {(d},...,a)) for P’ then 7’ can be used to constrain the search for a
solution to P. The idea is to look for solutions g, 71, . .., Ty, respectively,
for the following sequence of planning problems, in which each a; is the
action whose abstraction is a}:

PO = (Zv SOapre(al));
Py = (%, s1,pre(az)), where s = ~y(so,m0);
Pn—l = (27 Sn—1, pre(an))a where Sp—1 = ’Y(Sn—27 7Tn—2)§
PTL - (27 3n79>7 where Sn = 7(3n—1777n—1)-
If a condition called the downward refinement property [616, 402, 403] is

satisfied, then 7y, ..., m, will exist and their concatenation will be a solution
for P.
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Planning with abstraction typically is done at multiple levels. To con-
strain the search for a solution to P’, one can first create and solve an
abstraction P” of P’; to constrain the search for a solution to P”, one can
first create and solve an abstraction P"” of P”; and so forth.

An important characteristic of this approach is that in an abstraction of
a planning problem P, each state or action represents an equivalence class of
states or actions in P. Earlier, these equivalence classes were induced by the
removal of atoms, but there are other ways to create equivalence classes with
analogous properties and use them for planning with abstraction [402, 403].

There are many cases in which it is not possible to satisfy the downward
refinement property mentioned earlier, whence planning with abstraction is
not guaranteed to work. However, abstracted planning problems can also
be used to provide heuristic functions to guide the search for a solution to
the unabstracted problem (see abstraction heuristics in Section 2.7.9).

2.7.7 HTN Planning

In some planning domains, we may want the planner to use a set of recipes or
“standard operating procedures” for accomplishing some task. For example,
if we want to move container ¢; from dock d; to dock ds, then we might
want to specify that the proper way to accomplish this task is as follows:

Have a robot r go to di, pick up c;, and then go to ds.

Such recipes can be written as HT'N methods; see Section 3.5.2 for details.

The expressive power of HT'N methods can be useful for developing prac-
tical applications [603, 444, 382], and a good set of methods can enable an
HTN planner to perform well on benchmark problems [394]. A drawback
of this approach is that it requires the domain author to write and debug a
potentially complex set of domain-specific recipes [308]. However, research
is being done on techniques for aiding this process (see Section 7.3.3).

2.7.8 Temporal Logic

Search-control rules written in temporal logic [28, 367] can be used to de-
scribe constraints that must be satisfied by the sequence of states that a
plan will generate. As an example, we discuss linear temporal logic (LTL)
[178, 106], a modal logic that extends first-order logic [535] to include ways
to reason about the sequences of states that a state-transition system might
go through.
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LTL formulas may include four modal operators X, F, G, and U (for
“neXt,” “Future,” “Globally,” and “Until”). These operators refer to prop-
erties of an infinite sequence of states M; = (s;, Si+1,...). Here are the
possible forms an LTL formula ¢ might have, and the conditions under
which M; satisfies ¢:

e If ¢ is a statement in first-order logic, then M; | ¢ if s; = ¢.

e If ¢ has the form X where ¢ is an LTL formula, then M; = ¢ if
Miy1 = 9.

e If ¢ has the form F 1 where ¢ is an LTL formula, then M; = ¢ if there
is a j > i such that M; = 1.

e If ¢ has the form G where v is an LTL formula, then M; |= ¢ if for
every j > 1, Mj = 1.

o If ¢ has the form v; Uy where ¢; and 19 are LTL formulas, then

M; = ¢ if there is a k > ¢ such that M = ¢» and M; |= 4y for
i<j<k.

As in the HTN example earlier, suppose we want a robot r to move container
c; from dock d; to dock do. Then we might want to specify the following
restriction on r’s behavior:

r should not leave d; without first picking up c;, and r should
not put ¢y down until it reaches d;.

If we represent states and actions using the classical representation in Ex-
ample 2.34, we can write that restriction as the following LTL formula:

Glat(r,dy) = (at(r,d1) Upos(cy,7))]
A G[pos(cy,r) = (pos(cy,r) Uat(r,dz))]

Such a formula can be used as a search-control rule in a forward-search
algorithm similar to the ones in Section 2.2, with modifications to make the
algorithm backtrack whenever the current plan 7 produces a sequence of
states such that 7(sp, 7) does not satisfy the formula.

One domain-independent planner that works this way is TLPlan [28,
367]. Another that uses a different kind of temporal logic is TALplanner
[156, 155]. In addition, LTL has become popular for motion planning in
robotics [69, 611, 314].

The benefits and drawbacks of this approach are similar to the ones that
we stated earlier for HT'N planning. On one hand, a good set of control
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rules can enable an temporal-logic planner to perform well [394], and the
expressive power of the control rules can be important in practical applica-
tions [157]. On the other hand, the domain author must write and debug
a potentially complex set domain-specific information [308], but research is
being done on techniques to aid this process (see Section 7.3.3).

2.7.9 Domain-Independent Planning Heuristics

For many years, it was tacitly assumed that good heuristic functions were
necessarily domain-specific. This notion was disproven when the domain-
independent h*d9 and A™2* heuristics in Section 2.3.1 were developed by
Bonet and Geffner [82] for use in their HSP planning system. HSP’s ex-
cellent performance in the 1998 planning competition [416] sparked a large
amount of subsequent research on domain-independent planning heuristics.
Most of them can be classified roughly as delete-relaxation heuristics, land-
mark heuristics, critical-path heuristics, and abstraction heuristics [269]. We
discuss each of these classes next.

Delete-Relaxation Heuristics

Delete-relaxation and the h* and h¥Y heuristics (see Section 2.3.2) were pi-
oneered primarily by Hoffmann [276, 280], and the name of the h¥F heuristic
comes from its use in the FF planning system [278]. Delete-relaxation can
also be used to describe the h24d and A™a% heuristics in Section 2.3.1; h™ax
is the optimal parallel solution (see Section 2.7.4) for the delete-relaxed
problem [270, 68].

Helmert’s [266, 267] causal graph heuristic involves analyzing the plan-
ning domain’s causal structure using a directed graph whose nodes are all
of the state variables in the planning domain, and whose edges represent
dependencies among the state variables. Although it is not immediately ob-
vious that this is a delete-relaxation heuristic, a delete-relaxation heuristic
h?® has been developed that includes both the causal graph heuristic and
h2dd as special cases [270].

Landmark Heuristics

The early work on landmarks by Porteous, Sebastia, and Hoffmann [493]
has been hugely influential, inspiring a large amount of additional work on
the subject. The landmark heuristic that we described in Section 2.3.3 is a
relatively simple one, and there are many ways to improve it.
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The problem of determining whether a fact is a landmark is PSPACE-
complete, and so is the problem of deciding whether one landmark must
precede another. Consequently, research on landmark generation has fo-
cused on the development of polynomial-time criteria that are sufficient (but
not necessary) to guarantee that a fact is a landmark or that one landmark
must proceed another. Some of the better-known approaches involve relaxed
planning graphs [281], domain transition graphs [509, 510], and hitting sets
[90].

Other work on landmarks includes, for example, using them to find
optimal solutions to planning problems [316], improving the efficiency of
planning by splitting planning problems into subproblems [584], and the
development of landmark heuristics for use in temporal planning [317].

Critical-Path Heuristics

There is a set {h™ | m = 1,2,...} of heuristic functions based loosely on the
notion of critical paths (an important concept in project scheduling). They
approximate the cost of achieving a goal g by the cost of achieving the most
costly subset of size m [261, 259]. More specifically, for m = 1,2,..., let

0 if s = g,
Am(sv g) = minaGRel(g) COSt(CL) + Am(sa 7_1(9) CL)) if ‘g‘ <m,
MaXyCg and |gf|<m Am(5,9") otherwise,

where Rel(g) is the set of all actions that are relevant for g (see Defini-
tion 2.27). Then h™(s) = Ap(s, g). It is easy to show that h! = pmax,

For each m, the heuristic A" is admissible; and if we hold m fixed then
h™ can be computed in polynomial time in [A] + Y . |Range(z)|, the
number of actions and ground atoms in the planning domain. However, the
computational complexity is exponential in m.

Abstraction Heuristics

An abstraction of a planning domain ¥ is a -preserving homomorphism
from Y onto a smaller planning domain Y’. For each planning problem
P = (X, s0,9), this defines a corresponding abstraction P’ = (¥', s{,, ¢'); and
if we let ¢* denote the cost of an optimal solution to a planning problem,
then it follows that ¢*(P") < ¢*(P). If ¥/ is simple enough that we can
compute ¢*(P’) for every planning problem P’ in 3’, then the function h(s) =
(X, ¢, ¢’) is an admissible heuristic for P.
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The best-known such abstraction is pattern database abstraction, an idea
that was originally developed by Culberson and Schaeffer [132] and first used
in domain-independent classical planning by Edelkamp [167]. The pattern
is a subset X’ of the state variables in 3, and the mapping from ¥ to Y’ is
accomplished by removing all literals with variables that are not in X’. The
pattern database is a table (constructed by brute force) that gives ¢*(P’)
for every planning problem P’ in X'

One problem is deciding which state variables include in X’; algorithms
have been developed to do this automatically [260, 272]. A bigger problem
is that the size of the pattern database and the cost of computing each
entry, both grow exponentially with the size of X’. This problem can be
alleviated [168, 34] using symbolic representation techniques that we discuss
in Section 5.4, but it still is generally necessary to keep X' small [273].
Because the database provides no information pertaining to variables not in
X', this limits the informedness of h.

An awareness of this limitation has led to research on other kinds of cri-
teria for aggregating sets of states in Y into individual state in ¥, including
merge-and-shrink abstraction [271, 273] and structural-pattern abstraction
[319], as well as ways to improve the heuristic’s informedness by composing
several different abstractions [318].

2.7.10 Plan-Space Planning

The two earliest plan-space planners were NOAH [519] and NONLIN [561],
both of which combined plan-space search with HTN task refinement (see
Section 3.5.2). Initially plan-space planning was known as nonlinear plan-
ning, reflecting some debate over whether “linear” planning referred to the
structure of the planner’s current set of actions (a sequence instead of a par-
tial order) or to its search strategy that addresses one goal after the previous
one has been completely solved.

Korf [352] introduced distinctions among problems with fully indepen-
dent goals, serializable goals (where there is an ordering for solving the
goals without violating the previously solved ones), and arbitrarily interact-
ing goals.?! This goal dependence hierarchy was further refined by Barrett
and Weld [40], who introduced a planner-dependent notion of trivially and
laboriously serializable goals. According to their analysis, plan-space plan-
ners can more often lead to trivially serializable goals that are easily solved.

21For example, Exercise 2.10 in the next section uses a nonserializable planning problem
known as the Sussman anomaly [593].
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In a linear sequence of actions, it is trivial to check whether some con-
dition is true or not in some current state. But in a partially ordered and
partially instantiated set of actions, it is less easy to verify whether a propo-
sition is true before or after the execution of an action in a partially ordered
and partially instantiated set of actions. The so-called modal truth criterion
(MTC) [114] provided a necessary and sufficient condition for the truth of a
proposition at some point in a partial plan 7 and showed that if m contains
actions with conditional effects, then the evaluation of the MTC is NP-hard.
This complexity result led to a belief that plan-space planning with extended
representation is impractical, which is incorrect because planning does not
require a necessary and sufficient truth condition. It only has to enforce a
sufficient truth condition, which basically corresponds in PSP to the identi-
fication and resolution of flaws, performed in polynomial time. A detailed
analysis of the MTC in planning appears in [311].

The SNLP algorithm [411] introduced the concept of a systematic search
in which a plan-space planner generates each partial plan at most once
[306, 336]. We use this concept in Definition 2.30 (see the paragraph after
the definition).

The UCPOP planner [472, 38, 599] extended SNLP to handle some ex-
tensions to the classical domain representation, including conditional ef-
fects and universally quantified effects [469, 470] Several other extensions
have also been studied, such as incomplete information and sensing actions
[474, 184, 238] and some kinds of extended goals [601].

Other work related to planning performance has included studies of
search control and pruning [223], commitment strategies [423, 424, 622],
state space versus plan space [579], and domain features [337].

Kambhampati et al. [312, 310] provide a general formalization that takes
into account most of the above issues.

2.7.11 Online Planning

The automated planning literature started very early to address the prob-
lems of integrating a planner in the acting loop of an agent. Con-
comitant to the seminal paper on STRIPS [197], Fikes [196] proposed a
program called Planex for monitoring the execution of a plan and re-
vising planning when needed. Numerous contributions followed (e.g.,
[18, 252, 539, 580, 492, 442, 97]). Problems involving integration of clas-
sical planning algorithms (as discussed in this chapter) into the control ar-
chitecture of specific systems, such as spacecraft, robots, or Web services,
have been extensively studied. However, the dominant focus of many con-
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tributions has been the integration of planning and ezecution (rather than
acting), under an assumption that the plans generated by the planning al-
gorithms were directly executable — an assumption that is often unrealistic.
In the next chapter, we will return to the integration of planning and acting,
with refinement of actions into commands, and ways to react to events.

The receding-horizon technique has been widely used in control theory,
specifically in model-predictive control. The survey by Garcia et al. [211]
traces its implementation back to the early sixties. The general idea is to use
a predictive model to anticipate over a given horizon the response of a system
to some control and to select the control such that the response has some
desired characteristics. Optimal control seeks a response that optimizes a
criterion. The use of these techniques together with task planning has been
explored by Dean and Wellman [146].

Subgoaling has been used in the design of several problem-solving and
search algorithms (e.g., [371, 352]). In planning, issues such as serializ-
able goals and abstraction hierarchies with interesting properties have been
extensively studied (e.g., [39, 334, 616]). Sampling techniques have been
developed and are widely used for handling stochastic models of uncertainty
and nondeterminism, about which more is said in Chapter 6.

2.8 Exercises

2.1. Let P, = (X,50,91) and P> = (X, s0,92) be two state-variable plan-
ning problems with the same planning domain and initial state. Let
m = (a1,...,a,) and m = (b1,...,b,) be solutions for P; and P, re-
spectively. Let m = (a1, b1,...,an,by).

(a) If w is applicable in sg, then is it a solution for P;? For P,? Why or
why not?

(b) Ep be the set of all state variables that are targets of the effects in
eff(ay),...,eff(ay), and Ey be the set of all state variables that are
targets of the effects in eff(by),...,eff(b,). If B4y N EFy = &, then is 7
applicable in sq? Why or why not?

(c) Let P, be the set of all state variables that occur in
pre(ay),...,pre(ay), and P> be the set of all state variables that oc-
cur in the preconditions of pre(by),...,pre(b,). If P, N P, = & and
FE1 N Ey = @, then is 7 applicable in s¢? Is it a solution for P;? For
P,? Why or why not?
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2.2. Let S be the state-variable state space discussed in Example 2.7. Give
a set of restrictions such that s is a state of S if and only if it satisfies those
restrictions.

2.3. Give a state-variable planning problem P; and a solution 7 for P; such
that 7y is minimal but not shortest. Give a state-variable planning problem
P, and a solution 7o for P, such that m is acyclic but not minimal.

2.4. Under what conditions will GBFS switch to a different path if its cur-
rent path is not a dead end?

2.5. Let P be any solvable state-variable planning problem.

(a) Prove that there will always be an execution trace of Forward-search
that returns a shortest solution for P.

(b) Prove that there will always be an execution trace of Backward-search
that returns a shortest solution for P.

2.6. What might be an effective way to use A2, pmax pFF and sl with
Backward-search?

2.7. Figure 2.16 shows a planning problem involving two robots whose ac-
tions are controlled by a single actor.

(a) If we run Forward-search on this problem, how many iterations will
the shortest execution traces have, and what plans will they return?
For one of them, give the sequence of states and actions chosen in the
execution trace.

(b) If we run Backward-search on this problem, how many iterations will
the shortest execution traces have, and what plans will they return?
For one of them, give the sequence of goals and actions chosen in the
execution trace.

(c) Compute the values of h244(sp) and h™3%(sg).

(d) In the HFF algorithm, suppose that instead of exiting the loop at the
first value of k such that S r-satisfies g, we instead keep iterating the
loop. At what value of k will |§;| reach its maximum? At what value
of k will |Ag| reach its maximum?

(e) Compute the value of A (s).

(f) Compute the value of h*(sp).
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take(r, [, c)
pre: loc(r) =1, pos(c) =1,
cargo(r) = nil

eff: cargo(r) =c¢, pos(c) +r

put(r,, c)
pre: loc(r) =1, pos(c)=r

={l 1) =locl, loc(r2) =loc2
eff: cargo(r) < nil, pos(c) «1 so = {loc(r1) =locl, loc(r2) = loc2,

cargo(rl) = nil, cargo(r2) = nil,

move(r, 1, m) pos(cl) =locl, pos(c2) =loc2}
pre: loc(r) =1
eff: loc(r) «+—m g = {pos(cl) =loc2, pos(c2) = loc2}
(a) action templates (b) initial state and goal

Figure 2.16: Planning problem for Exercise 2.7. In the action templates, r is
a robot, [ and m are locations, and c is a container. In this problem, unlike
some of our previous examples, both robots may have the same location.

2.8. Here is a state-variable version of the problem of swapping the values
of two variables. The set of objects is B = Variables U Numbers, where
Variables = {foo,bar,baz}, and Numbers = {0,1,2,3,4,5}. There is one
action template:

assign(z1, z2,n)
pre: value(zg) =n
eff: value(z1) +—n

where Range(x1) = Range(z2) = Variables, and Range(n) = Numbers. The
initial state and goal are

sp = {value(foo) =1, value(bar) = 5, value(baz) = 0};

g = {value(foo) =5, value(bar) =1}.
At s, suppose GBFS is trying to choose between the actions a; =
assign(baz,foo,1) and as = assign(foo,bar,5). Let s; = v(sp,a1) and sp =

v(s0,a2). Compute each pair of heuristic values below, and state whether
or not they will produce the best choice.

(a) h*d(s1) and h2dd(sy).
(b) h™a(s1) and h™**(sq).
(c) AT (s1) and hFY(sy).
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(d)

2.9.

Chapter 2

_wvalue(bar)=5

value(foo)=1
value(bar)=5~
value(baz)=0 value(bar)=1-"

Figure 2.17: Partial plan for swapping the values of two variables.

h*'(s1) and h*'(s).

Figure 2.17 shows a partial plan for the variable-swapping problem in

Exercise 2.8.

How many threats are there? What are they? What are their re-
solvers?

Can PSP generate this plan? If so, describe an execution trace that
will produce it. If no, explain why not.

In PSP’s search space, how many immediate successors does this par-
tial plan have?

How many solution plans can PSP produce from this partial plan?
How many of the preceding solution plans are minimal?

Trace the operation of PSP if we start it with the plan in Figure 2.17.
Follow whichever of PSP’s execution traces finds the shortest plan.

2.10. Blocks world is a well-known classical planning domain in which some
children’s blocks, Blocks = {a,b,c,...}, are arranged in stacks of varying
size on an infinitely large table, table. To move the blocks, there is a robot
hand, hand, that can hold at most one block at a time.

Figure 2.18(a) gives the action templates. For each block z, loc(x) is z’s
location, which may be table, hand, or another block; and top(z) is the block
(if any) that is on x, with top(x) = nil if nothing is on z. Finally, holding

tells

what block the robot hand is holding, with holding = nil if the hand is

empty.

(a)

Why are there four action templates rather than just two?
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pickup(z)
pre: loc(x) = table, top(z) = nil,
holding = nil

eff: loc(x) < hand, holding + x

putdown(x)
pre: holding =
eff: loc(x) + table, holding < nil

unstack(z, y)
pre: loc(z) = y, top(z) = nil,
holding = nil
eff: loc(z) < hand, top(y) « nil,
holding + x

stack(z, y)
pre: holding = x, top(y) = nil
eff: loc(z) <y, top(y) « =,
holding < nil

Range(x) = Range(y) = Blocks

a) action templates
p

91

R
< 51

Objects = Blocks U {hand, table, nil}
Blocks = {a, b, c}

5o = {top(a p(b) =nil,
top(c) = n|| hoIdlng—nll
loc(a) =table, loc(b) = table,
)

loc(c)=a}

g = {loc(a) =b, loc(b) =c}

(b) objects, initial state, and goal

Figure 2.18: Blocks-world planning domain, and a planning problem.

(b) Is the holding state variable really needed? Why or why not?
(¢) In the planning problem in Figure 2.18(b), how many states satisfy g?

(d) Give necessary and sufficient conditions for a set of atoms to be a
state.

(e) Is every blocks world planning problem solvable? Why or why not?

2.11. Repeat Exercise 2.8 on the planning problem in Figure 2.18(b), with
s1 = (S0, unstack(c,a)) and s = y(so, pickup(b)).

2.12. Repeat Exercise 2.9 using the planning problem in Figure 2.18(b) and
the partial plan shown in Figure 2.19.

2.13. Let m be a partially ordered solution for a planning problem P =
(27 S0, g) .
(a) Write a simple modification of Run-Lazy-Lookahead to execute 7.

(b) Suppose your procedure is executing 7, and let 7’ be the part of 7 that
it has not yet executed. Suppose an unanticipated event invalidates
some of the total orderings of 7’ (i.e., not all of them will still achieve
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/yhold=ni| loc(a)=table
l‘ clear(x)=T  _ _—ccce---- » clear(a)=T clear(b)=T
L loc(x)=a [/ ,»hold=x hold=nil % hold=a

unstack(x,a)|+'\—>|putdown(x)|—>|pickup(a)|—||—>|stack(a,b)
)

clear(a)=T-’ ;  hold=nil hold=a- - hold=nil

\ hold=x-~" clear(x)=T loc(a)=hand loc(a)=b-~\~" loc(a)=b

| loc(x)=hand loc(x)=table clear(b)=F »loc(b)=c

\
\

[}

hold=nil

hold=nil~~
loc(a)=table _-wloc(b)=table ,---»hold=b
loc(b)=table- ="~ clear(b)=T | -»clear(c)=T

- - | ! /
loc(c)=a e o

- hold=b---~" | loc(b)=c- ="

clear(a)=F - |
loc(b)=hand ! hold=nil

clear(b)=T~ ’
clear(c)=T-------------------77"

-

- clear(c)=F
Figure 2.19: Partial plan for Exercise 2.12.

g). Write an algorithm to choose a total ordering of 7’ that still
achieves g, if one exists.

2.14. If = = (a1,...,ay,) is a solution for a planning problem P, other
orderings of the actions in 7 may also be solutions for P.

(a) Write an algorithm to turn 7 into a partially ordered solution.

(b) Are there cases in which your algorithm will find a partially ordered
solution that PSP will miss? Are there cases in which PSP will find a
partially ordered solution that your algorithm will miss? Explain.

2.15. Let P be a planning problem in which the action templates and initial
state are as shown in Figure 2.16, and the goal is g = {loc(cl) =loc2}. In
the Run-Lazy-Lookahead algorithm, suppose the call to Lookahead(P) returns
the following solution plan:

7 = {take(r1,locl,cl), move(rl,locl,loc2), put(rl,loc2,cl)}.

(a) Suppose that after the actor has performed take(rl,locl,cl) and
move(rl,locl,loc2), monitoring reveals that cl fell off of the robot and
is still back at locl. Tell what will happen, step by step. Assume that
Lookahead(P) will always return the best solution for P.

(b) Repeat part (a) using Run-Lookahead.
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(c) Suppose that after the actor has performed take(rl,locl,cl), monitor-
ing reveals that rl’s wheels have stopped working, hence rl cannot
move from locl. What should the actor do to recover? How would
you modify Run-Lazy-Lookahead, Run-Lookahead, and Run-Concurrent-
Lookahead to accomplish this?
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Chapter 3

Deliberation with
Refinement Methods

Chapter 2 concentrated mostly on planning with descriptive action models.
Although it described some ways for an actor to receive guidance from such
a planner, it did not describe the operational models that an actor might
need to perform the planned actions. In the current chapter, we present a
formalism for operational models and describe how to use these models for
deliberative acting.

Section 3.1 describes a formalism for operational models based on re-
finement methods. A method specifies how to accomplish a task (an ab-
stract activity of some kind) by refining it into other activities that are
less abstract. These activities may include other tasks that will need fur-
ther refinement and commands that can be sent to the execution platform.
Section 3.2 describes an acting procedure, RAE, that uses a collection of re-
finement methods to generate and traverse a refinement tree similar to the
one in Figure 1.2. It recursively refines abstract activities into less abstract
activities, ultimately producing commands to the execution platform.

If we modify the refinement methods by replacing the commands with
descriptive models, the modified methods can also be used for planning. The
basic idea is to augment the acting procedure with predictive lookahead of
the possible outcome of commands that can be chosen. Section 3.3 describes
a planner, SeRPE, that does this. Section 3.4 describes how to integrate such
a planner into acting procedures.

Although the formalism in this chapter removes many of the simplifying
assumptions that we made in Chapter 2, it still incorporates some assump-
tions that do not always hold in practical applications. Section 3.5 discusses

Authors’ manuscript. Published by Cambridge University Press. Do not distribute. 94


http://cambridge.org/9781107037274

Section 3.1 95

these and also includes historical remarks.

3.1 Operational Models

In this section, we present a formalism for operational models of actions,
and describe how to use these models for deliberative acting. This formalism
weakens or removes several of the simplifying assumptions that we made in
Section 2.1.1:

e Dynamic environment. The environment is not necessarily static. Our
operational models deal with exogenous events, that is, events due to
other causes than the actor’s actions.

o Imperfect information. In Section 2.1.1, we assumed that the actor
had perfect information about its environment. In reality, it is rare for
an actor to be able to know the current value of every state variable
and to maintain this knowledge while the world evolves. Operational
models often need to deal with what the actor knows or does not know
and how to acquire necessary information.

A convenient notation for handling partial knowledge is to extend the
range of every state variable to include a special symbol, unknown,
which is the default value of any state variable that has not been set
or updated to another value.

e Overlapping actions. Actions take time to complete, and multiple
actions may proceed simultaneously. To manage an agenda of over-
lapping activities, the formalism in this chapter includes cases in which
actions may proceed simultaneously. However, we will not introduce
a formal model of time durations until Chapter 4. For now, facts are
not time stamped but simply refer to the current state of the world.!

e Nondeterminism. An action may have multiple possible outcomes,
because of accidents, interfering exogenous events, or sensing and in-
formation acquisition. The actor has to systematically observe which
outcomes actually occur to respond accordingly. Our operational mod-
els provide a way to deal with such observations. However, we will not
introduce a formal model of nondeterministic actions and the ability
to reason about them until Chapter 5 and Chapter 6.

! This does not preclude the author of a domain model from including a time stamp
as an ordinary state variable; other limited capabilities for handling temporal conditions
are briefly discussed in Section 3.2.4.
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e Hierarchy. Actors are often organized hierarchically, and our opera-
tional models provide a way to represent and organize a hierarchical
actor’s deliberations. However, the formalism still incorporates some
simplifying assumptions that do not always hold in practical applica-
tions. For example, a hierarchical actor may use different state and
action spaces in different parts of the hierarchy (rather than the same
ones throughout, as assumed in Section 3.1), and there are several
ways in which it may traverse the hierarchy (e.g., in layers, or as a
collection of components), rather than using depth-first recursion as
described in Section 3.2 and Section 3.3. For further discussion of
these issues, see Section 3.5.

e Discrete and Continuous Variables. Actors may need to deal with both
discrete and continuous variables. The operational model introduced
in this chapter allows for state variables whose range can be finite
or nonfinite, discrete or continuous. In Section 7.4, we discuss how to
reason about hybrid models that allow for both discrete and continuous
variables.

3.1.1 Basic Ingredients

We will use a state variable representation similar to the one in Defini-
tion 2.6, but with some generalizations. One of them is that if z € X is
a state variable, then Range(z) can be finite or nonfinite, discrete or con-
tinuous. State variables ranging over multidimensional domains, such as
vectors, matrices and other data structures, are also permitted. For exam-
ple, we could let coordinates(rl) € R3 be the current coordinates (in some
reference frame) of a robot rl.

Recall from Chapters 1 and 2 that £ is the actor’s currently observed
state. A fact is any ground atom z=wv in £. For example, if £ contains
position(door3)=open and coordinates(r1)=(3.5,7.61,1.58), then door3 is cur-
rently open, and rl is at the coordinates (3.5,7.61,1.58) in some reference
frame.

One way we used state variables in Chapter 2 was to test their values
(e.g., in an action’s preconditions). We do the same in this chapter, but
the tests will be more general. A simple test has the form (z o v), where
o€ {=,#,<,>}. A compound test is a negation, conjunction, or disjunction
of simple and compound tests. Tests are evaluated with respect to the
current state £. In tests, the symbol unknown is not treated in any special
way; it is just one of the state variable’s possible values.

As in Chapter 2, a state variable also can be the target of an assignment
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statement, but here the assignments are more general. An assignment is
a statement of the form x < expr, where expr may be any ground value
in Range(x), or any expression that returns a ground value in Range(x)
without having side effects on the current state. When the assignment is
executed, it will update the value of the state variable x to the value that
ezpr has in the current state €.

Three additional ingredients are needed in this representation:

e Tasks: atask is a label naming an activity to be performed. It is of the
form task-name(args), where task-name designates the task considered
and the task arguments args is an ordered list of objects and values. A
task is refined into subtasks and commands. The actor has to perform
external tasks, which are specified by the user or a planner, as well as
internal tasks that result from the refinement of other tasks.

e Fuvents: an event designates an occurrence detected by the execution
platform; it is in the form event-name(args). Events are, for example,
the activation of an emergency signal or the arrival of a transportation
vehicle; they correspond to exogenous changes in the environment to
which the actor may have to react.

e Commands: a command is the name of a primitive function that can
be executed by the execution platform. It is in the form command-
name(args). When a command is triggered, there is a state variable in
€, denoted status(command) € {running, done, failed}; it is updated by
the platform to express that the execution of that command is going
on, has terminated or failed.

Example 3.1. Consider a simple domain where a single robot is servicing a
harbor navigating in a topological map, searching for a particular container.
The objects are Robots = {rl}, Containers = {cl,c2,...}, and Locations =
{locl,loc2,...}. The following state variables are kept up-to-date by the
robot’s execution platform:

e loc(r) € Locations is the current location of robot r.

e load(r) € Containers U {nil} indicates whether robot r is carrying a
container, and if so then which one.

e pos(c) € Locations U Robots U {unknown} gives a container’s position
at a location, on a robot, or unknown.

e view(l) € {T, F} indicates whether the robot has perceived the content
of location . When view(l)=T then for every container cin [, pos(c) = I
is a fact in &.
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The robot’s execution platform can execute the following commands:

move-to(r,1): robot r goes to location [

take(r, 0,1): r takes object o at location [

put(r,0,1): r puts o in [
e perceive(r,l): r perceives which objects are in a location [

These commands are applicable under some conditions, for example, move-
to requires the destination [ to be reachable from the current location, and
take and put require r to be in [. Upon the completion of a command,
the platform updates the corresponding state variables. For example, when
perceive(r,l) terminates, view(l)=T and pos(c) = [ for every container ¢ in
l. O

3.1.2 Refinement Methods

A refinement method is either a triple (task, precondition, body) or a triple
(event, precondition, body). The first field in a method, either a task or an
event, is its role; it tells what the method is about. When the precondition
holds in the current state, the method can be used to address the task or
event in its role by running a program given in the method’s body. This
program refines the task or event into a sequence of subtasks, commands,
and assignments.

As for actions, refinement methods are specified as parameterized
method templates that have one of the following forms:

method-name(argy, ..., argy) method-name(argy, ..., arg)
task: task-identifier event: event-identifier
pre: test pre: test
body: program body: program
where

e method-name is a unique symbol designating the method;

® arg,...,arg, are variables appearing in the method; an applicable
instance of a method binds these variables to objects and values;

o task-identifier gives the task to which the method is applicable; simi-
larly for an event;

e test specifies conditions under which the method may be used;
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e program is a sequences of steps with the usual control constructs (if-
then-else, while, loop, etc.).2 A step in this sequence is either an as-
signment, a command to the execution platform or a task that needs
further refinement. Assignments and commands are as defined in pre-
vious section.

An instance of a method template is given by the substitution of its vari-
ables argy, ..., arg, by constants. A method whose role matches a current
task or event and whose precondition is satisfied by the current values of
the state variables in £ has an applicable current instance. A method may
have several applicable instances for the current state, tasks, and events. An
applicable instance of a method, if executed, addresses a task or an event
by refining it into subtasks, commands, and updates in &, as specified in its
body.

3.1.3 Illustrations

Let us illustrate the refinement method representation with a few examples.

Example 3.2. Consider the task for the robot in Example 3.1 to pick up
a particular container c¢. The robot may know the location of ¢ (i.e., this
information may be in £), in which case the robot goes to that location to
take c¢. Otherwise, the robot will have to look at the locations it can reach
until it finds what it is looking for. This is expressed through two tasks,
fetch and search, and the following refinement methods:

m-fetch(r, ¢)
task: fetch(r, c)
pre:
body: if pos(c) = unknown then search(r, c)
else if loc(r) = pos(c) then take(r, ¢, pos(c))
else do
move-to(r, pos(c))
take(r, ¢, pos(c))

m-fetch refines the task fetch into a task search when the position of ¢ is
unknown; otherwise, it triggers the appropriate take and, if needed, move-to
commands to pick up c.

2We use informal pseudocode descriptions of the bodies of methods.
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m-search(r, ¢)
task: search(r, c)
pre: pos(c) = unknown

body: if 31 € Locations such that view(l) = F then do
move-to(l)
perceive(l)
if pos(c) = [ then take(r,c, ()
else search(r, c)

else fail

The method performs a search by going to a location I, the content of which
is not yet known, and perceiving [. If ¢ is there, the robot takes it; otherwise
the method recursively searches in other locations. If all locations have been
perceived, the search task fails. ]

The above example illustrates two task refinement methods. Let us
provide the robot with a method for reacting to an event.

Example 3.3. Suppose that a robot in the domain of Example 3.1 may have
to react to an emergency call by stopping its current activity and going to
the location from where the emergency originates. Let us represent this
with an event emergency(l,4) where [ is the emergency origin location and
1 € N is an identification number of this event. We also need an additional
state variable: emergency-handling(r)e{T, F} indicates whether the robot r
is engaged in handling an emergency.

m-emergency(r, [, i)
event: emergency(l, )
pre: emergency-handling(r)=F
body: emergency-handling(r) < T
if load(r) # nil then put(r,load(r))
move-to(l)
address-emergency(l, i)

This method is applicable if robot r is not already engaged in handling
an emergency. In that case, the method sets its emergency-handling state
variable; it unloads whatever the robot is loaded with, if any; it triggers the
command to go the emergency location, then it sets a task for addressing
this emergency. Other methods are supposed to switch back emergency-
handling(r) when r has finished with the task address-emergency. O

The previous simple examples introduced the representation. Let us now
illustrate how refinement methods can be used to handle the more complex
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tasks discussed in Figure 1.2, such as opening a door. To keep the example
readable, we consider a one-arm robot and assume that the door is unlocked
(Exercises 3.9 and 3.10 cover other cases).

Example 3.4. Let us endow the robot with methods for opening doors. In
addition to the four state variables loc, load, pos, view introduced previously,
we need to characterize the opening status of the door and the position of
the robot with respect to it. The two following state variables fill that need:

e reachable(r,0) €{T, F}: indicates that robot r is within reach of object
0, here o is the door handle;

e door-status(d) € {closed, cracked, open, unknown}: gives the opening
status of door d, a cracked door is unlatched.

Furthermore, the following rigid relations are used:
e adjacent(l,d): means that location [ is adjacent to door d;

e toward-side(l,d): location [ is on the “toward” side of door d (i.e.,
where the door hinges are);

e away-side(l,d): location [ is on the “away” side of door d;
e handle(d, 0): o is the handle of door d;
e type(d, rotates) or type(d,slide): door d rotates or slides;

e side(d, left) or side(d, right): door d turns or slides to left or to the
right respectively with respect to the “toward” side of the door.

The commands needed to open a door are as follows:
e move-close(r, 0): robot r moves to a position where reachable(r, 0)=T;

e move-by(r, A): r performs a motion of magnitude and direction given
by vector A;

e grasp(r,0): robot r grasps object o;

e ungrasp(r,0): T ungrasps o;

e turn(r,o0,): r turns a grasped object o by angle a € [—m, +7];
e pull(r,\): r pulls its arm by vector A;

e push(r, A): r pushes its arm by A;

e monitor-status(r,d): r focuses its perception to keep door-status up-
dated;

e end-monitor-status(r, d): terminates the monitoring command.

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.


http://cambridge.org/9781107037274

102 Chapter 3

We assume that commands that take absolute parameters stop when an
obstacle is detected, for example, turn(r, o, @) stops when the turning reaches
a limit for the rotation of o, similarly for move-by.

m-opendoor(r,d, [, 0)
task: opendoor(r, d)
pre: loc(r) = A adjacent(l, d) A handle(d, o)
body: while —reachable(r, 0) do
move-close(r, 0)
monitor-status(r, d)
if door-status(d)=closed then unlatch(r, d)
throw-wide(r, d)
end-monitor-status(r, d)

m-opendoor is a method for the opendoor task. It moves the robot close to
the door handle, unlatches the door if it is closed, then pulls it open while
monitoring its status. It has two subtasks: unlatch and throw-wide.

m1l-unlatch(r, d,l,0)
task: unlatch(r, d)
pre: loc(r,[)A toward-side(l, d)A side(d, left)A type(d, rotate)
A handle(d, o)
body: grasp(r,0)
turn(r, o, alphal)
pull(r, vall)
if door-status(d)=cracked then ungrasp(r, o)
else fail
m1-throw-wide(r, d, [, 0)
task: throw-wide(r, d)
pre: loc(r, [)A toward-side(l, d)A side(d,left)A type(d, rotate)
A handle(d, o)A door-status(d)=cracked
body: grasp(r, o)
pull(r, vall)
move-by(r, val2)

The preceding two methods are for doors that open by rotating on a hinge,
to the left and toward the robot. Other methods are needed for doors that
rotate to the right, doors that rotate away from the robot, and sliding doors
(see Exercise 3.7).

The method ml-unlatch grasps the door handle, turns then pulls the
handle before ungrasping. The method ml-throw-wide grasps the handle,
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pulls, then moves backward. Here alphal is a positive angle corresponding
to the maximum amplitude of the rotation of a door handle (e.g., about
1.5 rad), vall is a small vector toward the robot (an amplitude of about
0.1 meter), and val2 is a larger vector backward (of about 1 meter). More
elaborate methods may, for example, survey the grasping status of whatever
the robot is grasping, or turn the handle in the opposite direction before
ungrasping it (see Exercise 3.8). O

3.1.4 Updates of the Current State

Recall that £ is the actual state of the world, not a predicted state. For
example, position(door3) gets the value open not when the robot decides to
open it but when it actually perceives it to be open. This state variable is
said to be observable. This does not mean that it is always known; it only
means that there are states in which it can be observed. In Examples 3.2
and 3.4, all state variables are observable. The value of some of them can
be at some point unknown, for example, pos(c) for containers at location [
where view(l)=F. Observable state variables are updated by the execution
platform when adequate sensing is performed.

Some state variables represent the deliberation state of the actor. In
Example 3.3, the state variable emergency-handling corresponds to a de-
liberation decision. It is said to be a computable state variable. Another
illustration of computable state variables is, for example, stable(o,pose)=T,
meaning that object o in some particular pose is stable, as a result of some ge-
ometric and dynamic computation. Computable state variables are updated
by methods when the corresponding decision or computation is performed.

Further, there are state variables that refer to observable properties of
the environment that change independently of the actor’s activity. For ex-
ample, when in rooml, the robot detects that a person is there. But outside
of room1 the robot cannot trust such a fact indefinitely. At some point, it
has to consider that the location of that person is unknown unless it can
sense it again.

The general problem of maintaining the current state of the world re-
quires complex handling of uncertainty, time, and nonmonotonic reason-
ing. For example, there is a difference between knowing nothing about the
whereabouts of a person and having seen her some time ago in rooml. This
knowledge erodes with time.

To keep things simple, we assume in this chapter that updates in & for
observed and computed state variables are timely and exact. Every state
variable has a value, possibly unknown. Known values correctly reflect the
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current state of the actor and its environments.

3.2 A Refinement Acting Engine

Refinement methods provide operational models for how to accomplish a
task or react to an event. This section defines a Refinement Acting Engine
(RAE), which provides the techniques needed for acting with this repre-
sentation. RAE is inspired from a programming language and open source
software, called OpenPRS, widely used in robotics.?> RAE is capable of try-
ing alternative methods in nondeterministic choices. Planning techniques
for performing informed choices are discussed in the following section.

After a global view, we will describe three procedures that implement a
simple version of RAE (Section 3.2.2). Some of the possible extensions of
that engine are then discussed (Section 3.2.4).

3.2.1 Global View

RAE uses a library of methods M to address new tasks the actor has to
perform and new events it has to react to. The input to RAE consists of
(i) a set of facts reflecting the current state of the world &, (ii) a set of
tasks to be performed and (iii) a set of events corresponding to exogenous
occurrences to which the actor may have to react. These three sets change
continually. Tasks come from task definition sources, for example, a planner
or a user. Events come from the execution platform, for example, through a
sensing and event recognition system. Facts come either from the execution
platform, as updates of the perceived state of the world, or from RAE, as
updates of its own reasoning state.

RAE outputs commands to the execution platform. It gets the plat-
form feedback about the perceived state of the world as updates in its input
through new facts and events. Figure 3.1 schematically depicts a simple
architecture for RAE that can be viewed as part of a more complete archi-
tecture, as in Figure 1.1(a).

Tasks given by the planner or the user, and events sent from the platform,
are called external (to distinguish them from tasks in refinement methods).
They appear in the input stream of the engine. RAE repeatedly reads its
input stream and addresses an external task or event as soon as it arrives. At

5We depart from the OpenPRS system (https://git.openrobots.org/projects/
openprs/wiki) by using a state variable representation and an abstract syntax and by
dropping a few nonessential programming facilities.
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Figure 3.1: A simple architecture for a refinement acting engine.

some points, there can be several external tasks and events being processed
concurrently.

To each external task or event 7 that RAE reads in its stream, it asso-
ciates a LIFO stack that keeps track of how the refinement of 7 is progress-
ing. There can be several such stacks being concurrently processed. The
refinement of 7 is done according to a method in M, which may, at some
point, lead to a subtask 7/ that will be put on top of the stack of 7. This
is pursued recursively. A refinement at any level by a method may fail, but
other methods may be applicable and are tried.

For each external task or event that RAE is currently processing, it main-
tains a refinement stack that is analogous to the execution stack of a com-
puter program. A refinement stack contains the following items:

all pending subtasks in which an external task or event is being refined,

the method currently tried for each pending subtask,
e the current execution step of each method, and
e previous methods tried for each subtask that failed.

A refinement stack is organized as a LIFO list of tuples:
stack=(tuplei,. .. tupley).  Each tuple is of the form (7, m,1,tried)
where 7 is a task or an event, m is an instance of a method in M addressing
T, 1 is a pointer to the current step in the body of m, and tried is a set of
instances of methods already tried for 7 that failed to accomplish it. The
top tuple of a refinement stack corresponds to the active method.
Progressing in a refinement stack means advancing sequentially by one
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step in the body of the topmost method in the stack. The external task
or event that initiates a refinement stack remains under progress, at the
bottom of the stack, as long as this stack is not empty.

While RAE is advancing on a refinement stack, other external tasks and
events may appear in its input stream. RAE will create refinement stacks for
them too and will process all of its refinement stacks concurrently. At this
stage, RAE does not consider the possible dependencies among concurrent
stacks (extensions are discussed in Section 3.2.4). In particular, it does not
perform any ordering or synchronization between them. The management
of possible conflicts between concurrent stacks has to be taken care of in the
specification of the methods.

3.2.2 Main Algorithms

To describe RAE in more detail, we will use the following notation:
e M is the library of methods.

e Instances(M, 7, &) is the set of instances of methods in M whose pre-
conditions hold in £ and whose role matches the task or event 7.

e m is an instance of a method in M.

e m[i] is the step in the body of m pointed at by pointer i; moving from
m[i] to the next step is done according to control statements in the
body of m, which are not counted as steps.

e type(mli]) is either a command, an assignment or a task; if
type(m[i]) =command then status(m[i]) € {running, failure, done} is
a state variable in & updated by the platform; its value informs RAE
about the execution status of that command.

e Agenda is the set of refinement stacks concurrently under progress,

e a stack € Agenda is a LIFO list of tuples of the form (7, m, i, tried)
where 7 is an event, task, subtask, or goal; m is an instance of a
method that matches 7; 7 is a pointer to the current step in the body
of m initialized to nil (no step has been executed); and tried is a set of
instances of methods already tried for 7 that failed to accomplish it.

RAE relies on three procedures named RAE, Progress, and Retry. RAE is
the main loop of the engine (Algorithm 3.1). It repeats two steps forever:
(i) update of Agenda with respect to new external tasks and events that
are read in the input stream and (7i) progress by one step in the topmost
method of each stack in Agenda.
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Rae(M)
Agenda + @
loop
until the input stream of external tasks and events is empty do
read 7 in the input stream
Candidates < Instances(M, 7, &)
if Candidates = @ then output(“failed to address” )
else do
arbitrarily choose m € Candidates
Agenda < Agenda U {{(T, m,nil, @))}
for each stack € Agenda do
Progress(stack)
if stack = & then Agenda + Agenda \ {stack}

Algorithm 3.1: Main procedure of the Refinement Acting Engine (RAE).

To progress a refinement stack, Progress (Algorithm 3.2) focuses on the
tuple (7,m, 1, tried) at the top of the stack. If the method m has already
started (i # nil) and the current step ml[i] is a command, then the running
status of this command is checked. If the command is still running, then
this stack has to wait. If the command failed, then alternative methods will
be tried. The execution of the next step of the top-most method takes place
only when the command is done. If 4 is the last step in the body of method
m, the current tuple is removed from the stack: method m has successfully
addressed 7. The following task in the stack will be resumed at the next
RAE iteration. If ¢ is not the last step, the engine proceeds to the next step
in the body of m.

nextstep(m, i) increments pointer ¢ taking into account control state-
ments, if any. These control statements are conditioned on tests determin-
istically computed for the current £&. The next step m[i] is either a state
variable assignment, which is performed in £, a command whose execution
is triggered in the platform, or a task 7/. In the latter case, instances of
methods applicable to 7/ for current ¢ are computed, one of which is chosen
to address 7. The corresponding tuple is added on top of the stack. If
there is no applicable method to 7/, then the current method m failed to
accomplish 7, and other methods are tried.

The method m chosen by RAE to address 7 may fail. If that happens,
RAE uses the Retry procedure to try other methods for 7 (Algorithm 3.3).
Retry adds m to the set of method instances that have been tried for 7 and
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Progress(stack)
(1,m, 1, tried) < top(stack)
if ¢ # nil and m[i] is a command then do
case status(m][i])
running: return
failure: Retry(stack); return
done: continue
if 7 is the last step of m then
pop(stack) // remove stack’s top element
else do
i < nextstep(m, i)
case type(mli])
assignment: update £ according to m/[i]; return
command: trigger command mli]; return
task: continue
7' mli
Candidates + Instances(M, 1/, ¢)
if Candidates = @ then Retry(stack)
else do
arbitrarily choose m’ € Candidates
stack < push((7/,m/, nil, &@),stack)

Algorithm 3.2: RAE: progressing a refinement stack.

failed. If there are any method instances for 7 that are not in that set
and are applicable in the current state &, then Retry chooses one of them;
the refinement of 7 will proceed with that method. Otherwise, RAE cannot
accomplish 7. If the stack is empty, then 7 is an external task or event.
Otherwise, Retry calls itself recursively on the topmost stack element, which
is the one that generated 7 as a subgoal.

Although Retry implements a mechanism similar to backtracking, it is
not backtracking in the usual sense. It does not go back to a previous
computational node to pick up another option among the candidates that
were applicable when that node was first reached. If it finds another method
among those that are now applicable for the current state of the world &.
This is essential because RAE interact with a dynamic world. It cannot rely
on the set of Instances(M, 7, &) computed earlier, because some of these may
no longer be applicable, while new methods may be applicable.

Note that the same method instance that failed at some point may suc-

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.


http://cambridge.org/9781107037274

Section 3.2 109

Retry(stack)
(1,m, 1, tried) < pop(stack)
tried < tried U {m}
Candidates <+ Instances(M, 1,&)\ tried
if Candidates# @ then do
arbitrarily choose m’ € Candidates
stack « push((r,m/, nil, tried),stack)
else do
if stack# @ then Retry(stack)
else do
output(“failed to accomplish” 7)
Agenda + Agenda\stack

Algorithm 3.3: RAE: trying alternative methods for a task.

ceed later on. However, RAE does not attempt to retry method instances
that it has already tried. In general, this would require a complex analysis
of the conditions responsible for the failed method to be sure that these
conditions no longer hold.

Example 3.5. Let us illustrate how RAE works, using the two methods
given in Example 3.2 and the problem depicted in Figure 3.2. The robot
rl is at location loc3, which has been observed. Container cl is in locl,
and container c2 in loc2, but neither location has been observed, hence the
position of cl and c2 is unknown. The task fetch(rl,c2) is given to RAE.

Figure 3.2: A simple environment

Figure 3.3 shows the tree of RAE methods called for fetch(rl,c2). Ini-
tially, method m-fetch(rl,c2) is applicable. That method refines fetch(rl,c2)
into search(rl,c2). Method m-search finds a location, say locl, that has not
been seen yet. It triggers the commands move-to(locl) then perceive(locl);
because c2 is not in locl, the method recursively refines into another search
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fetch(r1,c2)

m-fetch(r1,c2)

search(r1,c2)

m-search(r1,c2)

move-to(loc1) perceive(loc1) search(r1,c2)

m-search(r1,c2)

move-to(loc2) perceive(loc2)  take(r1,c2)

Figure 3.3: Refinement tree of tasks, methods and commands for the task
fetch(rl,c2).

task. At this point, only loc2 remains unseen. The second instance of m-
search triggers the commands move-to(loc2), perceive(loc2), then take(rl,c2).
This terminates successfully the three methods in the stack. O

Example 3.6. To illustrate the concurrent progressing of several stacks, let
us take a simple abstract example. A task 7 is addressed with a method
m1 which refines it successively into subtasks 711 then 7y2. At this point
RAE has just one stack Agenda = {{(711,m11,7,9), (11, m1,4,9))}. Note
that 72 is not in the stack until 711 finishes.

A task 79 appears in the input stream of RAE. A new stack
(12, mg,nil, &)) is created: Agenda = {{(m11,m11,7,9), (11, m1,1,9)),
<(T2, ma, nil, @)>}

The next iteration of RAE progresses with one step in my; and one
step in mo. The latter refines 75 into 791 then 799. This gives Agenda =
{<(7—117 mii, i/7 @)7 (7-17 mi, 1, ®)>7 <(7—217 m217j/7 6)7 (T27 me, J, ®)>}

The following iterations progress one step at a time in my; and mo; until
one of these methods finishes, refines into some other subtasks (to be pushed
in its stack), or fails (leading to try other methods for the task). O

Note that dependencies between activities corresponding to concurrent
stacks are not handled by this simple version of RAE (see Section 3.2.4).
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3.2.3 Goals in RAE

Goals, like tasks, refer to an actor’s objectives. The objective for a task
is to perform some activity. The objective for a goal is to reach a state &
where some condition g holds (see Definition 2.18). In some cases, an actor’s
objectives are more easily expressed through goals than through tasks.

Refinement methods are convenient for expressing and performing tasks.
We can easily extend the refinement method approach of RAE to handle
goals in a restricted way.* Our previous definition of a method as a triple
(role, precondition, body) still holds. The role is now either a task, an event
or a goal. A goal g is specified syntactically by the construct achieve(g).

The body of a refinement method for any type of role is, as before,
a sequence of steps with control statements; each step is a command, an
assignment, or a refinement into a subtask or a subgoal. As we explain
shortly, a few modifications to RAE are sufficient to enable it to use such
methods. However, there is an important limitation.

Unlike the planning algorithms in Chapter 2, RAE does not search for
arbitrary sequences of commands that can achieve a goal g. Instead, just as
it would do for a task, RAE will choose opportunistically among the methods
in M whose roles match g. If M does not contain such a method, then g
will not be reachable by RAE. The same actor, with exactly the same set of
commands and execution platform, might be able to reach the goal g if M
contained a richer collection of methods. This limitation can be overcome,
but it requires using a planner, as we discuss in Sections 3.3 and 3.4.2.

Example 3.7. Consider the task fetch of Example 3.2. Instead of refining
it with another task, we may choose to refine it with a goal of making the
position of the container ¢ known. The methods in Example 3.1 can be
rewritten as follows:

m-fetch(r, ¢)
task: fetch(r, c)
pre:
body: achieve(pos(c) # unknown)
move-to(pos(c))
take(r, c)

4See Section 5.7 for a more general handling of goals.
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m-find-where(r, ¢)
goal: achieve(pos(c) # unknown)
pre:
body: while there is a location [ such that view(l)=F do
move-to(l)
perceive(l)

The last method tests its goal condition and succeeds as soon as g is met
with respect to current £. The position of ¢ may become known by some
other means than the perceive command, for example, if some other actor
shares this information with the robot. These two methods are simpler than
those in Example 3.2. O

Because achieve(g) has the semantics and limitations of tasks, it is pro-
cessed by RAE as a task. One may ask what is the advantage of introducing
goals in RAE? The main advantage is to allow for monitoring of the con-
dition g with respect to the observed environment expressed in £. For a
method m whose role is achieve(g), RAE can check before starting the body
of m whether g holds in current state £. It also performs this test at every
progression step in the body of m and when m finishes. If the test succeeds,
then the goal is achieved, and the method stops. If the test fails when the
progression finishes, then the method has failed, and the Retry process is
performed.

In the previous example, nothing needs to be done if pos(c) is known
initially; if not, the m-find-where method stops if that position becomes
known at some point of the while loop.

The monitoring test is easily implemented by making three modifications
to the Progress procedure, Algorithm 3.2:

e If the previous step m|i] is a command that returns failure: a Retry is
performed only when ¢ does not hold in the current &.

e If i is the last step of m: if g is met in the current &, then the top tuple
is removed from the stack (success case); if not a Retry on current
stack is performed.

o After ¢ is updated with nextstep(m,i): if g is met in the current ¢,
then the top tuple is removed from current stack without pursuing the
refinement further.

Note that if the previous step is a command that is still running, we postpone
the test until it finishes (no progress for the method in that case).

The monitoring capability allowed with goals is quite convenient.
It can be generalized to tasks by adding an extra field in methods:
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(role, precondition, expected-results, body). The expected-results field is a con-
dition to be tested in the same way as a goal.

3.2.4 Additional Features for RAE

As illustrated in previous examples, the behavior of the RAE is quite simple.
Additional features are needed to extend its capabilities and simplify the
specification of methods. For example it can be desirable to suspend, re-
sume, or stop a task depending on specific conditions or to refine a task into
concurrent subtasks. Furthermore, the choice of a method instance among
the set of candidates in RAE, Progress, and Retry needs to be well informed
(steps expressed as “arbitrarily choose m € Candidates”). Let us discuss
informally a few possible extensions of this simple version of RAE.

Controlling the progress of tasks. The need for controlling the
progress of tasks can be illustrated in Example 3.3. The method m-
emergency is not supposed to be running in parallel with other previously
started tasks. The state variable emergency-handling, when set to true,
should suspend other currently running tasks.

A simple extension for controlling the progress of a task is to general-
ize the condition field in methods: the designer should be able to express
not only preconditions, as seen earlier, but also conditions under which the
engine is required to stop, suspend, or resume the progress of a task. The
needed modifications in the RAE procedures are the following:

e The precondition of a method is checked only once to define the appli-
cable Instances(M, 7, &); the stop and suspend conditions of a method
m, if any, have to be tested at each call of Progress for a stack where
m appears.

e This test has to be performed not only for the method m on top of the
stack, but also for the methods beneath it: stopping or suspending a
task means stopping or suspending the subtasks in which it is currently
being refined, that is, those that are above it in the stack.

e When a task is stopped the corresponding stack is removed from the
agenda; when a task is suspended, the corresponding stack remains
pending with no further progress, but its resume condition is tested at
each iteration of RAE to eventually pursue its progression.

Some commands may be running when a stop or suspend condition is set
on: the engine has to trigger corresponding orders to the execution platform
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to stop or suspend these commands when this is feasible.

It can be convenient to express control statements with respect to rela-
tive or absolute time. Let us assume that the value of the current time is
maintained in £ as a state variable, called now. Alarms, watchdog timers,
periodic commands, and other temporal statements can be expressed in
the body of methods, for example by conditioning the progress of a task
(suspend, resume, stop) with respect to values of now. Because the main
loop of RAE progresses by just one step in the top-most methods of pend-
ing stacks, it is possible to implement a real-time control of tasks at an
intermediate level of reactivity (see Section 3.5).

Refining into concurrent subtasks. In the simple version of RAE, a
task is refined into sequential subtasks. It can be desirable to allow for
concurrent subtasks in a refinement step. For example, a robot may have
to tour a location exhaustively while concurrently performing appropriate
sensing actions to correctly accomplish a perceive action.

To specify a concurrent refinement, a step in the body of a method can
be expressed with a “concurrent” operator as follows:

{concurrent: (Vi1,...,v1n) (V2153 V2m) - (Vk1s- - Vi) }
where each (v;1,...,v; ;) is a sequence of steps as seen in the body of meth-
ods so far.

The refinement of a concurrent step splits into k parallel branches that
share the current instance of that method. The corresponding stack is split
into k substacks. There is an important difference with what we saw earlier
for the concurrent progression of several stacks. The latter correspond to in-
dependent tasks that may succeed or fail independently of each others. Here,
all the k substacks in which a concurrent refinement splits have to succeed
before considering that concurrent refinement step as being successful.

Choosing methods and stack ordering. Two types of choices have
been left open in RAE:

e which method among applicable ones to choose for addressing a task;
e in which order to progress the stacks in the current agenda.

Because all stacks have to be progressed at each iteration, the second
open choice is not as critical as the first. One may envision general heuris-
tics such as reacting to events first and then addressing new tasks, before
progressing on the old ones. Application specific heuristics should allow
refinement of this ordering choice.
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The choice of the appropriate method for addressing a task when several
are applicable should be based on an estimate of how effective a method
will be in the current context for that task. Domain-specific heuristics can
be convenient for making informed choices. Ideally, however, one needs pre-
dictive models and a lookahead capability to be able to compare alternative
courses of actions but RAE uses operational models without predictive capa-
bility: the refinement methods defined so far are solely reactive.” Let us first
extend them for the purpose of planning in the next section, then we’ll come
back to this issue of informed choices in RAE with look-ahead mechanisms
in Section 3.4.

3.3 Refinement Planning

One way to help RAE make choices is to do refinement planning, that is,
to explore RAE’s search space in order to predict the outcomes of different
possible courses of action. This section describes two refinement-planning
algorithms, SeRPE and IRT, that can be used for that purpose. In both of
them, the basic idea is to do predictive simulations of RAE’s task refinement
process.

The planner’s initial state sy will be RAE’s current state £, and the
planner will use methods like the ones that RAE uses; but instead of using
commands to an execution platform, the planner will use descriptive models
— action templates as in Chapter 2 — to predict the effects of the commands.
At points where RAE would choose a method m to use for some task or
goal 7, the planner will use search techniques like the ones in Chapter 2 to
explore several of the possible choices for m, to predict for each m whether
it will succeed in accomplishing 7.

As written, SeRPE and IRT require the classical planning assumptions
discussed in Section 2.1.1. Consequently, they cannot reason about how RAE
might handle situations in which actions have outcomes that are not known
in advance. For example, Example 3.2 involved searching for a container
using a command called perceive. We know in advance that if the actor
performs the perceive action, the values of some state variables will become
known, but we do not know what those values will be. Hence we cannot
write a classical action template for perceive.

5This does not prevent from embedding in these methods planning capabilities for
performing specific tasks or steps, as illustrated in Exercises 3.1, 3.2, and 3.3.
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3.3.1 Sequential Refinement Planning

Algorithm 3.4 is SeRPE (Sequential Refinement Planning Engine), a refine-
ment planning algorithm for situations in which there are no concurrent
tasks. In other words, these are situations in which RAE has only one refine-
ment stack and none of the refinement methods contain the “concurrent”
operator defined in Section 3.2.4. In Section 3.3.2, we discuss another plan-
ning algorithm, IRT, that loosens this restriction.

SeRPE generates plans by simulating RAE’s task refinement process. It
chooses task-refinement methods nondeterministically, but an implementa-
tion of SeRPE would make the choice using a search mechanism like the ones
in Section 2.2. SeRPE’s arguments are a set M of refinement methods, a
set A of action templates that are models of RAE’s commands, the state s
in which SeRPE’s planning should begin, and 7, a task to accomplish.

SeRPE nondeterministically chooses a method instance m that is both
relevant for 7 and applicable in s, and calls Progress-to-finish to simulate
RAE’s execution of body(m). RAE would call Progress once for each step in
the execution of body(m); each of these calls is simulated by an iteration
of Progress-to-finish’s loop. In this loop, if m[i] is a command to perform,
Progress-to-finish uses a descriptive model of the command to predict what
the command will do. If m[i] is a task to accomplish, Progress-to-finish calls
SeRPE recursively: here, SeRPE’s recursion stack corresponds to RAE’s re-
finement stack for 7. If the execution trace completes successfully, Progress-
to-finish returns a plan that it predicts will accomplish 7. If the execution
trace fails, then SeRPE returns failure.

Lines (#) and (7ii) are SeRPE’s way of simulating the goal monitoring
described in Section 3.2.3.

In line (7), SeRPE returns early if 7 is a goal and s satisfies 7 (denoted
by s = 7). In line (iiz), SeRPE fails if 7 is a goal and m does not produce a
state that satisfies 7.

In line (z), SeRPE returns failure because there are no methods for 7. If
T is a goal rather than a task, then a possible fallback might be to search
for any plan whose outcome satisfies 7, regardless of whether there are any
refinement methods to produce that plan. To modify SeRPE to do this, we
can replace line () with this:

if Candidates = @ then
if 7 is a goal achieve(g) then return find-plan(X%, s, g)
else return failure

where ¥ is the planning domain (S, A, ), A is the set of actions correspond-
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SeRPE(M, A, s, T)
Candidates < Instances(M, 7, s)
if Candidates = @ then return failure (4)
nondeterministically choose m € Candidates
return Progress-to-finish(M, A, s, 7,m)

Progress-to-finish(M, A, s, 7,m)

i < nil // instruction pointer for body(m)
T () // plan produced from body(m)
loop
if 7 is a goal and s = 7 then return 7 (i)

if 7 is the last step of m then
if 7 is a goal and s [~ 7 then return failure (i)
return w
i < nextstep(m, 1)
case type(ml[i])
assignment: update s according to mli]
command:
a < the descriptive model of m[i] in A
if s = pre(a) then
s<(s,a); ™+ Tma
else return failure
task or goal:
m' < SeRPE(M, A, s, m][i])
if 7’ = failure then return failure
s« (s, 7); ™o

Algorithm 3.4: SeRPE, the Sequential Refinement Planning Engine.

ing to each command, and S is the set of states constructed with a generative
approach from s and 7. In the modification proposed for line (i), find-plan
could be one of the planning algorithms in Chapter 2, with modifications
to make it return control to SeRPE if it sees a goal for which there is an
applicable method (see the discussion of this in Section 3.5.2).

Refinement trees. SeRPE can be modified so that when invoked on a
task 7, instead of returning a plan 7 it returns a refinement tree. This is
a tree in which the root node contains the task or goal 7, the intermediate
nodes contain the methods chosen by SeRPE and the subtasks produced by
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those methods, and the terminal nodes contain the actions in 7.

Such a modification will be useful for integrating SeRPE with RAE (see
Section 3.4), and the modification is relatively straightforward: in each of
SeRPE’s recursive calls, it would add to the tree a node containing the task
or action that SeRPE chose at this point in its search.

In the rest of this chapter, we refer to the input of RAE as a planning
problem P = (M, A, s,7), where M is a set of methods, A is a set of action
templates, s is a state, and 7 is a task.

Example 3.8. Figure 3.4 shows a state in a planning domain similar to the
one in Example 2.12 except that there is only one robot. Consider the tasks
of uncovering a container and putting it into a specified pile. Following are
methods to accomplish those tasks in some (but not all) cases. The variables
in these methods have the following ranges: ¢ € Containers, r € Robots;
d,d € Docks; p,p’ € Piles. There are three kinds of tasks:

e put-in-pile(c, p’) is the task of putting container ¢ into pile p’ if it is not
already there. There are two methods for this task. One, for the case
where c is already in p’, does nothing. The other uses a robot to take
¢, move (if it is not already there) to the dock where p’ is located, and
put c on p’. Here they are:

m1-put-in-pile(c, p) m2-put-in-pile(r, ¢, p,d, p’, d’)
task: put-in-pile(c, p') task: put-in-pile(c, p')
pre: pile(c) = p/ pre: pile(c) =p A at(p,d) A at(p/,d)
body: // empty A p#p A cargo(r)=nil
body: if loc(r) # d then navigate(r, d)
uncover(c)

load(r, ¢, pos(c), p, d)
if loc(r) # d’ then navigate(r, d’)
unload(r, ¢, top(p’),p’, d’)

e uncover(c) is the task of ensuring that c is at the top of a pile p. There
are two methods for this task: one for the case where ¢ is already at
the top of p, and another that uses a robot r to move containers from
p to another pile p’ until ¢ is at the top of p. The robot r must be
empty, and r and p’ must have the same location as p.
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Figure 3.4: The state sg in Equation 3.1.

m1-uncover(c) m2-uncover(r, ¢, p,p’, d)
task: uncover(c) task: uncover(c)
pre: top(pile(c)) =c¢ pre: pile(c) =p A top(p) #c¢
body: // empty Nat(p,d) A at(p',d) AN p#£p

Nloc(r)=d A cargo(r) =nil
body: while top(p) # ¢ do
¢ <« top(p)
load(r, ¢, pos(c'), p,d
unload(r, ¢, top(p'), p’, d)

e navigate(r,d’) is the task of moving r along some undetermined route
that ends at dock d’. In an actual application, such a task would
probably be handled by calling a specialized route-planning algorithm,
but in this simple example, we can use the following three methods.
The first is for the case in which r is already at d, and it does nothing.
The second one moves r to d’ if loc(r) is adjacent to d’. The third one
moves to an adjacent dock other than d’.

m1l-navigate(r, d’) m3-navigate(r, d, d’)
task: navigate(r,d’) task: navigate(r,d’)
pre: loc(r) = d’ pre: loc(r) #d AN d#d
body: // empty A adjacent(loc(r), d)
body: move(r,loc(r), d)
m2-navigate(r, d’) navigate(r, d’)

task: navigate(r, d’)
pre: loc(r) #d A
adjacent(loc(r), d")
body: move(r, loc(r),d")

Now consider the planning problem P = (M, A, s, put-in-pile(cy, py)),
where M contains the six methods defined above, A contains the four actions
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Tree T7: Tree Ts:
task task
put-in-pile(c,,p,) put-in-pile(c,,p,)
method method
m2-put-in-pile(r,,c4,p,d4,P5,d5) m2-put-in-pile(r,,c4,p;,d4,P5,d5)

task
action uncover(c,)

task

uncover(c,) action

unload(r,,c,,C5,P5,d5)

unload(r,,c4,C3,p,,d,)
task
method task method navigate(r,,d,)
m1-uncover(c,) | navigate(r,,d,) m1-uncover(c,)
(no children) (no children) r.nelhod
method m3-navigate(r,,d;,d,)

) m2-navigate(r,,d,)
action |

load(ry,c4,nil,p4,d)

task

navigate(r,,d,)
method

m2-navigate(r,,d,)

action
load(ry,c4,nil,p4,d;)

action
move(r,,d,,d,)
action

move(r,,d,,d;) ac tlion

move(r,,ds,d,)

Figure 3.5: Refinement trees for two solution plans.

defined in Example 2.12, and sq is the following state, which is shown in
Figure 3.4:

so = {cargo(ri)=nil, loc(r1) =di, (3.1)
occupied(d;) =T, occupied(d2) =F, occupied(ds)=F,
pile(c1) =py, pile(c2) = py, pile(c3) = po,
pos(cy) = nil, pos(cz) =c3, pos(csz) = nil,
top(p1) =ci, top(pa) = c2, top(ps) = nil}.

If we do cycle-checking (see Section 2.2), then there are only two ways to
refine the subtask navigate(r;, d2), and Figure 3.5 shows the refinement trees
for both choices. These trees correspond to the following solution plans:

m = (load(ry,cq,c2, py,d1), move(ry,di, da), unload(ri, c1, c3, pa, d2));
mg = (load(ry, c1, c2, py,d1), move(ry,dy, d3), move(ry,ds, da),

unload(ry,cq,c3, pg, d2)). -
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P1]C |7

Figure 3.6: The initial state sg from Example 2.5.

Discussion. For simplicity of presentation, we wrote the SeRPE pseu-
docode to choose a method m nondeterministically from the set of candi-
date methods. An implementation of SeRPE would make this choice using
search techniques like those in Section 2.2, modified to search over methods
as well as actions. In such an implementation, the search algorithm’s effi-
ciency depends on what the refinement methods are like (writing the body
of a refinement method is basically a programming task), and what kinds of
search heuristics are used.

When RAE has a single task to accomplish, RAE’s refinement of that
task proceeds in a depth-first, left-to-right fashion, since that is the order
in which RAE will need to execute the actions. Because SeRPE works by
simulating RAE’s execution, it explores its search space in the same depth-
first, left-to-right fashion.

In some application domains, it would be desirable to have a planning
engine that can explore the nodes of the search space in a different order.
For example, to take an airplane trip from the United States to Europe, one
needs to get to the airport before taking a flight, but to plan the trip, one
usually wants to examine alternative flight itineraries before planning how
to get to the airport. Something like this can be accomplished by giving the
planner a different set of refinement methods than the ones used by the actor,
but that makes it difficult to ensure consistency between the deliberation
done by the planner and the deliberation done by the actor. An alterna-
tive approach is to combine task refinement with plan-space planning (see
Section 3.5.2) or to use input/output automata that allow for interactions
between different tasks (see Chapter 5).

3.3.2 Interleaved Plans

In Section 3.3.1, one of the restrictions was that none of the methods in
M could contain the “concurrent” programming construct described in Sec-
tion 3.2.4. The main reason for this restriction is the difficulty of reasoning
about what will happen when several primitive commands are running con-
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currently, which requires a temporal-planning model that we will not intro-
duce until Chapter 4. However, it can be useful to loosen the restriction by
allowing multiple tasks to be interleaved provided that at most one primitive
command will be executed at a time. Here is a motivating example:

Example 3.9. Let sg be as shown in Figure 3.6. Suppose we want to move
c1 to p, and move c3 to p;, using the following two plans:

73 = (load(ry, ¢y, c2, py,d1), move(ry,dy, da), unload(ry, ¢, p3, nil, d2)),
74 = (load(ro, c3, nil, py, d2), move(rs, da, d3), move(re, ds, dy),

unload(rg, C3,C2,P1; d1)>

If we tried to use either w3 or 74 alone, some of the actions would fail. Only
one robot can occupy a loading dock at a time, so neither robot can move
to the other dock unless the other robot first leaves that dock. We can
accomplish this by interleaving 73 and 74 to produce a plan such as this:

5 = <|oad(r1, C1,C2, Py, dl)) |oad(r2, C3, n”u P2, d2)7
move(ra, da, d3), move(ry, di, d2), move(re, ds, dq)

unload(ry, c1, p3, nil, d2)), unload(rg, c3, c2, p;, di1)). O

To provide a way of specifying that a plan such as 75 is a permissible
solution, we will allow the body of a method to include steps of the form

{interleave: p1,...,pn},

where each p; is a sequence of steps (v; 1,...,v; ;) for some j. This operator
has the same semantics as the “concurrent” operator in Section 3.2.4, except
that only one command can be performed at a time.

Example 3.10. Continuing with Example 3.9, suppose that M includes
the following additional method, where ¢, ¢’ € Containers and p,p’ € Piles:

put-interleaved(c, p, ¢, p')
task: put-both(c,p,c,p’)
pre: none
body: {interleave:
(put-in-pile(c, p)),
(put-in-pile(c’, p)) }

Then from the task put-both(cy, ps, c3, p;), we can get the refinement tree in
Figure 3.7, which corresponds to 7. ]
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task
put-both(c,,p,,C3,P4)

method
put-interleaved(c,,p,,C5,P4)
interleave
task task
put-in-pile(c,,p,) put-in-pile(cs,p;)

method method
m2-put-in-pile(r,,c4,p4,d4,P5,d,)  M2-put-in-pile(r,,c4,p5,d5,P4,d4)

task
uncover(c,)

/

task
navigate(r,,d,) action
unload(r,,C5,p4)

task
uncover(cs)

method
m1-uncover(c,) method action
(no children) |/ M1-uncover(c,) method unload(ry,c4,p,)
(no children) m-navigate(r,,d;,d,) task
action

navigate(r,,d,)

load(r;,c4,p4)

action
load(r,,C4,P,)

task

method navigate(r,,d;)

m2-navigate(r,,d,)
action |

move(r,,d,,ds)

method

m-navigate(r,,d,,d
action 9 (2 2 3)

mOVe(r1ad1 1d2) action

move(r,,ds,d;)

Figure 3.7: An interleaved refinement tree corresponding to 7s.

Algorithm 3.5, the IRT (Interleaved Refinement Tree) algorithm, gener-
ates refinement trees like the one in Figure 3.7, in planning domains where
the bodies of the methods may include “interleave” statements. The IRT
pseudocode requires the planning domain to have no goals, that is, no tasks
of the form achieve(g). These could be added, but we omit them for sim-
plicity of presentation. IRT’s refinement trees contain five kinds of nodes:

e A task node and an action node contain a task or action, respectively.

e A method node or program node is labeled with a pair (p,7), where p
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IRT(D, s, )
r e )
p < a new task node; data(p) < 7
Pending <+ {p}
while Pending # @ do
nondeterministically choose a node u € Pending
that has no children in Pending ()
case type(pu)
task:
T < data(u)
remove u from Pending
M <+ Instances(M(7), s)
if M = @ then return failure
nondeterministically choose m € M
v < a new method node; data(v) < (m,0)
make v a child of p// this will be y’s only child
insert v into Pending
action:
a « data(u)
remove p from Pending
if a is not applicable in s then return failure
s < y(s,a); w< ma
program or method:
v <— IRT-progress(D, p, s, Pending)
if v = failure then return failure
return (m, p)

Algorithm 3.5: IRT, a refinement-planning algorithm that can do interleav-
ing. Interleaving nodes are handled by the IRT-progress subroutine, Algo-
rithm 3.6.

is a method or a program, and ¢ is a program counter.

e An interleaving mnode represents a statement of the form
{interleave: pi,...,px}. It is an empty node whose children
include program nodes vy, ..., V.

Generally there may be many different possible orders in which to expand
the nodes below each interleaving node. IRT handles this by repeatedly
making nondeterministic choices from a list called Pending that includes all
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IRT-progress(D, u, s, Pending)
(p, i) « data(u)
if 7 is the last step of m then
remove pu from Pending
return
else if p[i] is a task then
v < a new task node; data(v) < pli]
append v to p’s list of children
insert v into Pending
else if p[é] is a primitive command then do
v < a new action node; data(v) < ap;
append v to p’s list of children
insert v into Pending
else
// pli] has the form {interleave: p1,...,px}
v < a new interleaving node
append v to p’s list of children
fori=1,...,k do
v; < a new program node; data(v) < (p;,0)
insert v; into v’s set of children
insert v; into Pending

Algorithm 3.6: Subroutine of IRT to simulate the next step in a method.

nodes IRT has not yet finished expanding.

Implementation considerations. The practical considerations for im-
plementing IRT are similar to the ones for implementing SeRPE. However,
the efficiency consideration is especially critical in IRT. The nondetermin-
istic choice in (i) makes IRT consider all feasible orderings of the nodes in
Pending. To implement IRT, it would be necessary to implement this as a
deterministic search. Because the number of feasible orderings can be ex-
ponentially large, this is not practical unless the algorithm has a way (e.g.,
some sort of heuristic guidance) to find a satisfactory ordering without too
much backtracking.

Simulating concurrency. IRT’s “interleave” operator can be used, in a
limited way, to do predictive simulations of concurrent tasks in RAE, by
making some changes to the domain representation. Recall that each action

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.


http://cambridge.org/9781107037274

126 Chapter 3

start-a
pre: p, running-a =F
eff: running-a < T

m-do-a
task: do-a
pre: // no preconditions

body: start-a, end-a end-a

pre: running-a=T
eff: e, running-a < F

Figure 3.8: Translation of a command a into one refinement method and
two actions.

a is a descriptive model of a command to the execution platform. For
simplicity of presentation, let us assume that a’s preconditions need to be
true when the command starts executing, and a’s effects occur when the
command finishes executing. Instead of modeling the command with a single
action a, let us use a task named do-a, the body of which contains two actions
start-a and end-a that represent the command’s starting and ending points.%
If a’s preconditions and effects are p and e, then the method and the two
actions are as shown in Figure 3.8.

In the body of each method, let us replace all occurrences of the ac-
tion a with the task do-a, and replace all occurrences of “concurrent” with
“interleave”. Thus, {concurrent: ai,as,...,a,} will become

{interleave: do-ay,...,do-an}. (3.2)

In Figure 3.8, the state variable running-a prevents multiple overlapping
occurrences of the same action. If we want to allow multiple overlapping
occurrences for some reason, then IRT will need to be modified so that each
time it refines an instance of do-a, it uses a different state variable in start-a
and end-a.

Limitations. The biggest difficulty with this way of simulating concur-
rency is that IRT will impose a specific linear order on the starting points
and ending points of the actions in Equation 3.2. Without knowing some-
thing about the amount of time each action will take, there is no way to
know whether the ordering chosen by IRT is a realistic one; and even if it

5More generally, one may need to represent preconditions and effects that occur at
several points during a command’s execution. In this case, we would need to include one
or more additional actions during;-a, during,-a, ..., so that there is an action at each
point where a precondition or effect occurs.
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is realistic, it will not provide sufficient flexibility to deal with situations
in which the duration of an action may vary and is not controllable. If we
extract a partial order from the linear order (which can be done reasoning
about which actions establish the preconditions of other actions) and mod-
ify the actions to include time stamps, it will alleviate the problem but not
fully solve it. Chapter 4 presents a more comprehensive way to reason about
time.

3.4 Acting and Refinement Planning

We now consider how to integrate refinement planning with acting. Sec-
tion 3.4.1 shows how to modify the procedures in Section 2.6 to use an online
version of SeRPE; and Section 3.4.2 describes REAP, a modified version of
RAE that incorporates a SeRPE-like refinement planner.

3.4.1 Planning and Acting at Different Levels

At the start of Section 3.3, our stated motivation for SeRPE was to provide
guidance for RAE by simulating its possible execution paths. However, an-
other possibility is to use SeRPE and RAE at different levels of an actor’s
hierarchy. The actor could use a SeRPE-like planning procedure to generate
plans consisting of abstract actions and a RAE-like acting procedure to re-
fine the abstract actions into lower-level commands, for example, as shown
in the planning and acting levels of Figure 1.2.

To illustrate some ways to accomplish this, Algorithms 3.7, 3.8, and
3.9 are straightforward modifications of the algorithms in Section 2.6.1. In
them, SeRPE-Lookahead is a version of SeRPE that has been modified to
incorporate online-planning techniques such as receding-horizon planning or
sampling (see Section 2.6.2), and Perform is a procedure for performing a
by using a RAE-like procedure to refine the action a into commands for the
actor’s execution platform.

Simulate is the same kind of plan simulator as in Section 2.6.1, except
that the third argument is a task 7 rather than a goal g, and it is only when
T = achieve(g) that Simulate will check whether 7 achieves g.

Example 3.11. Consider an actor that uses Refine-Lookahead. Suppose
that in line (i) of Refine-Lookahead, the state-abstraction function is the
identity function, that is, it always assigns s < &.

Suppose the actor begins with the state sg shown in Figure 3.4 and the
task 7 = put-in-pile(ci, py). In the first iteration of the while loop, suppose

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.


http://cambridge.org/9781107037274

128 Chapter 3

Refine-Lookahead (M, A, 7)
while (s < abstraction of observed state £) = 7 do (%)
7 < SeRPE-Lookahead(M, A, s, T)
if m = failure then return failure
a < pop-first-action()); Perform(a)

Algorithm 3.7: Replanning before every action.

Refine-Lazy-Lookahead(M, A, 7)
s < abstraction of observed state &
while s = 7 do
7 < SeRPE-Lookahead(M, A, s, T)
if m = failure then return failure
while 7 # () and s [~ 7 and Simulate(X, s, 7, ) # failure do
a < pop-first-action(r)); Perform(a)
s < abstraction of observed state &

Algorithm 3.8: Replanning only when necessary.

Refine-Concurrent-Lookahead (M, A, 7)
T4 (); s < abstraction of observed state £
thread 1: // threads 1 and 2 run concurrently
loop
7 +— SeRPE-Lookahead(M, A, s, 7)
thread 2:
loop
if s = 7 then return success
else if m = failure then return failure
else if w # () and Simulate(X, s, 7, 7) # failure then
a < pop-first-action(r)); Perform(a)
s < abstraction of observed state &

Algorithm 3.9: Replanning concurrently with acting.

SeRPE-Lookahead returns
71 = (load(rq, ¢, c2, py,di), move(ry, dy, dz), unload(ry, ci, c3, py, da)).

Then Refine-Lookahead pops load(ri,c1,p;) from m and calls
Perform(load(ry,c1,py))- If no execution errors or other unantici-
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pated events occur, then the observed state and its abstraction are
81 = ")/(80, |Oad(l’17 C1,C2, Py, dl))

In the second iteration of the while loop, if SeRPE-Lookahead’s nonde-
terministic choices are consistent with the ones it made the previous time,
then it returns

T = <move(r1, d1, dg), Un|0.’:3ld(l’17 C1,C3, Py, d2)>,

so Refine-Lookahead pops and performs move(ry,di,ds). If no execution
errors or other unanticipated events occur, then the observed state and its
abstraction are so = 7(s1, move(ry, dy,d2)).

In the third iteration, if SeRPE-Lookahead’s nondeterministic choices are
consistent with its previous ones, then it returns

w3 = <Un|03d(r1, C1,C3, P2, d2)>7

so Refine-Lazy-Lookahead pops and performs unload(ry, c1,cs, py,d2). If no
execution errors or other unanticipated events occur, then the observed state
and its abstraction are s3 = (s, unload(ry,cy,c3, ps,dsa)).

In the fourth loop iteration, s3 = g, so Refine-Lazy-Lookahead exits.

Instead of Refine-Lookahead, suppose the actor uses Refine-Lazy-
Lookahead or Refine-Lazy-Lookahead, with the same abstraction function and
the same version of SeRPE-Lookahead as before. If no execution errors or
unanticipated events occur, then the actor will perform the same actions as
before, in the same order. O

Limitations. Because Algorithms 3.7-3.9 are analogous to the procedures
in Section 2.6.1, they have several of the same trade-offs discussed in that
section. Moreover, as illustrated in the following example, additional prob-
lems can occur if the author of the domain model does not specify refinement
methods for all of the possible states in which SeRPE-Lookahead might be
invoked.

Example 3.12. Suppose a programmer writes a method m to accomplish
a task 7. This method is applicable in a state sg and it produces a sequence
of commands (aj,az,as). Suppose the programmer believes sq is the only
state in which the actor will ever be given 7 as an external task, and thus
the programmer does not write any methods to accomplish 7 in any other
state. Suppose the actor starts in a state £y whose abstraction is sg and uses
Refine-Lookahead:
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e Refine-Lookahead calls SeRPE-Lookahead(M, A, sg,7), and SeRPE-
Lookahead uses m to produce a plan .

e The actor removes the first action from n and performs it, pro-
ducing a state & whose abstraction is s;. Then Refine-Lookahead
calls SeRPE-Lookahead(M, A, s1, 7). Because m is inapplicable in s,
SeRPE-Lookahead returns failure, even though the remaining actions
in 7 are still capable of accomplishing 7.

A similar problem will occur if the actor uses Refine-Concurrent-Lookahead.
If Refine-Lookahead returns a complete solution plan, the problem will not
occur if the actor uses Refine-Lazy-Lookahead, which will continue to perform
actions in 7w as long as Simulate predicts that m will execute correctly. But
the problem will occur in Refine-Lazy-Lookahead if SeRPE-Lookahead returns
a partial solution plan (e.g., if Refine-Lookahead does a receding-horizon
search). O

A more robust (although more complicated) approach is to integrate
SeRPE-like refinement planning with RAE-like refinement acting at all levels
of the actor’s hierarchy. The next section describes a way to do that.

3.4.2 Integrated Acting and Planning

This section describes REAP (Refinement Engine for Acting and Planning).
Most of the REAP pseudocode (Algorithms 3.10, 3.11, and 3.12) is quite sim-
ilar to RAE in Section 3.2, except that REAP uses a planner (Refinement-tree
in the pseudocode) to help it choose methods in Candidates. Refinement-tree
is an online SeRPE-like planner similar to SeRPE-Lookahead in Section 3.4.1,
but modified to use Candidates rather than M as the methods for the task
7 and to return a refinement tree instead of a plan.

We introduced the notion of refinement trees briefly in Section 3.3.1 and
gave two examples in Figure 3.5. In more detail, if T" is the refinement tree
for a task 7, then T has a root node t that is labeled with 7, and t has
one child u that is labeled with the method instance m that the planner

chose for 7. Let 7,...,7, be the subtasks and actions in the planner’s
simulation of body(m), in the order that they were created. Then p has
children t1, ..., t; defined as follows. For each 7; that is a task, ¢; is the root

node of the refinement tree for 7;; and for each 7; that is an action, ¢; is a
leaf node that is labeled with 7;.

REAP-main calls Refinement-tree on a planning problem in which the
only methods available for the current state are the ones in Candidates. If
the planner returns a refinement tree T for a task 7, then the method at the
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REAP-main(M, A)
Agenda + @
loop
until the input stream of external tasks and events is empty do

read 7 in the input stream
Candidates < Instances(M, 7, &)
if Candidates = @ then output(“failed to address” )
s < abstraction of observed state &

T < Refinement-tree( Candidates, M, A, s,T) ()
if T' = failure then

output(“failed to address” ) (1)
else do

m < the method instance at the top of T’ (i)

Agenda <+ Agenda U {((T,m,nil, @, T))}
for each stack € Agenda do
REAP-progress(M, A, stack)
if stack = @ then Agenda <— Agenda\ {stack}

Algorithm 3.10: Main procedure of REAP, a modified version of RAE that
calls a planner to choose method instances.

top of T is the one that the planner recommends using for 7, so REAP-main
chooses this method in line ().

In line (i), REAP-main stops trying to accomplish 7 if Refinement-tree
returns failure. However, REAP-main can be modified to incorporate various
fallback options. Depending on the planning domain and the developer’s
objectives, a modified version of REAP-main could call Refinement-tree with
a set M’ of fallback methods that it would not otherwise use, postpone
accomplishment of 7 until the environment changes in a way that makes 7
feasible, or modify 7 (see “goal reasoning” in Section 1.3.4) to make it easier
to accomplish.

In lines (ii)—(74) of REAP-progress, the same approach is used to choose
a method m’ for the task 7/. Because 7’ is a subgoal of the task 7 in
REAP-main, this can be viewed as a kind of subgoaling (see Section 2.6.2).
The same approach is used again in lines (i)—(ii) of REAP-retry.

Simulation. In line (i) of REAP-progress, Simulate is a plan simulator
like the one in Section 3.4.1, but with two significant differences. First, its
argument is a refinement tree 7', and it simulates the plan contained in T"’s
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REAP-progress(M, A, stack)
(1,m, 1, tried, T') < top(stack)
if ¢ # nil and m[i] is a command then
case status(ml[i])

running: return
failure: REAP-retry(M, A, stack); return

done:
T’ < the unexecuted part of T
if Simulate(¢, T") = failure then (4)

REAP-retry(M, A, stack); return
else continue
if 4 is the last step of m then
pop(stack) // remove (1, m, i, tried, T")
else
i <— nextstep(m, i)
case type(mli])
assignment: update £ according to m/[i]; return
command: trigger command m/[i]; return
task or goal: continue
7/ mli
Candidates < Instances(M, 7/, €)
if Candidates = @ then
REAP-retry(M, A, stack); return
s < abstraction of observed state &

T’ + Refinement-tree( Candidates, M, A, s, T) (i)
if T" = failure then REAP-retry(M, A, stack)
else do

m’ + the topmost method in 7’ (1444)

stack < push((7',m/ nil, &, T"),stack)

Algorithm 3.11: REAP’s procedure for progressing a refinement stack.

leaf nodes. Second, REAP-progress calls it many times on many different
refinement trees.

Every time REAP-progress refines a stack element, it calls Refinement-tree
in line (ii). Hence each stack element (7,m, tried,T) contains a refinement
tree that is a subtree of the refinement tree in the stack element below it.
To obtain a prediction of whether the rest of body(m) will execute correctly,
REAP-progress calls Simulate(§,T") in line (7). If the simulation predicts a
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REAP-retry(M, A, stack)
(1,m, 1, tried, T') < pop(stack)
tried < tried U {m}
Candidates < Instances(M, 7, &) \ tried
if Candidates = @ then output(“failed to address” )
s < abstraction of observed state &

T’ + Refinement-tree( Candidates, M, A, s, T) (4)
if T # failure then
m’ < the topmost method in 7" (49)
push((7,m/, nil, tried, T'), stack)
else
if stack# @ then REAP-retry(M, A, stack)
else do

output(“failed to accomplish” 7)
Agenda < Agenda \ stack

Algorithm 3.12: REAP’s version of RAE’s Retry subroutine.

failure, then REAP-progress calls REAP-retry.

Example 3.13. Let us repeat Example 3.11 using REAP. As before, we will
suppose that no execution errors or unforeseen events occur.

In REAP-main’s first loop iteration, it reads 7 = put-in-pile(cy,py)
and calls Refinement-tree. Suppose Refinement-tree returns the re-
finement tree 77 in Figure 3.5. The topmost method in T is
m = carry-to-pile(ry,ci, py,di,C3, Py, d2), and REAP-main puts stack; =
((r,m,nil, @, T)) into Agenda. Assuming that nothing else arrives in the
input stream, REAP-main calls REAP-progress repeatedly on stack; until 7
has been accomplished, as follows:

e In the first call to REAP-progress, the top element of the stack
is (7,m,nil, @, T). After the call to nextstep, this is replaced by
(r,m,i,2,T), with ¢ pointing to 71 = uncover(c;). REAP-progress
calls Refinement-tree, which returns a tree T3 that is a copy of T7s left-
most branch. The topmost method in T} is m; = m-uncover(c;), and
REAP-progress pushes (71, mq, nil, &, T1) onto stack;.

e In the second call to REAP-progress, the top element of stack; is
(11, m1,nil, @, T1). Because c; is already uncovered, the method
produces no actions or subtasks, and REAP-progress removes
(11, m,nil, @, T1) from stack;.
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In the third call to REAP-progress, i points at uncover(cy) until nextstep
is called. Afterward, i points at the action load(ry, ¢y, p;), which REAP-
progress sends as a command to the execution platform. In the fourth
call to REAP-progress, let us suppose that the command is still running.
Then REAP-progress just returns.

In the fifth call to REAP-progress, suppose the command has fin-
ished. Then Simulate returns success, and the call to nextstep makes
i point to 7o = navigate(ri,ds). REAP-progress calls Refinement-tree,
which returns a tree Tb that is a copy of 1”s third branch. The top-
most method in T3 is mg = m2-navigate(ri,dq, dz2), and REAP-progress
pushes (72, ma, nil, &, T5) onto stack;.

In the sixth call to REAP-progress, the top element of the stack is
(12, ma,nil, @,T5). After the call to nextstep, this is replaced by
(12, M2, 1, d, Ty), with i pointing to the action move(ry,d;,d2). REAP-
progress sends it as a command to the execution platform. In the
seventh and eighth calls to REAP-progress, suppose the command is
still running. Then REAP-progress returns.

In the ninth call to REAP-progress, suppose the command has finished.
Then Simulate returns success, and ¢ is the last step of m, so REAP-
progress removes (72, mo, i, &, Ts) from stack;.

In the tenth call to REAP-progess, the top element of the stack is
(11, m1,1,9,T1), and i points at 7o = navigate(ry, ds). After the call to
nextstep, ¢ points at the action unload(ry,cy, c3, ps, d2). REAP-progress
sends it as a command to the execution platform. In the eleventh
call to REAP-progress, suppose the command is still running. Then
REAP-progress returns.

In the twelfth call to REAP-progress, suppose the command has fin-
ished. Then Simulate returns success, and ¢ is the last step of m, so
REAP-progress removes (71, my, 4, d,T1) from stack;. ]

At this point, Agenda is empty, so REAP-main continues to iterate its main
loop without any further calls to REAP-progess unless something new arrives
in the input stream.

Comparison with RAE. In our examples, often only one method instance
was applicable in a given state. In such cases, RAE would have chosen the
same method instance as REAP, without needing to call a planner. Thus it
may not be immediately evident to the reader why REAP’s planner is useful.
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It is useful in two ways:

e In situations where multiple method instances are applicable, planning
can be useful to explore the alternatives and suggest which method
instance to use. For example, in Example 3.13, REAP had to choose
whether to go directly from d; to do, or to go from d; to d3 and then
to ds. Here, the planner was useful for telling it what route to choose.

e By using the planner to look ahead, REAP sometimes can detect cases
when future failure is inevitable, so that it can abandon the current
course of action and try something else. This may enable it to accom-
plish a task in cases where RAE would just continue until the failure
occurred.

3.5 Discussion and Historical Remarks

3.5.1 Refinement Acting

Early planning and acting systems relied on a uniform set of action primi-
tives, that is, planned actions were assument to be directly executable with-
out refinement. This is exemplified in Planex by Fikes [196], one of the first
acting systems, which was coupled with the STRIPS planner. Planex as-
sumes correct and complete state updates after each action execution, from
which it detects failures but also opportunities for pursuing a plan. It relies
on triangle tables to monitor the progress of a plan with respect to the goal.

The lack of robustness of this and similar systems was addressed by var-
ious approaches for specifying operational models of actions and techniques
for context-dependent refinement into lower level commands. Among these,
procedure-based systems are quite popular. RAP (Reactive Action Pack-
age), proposed by Firby [199], is an early example. Each package is in charge
of satisfying a particular goal, corresponding to a planned action. Deliber-
ation chooses the appropriate package according to the current context.

PRS (Procedural Reasoning System), by Ingrand et al. [293], is a widely
used procedure-based action refinement and monitoring system. Asin RAP,
one writes procedures to achieve goals or react to particular events and ob-
servations. The system commits to goals and tries alternative procedures
when needed. It allows for concurrent procedure execution and multithread-
ing. Some planning capabilities were added to PRS by Despouys and In-
grand [152] to anticipate execution paths leading to failure by simulating
the execution of procedures and exploring different branches.

TCA by Simmons [539] and TDL by Simmons and Apfelbaum [541] ex-
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tend the capabilities of procedure-based systems with a wide range of syn-
chronization constructs between commands and temporal constraints man-
agement. These and other timeline-oriented acting systems, such as RMPL
of Ingham et al. [292] are further discussed in Section 4.6.

XFRM by Beetz and McDermott [49] uses transformation rules to modify
hand written conditional plans expressed in a representation called Reactive
Plan Language [48]. It searches in plan space to improve its refinements,
using simulation and probabilities of possible outcomes. It replaces the
currently executed plan on the fly if it finds another one more adapted to
the current situation. Beetz [47] extended this approach with more elaborate
reactive controllers.

Other procedure-based approaches have been proposed, such as IPEM
by Ambros-Ingerson and Steel [18], EXEC by Muscettola et al. [441], or
CPEF by Myers [442]. Concurrency and synchronization issues, which often
arise at the command level, have been addressed by a few Petri net—based
systems. For example, Wang et al. [595] model with Petri nets the proper
order of the execution of commands and their required coordination. The
model can be used in simulation for verification and performance testing.
Similar approaches have been pursued by Barbier et al. [36] and Ziparo
et al. [629] to specify an acting system whose properties can be validated
with reachability and deadlock analysis.

Finite State Automata have also been used as acting models, in which an
abstract action is represented as an FSA whose transitions are labelled with
sensory-motor signals and commands. For example, FSA have been used
jointly with IxTeT by Chatilla et al. [115]. Verma et al. [583] illustrate in
PLEXIL a representation in which the user specifies nodes as computational
abstractions. A node can monitor events, execute commands, or assign
values to variables. It may refer hierarchically to a list of lower level nodes.
Execution is controlled by constraints (start, end), guards (invariant), and
conditions.

SMACH, the ROS execution system of Bohren et al. [79], also imple-
ments an automata-based approach. The user writes a set of hierarchical
state machines. Each state corresponds to the execution of a particular com-
mand. The interface with ROS actions, services, and topics is very natural,
but the semantics of constructs available in SMACH is limited for reasoning
on goals and states. Let us also mention the approach of Pistore et al. [486],
based on the Business Process Execution Language (BPEL, of Andrews et al.
[22]), which proposes to plan and compose asynchronous software services
represented as state transition systems. The approach produces a controller
that takes into account uncertainty and the interleaving of the execution
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of different processes. It is extended by Bucchiarone et al. [101] to deal at
run-time with a hierarchical representation that includes abstract actions;
Pistore and Traverso [485] address the problem of automated synthesis and
run-time monitoring of processes. This work is further discussed in Chap-
ter 5.

Unlike the procedure-based approaches, automata and Petri net ap-
proaches allow for formal analysis, such as reachability and dead locks check-
ing, which can be critical for the specification and the verification of acting
models. A few systems try to overcome the engineering bottleneck of hand
specification of procedures or automata by relying on logic inference mech-
anisms for extending high-level specifications. Examples are the Temporal
Action Logic approach of Doherty et al. [158] for monitoring (but not action
refinement) and the situation calculus approach. The latter is exemplified in
GOLEX by Héhnel et al. [251], an execution system for the GOLOG plan-
ner. In GOLOG and GOLEX, the user specifies respectively planning and
acting knowledge in the situation calculus representation. GOLEX provides
Prolog hand-programmed “exec” clauses that explicitly define the sequence
of commands a platform has to execute. It also provides monitoring prim-
itives to check the effects of executed actions. GOLEX executes the plan
produced by GOLOG, but even if the two systems rely on the same logic
programming representation, they remain completely separated, limiting the
interleaving of planning and acting. The PLATAS system of Claflen et al.
[124] relies on GOLOG with a mapping between the PDDL langage and
the Situation Calculus. The READYLOG language of Ferrein and Lakemeyer
[194], a derivative of GOLOG, combines planning with programming. It
relies on a decision-theoretic planner used by the acting component when a
problem needs to be solved. The acting component monitors and perceives
the environment through passive sensing, and acts or plans accordingly.

Finally, there are several systems that rely on probabilistic approaches,
possibly with sampling techniques, which are discussed in Section 6.8.

3.5.2 Refinement Planning

HTN planning. Hierarchical Task Network (HTN) planning uses HTN
methods, which are like refinement methods except that instead of being a
program to execute, the body of a method is a partially or totally ordered
set of tasks and actions, along with constraints that the state variables need
to satisfy over various parts of the partial ordering.

The first HTN planning systems, which were developed in the mid-1970s
[520, 561], used plan-space HTN planning, that is, they combined HTN task
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refinement with plan-space search [307]. Theoretical models for plan-space
HTN planning began to be developed in the early 1990s [615, 309], culminat-
ing in a formal semantics [180], a provably correct planning algorithm [181],
and analysis showing that HTN planning has greater expressive power than
classical planning [179]. Work was also done on making plan-space HTN
planning more efficient using planning-graph techniques [397, 396].

Most current HTN planning algorithms use a forward-search procedure
such as the one in SeRPE (Algorithm 3.4). For example, the SHOP al-
gorithm [446] can be rewritten as a special case of SeRPE, and a slightly
modified version” of the SHOP2 algorithm [448] can be rewritten as a special
case of IRT (Algorithm 3.5), using HTN methods that include “interleave”
operators. The approach of Biundo and Schattenberg [72] integrates HTN
with plan space planning; it has been extended with efficient heuristics us-
ing task decomposition and landmarks [177, 52]. Other extensions to HTN
planning have been proposed, for example, to temporal planning [110] (see
Chapter 4) and planning with preferences [553].

A recent formal model of HTN search spaces [10] has shown that because
they have a more complex structure than classical search spaces, there is a
wider variety of possible ways to search them, including some possibilities
for which no planning algorithms have yet been written. The model suggests
it may be feasible to develop domain-independent HTN planning heuristics
using a relaxation of one of these search spaces, but such heuristics have not
yet been developed.

HTN methods can be useful for encoding “standard operating pro-
cedures” for accomplishing tasks in various application domains [603].
Some examples include scheduling [604], logistics and crisis management
[133, 562, 72], spacecraft planning and scheduling [1, 183], equipment con-
figuration [6], manufacturing process planning [550], evacuation planning
[438], computer games [551, 113], and robotics [430, 431].

Combining refinement planning and classical planning. When a
classical planner is trying to achieve a goal g, it may examine any sequence
of actions that it thinks will lead toward g. When a refinement planner
is trying to accomplish a task, it will examine only those action sequences
that can be produced using the available refinement methods. Thus if we

"The modification is to remove SHOP2’s requirement that a method m’s precondi-
tions must be evaluated in the same state as the preconditions of the first action in the
decomposition tree below m. Enforcing such a requirement is not feasible in dynamic
environments, and IRT and RAE do not attempt to do so.
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use refinement planning to plan for a task of the form achieve(g), this can
be considered a way of constraining the search for g.

On one hand, constraining the search in this manner can convey a sub-
stantial efficiency advantage [445]. On the other hand, Example 3.12 demon-
strates that unless the planner is given a comprehensive set of methods that
cover all of the possible tasks to accomplish, and all of the possible situ-
ations in which they might need to be accomplished, planning can fail in
situations in which one would want it to succeed. Consequently, several
researchers have investigated ways to combine the advantages of both re-
finement planning and classical planning by using refinement methods when
they are applicable and classical planning when no refinement methods are
available.

One approach involves running a classical planner and an HTN planner
as two separate subroutines, with the refinement planner passing control to
the classical planner whenever it encounters a task for which no methods
have been defined, and the classical planner passing control to the refinement
planner whenever it encounters an “action” that matches the head of an
HTN method [220].

Another approach achieves the same kind of effect by compiling a set
of HTN methods (subject to certain restrictions because HTN planning has
greater expressivity than classical planning) into a set of classical “actions”
whose names, preconditions, and effects encode the steps involved in apply-
ing the methods, and using these actions in a classical planner [8].

A third approach [533] uses an HTN-like formalism in which there are
goals rather than tasks, and the body of a method is a sequence of goals and
actions. If the planner encounters a goal for which there is an applicable
method then it uses the method. Otherwise it invokes a landmark-based
forward search. During each episode of landmark generation, the planner
treats the landmarks as intermediate goals, reverting to refinement planning
whenever it encounters a landmark for which there is an applicable method.

3.5.3 Translating Among Multiple Domain Models

Throughout this chapter, we assumed that all of the refinements took place
in the same state space. However, in applications in which refinements are
done at multiple levels of abstraction (e.g., see Figure 1.2), different state
and action representations may be needed at different levels of abstraction.

In principle, the algorithms and procedures in this chapter can be gen-
eralized to accommodate this, using techniques somewhat like the ones used
in abstraction heuristics (see Section 2.7.9). However, such a generalization
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will require formal definitions of the relationships among tasks, states and
actions at different levels, translation algorithms based on these definitions,
and planning and acting algorithms that can accommodate these transla-
tions. A comprehensive approach for this problem has yet to be developed.

3.6 Exercises

3.1. Modify the m-search method of Example 3.2 by assuming it uses a
planning function, plan-path, which computes an optimized sequence of lo-
cations with content that is not yet known; the search proceeds according
to this sequence.

3.2. Complete the methods of Example 3.2 by considering that move-to
is not a command but a task addressed by a method that calls a motion
planner, which returns a trajectory, then controls the motion of the robot
along that trajectory.

3.3. Complete the methods of Example 3.2 by considering that perceive
is not a command but a task that requires calling a perception planner
that returns a sequence of observation poses. Define two methods: (i) for a
complete survey of a location where perceive goes through the entire sequence
of observation poses and (ii) for a focus perception that stops when the
searched object is detected.

3.4. Analyze how the methods in Exercises 3.1, 3.2, and 3.3 embed plan-
ning capabilities in refinement methods at the acting level. Relate this to
Figure 1.2 and the discussion in Section 1.2.2.

3.5. Combine the two scenarios of Examples 3.2 and 3.3: while the robot
is searching for a container, it has to react to an emergency. What needs
to be done to ensure that the robot returns to its search when the task
address-emergency finishes (see Section 3.2.4)7

3.6. In Example 3.4, in the body of m-opendoor, why is the first word
“while” rather than “if”?

3.7. Complete the methods of Example 3.4 for refining the tasks unlatch(r, d)
and throw-wide(r, d) when the door turns to the right, when the door opens
away from the robot, and when the door slides.

3.8. Complete the methods of Example 3.4 with appropriate steps to survey
the grasping status of whatever the robot is grasping and to turn the handle
in the opposite direction before ungrasping it.
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3.9. Extend Example 3.4 for a robot with two arms: the robot uses its left
(or right) arm if the door turns or slides to the left (or right, respectively).
Add a method to move an object from one of the robot’s hands to the other
that can be used if the hand holding the object is needed for the opening
the door.

3.10. Extend Example 3.4 for the case in which the door might be locked
with an RFID lock system and the robot’s RFID chip is attached to its left
arm.

3.11. Redefine the pseudocode of RAE, Progress, and Retry to implement
the extensions discussed in Section 3.2.4 for controlling the progress of a
task.

3.12. Implement and test the fetch task of Example 3.2 in OpenPRS
(https://git.openrobots.org/projects/openprs/wiki). Integrate the
results of Exercise 3.1 in your implementation; use for plan-path a simple
Dijkstra graph-search algorithm. Is it possible to extend your OpenPRS
implementation to handle the requirements stated in Exercise 3.57

3.13. In Example 3.8, rewrite the two methods for put-in-pile(c,p’) as a
single method. What are the benefits and drawbacks of having them as one
method rather than two?

3.14. For the task uncover(c) in Example 3.8, write a method or set of
methods for the case where there are containers on ¢ but no other pile at
the same dock.

3.15. Professor Prune says that the m-navigate method in Example 3.8 can
cause excessive backtracking. Is he correct? Explain why or why not, and
if he is correct, then write a better method or set of methods.

3.16. Following is a domain-specific acting algorithm to find near-optimal
solutions for blocks world problems (see Exercise 2.10), where “optimal”
means the smallest possible number of actions. In it, sg is an initial state
in which holding = nil, and ¢ is a set of loc atoms (e.g., as in Figure 2.18).
Here are some definitions of terms used in the algorithm:

e For each block b, if g contains an atom of the form loc(b) = ¢, then
goal(b) = c. If there is no such atom, then goal(b) = nil.

e A block b is unfinished if so(loc(b)) # goal(b) and goal(b) # nil, or if
so(loc(b)) is an unfinished block. Otherwise b is finished.

e A block b is clear if top(b) = nil.
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Here is the acting algorithm:

Stack-blocks(so, g)
while there is at least one unfinished block do
if there is an unfinished clear block b such that
goal(b) = table or goal(b) is a finished clear block
then
move b to goal(b)
else
choose a clear unfinished block b
move b to table

(a) What sequence of actions will this algorithm produce for the planning
problem in Exercise 2.10(b)?

(b) Write a set of refinement methods that encode this algorithm. You
may assume that there is already a function finished(b) that returns
true if b is finished and false otherwise.

3.17. Suppose we try to use SeRPE on the problem in Example 3.6. Draw
as much of the refinement tree as you can. What problem prevents you from
drawing the entire refinement tree? Suggest a way to resolve the problem.

3.18. Rewrite the pseudocode for SeRPE, replacing the nondeterministic
choice with depth-first backtracking.

3.19. In Example 3.11, suppose that every time r; starts down the road
from dj to dg, it hits a bump that knocks c; off of r; and back onto p;.

(a) What sequence of commands will ARP-lazy, ARP-interleaved, and ARP-
asynchronous execute?

(b) What sequence of commands will REAP execute?
3.20. In Exercise 3.16, suppose that when the robot hand tries to pick up
a block, sometimes it will drop the block onto the table.

(a) What sequence of commands will ARP-lazy, ARP-interleaved, and ARP-
asynchronous execute?

(b) What sequence of commands will REAP execute? What kind of mod-
ification could you make to REAP to make it keep trying until it suc-
ceeds?

3.21. Redo Example 3.11 using a refinement planner that does a receding-
horizon search. More specifically, the planner is a modified version of SeRPE
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that generates the first two actions of every refinement plan (hence it looks
at all partial plans of two steps or less), and it returns the partial plan that
(according to some kind of heuristic evaluation) is closest to accomplishing
the task or goal. You can assume that the heuristic evaluation always gives
accurate results.
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Chapter 4

Deliberation with Temporal
Models

This chapter is about planning and acting approaches in which time is ex-
plicit in the descriptive and operational models of actions, as well as in
the models of the expected evolution of the world. It describes several al-
gorithms and computation methods for handling durative and concurrent
activities with respect to a predicted dynamics.

The first section addresses the need of making time explicit in the delib-
eration of an actor. A knowledge representation for modeling actions with
temporal variables is presented in Section 4.2. It relies on an extension of
the refinement methods introduced earlier, which are seen here as chronicles,
that is, collections of assertions and tasks with explicit temporal constraints.
A planning algorithm with temporal refinement methods is developed in Sec-
tion 4.3. The basic techniques for managing temporal constraints and the
controllability of temporal plans are then presented in Section 4.4. Acting
problems with temporal domain models, are discussed, considering different
types of operational models in Section 4.5. The chapter concludes with a
discussion and historical remarks, followed by exercises.

4.1 Introduction

To perform an action, different kinds of resources may need to be borrowed
(e.g., space, tools) or consumed (e.g., energy). Time is a resource required
by every action, but it differs from other types of resources. It flows indepen-
dently from the actions being performed, and it can be shared ad infinitum
by independent actors as long as their actions do not interfere with each
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other.

In previous chapters, we left time implicit in our models: an action
produced an instantaneous transition from one state to the next. However,
deliberative acting often requires explicit temporal models of actions. Rather
than just specifying an action’s preconditions and effects, temporal models
must specify what things an action requires and what events it will cause
at various points during the action’s performance. For example, moving a
robot 1 from a loading dock d; to a loading dock dy does not require ds’s
availability at the outset but it does require it shortly before r; reaches ds.

Actions may, and sometimes must overlap, even if their conditions and
effects are not independent. As one example, r; may move from d; to
ds while ro is concurrently moving from ds to di. As another, opening a
door that has a knob and a spring latch that controls the knob requires
two tightly synchronized actions: (i) pushing and maintaining the latch
while (7i) turning the knob. Modeling such concurrency requires an explicit
representation of time.

Goals are sometimes constrained with absolute deadlines. Events may be
expected to occur at future time periods, for example, the arrival of sched-
uled ships at a harbor. Actions may have to be located in time with respect
to expected events or deadlines. Time can be required qualitatively, to han-
dle synchronization between actions and with events, and quantitatively, to
model the duration of actions with respect to various parameters.

In summary, the main motivations for making time explicit in planning
and acting are the following:

e modeling the duration of actions;

e modeling the effects, conditions, and resources borrowed or consumed
by an action at various moments along its duration, including delayed
effects;

e handling the concurrency of actions that have interacting and joint
effects;

e handling goals with relative or absolute temporal constraints;

e planning and acting with respect to exogenous events that are expected
to occur at some future time; and

e planning with actions that maintain a value while being executed, as
opposed to just changing that value (e.g., tracking a moving target, or
keeping a spring latch in some position).

An explicit representation of time for the purpose of acting and planning
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can be either:

e “State-oriented”: one keeps the notion of global states of the world, as
we have done so far, and one includes time explicitly in the model of
the transitions between states (e.g., as in timed automata and various
forms of temporal logics). The dynamics of the world are modeled
as a collection of global snapshots, each of which gives a complete
description of the domain at some time point.

e “Time-oriented”: one represents the dynamics of the world as a col-
lection of partial functions of time, describing local evolutions of state
variables. Instead of a state, the building block here is a timeline (hori-
zontal slice in Figure 4.1) that focuses on one state variable and models
its evolution in time. Time-oriented approaches use either instants or
intervals as temporal primitives, with qualitative and/or quantitative
relations.

We use the time-oriented approach in this chapter; a comparison to the
state-oriented approach is briefly discussed in Section 4.6.

>
‘ '

state variables

State

time

Figure 4.1: State-oriented versus time-oriented views.

4.2 Temporal Representation

This section describes timelines, chronicles, and temporal refinement meth-
ods for modeling and reasoning about actions.
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4.2.1 Assertions and Timelines

We rely on a quantitative discrete model of time described by a collection
of temporal variables, for example, t,t',t,to,...; each variable designates
a time point. An interval is a pair [t,t'] such that ¢t < t/; its duration is
t' —t > 0. We also use open intervals, for example, [t,t'), in the usual
sense. For simplicity, we assume that temporal variables range over the set
of integers.'

These temporal variables will not be instantiated at planning time into
precise values. They will be constrained with respect to other temporal
variables or constants; we will have to keep the constraints consistent. The
value of a temporal variable will be set by the execution platform when an
action is performed, that is, when the commands executing that action are
triggered or when their effects are observed. In other words, a temporal
variable remains constrained but uninstantiated as long as it refers to the
future. It is instantiated with a value corresponding to the current time
when the fact that this variable qualifies takes place, either controlled or
observed by the actor. After that point, the variable refers to the past.

Temporal constraints are specified with the usual arithmetic operators
(<, <, =, etc.) between temporal variables and integer constants, for exam-
ple, t < t' says that ¢ is before ¢'; d < t' —t < d’ constrains the duration of
the interval [t, '] between the two bounds d and d'.

In the time-oriented view, each state variable x is a function of time;
hence the notation x(t) refers to the value of that variable at time ¢. The
knowledge about the evolution of a state variable as a function of time is
represented with temporal assertions.

Definition 4.1. A temporal assertion on a state variable x is either a per-
sistence or a change:

e A persistence, denoted [t1,to]z = v, specifies that x(t) = v for every ¢
in the interval ¢t <t < ts.

e A change, denoted [t1, to]z:(v1, v2), specifies that the value of = changes
over the interval [t1, to] from x(t1) = vy to x(t2) = va, with vy # ve. O

As ashorthand, [t]z = v stands for [t, t+1)z=v and [t]z : (v,v’) stands for
[t,t+1]x:(v,v); the former gives the value of 2 at a single time point and the
latter expresses a transition from v to v’ over two consecutive time-points.
In general, and assertion [¢,t']z:(v,v") does not model how the change takes
place within the interval [t,¢']; it can be gradual over possibly intermediate

1This assumption avoids some minor issues regarding closed versus open intervals.
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values or instantaneous at any moment in [¢,¢']. However, if ¢ =t + 1, then
the value of z changes discretely from v at time ¢ to v’ at time ¢ + 1.

For example, the assertion [ti,to]loc(rl):(loc2,loc3) says that rl’s loca-
tion changes from loc2 to loc3. The precise moments of this change and
intermediate values of loc(rl) are not stated by this assertion. Their values
will be established by the command that performs the change from loc2 to
loc3.

Temporal assertions are parameterized, for example, [t1, to]loc(r):(l,locl)
states that some robot r moves from a location [ to locl. The values of r
and [ will be fixed at some planning or acting stage; the values of t; and to
are instantiated only at acting time.

Definition 4.2. A timeline is a pair (7,C) where T is a conjunction of
temporal assertions on a state variable, possibly parameterized with object
variables, and C is a conjunction of constraints on the temporal variables
and the object variables of the assertions in 7T . O

T and C are denoted as sets of assertions and constraints. Constraints
on temporal variables are unary and binary inequalities and equalities. Con-
straints on object variables are with respect to rigid relations, for example,
connected(l,locl), or binding constraints, as in the following example.

Example 4.3. The whereabouts of the robot rl, as depicted in Figure 4.2,
can be expressed with the following timeline:

({[t1, ta]loc(r1):(locl, i), [t2,ts]loc(rl)=l, [ts,ts]loc(rl):(l,loc2)},
{tl <ty <ty < iy, 75 locl, ! 75 |0C2})

In this timeline, 7 has three assertions: one persistence and two changes; C
has temporal and object constraints. The constraints are in this particular
case entailed from the three intervals and two change assertions in 7. In-
stances of the timeline are substitutions of possible values in these assertions
for the five variables [,tq,..., 4.

Note that this timeline does not say what happens between ¢; and t5; all
we know is that rl leaves locl at or after ¢1, and it arrives at [ at or before t».
To say that these two changes happen exactly at ¢; and t2, we can add the fol-
lowing assertions in the timeline: [¢1,¢1+1] loc(rl):(locl,route), and [ta—1, ¢2]
loc(rl):(route, [), where route is some intermediate location. These asser-
tions say that [t1]loc(rl)=locl, [t; + 1]loc(rl)=route, [t2 — 1]loc(rl)=route,
and [ta]loc(rl) = 1. O

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.


http://cambridge.org/9781107037274

Section 4.2 149

y 3
o
Kot Persistence
O I
:IOCZ Change
t L 13 14 time

Figure 4.2: A timeline for the state variable loc(rl). The positions of the
points on the two axes are qualitative; the rough lines do not necessarily
represent linear changes.

Temporal assertions in a timeline (7, C) are expressed with temporal and
object variables that can be instantiated within their respective domains
with the usual unification mechanisms. Not every instance of a timeline
makes sense as a possible evolution of the corresponding state variable.

Definition 4.4. An instance of (7,C) is consistent if it satisfies all the
constraints in C and does not specify two different values for a state variable
at the same time. A timeline (7,C) is consistent if its set of consistent
instances is not empty. ]

A pair of temporal assertions is possibly conflicting (conflicting, for
short), if it can have inconsistent instances; otherwise, it is nonconflict-
ing. Because change assertions abstract away the precise times at which
the changes occur, we consider that two assertions [t1,t2]z:(vi,v2) and
[t, th)z:(v],vh) are conflicting if they overlap in time, unless the overlap
is only at their endpoints (i.e., vo = v] and ty = t], or v) = vy and t), = t;)
or if they are strictly identical.

A separation constraint for a pair of conflicting assertions is a conjunction
of constraints on object and temporal variables that exclude inconsistent
instances. The set of separation constraints of a conflicting pair of assertions
contains all possible conjunctions that exclude inconsistent instances.

Example 4.5. The two persistence assertions {[t1,ts] loc(r)=locl, [t3,t4]
loc(r1)=l} are conflicting, because they can have inconsistent instances. For
example, if r = rl,[ # locl and either t; < t3 <t or t; < t4 < to, then the
robot rl would have to be at locl and at [ # locl simultaneously.

The assertions {[t1,¢2]loc(rl) = locl, [te, t3]loc(rl) : (locl, loc2)} is non-
conflicting: they have no inconsistent instances.
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The pair {[t1,t2]loc(rl) = locl, [ts,ta]loc(rl) : (I,I')} is conflicting. A
separation constraint is (to = t3,! = locl).

The set of separation constraints for that pair is:
{(tz < t3), (t4 < tl), (tQ =t3,l = |OC1), (t4 = tl,ll = |OC1)}. ]

A set of assertions is conflicting if any pair of the set is. A separation
constraint for a set of conflicting assertions is a consistent conjunction of
constraints that makes every pair of the set nonconflicting. Note that a set
of assertions may have separation constraints for every pair while there is
no consistent conjunction of separation constraints for the entire set.

Example 4.6. Consider the set of assertions
{[t1, t2]loc(rl):(locl, loc2), [ta, ts3]loc(rl)=l, [t3, t4]loc(rl):(loc3, loc4)}.  The
constraint [ = loc2 is a separation for the first two assertions, while the
constraint [ = loc3 is required for the last two assertion. O

Note that the consistency of a timeline (7,C) is a stronger notion than
just satisfying the constraints in C. It also requires the assertions in 7T to
have a nonconflicting instance that satisfies C. A timeline is inconsistent if
in particular there are no separation constraints, or none that is consistent
with C. A convenient case is when C includes the separation constraints
needed by 7. For such a case, satisfying the constraints in C guarantees the
consistency of the timeline. This is the notion of secure timelines.

Definition 4.7. A timeline (7,C) is secure if and only if it is consistent
and every instance that meets the constraints in C is consistent. O

In a secure timeline (7,C), no instance that satisfies C will specify dif-
ferent values for the same state variable at the same time. In other words,
every pair of assertions in 7T is either nonconflicting or has a separation con-
straint entailed from C. A consistent timeline may possibly be augmented
with separation constraints to make it secure.

Example 4.8. The timeline ({[t1,?2]loc(rl)=locl, [t3,t4] loc(rl):(locl,
loc2)}, {t2 < t3}) is secure; its assertions are nonconflicting. The time-
line ({[t1,t2] loc(r)=locl, [ts,ts]loc(rl)=l},{t1 < t2,t3 < t4}) is consistent
but not secure; when augmented with either (r # rl) or (t2 < t3) it becomes
secure. O

Another important notion is that of the causal support of an assertion in
a timeline. Timelines are used to reason about the dynamic evolution of a
state variable. An actor’s reasoning about a timeline requires every element
in this evolution to be either given by its observation or prior knowledge
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(e.g., for the initial state), or explained by some reason due the actor’s own
actions or to the dynamics of the environment. For example, looking at
the timeline in Figure 4.2, the locations of the robot in [, then in loc2, are
explained by the two change assertions in that timeline. However, nothing
explains how the robot got to locl; we have to state an assertion saying that
it was there initially or brought there by a move action.

Definition 4.9. An assertion [t,t'|z=v or [t,t]|z:(v,v’) in a timeline is
causally supported if the timeline contains another assertion [t”,¢]z=v or
[t”, t]x:(v",v) that asserts the value v at time ¢. O

Note that by definition of the intervals [t”,t] and [t, '] we have t” <t < t'.
Hence this definition excludes circular support, that is, assertion « cannot
support assertion [ while [ supports «, regardless of whether this support
is direct or by transitivity via some other assertions.

Example 4.10. In Example 4.3 assertion [ta, t3]loc(rl)=l is supported by
[t1,t2]loc(rl):(locl,l). Similarly, assertion [ts,t4]loc(rl):(l,loc2) is supported
by [te,ts]loc(rl)=Il. However, the first assertion in that timeline is unsup-
ported: nothing asserts [t1] loc(rl)=locl. O

It may be possible to support an assertion in a timeline by
adding constraints on object and temporal variables. For example,
[t1,t2]loc(rl):(locl,loc2) can be supported by [t,t']loc(r)=l if the following
constraints are added to the timeline: (¢’ = ¢1,r=r1,l = locl). Another way
of supporting an assertion is by adding a persistence condition. For example,
in the timeline ({[¢1,%2]loc(rl):(locl,loc2), [t3,ta]loc(rl):(loc2,loc3)}, {t1 <
to < t3 < t4}), the second assertion can be supported by adding the fol-
lowing persistence: [to,t3] loc(rl)=loc2. Adding a change assertion can also
be used to support assertions. As we’ll see in Section 4.3.3, adding a new
action to a plan results in new assertions that can provide the required
support.

It is convenient to extend to sets of timelines the previous notation and
definitions. If T is a set of temporal assertions on several state variables
and C are constraints, then the pair (7,C) corresponds to a set of timelines
{(71,C1), .-, (T, Cx) }. (T,C) is consistent or secure if each of its timelines
is. While reasoning about actions and their effects, an actor will perform
the following operations on a set of timelines (7,C):

e add constraints to C, to secure a timeline or support its assertions; for
example, for the first timeline in Example 4.8, the constraint to = t3
makes the assertion [t3,t4]loc(rl):(locl, loc2) supported.
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e add assertions to T, for example, for the timeline in Figure 4.2 to take
into account additional motions of the robot.

e instantiate some of the variables, which may possibly split a timeline of
the set with respect to different state variables, for example, assertions
related to loc(r) and loc(r’) refer to the same state variable, but that
timeline will be split if r is instantiated as r1 and " as r2.

4.2.2 Actions

We model an action as a collection of timelines. More precisely, a primitive
action template, or a primitive for short, is a triple (head, T, C), where head
is the name and arguments of the primitive, and (7,C) is a set of timelines.
The reader may view this representation as an extension of the action tem-
plates of Chapter 2 with explicit time expressing conditions and effects at
different moments during the time span of an action.

Example 4.11. Suppose several robots are moving in a connected network
of roads connected to some loading docks. Fixed in each dock are one crane
and several piles where containers are stacked. A dock can contain at most
one robot at a time. Robots and cranes can carry at most one container at
a time. Waypoints in roads guide the robot navigation.

The objects in this domains are of the following types: r € Robots, k €
Cranes, ¢ € Containers, p € Piles, d € Docks, w € Waypoints.

The invariant structure of the domain is given by three rigid relations:

attached C (CranesU Piles) x Docks
adjacent C Docks x Waypoints
connected C Waypoints x Waypoints

The domain is described with the following state variables:

loc(r) € Docks U Waypoints for r € Robots
freight(r) € Containers U {empty} for r € Robots
grip(k) € Containers U {empty} for k € Cranes
pos(c) € RobotsU Cranes U Piles for ¢ € Containers
stacked-on(c) € ContainersU {empty} for ¢ € Containers
top(p) € Containers U {empty} for p € Piles
occupant(d) € Robots U {empty} for d € Docks.
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The constant empty means that a robot, a crane, a pile, or a dock is empty,
or that a container is not stacked on any other container.

The task in this example is to bring containers from their current position
to a destination pile. It is specified with primitives, tasks, and methods (to
which we’ll come back in the next section). The primitives are the following;:

leave(r, d, w) : robot 7 leaves dock d to an adjacent waypoint w,

enter(r,d,w) : r enters d from an adjacent wyapoint w,

/

navigate(r, w,w’) : r navigates from waypoint w to a connected one w’,

unstack(k, ¢, p) : crane k unstacks a container ¢ from the top of pile p,

put(k, c,r) : crane k holding a container ¢ and puts it onto r,

)
)
)
stack(k, ¢, p) : crane k holding container ¢ stacks it on top of pile p,
)
)
take )

(
(k,c,r) : crane k takes container ¢ from robot 7.

A descriptive model of leave is specified by the following template:

leave(r, d, w)
assertions: [ts, te]loc(r):(d, w)
[ts,te]occupant(d):(r, empty)
constraints: ¢, < ts + 01
adjacent(d, w)

This expression says that the leave action changes the location of r from
dock d to the adjacent waypoint w, with a delay smaller than §; after the
action starts at ts; the dock d is empty when the action ends at ¢..

Similarly, enter is defined by the following action template:

enter(r, d, w)
assertions: [ts, te]loc(r):(w, d)
[ts,te]occupant(d):(empty, )
constraints: t, < ts + 9
adjacent(d, w)

The take primitive is specified as follows:

take(k, ¢, )
assertions: [ts,te]pos(c):(r, k)
[ts, te]grip(k):(empty, c)
[ts, te|freight(r ) (c,empty)
[ts, te]loc(r)=d
constraints: attached(k, d), attached(p, d)
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The assertions in this primitive say that a container ¢ loaded on r at t;
is taken by crane k at t.; r remains in the same dock as k.

Similar specifications are required for the primitives put(k,c,r), to put
a container on r, stack(k,c,p), to put the container ¢ held by k on top of
pile p, unstack(k, ¢, p), to take with k the top container ¢ of pile p, and nav-
igate(r, w, w') to navigate between connected waypoints (see Exercise 4.1).

Note that actions leave, enter, take, and so on, are said to be primitive
at the planning level, but they will be refined at the acting level. We’'ll see
in Example 4.25 how to further refine them into executable commands. [

As illustrated in Example 4.11, primitives are specified as assertions and
constraints on temporal variables and object variables. By convention, %
and t. denote the starting point and ending point of each primitive. The tem-
poral variables of an action template are not in its list of parameters because
we are going to handle them differently from the object variables. The plan-
ner will instantiate object variables, but it will only constrain the temporal
variables with respect to other time points. Their instantiation into con-
stants is performed at acting time, from the triggering of controllable time
points and the observation of the uncontrollable points (see Section 4.4.3).

Note that this representation does not use two separate fields for
preconditions and effects. A change assertion in a primitive, such as
[ts,t]grip(k):(empty, ¢), expresses both the precondition that crane & should
be empty at time ts and the effect that k£ holds container ¢ at time ¢. The
temporal assertions in a primitive refer to several instants, not necessarily
ordered, within the timespan of an action.

Temporal and object variables in a primitive are free variables. To make
sure that different instances of a primitive, say take, refer to different vari-
ables tg, te, k,r, ¢, we rely on the usual variable renaming, which is detailed
later in the chapter.

4.2.3 Methods and Tasks

We define a task as in the previous chapter, that is, a label naming an
activity to be performed by refining it into a collection of subtasks and
primitives. A task has temporal qualifications, written as follows:

[t,t]task.

The preceding expression means that task takes place over an interval con-
tained within [¢,#'], that is, it starts at or after ¢, and finishes at or before
t'. Note that [t,¢'|task has different semantics than a persistence condition
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on a state variable. It just says task should happen within [¢, '] and does
not require task to persist throughout the entire interval.

A task is refined into subtasks and primitives using refinement meth-
ods. A temporal refinement method is a tuple (head, task, refinement, T,C),
where head is the name and arguments of the methods, task gives the task
to which the method applies, refinement is the set of temporally qualified
subtasks and primitives in which it refines task, 7 are assertions and C con-
straints on temporal and object variables. A temporal refinement method
does not need a separate precondition field, as in the methods of previous
chapter. This is because temporal assertions may express conditions as well
as effects in a flexible way and at different moments. Temporal refinement
methods are illustrated in Example 4.12.

Example 4.12. Let us further develop the domain in Example 4.11 by
specifying a few tasks as temporal refinement methods. The task of bringing
containers to destination piles can be broken into the following tasks: bring,
move, uncover, load, and unload. Some of the methods for performing these
tasks are the following:

m-bring(r, ¢, p,p’,d,d’, k, k)
task: bring(r, ¢, p) # r brings container ¢ to pile p
refinement: [ts, t1]move(r, d’)
[ts, taJuncover(c, p')
[ts, ta|load (K, r, ¢, p')
[t5, tg]move(r, d)
[t7,te]un|oad(k: T, ¢, D)
assertions: [t, t3]pile(c)=p
[ts, t3]freight(r )—empty
constraints: attached(p’, d’), attached(p,d),d # d’
attached(k’, d’), attached(k, d)
t1 < tg,ty <3ty <1s,l6 < t7

This method refines the bring task into five subtasks to move the robot to
d' then to d, to uncover container c to have it at the top of pile p’, to load the
robot in d’ and unload in d in the destination pile p. As depicted in Figure 4.3,
the first move and uncover are concurrent (t2 and ¢3 are unordered). When
both tasks finish, the remaining tasks are sequential. Container ¢ remains
in its original pile, and robot r remains empty until the load task starts.
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pile(c)=p’

cargo(r)=nil

L T move

E_uncover \ load 5 . unload
ts I3 14 ts te t7 te

Figure 4.3: Assertions, actions and subtasks of a refinement method for the
bring task. The diagonal arrows represent precedence constraints.

m-movel(r,d,d', w,w")
task: move(r, d) #moves a robot r to a dock d

refinement: [t, t1]leave(r,d’, w’)
[ta, ts]navigate(w’, w)
[t4,tc]enter(r, d, w)

assertions: [ts, ts + 1]loc(r)=d’

constraints: adjacent(d, w), adjacent(d’,w’),d # d’
connected(w, w’)
t1 <o, t3 <ty

This method refines the move to a destination dock d into three successive
steps: leave the starting dock d’ to an adjacent waypoint w’, navigate to a
connected waypoint w adjacent to the destination and enter the destination
d, which is required to be empty only when the robot gets there. The move
task requires additional methods to address cases in which the robot starts
from a road or when it is already there (see Exercise 4.2).
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m-uncover(c, p, k,d,p’)
task: uncover(c, p) #un-pile p until its top is ¢
refinement: [t, t1]unstack(k, ¢, p)
[to, ts]stack(k, ¢, p’)
[t4, te]uncover(c, p)
[ts,ts + 1]pile(c)=p
[ts,ts + 1]top(p)=c’
[ts,ts + 1]grip(k)=empty
constraints: attached(k, d), attached(p, d)

attached(p/,d),p #p',c # ¢
l1 <o, t3 < 14

assertions:

This method refines the uncover task into unstacking the container at
the top of pile p and moving it to a nearby pile p’ and then invoking uncover
again recursively if the top of p is not ¢. Another method should handle the
case where c¢ is at the top of p.

Finally, the task load can be refined into unstack and put primitives; task
unload is similarly refined into take and stack (see Exercise 4.2). O

As in primitives, assertions in methods specify conditions as well as ef-
fects at any moment during the duration of the task. Note that the specific
conditions of subtasks and primitives of a task 7 should be expressed in
their respective definitions, instead of being in the specification of the meth-
ods handling task 7. Redundancy between conditions in methods of tasks,
and conditions in subtasks and primitives is not desirable. For example,
the primitive enter has the assertion [ts, tJoccupant(d):(empty, r); the same
assertion (with different variables that will be unified with t¢s,t.,d and r)
may appear in the method m-movel, but it is not needed. Redundancy, as
well as incomplete specifications, are sources of errors.

Planning and acting procedures will view tasks as labelled networks with
associated contraints. For example, a task bring in Example 4.12 can be the
root of a network whose first successor with method m-bring is a task move,
which in turn leads with m-movel to the primitive leave. A leaf in a task
network is a primitive. An inner node is a task, which, at some point in the
planning and/or acting process, is either:

e refined : it is associated with a method; it has successors labelled by
subtasks and primitives as specified in the method with the associated
constraints or

e nonrefined: its refinement with an applicable method is pending.
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This refinement mechanism takes place within a data structure called a
chronicle.

4.2.4 Chronicles

A chronicle is a collection of temporally qualified tasks, primitives, and
assertions with associated constraints. It is used, among other things, to
give the initial specifications of a planning problem, including the following;:

(i) the tasks to be performed;

(ii) the current and future known facts that will take place independently
of the planned activities; and

(iii) the assertions to be achieved; these are constraints on future states of
the world, that planning will have to satisfy.

Because the elements in (ii) are also expressed as temporal assertions, we
refer to them as a priori supported assertions to distinguish them from as-
sertions in (iii), which require support from the planned activities. More
formally:

Definition 4.13. A chronicle is a tuple (A, S7,7,C) where A is a set of
temporally qualified primitives and tasks, S is a set of a priori supported
assertions, T is a set of assertions, and C is a conjunction of constraints on
the temporal and object variables in A, S7, and 7. O

Example 4.14. Let us augment the domain of Example 4.12 by specifying
that a pile p can be on a ship, and that a crane k on a dock d can unstack
containers from that pile p only when the corresponding ship is docked at d
(see Exercise 4.3).

Consider the case in which this domain has two robots rl and r2, initially
in dockl and dock2, respectively. A ship shipl is expected to be docked at
dock3 at a future interval of time; it has a pile, pile-shipl, the top element of
which is a container cl. The problem is to bring container cl to dock4 using
any robot and to have the two robots back at their initial locations at the
end. This problem is expressed with the following chronicle:
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bo
tasks: [t, ¢']bring(r, cl, dock4)
supported: [ts]loc(rl)=dockl
[ts]loc(r2)=dock2
[ts + 10, ts + d]docked(shipl)=dock3
[ts]top(pile-shipl)=cl
t.]pos(cl)=pallet
assertions: [t¢|loc(rl) = dockl
[te]loc(r2) = dock2
constraints: t; <t <t <t,,20<§ <30,ts =0

By convention, ts; and t. denote the starting and end points of a chronicle.
Here t5 has an absolute value (origin of the clock). O

Chronicles will also be used to express partial plans that will be progres-
sively transformed by the planner into complete solution plans.

Example 4.15. Consider two robots rl and r2 in the domain of Exam-
ple 4.12 performing concurrent actions where each robot moves from its dock
to the other robot’s dock as depicted in Figure 4.4. The following chronicle
(where Sy and T are not detailed) expresses this set of coordinated actions:

¢ :
tasks: [to, t1]leave(rl,dockl,wl)
, to]navigate(rl,wl,w2)
, ta]enter(rl,dock2,w2)
, th]leave(r2,dock2,w2)
, thlnavigate(r2,w2,wl)
t)]enter(r2,dockl,wl)

[t1

[t3

[t

1
[t3,

supported: 57-

assertions: T

constraints: t) < tz,t1 < th,ts < to,ts < t(,ta < te,ty < t.
adjacent(dockl,wl), adjacent(dock2,w2)
connected(wl,w2)

This chronicle says that rl leaves dockl before r2 enters dockl (¢; < t5);
similarly, r2 leaves dock2 before r1 gets there (¢} < t3). Each action navigate
starts when the corresponding leave finishes (¢; and ¢}). However, an enter
may have to wait until after the navigate finishes (t2 to t3) and the way is
free. O
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leave

dock1
B navigate  enter
i _ dock2
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X time

o t'p 2 t’s ty

P ' enter

i dock1
I- navigate
eave

dock?2

Figure 4.4: Temporally qualified actions of two robots, rl and r2. The
diagonal arrows represent the precedence constraints ¢} < t3 and ¢ < tf.

The set T of assertions in a chronicle ¢ = (A,S7,7T,C) contains all
the assertions of the primitives already in A4, for example, leave and enter
in Example 4.15. When a task 7 € A is refined with a method m, 7 is
replaced in A by the subtasks and primitives specified in m, and 7 and
C are augmented with the assertions and constraints of m and those of its
primitives.

When a task is refined, the free variables in methods and primitives
are renamed and possibly instantiated. For example, enter is specified in
Example 4.11 with the free variables r,d, w,ts,t.. In the first instance of
enter in the chronicle of Example 4.15, these variables are respectively bound
to rl, dock2, w2, t3, and t4. In the second instance of enter, they are
bounded to r2, dockl, wl, t4,#,. The general mechanism for every instance
of a primitive or a method is to rename the free variables in its template
to new names, then to constrain and/or instantiate these renamed variables
when needed.

Furthermore, when refining a task and augmenting the assertions and
contraints of a chronicle, as specified by a method, we need to make sure
that (7,C) remains secure. Separation constraints will be added to C to
handle conflicting assertions. The consistency of the resulting constraints
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will be checked. This is detailed in Section 4.4.
Finally, all the assertions of a chronicle must be supported through the
mechanisms presented next.

4.3 Planning with Temporal Refinement Methods

A temporal planning domain X is defined by giving the sets of objects, rigid
relations and state variables of the domain, and by specifying the primitives
and methods for the tasks of the domain.

A planning problem is defined as a pair (X, ¢g), where ¥ is a tempo-
ral planning domain and ¢9 = (A,S7,7,C) is an initial chronicle . This
chronicle gives the tasks to perform, the goals to achieve, and the supported
assertions stating the initial and future states of the world that are expected
to occur independently of the activities to be planned for. The pair (7,C)
in ¢g is required to be secure. Note that the planning problem ¢q is defined
in terms of tasks as well as goals. Hence planning will proceed by refinement
of tasks as well as by generative search for goals.

Partial plans are also expressed as chronicles. A chronicle ¢ defines a
solution plan when all its tasks have been refined and all its assertions are
supported. At that point, ¢ contains all the primitives initially in ¢¢ plus
those produced by the recursive refinement of the tasks in ¢g, according
to methods in ¥, and those possibly needed to support the assertions in
¢g or required by the task refinements. It also contains the assertions and
constraints in ¢g plus those of the primitives in ¢ and the methods used in
the task refinements, together with their constraints and possible separation
constraints. More formally:

Definition 4.16. A chronicle ¢ is a valid solution plan of the temporal
planning problem (X, ¢¢) if and only if the following conditions hold:
(i) ¢ does not contain nonrefined tasks;

(ii) all assertions in ¢ are causally supported, either by supported asser-
tions initially in ¢ or by assertions from methods and primitives in
the plan; and

(#i) the chronicle ¢ is secure. O
Condition (i) says that all tasks in ¢ have been refined recursively down
into primitives; this is similar to what we saw in Section 3.3.1. Condition (i)

extends to temporal domains the notion of causal link seen in Section 2.5.
Condition (74) is a requirement to make sure that the solution chronicle
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cannot have inconsistent instances. This is because a solution plan has in
general non-instantiated temporal and object variables, which are instanti-
ated at execution time (see Section 4.4.3 and Section 4.5).

4.3.1 Temporal Planning Algorithm

A temporal planning algorithm proceeds by transforming the initial chroni-
cle ¢g with refinement methods and the addition of primitives and separation
constraints until the preceding three conditions are met. Let ¢ be the cur-
rent chronicle in that transformation process; ¢ may contain three types of
flaws with respect to the requirements of a valid plan in Definition 4.16:

e ¢ has nonrefined tasks : violates condition (%)
e ¢ has nonsupported assertions : violates condition (%i), and
e ¢ has conflicting assertions : violates condition (7).

Because ¢ is obtained by transforming ¢g, when ¢ does not contain non-
refined tasks, then all tasks of ¢y have been refined into actions, that is,
planning primitives.

A flaw of one of the preceding three types is addressed by finding its re-
solvers , that is, ways of solving that flaw. The planning algorithm chooses
a resolver nondeterministically and transforms the current chronicle accord-
ingly. This is repeated until either the current chronicle is without flaws,
that is, it is a valid solution or a flaw has no resolver, in which case the
algorithm must backtrack to previous choices. Algorithm 4.1, TemPlan, is a
recursive algorithm to do this.

TemPlan(¢, X)
Flaws < set of flaws of ¢
if Flaws=< then return ¢
arbitrarily select f € Flaws (i)
Resolvers < set of resolvers of f (ii)
if Resolvers=2 then return failure
nondeterministically choose p € Resolvers — (iii)
¢ < Transform(¢, p) (iv)
Templan(¢, X)

Algorithm 4.1: A chronicle temporal planner.

In Algorithm 4.1, step (i) is a heuristic choice of the order in which the
resolvers of a given flaw are searched. This choice affects the performance
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but not the completeness of the algorithm. Step (%ii) is a backtracking point
in a deterministic implementation of TemPlan: all resolvers for a flaw may
need to be tried to ensure completeness.

The main technical issues in this temporal planning algorithm are the
following:

e How to find the flaws in ¢ and their resolvers, and how to transform ¢
with a resolver p, that is, the Transform subroutine in Templan. This
is discussed for the different types of flaws in Sections 4.3.2 to 4.3.4.

e How to organize and explore the search space efficiently. This is dis-
cussed in Section 4.3.5.

e How to check and maintain the consistency of the constraints in ¢.
This is discussed in Section 4.4.

4.3.2 Resolving Nonrefined Tasks

An nonrefined task is easy to detect in the current ¢. A resolver for a flaw
of that type is an applicable instance of a temporal refinement method for
the task. An instance is obtained by renaming all variables in the method
and instantiating some of these variables with the task parameters and with
the variables and constraints of the current chronicle ¢.

An instance m of a method is applicable to a chronicle ¢ when its task
matches a task in ¢ and all the constraints of m are consistent with those
of ¢. Transforming ¢ = (A, S7,T,C) with such a resolver m consists of the
following transformations of ¢:

e replacing in A the task by the subtasks and actions of m,

e adding the assertions of m and those of the primitives in m either to
S if these assertions are causally supported or to 7, and

e adding to C the constraints of m and those of its actions.

Note that an applicable instance of a method m may have assertions that
are not causally supported by ¢. For instance, in Example 4.12, the method
m-bring is applicable for refining a task bring(r,c,p) if m-bring has an in-
stance such that the constraints (attached(p’,d’),attached(p,d),d # d’,t3 <
t1,t3 < t1) are consistent with those of current ¢, given the current binding
constraints of these variables. However, the assertion [tg, t1]freight(r)=empty
in that method may or may not be already supported by another assertion
in ¢. If it is not, then refining a task in ¢ with m-bring adds a nonsupported
assertion in the current chronicle.
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4.3.3 Resolving Nonsupported Assertions

Nonsupported assertions in ¢ = (A, Sy, 7T,C) are those initially in ¢o plus
those from the refinement of tasks and the insertion of primitives. As dis-
cussed in Section 4.2.1, the three ways to support an assertion o € 7 and
move it to S are the following:

e add in C constraints on object and temporal variables,
e add in Sy a persistence assertion, and

e add in A a task or primitive that brings an assertion supporting «.

For the last type of resolver, a supporting assertion for o may come
from either a primitive or a method for a task. Supporting « by inserting
the body of a method in ¢ is equivalent to refining a task. Supporting it with
a primitive introduces primitives in the plan, which may not result from the
refinement of tasks. The use of a primitive as a resolver for supporting an
unsupported assertion is a generative search for a goal, similar to what we
have seen in plan-space planning (Section 2.5). Let us assume at this point
that all primitives in 3 can be freely used to augment a plan for supporting
assertions, as well as through task refinement methods. We’ll discuss this
assumption in Section 4.3.7.

4.3.4 Resolving Conflicting Assertions

Flaws corresponding to conflicting assertions are more easily handled in an
incremental way by maintaining ¢ as a secure chronicle and keeping track of
what is needed for it to remain secure. The mechanisms here are a general-
ization of those used in Section 2.5 for handling threats in plan-space plan-
ning. There are, however, several substantial differences (see Exercise 4.7).

All assertions in ¢y are required to be nonconflicting. Every transfor-
mation of ¢ by refinement, addition of persistence assertions or constraints,
or addition of tasks or primitives requires detecting and marking as flaws
potential conflicts between newly added assertions and those of current ¢.
Resolvers for a potential conflict are sets of separation constraints consis-
tent with the constraints in the current ¢, as discussed in Section 4.2.1. The
corresponding transformation consists of adding the chosen separation con-
straints to those of ¢. One way of keeping the current ¢ secure is to detect
and solve potential conflicts at every transformation step. However, other
flaw selection strategies can be applied.
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4.3.5 Search Space

The search space of TemPlan is a directed acyclic graph in which search
states are chronicles. An edge (¢,¢') in this graph is such that ¢’ =
Transform(¢, p), p being a resolver for some flaw in ¢. The graph is acyclic
because each edge augments the previous chronicle with additional con-
straints, primitives, and/or assertions and there is no removal transforma-
tion. In general, however, the search space is not finite: it can grow indefi-
nitely from the addition of new primitives and tasks. It can be made finite
by the specification of global constraints, such as the total duration of the
plan.

Starting from ¢g, TemPlan explores a subtree of this complex search
space. The problems for organizing and exploring this space are in many as-
pects similar to those of algorithm PSP in Section 2.5. Both follow the same
approach of transforming a partial plan by finding flaws and repairing them.
Their types of flaws are, however, different. Flaws corresponding to nonre-
fined tasks do no exist in PSP; they are inherent to the refinement methods
used here. The nonsupported assertion flaws extend the open goal flaws of
PSP to temporal domains. Similarly, conflicting assertions generalize what
we referred to as threats in PSP.

Both the Templan and PSP algorithms use a dynamic constraint-
satisfaction approach in which new constraints and variables are repeatedly
added during the search for a solution. The constraint-satisfaction prob-
lem (CSP) approach is very general and allows taking into account not only
time and variable binding constraints, as in TemPlan, but also resource con-
straints, which are quite often part of planning problems. The Meta-CSP
framework, which expresses the disjunctions of possible resolvers for flaws as
(meta) constraints, can help formalize the integration of several types of con-
straints related to time and resources and possibly help in their resolution
(see discussion in Section 4.6.1).

The basic heuristics for TemPlan are similar to those of PSP. These are
basically variants of the wvariable-ordering and wvalue-ordering heuristics of
CSP. A heuristic analogous to variable-ordering chooses a flaw f that has
the smallest number of resolvers (step (i) of TemPlan). For a heuristic anal-
ogous to value-ordering, the idea is to choose a resolver p that is the least
constraining for the current chronicle ¢. This notion is more difficult to as-
sess; it leads to take into account differently resolvers that add constraints,
assertions, or refinement methods, from those that add new tasks or primi-
tives. Adding new tasks and primitives augments the size of the problem at
hand and requires the use of more elaborate heuristics.
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Advanced heuristics rely on elaborate extensions of domain transition
graphs, reachability graphs and some of the techniques presented in Sec-
tion 2.3. They can be integrated within various search strategies such as
iterative deepening or A*-based search. These considerations are essential
for designing an efficient implementation of TemPlan. Possible options for
heuristics and search strategies are briefly discussed in Section 4.6.2.

TemPlan is sound when it is implemented with sound subroutines for
finding flaws, resolvers and transforming chronicles. When a global con-
straint on the plan to find is set, such as the total duration of that plan
or its maximum number of actions, then TemPlan is also complete, that
is, at least one of its execution traces returns a solution plan, if there is
one. These properties are conditioned on the soundness and completeness
of the constraint handling procedures used in TemPlan, which are detailed
in Section 4.4.

4.3.6 Illustration

Let us illustrate some of the steps of TemPlan on a detailed example.

i ;

k1
B wi2
c'l 2
c1 o
di1 Pl pT P2 p2 d2
w13 ' w23
k3
/p3
[/
e w4
d3 O O

Figure 4.5: A planning problem involving two robots, rl and r2, servicing
four docks, d1 to d4; the task is to bring the containers cl from pile p'l to
p3 and c2 from p'2 to p4.
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Example 4.17. Consider the problem depicted in Figure 4.5 for the domain
of Example 4.11 where two robots, rl and r2, are servicing four docks, d1 to
d4, connected with four roads, as illustrated. Starting from the initial state
shown in the figure, the task is to bring the containers cl to pile p3 and c2
to p4. No constraint on the final location of the robots is stated. Hence, the
initial chronicle ¢ has no unsupported assertion (see Exercise 4.4).

At the first recursion of TemPlan, there are two flaws in current ¢: the
nonrefined tasks bring(r, c1, p3) and bring(r/, c2, p4). Suppose the method
m-bring is used to refine the first task into move, uncover, load, move and
unload. At this point, ¢, p,p’,d,d’, k, k' will be instantiated, respectively, to
cl, p3, p'l, d3, d1, k1, k3; r is constrained to be in {rl, r2} and the time
points are constrained as depicted in Figure 4.3.

At the following recursion, there are six nonrefined tasks in ¢. Assume
m-bring is similarly used to refine bring(r’, c2, p4). Now the resulting chron-
icle contains ten nonrefined tasks (two uncovers, loads and unloads, and four
moves) as well as conflicting assertions related to the loc(r) and loc(r’) as-
sertions in the four load and unload tasks. Separation constraints are either
r # 1’ or precedence constraints such that the tasks are run sequentially.

If the former separation is chosen, a final solution plan would be, for
example, to have rl navigate to d2 while r2 navigates to d1. At the same
time, k1 uncovers cl while k2 uncovers c2. Two synchronizations then take
place: before load(k2, r1, c2, p'2) and, concurrently, before load(kl, r2, cl,
p'l) (as in Figure 4.3). These two concurrent actions are then followed by
move(rl,d4) concurrently with move(r2,d3), and finally with the two unload
actions. The details of the remaining steps for reaching a solution are covered
in Exercise 4.5.

If we assume more realistically that navigation between waypoints is
constrained by the traversal of docks, and that no dock can contain more
than one robot at a time, then additional synchronizations will be required
for the motion of the two robots (see Exercise 4.6). O

4.3.7 Free Versus Task-Dependent Primitives

This section discusses some of the issues for integrating in TemPlan a task-
oriented approach with refinement methods to a goal-oriented approaches
with a generative search mechanism. Indeed, the initial chronicle ¢y =
(A,S7,T,C) specifies (in \A) the tasks to perform as well as (in 7") the goals
to achieve in the form of temporal assertions. However, the flexibility of the
representation and the search space can limit the computational performance
of the algorithm when the domain has few methods to depend on and relies
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significantly on generative search.

There is another issue regarding the use of primitives to support asser-
tions that relates to the specification style of a domain. A primitive a is
specified in our representation as a collection of assertions and constraints;
it is also a temporally qualified component of one or several methods. A
method m may contain other assertions and primitives that are needed as
a context for performing a. Hence a may or may not be freely usable in a
plan, independently of a method m that refines a task into several primitives,
including a.

These considerations motivate a distinction between free and task-
dependent primitives . A primitive is free if it can be used alone for sup-
porting assertions. A primitive is task-dependent if it can be used only as
part of a refinement method in generative planning. Such a property is a
matter of design and specification style of the planning domain.

Example 4.18. The designer of the domain in Example 4.24 may consider
that the primitives unload, load, stack, and unstack are free. These actions
can be performed whenever their specified conditions are met; they can be
inserted in a plan when their assertions are needed to support nonsupported
assertions. However, the primitives leave and enter can be specified as being
task-dependent; they should necessarily appear as the result of a decom-
position of a move task. In other words, the designer does not foresee any
reason to perform an action such as leave or enter except within tasks that
require leaving or entering a place. O

The use of a task-dependent primitive branches over the choice of which
task to use if the same action appears in the decomposition of several tasks.
It introduces an nonrefined task flaw, which branches over several methods
for its decomposition.

Note that if all primitives in a domain are free, then the refinement
in Templan is limited to the tasks in the initial chronicle. However, if all
primitives are task-dependent, then refinement will be needed for every non-
supported assertion that cannot be supported by constraints and persistence
assertions.

4.4 Constraint Management
At each recursion of TemPlan, we have to find resolvers for current flaws and

transform the current chronicle ¢ by refinement and insertion of assertions,
constraints, primitives, and tasks. Each transformation must keep the set C

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.


http://cambridge.org/9781107037274

Section 4.4 169

of constraints in ¢ consistent; it must detect conflicts in the set of assertions
in ¢ and find separation constraints consistent with C. The steps (i) and
(iv) of TemPlan (Algorithm 4.1) require checking the consistency of the
constraints in C.

Definition 4.2 introduces two types of constraints in C: temporal con-
straints and object constraints. Let us assume that these two types of con-
straints are decoupled, that is, there is no constraint that restricts the value
of a time point as a function of object variables, or vice versa. For example,
we introduced constant parameters §; in Example 4.11; there would be a
coupling if these delays where not constant but functions of which robot
r is doing the leave or which crane the unload actions. With this simpli-
fying assumption, C is consistent if and only if its object constraints and
its temporal constraints are consistent. Constraint checking relies on two
independent constraint managers for the two types of constraints. Let us
discuss them in the next sections.

4.4.1 Consistency of Object Constraints

A temporal planner must check and maintain the consistency of unary and
binary constraints on object variables that come from binding and separation
constraints and from rigid relations. This corresponds to maintaining a
general CSP over finite domains, the consistency checking of which is an
NP-complete problem. Restrictions on the representation that may give a
tractable CSP are not practical; even inequality constraints, such as x # y
in a separation constraint, make consistency checking NP-complete.

Filtering techniques, such as incremental arc or path consistency, are not
complete, but they are efficient and offer a reasonable trade-off for testing
the consistency of object constraint networks. Indeed, if TemPlan progresses
with an inconsistent set of object constraints, it will later detect that some
variables do not have consistent instantiations; it will have to backtrack.
Incomplete consistency checking in each search node does not reduce the
completeness of the algorithm, it just prunes fewer nodes in its search tree.
Hence, there is trade-off between (i) an early detection of all inconsistencies
with a complete but costly consistency checking at each node of the search,
and (ii) using incremental constraint filtering techniques and performing a
complete variable instantiation checking only at the end of TemPlan search,
which may require further backtracking.

A good principle for balancing this trade-off is to perform low complexity
procedures at each search node, and to keep more complex ones as part of the
search strategy. In that sense, filtering techniques efficiently remove many
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inconsistencies and reduce the search space at a low cost. They may be used
jointly with complete algorithms, such as forward-checking at regular stages
of the search. Such a complete consistency check has to be performed on the
free variables remaining in the final plan. Other trade-offs, such as choosing
flaws that lead to instantiate object variables, are also relevant for reducing
the complexity of maintaining variable binding constraints.

4.4.2 Consistency of Temporal Constraints

Simple Temporal Networks (STNs) provide a convenient framework for han-
dling temporal constraints. An STN is a pair (V,€), where V is a set of
temporal variables V = {t1,t9,...,t,}, and £ is a set of binary constraints
of the form:

a;j <t; —t; <bj;, denoted r;; = [a;j,b;j], where a;; and b;; are integers.

Note that r;; entails r;; = [—b;j, —a;;j]. To represent unary constraints (i.e.,
constraints on one variable rather than two), let us introduce an additional
temporal variable ¢y with a fixed value tg = 0. Then ry; = [a, b] represents
the constraint a < t; < b.

A solution to an STN (V, £) gives an integer value to each variable in V.
The STN is consistent if it has a solution that meets all the constraints in
E. It is minimal if every value in each interval r;; belongs to a solution.

TemPlan proceeds by transforming a chronicle ¢ = (A, S7,T,C) such as
to meet the conditions of a solution plan. These transformations add in C
constraints of methods for refining tasks, constraints for supporting asser-
tions, and separation constraints for conflicting assertions. Each transfor-
mation should keep C consistent. The set of temporal constraints in C is an
STN (V, ), which evolves by the addition of new variables and constraints
while staying consistent. TemPlan requires checking incrementally that an
STN remains consistent when more variables and contraints are added to it.
This is more easily done when the network it is also maintained minimal, as
explained next.

Two operations are essential for checking the consistency of &£:

e composition: 1, ® T = |a;k + akj, bk + byj], which corresponds to the
transitive sum of the two constraints from ¢ to j through k:
aip <ty —t; <by, and  ag; <t — g < by

e intersection: rij N rj; = [max{a;j,a;;}, min{b;;,b};}], which is the
conjunction of two constraints on (t;,t;): aj; < t; —t; < b and
al, <tj—t; <.

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.


http://cambridge.org/9781107037274

Section 4.4 171

Three constraints 7y, 75, and 7;; are consistent when r;; N (7, ® 1) # 2.

[
>
W2 14
19}

[2,3] 13

Figure 4.6: A simple temporal network.

Example 4.19. Consider the network in Figure 4.6 where vertices are time
points and edges are labelled with temporal constraints: 19 = [1,2],723 =
[3,4] and 13 = (2, 3]. r12 and rp 3 entail by transitivity ris = ri2er23 = [4,6].
But r}5 is not compatible with ri3: the upper bound of ri3 is 3, smaller
than the lower bound of {3 which is 4. That is ri3 N7}y = @. There is
no pair of variables ¢1,t3 that can satisfy both rj3 and rj5: this network is
inconsistent. O

The path-consistency algorithm PC (Algorithm 4.2) tests all triples of
variables in V with a transitive update operation: ryj < rij N (7 ® ryj).
If a pair (¢;,t;) is not constrained, then we take 7;; = (—o0,+00); in that
sense, an STN corresponds implicitly to a complete graph.

PC(V, &)
fork=1,...,ndo
for each pair 4,7 such that 1 <i < j <m,i# k, and j # k do
T35 <= Ti5 0 [Tik ° 'f'kj]
if r;; = @ then return inconsistent

Algorithm 4.2: Path consistency algorithm for simple constraint networks

PC is complete and returns the minimal network. Its complexity is
O(n3). Tt is easily transformed into an incremental version. Assume that
the current network (V, &) is consistent and minimal; a new constraint r;j
is inconsistent with (V,€) if and only if r;; N7, = @. Furthermore, when
ri; C rj; the new constraint does not change the minimal network (V,&).
Otherwise r;; is updated as r;; N rgj and propagated over all constraints r;;
and rg; with the transitive update operation; any change is subsequently
propagated. Incremental path consistency is in O(1) for consistency check-

ing and in O(n?) for updating a minimal network.
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Figure 4.7: A consistent STN.

Example 4.20. Let us give the network in Figure 4.7 as input to PC (Al-
gorithm 4.2). The first iteration of PC for k¥ = 1 with 2 < i < 5 < 5
does not change the constraints ros, o4, 725, 734, '35; it updates ro5 as fol-
lows: 725 < 795 N [r21 ® 715] = (—00,4+00) N [—2,—1] @ [6,7] = [4,6]. The
remaining iterations confirm that this network is consistent and minimal
(see Exercise 4.9). O

Another approach for maintaining the consistency of STNs is the Floyd-
Warshall all-pairs minimal distance algorithm. Here, a network (V,£) is
transformed into a distance graph, the vertices of which are again the time
points in V. Each constraint r;; = [a;j, b;;] of the network defines two edges
in the graph: (i) an edge from t; to t; labelled with a distance b;;, and (ii)
an edge from ¢; to t; labelled with a distance —a;;. The original network
is consistent if and only if there is no negative cycle in this distance graph.
The Floyd-Warshall algorithm checks consistency and computes minimal
distances between all pairs of vertices in the graph, in O(n3) time. An
incremental version of this algorithm has been devised for planning.

The Bellman-Ford algorithm computes the single source distances in
the distance graph. It can also be used for consistency checking with a
complexity in O(n x m), where n is the number of vertices and m the
number of edges of the distance graph. The graph is kept sparse (m < n?),
but the algorithm does not maintain a minimal network. There is also an
incremental version of this algorithm.
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4.4.3 Controllability of Temporal Constraints

TemPlan returns a valid chronicle that meets the conditions of Defini-
tion 4.16. Temporal variables in ¢ are generally not instantiated but related
with a set of consistent constraints. Let t; and ¢, be the time points re-
ferring to the start and end of an action a in that plan. At acting time, a
will be triggered according to the constraints on ts. The precise triggering
moment of a is under the control of the actor. However, the moment at
which the action terminates, and the other intermediate instants while the
action is taking place, are generally not under its control. These time points
are observable, that is, the execution platform will report when the action
terminates and when the intermediate time points in its model are reached,
but these are not controllable. Let us discuss here the controllability issue
at the planning level, that is, what must be done at planning time to take
into account that some temporal variables of the plan are not controllable.

For an action a in [ts,t¢], a constraint on its controllable starting point
is such that: [ < ty — ¢t < u, where t is an observable time point, either
controllable or not. This requirement on ¢5; can be met by choosing freely
the starting point in the range [l, u] after observing t. If required for meeting
other constraints, this interval can be squeezed into any other nonempty
interval [I',u/] C [I,u]. However, a constraint on the end point of action a
such as [ <t.—ts < u, has a different meaning; it says that the duration
of the interval [ts,t.] is a random number in the range [l,u]. This duration
will be observed once a terminates; we assume that it will range in the
uncertainty interval [[,u]. The actor has no freedom for the choice of t..
This constraint cannot be squeezed. Consequently, the transitive update
operation r;; < r;; N (1, #7;) for checking and maintaining the consistency
of a network, which squeezes intervals, is not applicable to action durations.

These considerations are not specific to action durations. They hold
for any contingent time point and constraint. They apply in particular to
expected events that can be specified in the initial chronicle (as in Exam-
ple 4.14). We view the time distance between an absolute reference point
and the expected event as a contingent duration similar to that of an action.

Example 4.21. Consider the robot of Example 4.12 that has to achieve
a task, denoted bring&move, that will take it to dockl. Concurrently, the
crane at dockl has to uncover a container that will be loaded on the robot.
The duration of bring&move from t; to ts is specified in the model of the
task to be in [30, 50] time units; task uncover from t9 to t3 takes 5 to 10 time
units. Further, the initial chronicle requires the two tasks to be synchronized
such that neither one lags after the other by more than 5 time units, that
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is, =5 < t4 —to < 5. This is depicted in Figure 4.8(a) (where the tasks
are depicted as plain arrows and the synchronization constraints as dashed
arrows).

1 30,50] b2 f_130.50] 12
" ) w25 A
bring&move /\)\ T " 55/ A 25 o
RSN AR IO
R,
uncover X - g
3 15 10] ’;4 3 [510] 14
(a) (b)

Figure 4.8: An uncontrollable network.

A direct application of PC to the network in Figure 4.8(a) shows that
this network is consistent; it returns the minimal network in Figure 4.8(b)
(see Exercise 4.11). Let us assume that this network is used by an actor
who only controls the triggering of the two tasks, that is, ¢; and ¢3. It is
clear that t; should precede t3 because [t1,t3] C [15,50]. Suppose the first
task is triggered at time ¢; = 0. When should the second task be triggered
such to meet the synchronization constraint between to and t47

Let d and d’ be the respective durations of the two tasks. The synchro-
nization constraint says —5 < t4 —to < 5, that is, =5 < t3+d —d < 5. The
choice of t3 should satisfy the constraints d —d' —5 <tz and t3<d—d +5
for all values of d and d’' in their respective intervals. Clearly this is not
feasible (e.g., taking d = 50,d’ = 5 for the lower bound and d = 30,d’ = 10
for the upper bound gives 40 < t3 and t3 < 25).

How do we explain this inconsistency in a network that is said to be
consistent and minimal (meaning that every value in the allowed constraints
is part of a solution)? The reason is simple: the consistency and minimality
of an STN assumes a full control over every variable, which is not the case
here. The reader can easily check that there is no problem in meeting all the
constraints if one can freely choose d and d’ in their intervals, for example,
d =30,d =10 leaves t3 € [15,25].

The actor does not control the end points of actions but it can observe
them. It may devise a conditional strategy on the basis of what it observes.
For example, it may start uncover at most 40 units after ¢; or earlier if
bring&move finishes before. In this particular example, such a strategy does
not work, but if the actor can observe an intermediate time point between t;
and t9, this may make his synchronization problem controllable, as explained
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next. OJ

The issues raised in the previous example are addressed through the
notion of Simple Temporal constraint Networks with Uncertainty (STNU).
An STNU is like an STN except that its time points and constraints are
partitioned into controllable ones and contingent ones.

Definition 4.22. An STNU is a tuple (V,V,€&,€), where V and V are
disjoint sets of time points, and € and & are disjoint sets of binary constraints
on time points. V and & are said to be controllable; V and & are said to be
contingent. If [I,u] is a contingent constraint in £ on the time points [ts, t.],
then 0 <! < u < 0o and ¢, is a contingent point in V. O

The intuition is that elements in V denote the ending time points of ac-
tions, while contingent constraints in £ model the positive nonnull durations
of actions, predicted with uncertainty. If [t,,t.] C [, u] is a contingent con-
straint, then the actual duration ¢, —t5 can be viewed as a random variable
whose value will be observed within [l,u], once the corresponding action
terminates. The actor controls ts: it assigns a value to it. However, it only
observes t., knowing in advance that it will be within the bounds set for
the contingent constraint on t. — ts. A meaningful STNU cannot have a
contingent variable t., which is the end point of two contingent constraints.

The controllability issue is to make sure (at planning time) that there
exist values for the controllable variables such as for any observed value of
the contingent variables the contraints are met. One can view controllable
variables as being existentially quantified, while contingent ones are univer-
sally quantified. However, the actor does not need to commit to values for
all its controllable variables before starting to act. It can choose a value for
a controllable variable only when needed at acting time. It can make this
choice as a function of the observed values of past contingent variables.

Definition 4.23. A dynamic execution strategy for an STNU (V, V,E, c‘j) is
a procedure for assigning values to controllable variables ¢ € V while acting,
in some order consistent with £, such that all the constraints in £ related to ¢
are met, and given that the values of all contingent variables in Y preceding ¢
are known and fit the constraints in £. An STNU is dynamically controllable
if there exists a dynamic execution strategy for it. ]

Example 4.24. As discussed at the end of Example 4.21, the STNU in
Figure 4.8(a) is not dynamically controllable. Now consider a modification
of this network in which task bring&move is broken down into two tasks:
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Figure 4.9: A dynamically controllable STNU.

bring from ¢; to ¢ then move from t' to to (Figure 4.9). The total duration
[t1,t2] remains in [30, 50].

A dynamic execution strategy for this STNU can be the following: assign
t1, observe t, assign ¢’ at any moment after ¢ in [0, 5] then assign ¢3 10 units
after t'. It is easy to check that, whatever the durations of the three tasks
are, within the bounds of the contingent constraints, the constraint [—5, 45]
on their end points ¢ and t4 will be met. O

These considerations lead to an additional requirement for TemPlan: to
synthesize a plan whose underlying STNU is dynamically controllable. Tem-
Plan has to test not only the consistency of the current temporal network
but also its dynamic controllability. It turns out that dynamic controllability
checking is feasible on the basis of an extension of the consistency-checking
algorithm. This extension is technically involved, but fortunately it does
not change the computational complexity of the algorithm.

A first step would be to consider an STNU just like an ordinary STN on
which PC is run: if the transitive update operation (7;; <= 73; N (r ® 71;))
reduces any contingent constraint, then the network is not dynamically con-
trollable. A network in which all the contingent constraints are minimal
(in the PC sense) is said to be pseudo-controllable, a necessary but not a
sufficient condition of dynamic controllability.

Dynamic controllability can be analyzed with three constraints between
two controllable points and a contingent one, as depicted in Figure 4.10.
This network is assumed to be consistent and minimal. It may or may not
be dynamically controllable: depending on the values of the parameters and
the eventual observation of ., there may be cases in which it is possible to
choose ¢t while meeting the constraints. To do so, further reductions on the
controllable constraints can be needed. These reductions would have to be
propagated to other time points that may possibly be related to ¢, t., and
t.
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Figure 4.10: Basic constraints for dynamic controllability.

The position of ¢ with respect to t. fits into three main cases:

()
(i)

(iii)

v < 0 : t follows necessarily t.; the observation of t. allows the choice
of ¢t while meeting the constraint [u, v].

u > 0 : t is before or simultaneous with ¢.. t has to be chosen before
observing t. in an interval that meets all the constraints regardless
of the value of t., if such an interval exists. The constraint on [, ¢.]
requires t. — v < t < t. — u. At the latest ¢. is such that t. = t5 + b;
at the earliest t, = ts + a. Hence ts +b —v <t < t5+ a — u. If this
inequality can be met, then the choice of ¢ in [b—wv, u—a] after t5 meets
all the constraints. Constraint [p, ¢] has to be reduced to [b— v, a —u].
Note that [b—v,a—u] C [p, g since the network is minimal. However,
[b—v, a—u] can be empty, in which case the network is not dynamically
controllable (see Exercise 4.12 and 4.13).

u < 0 and v > 0 : t may either precede or follow t.. A dynamic
execution strategy should wait for t. until some point, and depending
on whether t. has occurred or not at that point, different choices for
t will be taken. A reasoning identical to case (ii) shows that ¢ cannot
be earlier than t > t5 + b — v, if . does not occur before. The waiting
point is ts +b —v. If @ < b — v then either [ts,t.] occurs in [a,b — v]:
the wait will make ¢ follow ¢., and we are back to case (i), or [ts, ]
occurs in [b — v, b]: t is before t. which is case (7). If a > b — v then
te cannot occur before the wait expires.

The preceding analysis gives the constraints to be reduced to satisfy
dynamic controllability (e.g., [p, ¢] reduced to [b — v,a — u] in case (i)). It
also exhibits a ternary wait relation: ¢ should wait until either t. or ts+b—wv.
The trick is to consider this wait as a particular binary relation on the pair
[ts,t]: the corresponding edge in the network is labelled with a constraint
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denoted (t.,b—v). Specific propagation rules for handling jointly these wait
constraints and the normal ones in a network need to be devised.

Table 4.1: Constraint propagation rules for dynamic controllability, where
a’ =a—u,b =b— v, double arrows are contingent constraints, and (¢, «)
are wait constraints.

Conditions Propagated constraint
[a,b] [u,v] [v',a']

ts——=te, t ——te, u>0 te —— t
[a,b] [u,v] (te,b")

ty =t , t —— st , u<0,v>0 ty — st
[a,b] (te,u) [min{a,u},o0]

ty = e, by — s t ty APy
<t€7b> ! [’U,,U] <t€’b/> !

tg ——t, tt ——t te —— 1
<t€7b> / [’U,,”U] <t67b_u> /

bs —Ls bt = b, oAt ty — g

These propagation rules are given in Table 4.1. A row in this table is
similar to the propagated contraint (7, ;) from 4 to j through k that we
used in PC. The left column gives the conditions under which a propagation
rule applies, and the right column states the constraint to be added to
the network according to that rule. Double arrows represent contingent
constraints, and angle brackets are wait constraints. The first and second
rules implement, respectively, the cases (ii) and (%ii). The third rule adds
a lower bound constraint to a wait, which follows directly from the above
argument. The last two rules correspond to transitive propagations of a
wait.

It can be shown that a modified path consistency algorithm relying on
these rules is correct: a network is dynamically controllable if and only
if it is accepted by the algorithm. Furthermore, the reduced controllable
constraints obtained in the final network give a dynamic execution strategy.
The transposition of the wait constraints as a distance graph allows the
incremental testing of dynamic controllability with a an algorithm in O(n?)
inspired from Bellman-Ford.

Synthesis of dynamically controllable plans. From the preceding dis-
cussion, it is clear that the conditions in Definition 4.16 are not sufficient.
We need to add a fourth requirement that the temporal constraints in chron-
icle ¢ define a dynamically controllable STNU. This requirement has to be
taken into account in TemPlan as follows: dynamic controllability is checked
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whenever a resolver adds to current ¢ a contingent constraints; that resolver
is rejected if the resulting STNU is not dynamically controllable.

This strategy can, however, be demanding for computational resources.
Indeed, the complexity growth of dynamic controllability checking is polyno-
mial, but the constant factor is high. A possible compromise is to maintain
solely the pseudo-controllability of ¢. The standard PC algorithm already
tests that a network is pseudo-controllable (no contingent constraint should
be reduced during propagation), a necessary condition for dynamic control-
lability. Hence consistency checking allows the ability to filter out incre-
mentally resolvers that make the STNU not pseudo-controllable. Dynamic
controllability is checked before terminating with a complete solution or at a
few regular stages. The risk of excessive backtracking, as for any incremental
filtering strategy, has to be assessed empirically.

4.5 Acting with Temporal Models

As seen in Chapter 3, acting deliberately may or may not rely on an a priori
synthesized plan. For critical applications with well-modeled domains and
limited variability, an actor first synthesizes a plan, then follows it as much
as possible by refining the plan steps into low-level commands and revising
the plan when needed. In less predictable and more variable environments,
it may be preferable to act by choosing opportunistically among available
methods relying, when feasible, on lookahead mechanisms. These general
considerations apply to temporal domains, with specific issues for handling
time constraints. This section presents successively the following;:

e techniques for acting by refining the primitives in a temporal plan with
atemporal methods,

e techniques for acting without a temporal plan but with temporal re-
finement methods, and

e open issues where acting and planning with temporal methods are
mixed.

4.5.1 Acting with Atemporal Refinement Methods

The motivations here are those discussed in previous chapters and summa-
rized in Figure 1.1(b) and Figure 3.1: the actor plans, refines the planned
actions into commands and revises its plan when needed. It queries Tem-
Plan for producing a plan for the tasks it has to achieve; TemPlan receives
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as input the appropriate initial chronicle with the current state and the pre-
dicted exogenous events. It returns a chronicle ¢ that meets the conditions
of Definition 4.16.

Actions in the solution plan ¢ are primitives for TemPlan, for exam-
ple, leave, enter, stack, unstack, etc. (as in Example 4.11). However, these
primitives are compound tasks at the acting level, to be refined into com-
mands with appropriate refinement methods. This acting refinement goes
one level down in the representation hierarchy. We consider here primitive
refinements using the atemporal methods of Chapter 3.

Example 4.25. In Example 4.11, we defined several primitives such as leave
or unstack. Here are two methods to decompose them into commands:

m-leave(r, d, w, e)
task: leave(r, d, w)
pre: loc(r)=d, adjacent(d, w), exit(e, d, w)
body: until empty(e) wait(1)
goto(r, e)

The method m-leave waits until the exit e from dock d toward waypoint
w is empty, then it moves the robot to that exit. The method m-unstack
locates the grasping position for container ¢ on top of a pile p, moves the
crane to that position, grasps it, ensures the grasp (e.g., closes latches) to
guarantee a firm grasp, raises the container slowly above the pile, then moves
away to the neutral position of that crane.

m-unstack(k, ¢, p)
task: unstack(k, ¢, p)
pre: pos(c)=p, top(p)=c, grip(k)=empty
attached(k, d), attached(p, d)
body: locate-grasp-position(k, ¢, p)
move-to-grasp-position(k, ¢, p)
grasp(k, ¢, p)
until firm-grasp(k, ¢, p) ensure-grasp(k, ¢, p)
lift-vertically(k, ¢, p)
move-to-neutral-position(k, ¢, p)

It is interesting to compare these methods with the descriptive models
of the same primitives in Example 4.11. Here effects are not predicted; they
will be observed from the execution of commands. However, the operational
models given in these methods detail the commands needed to perform the
action, including conditionals and loops. O
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The acting refinement methods in this subsection are not temporal. In
other words, our model for refining an action into commands does not break
down its temporal qualifications from planning level to finer temporal re-
quirements at the execution level. As illustrated in the preceding example,
the temporal qualification [ts,t.] of an action a in ¢ is not detailed into
smaller durations for the commands in which a is refined.

An important motivation for combining temporal planning with atem-
poral action refinement is the uncertainty in the duration of a, represented
through the interval [ts,t.]. It certainly makes sense to reason about con-
tingent constraints at the abstract level of actions, but at the lower level
of commands, one may take into account a global constraint without refin-
ing it into bounds that can be even more uncertain and difficult to model
in a meaningful way. For example, it may be useful to account for the
time needed to open a door, which can be assessed from statistics. However,
breaking this duration into how long it takes to reach for the handle and how
long to turn the handle introduces more noise in operational models. There
is also a computational complexity issue for reasoning at a finer temporal
granularity level that is clarified next.

Acting with atemporal methods allows us to rely on the techniques seen
in Chapter 3 for refining a task into commands achieving it. We’ll use
an extended version of the reactive engine RAE, and call it eRAE. Even
without temporal refinement at the acting level, there is still a need for
temporal reasoning in eRAE: we require a dispatching function to trigger
actions and controllable events at the right moments. Dispatching takes
into account past occurrences and the current time; these are propagated
into the temporal network to keep it dynamically controllable.

Given a dynamically controllable STNU (V, V,EE ), dispatching has to
trigger elements of 1V at the right moment, given the observation of ele-
ments of V, and given the progress of current time, denoted now. Values
of observed and triggered time points are propagated in the network. The
network remains dynamically controllable as long as there are no violations
of contingent constraints, for example, the observed durations of actions fit
within their stated bounds. A violation of a contingent constraint can be
due to a delay exceeding the modeled upper bound, or to a failure of the
action. It can lead to a failure of the plan.

Recall that acting triggers only commands, not the effects specified the
action models. These effects have to be observed, as in RAE. There can be
several intermediate time points in the network maintained by TemPlan that
are not the beginnings and ends of actions, for example, point ¢ in the defi-
nition of leave or unstack in Example 4.11. At the acting level, we consider
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them as contingent points. Constraints issued through propagation from
these intermediate points are essential for the dynamic controllability of the
network. However, unless there is a wait constraint for such an intermediate
point, it does not concern the dispatching algorithm. It can be removed
from the network used for dispatching.

Example 4.26. Assume that RAE is acting according to the plan in
Figure 4.4: it has to perform the three actions leave(rl,dockl), navi-
gate(rl,wl,w2), enter(rl,dock2) and the symmetrical three actions for r2.
The two leave actions are triggered concurrently in any order. As soon as an
exit is free, the robot gets to the corresponding way and immediately starts
its navigation. When a navigation finishes, the enter action is triggered only
when the other robot has left its original position. O

A temporal network is grounded when at least one of its temporal vari-
able receives an absolute value with respect to current time. Before starting
the execution, the STNU may or may not be grounded, but as soon as
the execution of a plan starts, the network is necessarily grounded. In a
grounded network, every time point ¢ is bounded within an absolute inter-
val [l¢,u] with respect to current time. As time goes by, some time points
in the network have occurred (i.e., triggered by the actor for controllable
points or observed for contingent ones), and others remain in the future.
Dispatching is concerned with the latter and more precisely with enabled
time points.

Definition 4.27. A controllable time point ¢ € [l;, us] that remains in the
future is alive if the current time now € [l;, u;]. Furthermore, t is enabled
if (i) t is alive, (ii) for every precedence constraints t' < ¢, ¢ has occurred,
and (i) for every wait constraint (t.,«), either t. has occurred or a has
expired. O

Recall that in a wait constraint (t.,«), « is defined with respect to a
controllable time point ;. Thus « has expired when t; has occurred and
ts + o < now (see Section 4.4.3).

Algorithm 4.3, the Dispatch algorithm, allows the actor to control when
to start each action. It triggers repeatedly enabled points whose upper
bound is now: these cannot wait any longer. It has the flexibility to trigger
any other enabled point; the arbitrary choice in step (i) of Dispatch can
be made with respect to domain specific considerations. It then propagates
in the network the value of triggered points. Because the network is dy-
namically controllable, this propagation is guaranteed to succeed and keep

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.


http://cambridge.org/9781107037274

Section 4.5 183

the network dynamically controllable as long as contingent constraints are
not violated. Initialization consists of deciding when to start the plan if
the network is not already grounded, that is, assigning a value (or absolute
bounds) to at least one enabled time point.

Dispatch(V, V,E, é)

initialize the network

while there are elements in V that have not occurred, do
update now
update contingent points in V that have been observed
enabled <+ set of enabled time points
for every t € enabled such that now= w, trigger t
arbitrarily choose other points in enabled, and trigger them (i)
propagate in the network the values of triggered points

Algorithm 4.3: A dispatching function for eRAE.

The propagation step is the most costly one in Dispatch: its complexity
is in 0(n3) where n is the number of remaining future points in the net-
work. Ideally, this propagation should be fast enough to allow iterations
and updates of now that are consistent with the temporal granularity of the
plan. As discussed earlier about the motivation for atemporal refinement,
this complexity is lower when temporal refinement does not break down
primitives at the finer command level.

Example 4.28. Let us extend Example 4.26 by requiring robot rl to bring
a container cl in dock d2 to some destination. TemPlan synthesizes a plan
¢, part of which is shown in Figure 4.11. To keep the figure readable, the
value of the constraints and parameters are omitted; the end point of an
action starting at ¢; is implicitly named ¢;. Note that some of the object
variables are instantiated, but some are not (e.g., ¢); temporal variables in
¢ are not instantiated.

The initial step in Dispatch triggers t;. When ¢} is observed, t2 is enabled
and triggered, which make t3 and ¢4 enabled. t3 will be triggered enough
in advance to free dock d2 allowing rl to get in (at t5). Similarly for the
subtask of uncovering container ¢, which is triggered at t4. When ¢/, and ¢}
are observed, t5 become enabled and triggered. t7 will become enabled after
observing tf and tg. The rest of the plan follows linearly. O

The Dispatch algorithm is easily integrated into eRAE. Triggering the
starting point of an action a means putting a new task in the input stream
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Figure 4.11: Part of a temporal plan given to eRAE for execution.

of RAE (Algorithm 3.1), that is, starting a new stack for progressing on
the refinement of a. The upper bound on the duration of a is taken as a
deadline for terminating this stack. Progress, and eventually Retrace, will
pursue refinements in this stack until the action succeeds or fails, or until
the deadline is reached, which is another failure condition. The proximity
of the deadline can be used as a heuristics for prioritizing the most urgent
tasks in RAE.

Failures are addressed as plan repairs. For a deadline failure, the repair
can take two forms:

e stopping the delayed action and seeking alternate ways for achieving
the plan from the current state, as for other types of failure, or

e finishing the action despite the delay and repairing the remaining part
of the plan.

The latter option is preferable when the violated contingent constraint can
be resolved at the STNU propagation level. For example, if navigate(rl) in
Figure 4.11 takes slightly longer than the maximum duration specified, the
entire plan will still be feasible with a delay, which is possibly acceptable.
However, if this navigation is taking longer than expected because robot rl
broke down, a better option is to seek another robot to perform the task.
These considerations must be integrated in the actor’s monitoring function
(see Section 7.2).

Plan repair in case of a failure has to be performed with respect to the
current state, and to remaining predicted events and tasks whose achieve-
ment is still in the future. The repair can be local or global. In the latter
case, a full replanning is performed. A local repair can benefit from the plan-
space planning approach of TemPlan as follows. The failed action is removed
from the remaining chronicle ¢ together with all the assertions coming from
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that action template. This removal introduces flaws in ¢ with respect to
which TemPlan is recursively called. This can lead to other flaws (includ-
ing for the refinement of the task that lead the failure); it may or may not
succeed in finding a repair and may require a full replanning. Monitoring
should help assess the failure and decide whether to try a local repair.

In summary, this section illustrated how actions in a temporal plan can
be handled with an extended version of the acting engine RAE through
a dispatch function. Atemporal refinement methods are used to map, in
a context-dependent way, each action a into commands whose execution
achieves a.

4.5.2 Acting with Temporal Refinement Methods

Refinement methods can be used for both planning and acting (Chapter 3).
Temporal refinement methods can also be used for both functions. We
demonstrated their use for planning (Section 4.3). Let us discuss here tem-
poral refinement for acting.

There are cases in which the actor does not have to plan for the task
at hand. This can happen because that plan is trivially given in the task
model, descriptive models of actions are unreliable, or the environment is
too dynamic and acting with possible errors is not critical. In these cases
it may still be meaningful to reason about time at the acting level, even
without a temporal plan. This is evidently the case when acting has to be
synchronized with future predicted event, for example, take the next bus
and leave it at the train station stop.

The idea is to extend the refinement acting engine illustrated in Fig-
ure 3.1 with a library of temporal refinement methods. Let us call TemRAE
the corresponding engine. The methods used by this engine have two char-
acteristics (Section 4.2.3):

e their body is not a sequence of tasks, commands, assignments, and
control steps, as in RAE, but a chronicle with a collection of temporally
qualified tasks, assertions, and constraints, and

e they do not have a precondition field; they are conditioned on their
temporal assertions.

In RAE the evaluation of a conditional expression is with respect to the
current observed state £&. In TempRAE, we need to extend £ with temporal
qualifications to provide causal support to temporal assertions in chronicles
(Definition 4.9).

Extending ¢ with temporal qualification may require, in general, main-
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taining the past timelines for every state variable as well as the predicted
future timelines for exogenous variables about which the actor has predic-
tions. To keep things simple, let us assume that the qualifications in tempo-
ral methods with respect to the past do not extend beyond when each state
variable acquired its current value (this assumption is akin to the Markovian
property, which is introduced in Section 6.1). With this assumption, our in-
terest in the past is satisfied by keeping track for each state the variable x
of a pair (¢,z=v), meaning that the value of variable is x = v since time ¢.
In other words, the following assertion holds in &:

[t, now]xr=v, where now it the value of current time.

& also contains predictions about exogenous future events, as seen in the ini-
tial chronicle in temporal planning. In this sense, ¢ is a particular chronicle
which maintains the current present and the exogenous future.

TemRAE works in a similar way to RAE. It reads its input stream for a
task to perform. For each such a task 7, it finds M(7), the set of methods
whose task is 7. It chooses a method m in M(7) that is applicable for
current &; it refines 7 according to the subtasks specified in m. There are,
however, differences in how methods are evaluated as applicable and in how
refinements proceed.

Definition 4.29. An instance in a method m € M(7) is applicable for the
current chronicle £ if and only if:

e every assertion in m is causally supported by £ and

e the constraints in m are consistent with £ and there are no conflicting
assertions. O

The second condition guarantees that the application of this instance of
m to & (in the sense seen in Section 4.3.2) gives a secure chronicle. The
first condition represents a strong requirement. Assertions in m such as
[t,t'|x=v or [t,t'|x:(v,v"), where t < t; < t' and ¢, is the starting point of
m, needs naturally to be supported before any command issued from the
refinement of m can begin. Moreover, according to this definition, assertions
in m about the future have also to be supported by predictions in &, for m
to be applicable to £. In other words, assertions that are required to be
supported by the effects of actions, other than those in m or issued from the
refinement of its subtasks, are not allowed by TempRAE. This is because the
acting engine is not inserting additional actions to satisfy the requirements
of a method.
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It is interesting to compare the previous definition to Definition 4.16 of
a valid solution plan. Their difference is with respect to nonrefined tasks,
forbidden in a solution plan but allowed here, because TemRAE refines a
task 7 with the subtasks in a method m. Let us illustrate how this can be
done through an example.

Example 4.30. Consider the domain specified in Example 4.11. Assume
that TempRAE is given a set of methods to handle the tasks bring, move, and
uncover of Example 4.12, in addition to methods for leave, enter, navigate,
unload, load, stack, and unstack, as illustrated in the previous section.

The task is to bring a container cl, which is now in pile pl in dock d1,
to a pile p2 in d2. There is now an empty robot rl in d3. An instance
of the method m-bring is applicable to this task with c=cl, p=p2, p'=pl,
d=d2, d'=d1, r=rl; ts can be instantiated to now: TemRAE triggers the
tasks move(rl,d1) and uncover(cl). Because of the constraints to < ¢; and
ts < t1, the three other tasks have to wait until both move and uncover
finish.

The method m-movel is applicable to move(rl,d1). The action leave will
be triggered; when it is observed that it has finished, navigate then enter will
be successively triggered.

Concurrently with this process, TempRAE addresses the uncover task:
method m-uncover is applicable; it will lead to triggering a succession of
unstack and stack actions until d1 is at the top of pile pl.

The termination of the last actions issued from the refinement of
move(rl,d1) and uncover(cl) will set respectively time points ¢t and t3 of
m-bring, allowing the method to pursue on the remaining subtasks load,
move and unload. O

As illustrated in the previous example, TemRAE requires an elaborate
bookkeeping mechanism, in particular for monitoring observed changes, as
reported in &, with respect to expected time points, before progressing in
its refinements. We are not providing a detailed pseudocode specification of
TempRAE, but let us discuss briefly its main principles and limitations.

TempRAE selects a method m applicable for a task 7; it refines 7 into a
collection of temporally qualified subtasks. Progressing in this refinement re-
quires a synchronization according to the temporal specifications in m. This
synchronization is based on a simplified dispatching algorithm that triggers
enabled controllable time points and waits for expected contingent ones.
TempRAE can implement a Retry procedure for trying alternative methods
if the chosen one fails (similar to the atemporal case in Algorithm 3.3): a
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Retry is possible as long as upper bounds on a task and its refinements have
not been violated.

The limitations of TempRAE are due to its lack of lookahead. As un-
derlined from Definition 4.29, temporal refinement acting cannot cope with
the requirement of a future change that is not brought by the subtasks of
a method and their refinements. Furthermore, the STNU corresponding to
the entire refinement tree of a task 7 is not guaranteed to be dynamically
controllable. This STNU is discovered progressively as tasks and actions are
achieved and effects and events are observed. Precedence constraints with
respect to contingent events or absolute time (e.g., bringing a container be-
fore the scheduled departure of a ship) may lead to deadline failures. In
this approach, it is the responsibility of the designer to specify methods
that refine into dynamically controllable networks. Techniques presented in
Section 4.4.3 can be used to verify this requirement.

4.5.3 Acting and Planning with Temporal Methods

As clear from the previous discussion, a temporally constrained domain
cannot to be always addressed with reactive refinement. TempRAE requires
enough lookahead for the choice of its methods and the dynamic controlla-
bility of the temporal network.

One approach is to plan for the task at hand with TemPlan then act
with TempRAE on the basis of the methods and the dynamically control-
lable STNU found at the planning stage. Here, TempRAE does not need to
test the applicability of its methods with the restrictive Definition 4.29. This
testing is done at planning time by adding, when and where needed, actions
in the plan to support every assertions in the predicted future. TempRAE
has to monitor that the current £ is the one expected at planning time.
TempRAE has also to synchronize the subtasks and actions in the plan with
a Dispatch algorithm according to the constraints in the dynamically con-
trollable STNU.

The preceding approach is not substantially different from what we de-
veloped in Section 4.5.1 with atemporal refinement for acting. However,
there can be a significant difference if the actor is able to control the level
at which refinement planning is pursued in a context-dependent way. The
idea is to allow TemPlan to decide not refine a subtask. This can be done if
TempPlan can evaluate the likely effects and temporal bounds of that sub-
task and assess that they are sufficient to stop planning and start acting on
a partial plan that contains unrefined tasks. These can be refined at act-
ing time, by planning concurrently with acting on some other predecessor
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subtasks, or even when an unrefined task is dispatched.

The implementation of this idea requires further research, in particular
for defining the likely effects and bounds of a subtask and assessing whether
a partial plan is acceptable and can be used to start acting with. Approaches
in that direction are discussed in the next section.

4.6 Discussion and Historical Remarks

4.6.1 Temporal Representation and Reasoning

Temporal models are widely used in artificial intelligence well beyond plan-
ning. Numerous works are devoted to knowledge representations and rea-
soning techniques for handling time, in particular, for dealing with change,
events, actions, and causality; see, for example, Allen [11], McDermott
[414], Shoham [536], Shoahm and McDermott [534], Sandewall [523], and
the handbook of Fisher et al. [200].

Most of the work cited above relies on a state-oriented view based on
various temporal logics. The timeline approach, developed in this chapter,
decomposes a reasoning task into a specialized solver say a planner and a
temporal reasoner, that maintains, through queries and updates, a consis-
tent network of temporal references. In addition to planning, this approach
is used in other applications, such as temporal databases [99], monitoring
[500], diagnosis [98, 374], multi-media document management [187, 5], video
interpretation [591], and process supervision [162, 163].

Temporal networks can use as primitives either time points or intervals;
they can manage either qualitative or quantitative constraints. A synthetic
introduction to temporal networks can be found in Ghallab et al. [231, chap-
ter 13] and the recent book of Bartak et al. [44].

Qualitative approaches to temporal reasoning were introduced by Allen
[13] with a specific algebra over intervals and a path consistency filtering
algorithm. Vilain and Kautz [588] introduced the point algebra and showed
that the consistency checking problem is NP-complete. Several tractable
subclasses of the interval or the time point algebra have been proposed,
for example, by Vilain et al. [589], Meiri [419], Nebel and Burckert [449]
and Drakengren and Jonsson [164]. Other authors, such as Ligozat [385],
Golumbic and Shamir [242] and Jonsson et al. [302], studied representations
integrating time points and intervals and their tractable subclasses.

Quantitative approaches to handling time relied initially on linear equa-
tions and linear programming techniques, for example, in Malik and Binford
[400]. Temporal constraint satisfaction problems and their tractable sub-
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class of Simple Temporal Networks, used in this chapter, were introduced
by Dechter et al. [147]. Several improvements have been proposed, for ex-
ample, for the incremental management of STNs by Cesta and Oddi [111]
or Planken [487]. Various extensions to STNs have been studied, such as
preferences in Khatib et al. [328] or specific constraints in Koubarakis [354].

The controllability issue and STNUs were introduced by Vidal and Ghal-
lab [587]. Different levels of strong, weak and dynamic controllability were
analyzed in Vidal and Fargier [586]. Algorithms for the strong and weak
controllability cases were respectively proposed by Cimatti et al. [119] and
Cimatti et al. [118]. State space planning with strong controllability is
studied by Cimatti et al. [120]. A polynomial algorithm for dynamic con-
trollability was proposed by Morris et al. [433] and improved in Morris and
Muscettola [434]. Incremental dynamic controllability has been introduced
by Stedl and Williams [557]; the algorithm of cubic complexity is due to
Nilsson et al. [458, 459].

Constraints in planning can play an important role. Naturally authors
have sought ways to efficiently structure them, in particular with meta-
CSPs. A meta-CSP is a CSP above lower level CSPs. Its meta-variables
are the lower level constraints; their values are alternative ways to com-
bine consistently these constraints. For example, with disjunctive temporal
constraints the values correspond to possible disjuncts. The approach has
been used in different CSP settings, such as for example the management
of preferences in temporal reasoning by Moffitt and Pollack [428], Moffitt
[427] or Bartdk et al. [44]. It has been applied to temporal planning by
several authors, for example, Gerevini et al. [222], Rodriguez-Moreno et al.
[515] and Gregory et al. [245]. It appears to be particularly appealing for
handling temporal and other constraints on different kind of resources, as
illustrated by Mansouri and Pecora [401].

4.6.2 Temporal Planning

There is a long and rich history of research in temporal planning. Numerous
temporal planners have been proposed, starting from early HT'N planners
such as Deviser by Vere [581], SIPE by Wilkins [604], FORBIN by Dean
et al. [141] or O-PLAN by Currie and Tate [133]; these planners integrate
various temporal extensions to HTN representations and algorithms.

The state-oriented view in temporal planning extends the classical model
of instantaneous precondition-effect transitions with durative actions. The
basic model considers a start point and a duration. It requires preconditions
to hold at the start and effects at the end of an action; this is illustrated
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in TGP by Smith and Weld [547] or in TP4 by Haslum and Geffner [262].
Extensions of this model with conditions that prevail over the duration of
the action, (as in the model of Sandewall and Ronnquist [524]) have been
proposed, for example, in the SAPA planner of Do and Kambhampati [154],
or in the domain description language specifications PDDL2.1 of Fox and
Long [204]. Several planners rely on the latter representation, among which
HS by Haslum and Gefiner [262], TPSYS by Garrido [214] or CRICKEY by
Coles et al. [127].

A few planners using the durative action model adopt the plan-space
approach, notably Zeno of Penberthy and Weld [471] which relies on linear
programming techniques, or VHPOP of Younes and Simmons [623] which
uses STN algorithms. Some planners pursue the HTN approach, as the
earlier planners mentioned above, or more recently SHOP2 by Nau et al.
[448] or Siadex by Castillo et al. [109].

Most durative actions temporal planners rely on state-based search tech-
niques. A few are based on temporal logic approaches. Among these are
TALplanner by Doherty and Kvarnstrom [156, 366], a model-checking based
planner by Edelkamp [169], and a SAT-based planner by Huang et al. [289].
Significant effort has been invested in generalizing classical state-space plan-
ning heuristics to the durative action case. The action compression tech-
nique, which basically abstract the durative transition to an instantaneous
one for the purpose of computing a heuristic, is quite popular, for example in
the work of Gerevini and Schubert [224] or Eyerich et al. [185]. Various tem-
poral extensions of the relaxed planning graph technique (Section 2.3.2), as
in Metric RPG of Hoffmann [277], have been proposed, for example, Haslum
and Geffner [262], Long and Fox [395], Coles et al. [127] and Haslum [258].
Sampling over a duration interval with action compression has also been
investigated by Kiesel and Ruml [330].

A few durative action planners can handle hybrid discrete-continuous
change. Some planners address continuous effects through repeated dis-
cretization, for example, UPMurphy of Penna et al. [473]. Linear program-
ming techniques, when the continuous dynamics is assumed to be linear,
have been used since ZENO [471] by several planners. A recent and quite
elaborate example is COLIN of Coles et al. [128]. The Kongming planner
of Li and Williams [381] relies on domain specific dynamic models.

The durative action model led to the design of quite performant planners.
But it usually has a weak notion of concurrency that basically requires
independence between concurrent actions. Interfering effects, as discussed
in Example 4.15, can be addressed by a few of the above mentioned planners,
for example, notably COLIN [128]. Alternatively, interfering effects can be
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addressed with the time-oriented view.

Planning along the time-oriented view was introduced by Allen and
Koomen [16] in a planner based on the interval algebra and plan-space
search Allen [14, 12]. The Time-Map Manager of Dean and McDermott
[145] led to the development of a few planners [141, 75] and several original
ideas related to temporal databases and temporal planning operators.

Planning with chronicles was introduced in IxTeT by Ghallab et al.
[227][228]. The IxTeT kernel is an efficient manager of time point con-
straints of Ghallab and Mounir-Alaoui [229]. IxTeT handles concurrent
interfering actions, exogenous events and goals situated in time. It uses
distance-based heuristics of Garcia and Laborie [212] integrated to abstrac-
tion techniques in plan-space planning. Its performance and scalability were
improved by several other timeline oriented planners using similar represen-
tations. These are notably ParcPlan of El-Kholy and Richard [176] and Li-
atsos and Richard [383], ASPEN of Rabideau et al. [501], PS of Jénsson et al.
[301], IDEA of Muscettola et al. [439], EUROPA of Frank and Jénsson [206],
APSI of Fratini et al. [208], and T-REX of Py, Rajan et al. [498, 503, 504].
Elaborate heuristics, generalizing the reachability and dependency graphs
of state-space planning, have been designed for these representations, for
example, by Bernardini and Smith [58]. A few of the mentioned planners
have been deployed in demanding applications, for example, for controlling
autonomous space systems and underwater vehicles.

An interesting development has been brought by the Action Notation
Modeling Language (ANML) proposed by Smith et al. [545]. ANML is a
representation that combines HTN decomposition methods with the expres-
sivity of the timeline representation, as developed in the temporal refinement
methods of this chapter. FAPE by Dvorak et al. [165] is a first planning and
acting system based on ANML.

Refinement methods reduce the search complexity by providing domain-
specific knowledge, but they do not palliate the need of good heuristics.
Some temporal logic based planners, like TALplan, rely on control rules.
Most of the state-based temporal planners referred to earlier exploit success-
fully the techniques of Section 2.3. The use of classical planning heuristics
has even been an important motivation for the state-oriented view of tempo-
ral planning. These techniques have been extended to plan-space planning
(e.g., in RePop [454] and VHPOP [623]) and further developed for timeline
based planners. There is notably the mutual exclusion technique of Bernar-
dini and Smith [55] and their dependency graph approach [58]. Dependency
graphs record relationship between possible activities in a domain. They
are based on activity transition graphs [56, 57], which are a direct extension
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of the domain transition graphs of state variables [267]. These techniques
have been successfully demonstrated on the EUROPA2 planner.

Finally, let us mention that temporal planning has naturally been as-
sociated with resources handling capabilities. Several of the planners men-
tioned above integrate planning and scheduling functions, in particular with
constraint-based techniques, which where introduced early in IxTeT by La-
borie and Ghallab [370]. Algorithmic issues for the integration of resource
scheduling and optimization in planning attracted numerous contributions
Smith et al. [546], Cesta et al. [112], Laborie [369], Verfaillie et al. [582]. A
global overview of scheduling and resource handling in planning is proposed
by Baptiste et al. [35].

4.6.3 Acting with Temporal Models

Several of the acting representations and systems discussed in Section 3.5.1,
based on procedures, rules, automata, Petri-nets or CSPs, integrates directly
or have been extended with temporal primitives and techniques for handling
explicit time. The PRS system of Ingrand et al. [293] or the RPL language of
McDermott [415] offer some mechanisms for handling real-time “watchdogs”
and delay primitives. More elaborate synchronization constructs have been
developed by Simmons [540] in TCA and TDL [541].

A few of the temporal planners discussed earlier have been integrated
to an actual planning and acting system. This is in particular the case for
timeline oriented planners along an approach akin to that of Section 4.5.1.
For example, Cypress of Wilkins and Myers [605] is the combination of SIPE
for planning and PRS for acting. DS1/RAX of Muscettola et al. [441] imple-
ments a procedure-based acting technique combined with the PS planner.
Casper of Knight et al. [332] is a temporal constraint-based executor for the
ASPEN planner. IxTeT-Exec of Lemai-Chenevier and Ingrand [375] inte-
grates [xTeT and PRS with plan repair and action refinement mechanisms.
T-REX of Rajan and Py [503] follows a distributed approach over a set of
“reactors” sharing timelines. It has been used mostly with the EUROPA
planner. The dispatchability property studied in Muscettola et al. [440] and
[432] requires simplifying the STNs resulting from the above planners in
order to rely on local propagation at acting time. This technique provides
some improvements in the dispatching algorithm but does not handle dy-
namic controllability.

The Reactive Model-based Programming Language (RMPL) of Ingham
et al. [292] follows an approach more akin to that of Section 4.5.2. RMPL
programs are transformed into the Temporal Plan Networks (TPN) repre-
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sentation of Williams and Abramson [606]. TPN extends STN with symbolic
constraints and decision nodes. Planning with a TPN is finding a path in
the explicit network that meets the constraints. Conrad et al. [129] intro-
duce choices in the acting component of RMPL. TPNs with error recovery,
temporal flexibility, and conditional context dependent execution are con-
sidered in Effinger et al. [175]. There, tasks have random variable durations
with probability distributions. A particle-sampling dynamic execution al-
gorithm finds an execution guaranteed to succeed with a given probability.
Santana and Williams [526] studied probabilistic TPNs with the notions of
weak and strong consistency, and proposed techniques to check these prop-
erties. TPNUs of Levine and Williams [380] add the notion of uncertainty
for contingent decisions taken by the environment and other agents. The
acting system adapts the execution to observations and predictions based
on the plan. It has been illustrated with a service robot which observes and
assists a human.

4.7 Exercises

4.1. Specify the primitives stack, unstack and navigate of Example 4.11. For
the latter, assume that navigation between connected waypoints is uncon-
strained.

4.2. For the domain in Example 4.12, define methods for the tasks load and
unload. For the task bring, define additional methods to cover the following
cases:

e the destination pile is at the same dock as the source pile,
e the robot r is already loaded with container c,
e container c is already in its destination pile.

Similarly, define other methods for the task move to cover the cases where
the robot starts from a waypoint or when it is already at destination, and
another method for the task uncover when the container c is at the top of

pile p.

4.3. Augment the domain of Example 4.12 by considering that a pile p can
be attached to a ship and that a crane k£ on a dock d can unstack containers
from a pile p only when the corresponding ship is docked at d.

4.4. Specify the initial chronicle ¢g for the problem of Example 4.17 and
Figure 4.5.
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4.5. In Example 4.17, develop the steps of TemPlan until reaching a solution
to the planning problem.

4.6. For the domain in Example 4.12, redefine navigate as a task which
refines into the traversal of roads and the crossing to docks. The navigation
between two roads adjacent to a dock d requires crossing d which should
not be occupied during the crossing interval. For example, in Figure 4.5 the
navigation from d4 to d1 requires the traversal of d3 which should be empty
when the robot gets there. Analyze the conflicting assertions that result
from this modification in the first few steps of TemPlan for Example 4.17
and find resolvers for the corresponding flaws.

4.7. Analyse the commonalities and differences between the notion of
threats in Section 2.5 and that of conflicting assertions. Notice that the
former relate actions while the latter are with respect to assertions. Since
a threat is a menace to a causal link, can there be conflicting assertions
without a causal support? If the answer is affirmative, give an example.

4.8. In Example 4.17, implement the modification introduced in Exer-
cise 4.4: consider that piles p'l and p'2 are not fixed in their respective
docks but attached to two ships that will be docked respectively to d1 and
d2 at two future intervals of time [t1,¢; +0d1] and [ta, t2+0d2]. How is modified
the solution found in Exercise 4.5 when these two intervals do not overlap.
What happens when [t1,t1 + 1] and [te, ta + d2] are overlapping?

4.9. Run algorithm PC on the networks in Figure 4.7. Show that it adds
the constraints 71 3 = [1,3], 724 = [1,2] and 745 = [2, 3].

4.10. Specify and implement an incremental version of the PC algorithm;
use it to analyze how the network in Figure 4.7 evolves when are added to
it successively tg, 36 = [5, 8], 756 = [2, 5] then t7, 747 = [3, 6], 767 = [1, 7].

4.11. Run algorithm PC on the networks in Figure 4.8 and Figure 4.9 and
compute all the implicit constraints entailed from those in the networks;
show that both networks are minimal.

4.12. Prove that the minimal network in Figure 4.10 is such that
[b—v,a—u] C[p,ql.

4.13. Consider the minimal network in Figure 4.10 for the case where u > 0
and [b — v,a — u] = &. Prove that this network is not dynamically control-
lable.
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4.14. Consider the temporal network associated to the solution of Exer-
cise 4.5: under what condition is it dynamically controllable?

4.15. For all the primitives in Example 4.11, define atemporal acting refine-
ment methods similar to the two given in Example 4.25.

4.16. Run algorithm Dispatch for the solution plan found in Exercise 4.5
assuming that robot rl is much faster than r2.
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Chapter 5

Deliberation with
Nondeterministic Models

In this chapter we drop the unrealistic assumption of determinism, that is,
the assumption that each action performed in one state leads deterministi-
cally to one state. This apparently simple extension introduces uncertainty
in the model of the domain and requires new approaches to planning and
acting. Deliberation must take into account that actions can lead to a set
of states; plans are no longer sequences of actions, but conditional plans;
solutions may have different strengths. Deliberative acting with nondeter-
ministic models allows us to take into account uncertainty when actions are
performed.

The main motivations for planning and acting with nondeterministic
models are in Section 5.1. The planning problem is formalized in Sec-
tion 5.2. In the subsequent three sections we present some different ap-
proaches to planning with nondeterministic models: And/Or graph search
(Section 5.3), symbolic model checking (Section 5.4), and determinization
techniques (Section 5.5). In Section 5.6, we present techniques that inter-
leave planning and acting. In Section 5.7, we present planning techniques
with refinement methods and nondeterministic models, and in Section 5.8,
we show techniques for deliberative acting with input/output automata.
Comparisons among different approaches and main references are given in
the discussion and historical remarks in Section 5.9. The chapter ends with
a few exercises.
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5.1 Introduction and Motivation

Recall that in deterministic models, the prediction of the effects of an action
is deterministic: only one state is predicted as the result of performing
an action in a state (see Chapter 2, Section 2.1.1, assumption in item 3).
Nondeterministic models predict alternative options: an action when applied
in a state may result in one among several possible states. Formally, v(s, a)
returns a set of states rather than a single state. The extension allowed
by nondeterministic models is important because it allows for modeling the
uncertainty of the real world.

In some cases, using a deterministic or a nondeterministic model is a
design choice. For instance, in the real world, the execution of an action
may either succeed or fail. Despite this, in many cases, it still makes sense
to model just the so-called nominal case (in which failure does not occur),
monitor execution, detect failure when it occurs, and recover, for example
by replanning or by re-acting with some failure-recovery mechanism. In
these cases, deterministic models can still be a convenient choice. Indeed,
despite the fact that nondeterministic models may have some advantages,
because they allow us to model the world more accurately and to plan for
recovery mechanisms at design time, they have clear disadvantages. Indeed,
taking into account all the different possible outcomes may become much
more complicated, both conceptually and computationally.

In other cases, modeling the world with nondeterminism is instead a
must. Indeed, in certain environments there is no nominal case. And some-
times we need to consider different possible action outcomes during both
planning and acting, independently of the fact that no model is perfect and
the world is seldom completely predicable. For instance, there is no nominal
case in the throw of a dice or in the toss of a coin or in a sensing action of a
robot. There is no nominal case in the method for an online payment if the
choice is left to the user (cash, credit card, or bank transfer). There is no
nominal case in the confirmation given to a Web service by the user. And
if we need to generate a software service that works, we need to consider
equally all possibilities.

Notice that, of course, even nondeterministic models are not perfect
models of the world. Even if we model the six outcomes of the throw of a
dice, the tossed dice might run off the playing board, and end up under the
table. Similarly, a coin may land on its edge, and the operating system of
the hosting of a Web service can break. In all these cases, however, non-
deterministic models are definitely more realistic, and often not avoidable,
independently of the fact that everything can always happen in the world
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and no perfect model exists.
Planning and acting with nondeterministic models is a different and
much more challenging task than the deterministic case:

e The search space is no longer represented as a graph. It becomes
an And/Or graph (see Appendix A) in which each And-branch cor-
responds applying an action that may lead from one state to many
possible states, and each Or-branch corresponds to choosing which ac-
tion to apply in a state. We can choose the action, but we cannot
choose which outcome it will produce.

e Plans cannot be restricted to sequences of actions.! In the nondeter-
ministic case, we need to generate conditional plans, that is, plans with
conditional control structures that sense the actual action outcome
among the many possible ones, and act accordingly to the information
gathered at execution time.

e The definition of solution plan is not trivial, because solutions of differ-
ent strength can be devised. For instance, a plan may either guarantee
the achievement of a goal or just have some chances of success, or it
may guarantee the achievement of the goal according to some assump-
tions.

As a consequence, in the case of nondeterministic domains the problem
of devising practical algorithms that can deal effectively with the search
space is much harder than in the deterministic case. Planning algorithms
need to analyze not only single paths to find one that leads to the goal, but
all the execution paths of a plan. Keeping track of the different possible
branches of execution typically induces large search spaces.

Online planning and acting is one of the most effective techniques for
dealing with large state spaces. In Chapter 2, we presented the idea of
interleaving planning and acting to deal with large models. This motivation
for online planning and acting is even stronger in the case of nondeterministic
models. Interleaving acting with planning can be used to determine which
of the nondeterministic outcomes has actually taken place.

Last but not least, nondeterministic domains are key models for deliber-
ative acting (see the discussion in Section 1.2.3 and Section 2.6). They are a
proper and natural way to represent operational models that describe how
to perform an action, because operational models have to take into account

!Conformant planning generates sequences of plans in nondeterministic domains. It is,
however, a restricted and specific case.
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possibly different evolutions of the execution of commands. Planning in
nondeterministic domains can thus be a powerful deliberation mechanism.

5.2 The Planning Problem

Planning with nondeterministic models relaxes the assumption that (s, a)
returns a single state. Then for every state s and action a, either y(s,a) = &
(i.e., the action is not applicable) or v(s, a) is the set of states that may result
from the application of a to the state s, that is, 7 : S x A — 25,

Following the notation introduced in Chapter 2, Section 2.1.3, an oper-
ator can be represented with multiple effects:

act(z1,29, ..., 2k)
pre: pi, ..., Pm
eff1: €11y .-
effn: ey, ...

5.2.1 Planning Domains

A nondeterministic planning domain can be described in terms of a finite
set of states S, a finite set of actions A, and a transition function (s, a)
that maps each state s and action a into a set of states:

Definition 5.1. (Planning Domain) A nondeterministic planning do-
main ¥ is the tuple (S, A, ), where S is the finite set of states, A is the
finite set of actions, and v : S x A — 2% is the state transition function.

O

An action a € A is applicable in state s € S if and only if v(s,a) # @.
Applicable(s) is the set of actions applicable to state s:

Applicable(s) = {a € A | ~(s,a) # @}

Example 5.2. In Figure 5.1, we show a simple example of nondeterministic
planning domain, inspired by the management facility for a harbor, where
an item (e.g., a container, a car) is unloaded from the ship, stored in some
storage area, possibly moved to transit areas while waiting to be parked,
and delivered to gates where it is loaded on trucks. In this simple example,
we have just one state variable, pos(item), which can range over nine values:
on_ship, at_harbor, parkingl, parking2, transitl, transit2, transit3, gatel, and
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transit3

move

back  parking2

unload

on_ship at_harbor

transitl

transit2

Figure 5.1: A simple nondeterministic planning domain model.

gate2. For simplicity, we label each state in Figure 5.1 only with the value
of the variable pos(item).

In this example, we have just five actions. Two of them are deterministic,
unload and back, and three are nondeterministic, park, move, and deliver.
Action unload unloads the item from the ship to the harbor, its preconditions
are pos(item) = on_ship, and its effects pos(item) < at_harbor. Action back
moves the item back from any position in the harbor to the position pos(item)
= at_harbor. To keep the figure simple, in Figure 5.1 we show only two
instances of actions back from the state where pos(item) = parking2 and
the state where pos(item) = gatel, but a back arrow should be drawn from
each state where the position is parkingl, parking2, transitl, transit2, transit3,
gatel, and gate2.

A possible description of action park is the following, where effl, eff2,
and eff3 are the three possible effects of the action:
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park
pre:  pos(item) = at_harbor
effl:  pos(item) < parking2
eff2:  pos(item) < parkingl
eff3:  pos(item) < transitl

The actions park, move, and deliver are nondeterministic. In the case of
action park, we represent with nondetermism the fact that the storage areas
parkingl and parking2 may be unavailable for storing items, for example,
because they may be closed or full. Whether an area is available or not
cannot be predicted, because there are other actors parking and delivering
items, for example from different ships. However, we assume that it is always
possible either to park the item in one of the two parking areas or to move
it to transit area transitl. The item waits in transitl until one of the two
parking areas are available, and it can be stored by the action move. Also
in the case of move, we use nondeterminism to represent the fact that we
do not know a priori which one of the two areas may become available.?
From the two parking areas, it is possible to deliver the container and load
them on trucks or to a transit area, from which it is necessary to move the
container into either one of the two parking areas. The deliver action moves
containers from parkingl to one of the two gates where trucks are loaded or
to a transit area from which it is necessary to move the container again to
load trucks in one of the two gates.®> The same action from parking2 may
lead to gatel or to another transit area. O

5.2.2 Plans as Policies

A plan for a nondeterministic domain can be represented as a policy, that is,
a partial* function 7 that maps states into actions. Intuitively, if 7(s) = a,
it means that we should perform action a in state s.

Definition 5.3. (Policy) Let ¥ = (S, A,v) be a planning domain. Let
S" C S. A policy w for a planning domain ¥ is a function 7 : S’ — A such

2In general, if an action’s outcome depends on something that is unknown to the actor,
then it is sometimes useful for the actor to think of the possible outcomes as nondetermin-
istic. As an analogy, we think of random number generators as having nondeterministic
outcomes, even though many of these generators are deterministic.

3Notice that deliver action has two possible effects in one instance and three in another.
This is allowed because the degree of nondeterminism can depend on the state in which
an action is performed.

4That is, there may be states for which it is undefined.
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PerformPolicy ()
s < observe the current state
while s € Dom(7) do
perform action 7(s)
s < observe the current state

Algorithm 5.1: Procedure for performing the actions of a policy.

that, for every s € S’, 7(s) € Applicable(s). It follows that Dom(7w) = S’.
O

Example 5.4. Consider the domain of Example 5.2 shown in Figure 5.1.
The following are policies for this planning domain:

71 : 71(pos(item)=on_ship) = unload
71 (pos(item)=at_harbor) = park
71 (pos(item)=parkingl) = deliver

g : mo(pos(item)=on_ship) = unload

=at_harbor) = park
=parkingl) = deliver

=parking2) = back
ma(pos(item)=transitl) = move

(pos(item)
(pos(item)
(pos(item)
(pos(item)
(pos(item)
(pos(item)
(pos(item)
(pos(item)
mo(pos(item)=transit2) = move
(pos(item)
(pos(item)
(pos(item)
(pos(item)
(pos(item)
(pos(item)
(pos(item)
(pos(item)

mo(pos(item
o (pos(item

mo(pos(item

ma(pos(item)=gatel) = back
=on_ship) = unload

w3 1 m3(pos(item

73 (pos(item)=at_harbor) = park
m3(pos(item)=parkingl) = deliver
m3(pos(item)=parking2) = deliver
m3(pos(item)=transitl) = move
m3(pos(item)=transit2) = move

m3(pos(item)=transit3) = move

O]

A procedure that performs the actions of a policy consists of observing
the current state s, performing the corresponding action 7(s), and repeat-
ing these two steps until the state is no longer in the domain of 7 (see
Algorithm 5.1).

A remark is in order. A policy is a convenient way to represent plans in
nondeterministic domain models. An alternative is to represent plans with
decision trees or with conditional statements. The expressiveness of policies
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and the one of decision trees are incomparable. On one hand, policies allow
for infinite iterations of the application of actions, which are not allowed by
finite decision trees. On the other hand, decision trees allow for performing
different actions in the same state depending on at which point we are in
the tree, whereas policies always perform the same action in a state. We call
our policies memoryless policies. A policy with memory is a mapping from
a history of states to an action. Policies with memory allow for performing
different actions in the same state, depending on the states visited so far.

5.2.3 Planning Problems and Solutions

In deterministic domains, a plan is a sequence of actions that, when per-
formed from an initial state induces a sequence of states, one for each action
in the plan. A solution to a planning problem in a deterministic domain is a
plan that induces a sequence of states such that the last state is in the set of
goal states. The states reachable from a state s by a sequence of applicable
actions aq, aso, . .. can be defined easily by composing the transition function:
{s}U~(s,a1) Ur(v(s,a1),a2)U....

To define a solution to a planning problem in nondeterministic domains,
we need to do something similar, that is to define which states are reached
by a policy 7 in a planning domain ¥ = (S, A, 7). However, we have to take
into account that, in a nondeterministic planning domain, ~(s,a) returns
a set of states, and therefore a plan can result in many possible different
paths, that is, sequences of states that are reached by the policy.

We start by introducing the notion of the set of states reachable from
state s by a policy m:

~(s, ) denotes the transitive closure of v(s,m(s)), that is, the
set that includes s and all its successors states reachable by =«

To check whether a policy reaches some goals, we are interested in the
final states that are reached by the policy 7 from state s, that is in what we
call the leaves of a policy m from state s:

leaves(s,m) = {s' | s € J(s,7) and s’ & Dom(r)}

Notice that leaves(s, ) can be empty, that is, there may be no leaves. This
is the case of policies that cycle on the same set of states. If 7 is the empty
plan, then leaves(s, ) = {s}. We define the reachability graph that connects
the reachable states from state s through a policy 7:
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parking2

O

gatel

on_ship at_harbor

parkingl

O gate2

transitl

transit2

Figure 5.2: Reachability graph for policy .

Graph(s,m) = {A(s,m), (s, s") | &' € A(s, ) and s" € y(s', w(s"))}
We call f(s) the set of states reachable from a state s.

Example 5.5. Let 7y, mo, and 73 be as in Example 5.4. Their leaves from
state pos(item)=on _ship are:®

leaves(pos(item)=on_ship,m1) = {pos(item)=parking2,

leaves(pos(item)=on_ship,m2) = {pos(item)=gate2}
leaves(pos(item)=on_ship, m3) = {pos(item)

|
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Figures 5.2, 5.3, and 5.4 show the reachability graphs of w1, 7, and 73 from
the state where pos(item)=on_ship. Notice also that all states are reachable
from state where pos(item)=on_ship. O

5In this case, the value on_ship of the state variable pos(item) identifies a single state.
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parking2

gatel

on_ship at_harbor

gate2

transitl

transit2

Figure 5.3: Reachability graph for policy ms.

Given these preliminary definitions, we can now introduce formally the
notion of a planning problem and solution in a nondeterministic domain.

Definition 5.6. (Planning Problem) Let ¥ = (S, A,~v) be a planning
domain. A planning problem P for ¥ is a tuple P = (X, s9,5,), where
5o € S is the initial state and S, C S is the set of goal states. O

Notice that we have a single initial state sg rather than a set of initial
states Sp C S. A set of initial states represents partially specified initial
conditions, or in other words uncertainty about the initial state. However,
restricting to a single initial state is not a limitation, because a domain with
a set of initial states Sy is equivalent to a domain where we have a single
initial state so € S and an additional action a, ¢ A such that v(sg,ag) = So.

We can now define different kinds of solutions to a planning problem.

Definition 5.7. (Solution) Let P = (X, s9,.54) be a planning problem for
a domain ¥ = (S, A,7). Let 7 be a policy for ¥. Then 7 is a solution if and
only if leaves(sg, ™) NSy # @ O
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transit3

move
parking2

gatel

on_ship at_harbor

parkingl gate2

transitl

transit2

Figure 5.4: Reachability graph for policy 3.

Solutions are policies that may lead to a goal. They can achieve the
goal in different ways, with different levels of guarantee, and with differ-
ent strengths. The requirement we impose on a policy to be a solution is
that at least one state of its leaves is a goal state. We are interested in safe
solutions.

Definition 5.8. (Safe Solution) Let P = (3, 59, S4) be a planning prob-
lem for a domain ¥ = (S, A,~). Let 7 be a solution for 3. Then 7 is a safe
solution if and only if Vs € 7(so, 7)(leaves(s, m) N Sy # D) O

Safe solutions are policies in which the goal is reachable from the initial
state. Notice that, in general, they are not policies in which the goal is
reachable from any state of the domain of the policy (Dom(r)), because we
may have a state in Dom(7) that is not the initial state and from which we
do not reach the goal.

Definition 5.9. (Unsafe Solution) Let P = (X, s0,5,) be a planning
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problem for a domain ¥ = (S, A,~). Let 7 be a solution for X. Then 7 is
an unsafe solution if it is not safe. O

Unsafe solutions either have a leaf that is not in the set of goal states or
there exists a reachable state from which it is not possible to reach a leaf
state. It is easy to prove that 7 is an unsafe solution if and only if Js €
leaves(sg,m) | s € Sq VvV Is € Y(so0, ) | leaves(s, ) = &

Intuitively, unsafe solutions may achieve the goal but are not guaranteed
to do so. If an agent tries to perform the actions dictated by the policy, the
agent may end up at a nongoal state or end up in a “bad cycle” where it is
not possible to go out and reach the goal.

It is important to distinguish between two kinds of safe solutions, cyclic
and acyclic. Acyclic solutions are safe solutions whose reachability graph is
acyclic; all other safe solutions are cyclic.

Definition 5.10. (Cyclic Safe Solution) Let P = (3, s9,.Sy) be a plan-
ning problem for a domain ¥ = (S, A,v). Let m be a solution for X.
Then 7 is a cyclic safe solution if and only if leaves(so,m) C Sy A (Vs €
A (s0,7)(leaves(s, m) N Sy # @) A Graph(se, ) is cyclic.

O

Cyclic Safe Solutions are safe solutions with cycles.

Definition 5.11. (Acyclic Safe Solution) Let P = (X,s0,5,) be a
planning problem for a domain ¥ = (S, A,7). Let 7 be a solution for
Y. Then 7 is an acyclic safe solution if and only if leaves(sg,m) C
Sg A Graph(sg, ) is acyclic. O

Acyclic Safe Solutions are safe solutions that are guaranteed to terminate
and to achieve the goal despite nondeterminism. They are guaranteed to
reach the goal in a bounded number of steps, and the bound is the length of
the longest path in Graph(sg, 7). This amounts to saying that all the leaves
are goal states and there are no cycles in the reachability graph.

Figure 5.5 depicts in a class diagram the different forms of solutions. Un-
safe Solutions are not of interest, because they do not guarantee to achieve
the goal. However, as we will see in Section 5.5, planning for (possibly
unsafe) solutions can be used by planning algorithms to guide the search
for Safe Solutions. In general, we are interested in safe (cyclic and acyclic)
solutions, because they provide (with different strengths) some assurance
to achieve the goal despite nondeterminism. Acyclic Safe Solutions are the
best because they can really ensure that we get to the goal. Cyclic Safe So-
lutions provide a weaker degree of assurance to achieve the goal: assuming
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Solutions

Unsafe Solutions Safe Solutions

™

Cyclic Solutions Acyclic Solutions

Figure 5.5: Different kinds of solutions: class diagram.

that sooner or later execution will get out of possibly infinite loops, they
are guaranteed to achieve the goal. They guarantee that there is always a
possibility to terminate the loop. However, for some applications, this may
be not enough.

Example 5.12. Consider the three policies 71, 7, and w3 in Example 5.4.
Consider the planning problem P with domain Y the nondeterministic do-
main described in Example 5.2, initial state so where pos(item)=on_ship,
and goal states Sy = {pos(item)=gatel, pos(item)=gate2}.

All three policies are solutions for the planning problem P; indeed there
exists at least one leaf state that is in the set of goal states. Policy my is
an unsafe solution because there are leaves that do not belong to S, from
which it is impossible to reach the goal: such leaves are the states where
pos(item)=parking2, or pos(item)=transitl, or pos(item)=transit2.

Policies o and w3 are safe solutions. Policy 7o is a safe cyclic solution
because from each state in its graph it is possible to reach a state in the goal
(pos(item)=gate2). Policy 73 is a safe acyclic solution because it is guar-
anteed to reach one of the two gates, pos(item)=gatel or pos(item)=gate2,
without the danger of getting trapped in cycles.

Notice that for the planning problem P’ on the same domain, the same
initial state, but with goal S, = {pos(item)=gate2}, a safe acyclic solution
does not exist, and the safest solution we can find is the safe cyclic solution
. OJ

A remark is in order. We require that solutions have some leaf states.
In this way, we do not consider policies that lead to the goal and then loop
inside the set of goal states. One may argue that such policies might be
considered as solutions. However, notice that for any solution of this kind,
there exists a solution according to our definition. It is indeed enough to
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Table 5.1: Solutions: different terminologies in the literature.

’ our terminology nondeterminism probabilistic
solutions weak solutions -
unsafe solutions - improper solutions
safe solutions strong cyclic solutions proper solutions

cyclic safe solutions - -

acyclic safe solutions strong solutions -

eliminate the states in the policy that lead to the loop inside the set of goal
states.

In the following, we specify the relations among different kinds of solu-
tions.

unsafe solutions U safe solutions = solutions

cyclic safe solutions U acyclic safe solutions = safe solutions
unsafe solutions N safe solutions = &

cyclic safe solutions N acyclic safe solutions = &

Notice that our terminology here and in Chapter 6 are identical, but
different from the usual terminology in the literature, in which our solutions
and safe solutions are called weak solutions and strong cyclic solutions, re-
spectively. In the literature, every strong solution is also a weak solution,
which can be confusing. In most of the literature on probabilistic planning,
our safe and unsafe solutions are called proper and improper, and there is
no notion that makes a distinction between cyclic safe solutions and acyclic
safe solutions, despite the different strength they provide. We will not also
differentiate cyclic and a cyclic safe solutions in probabilistic planning in
Chapter 6, despite their differences (see discussion in Section 6.7.5). Ta-
ble 5.1 summarizes the corresponding terminology used in planning with
nondeterminism and in probabilistic planning literature.

5.3 And/Or Graph Search

A nondeterministic planning domain can be represented as an And/Or graph
(see Appendix A) in which each Or-branch corresponds to a choice among
the actions that are applicable in a state, and each And-branch corresponds
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Find-Solution (X, so, Sy)

T &, < so; Visited < {so}

loop
if s € Sy then return =
A" + Applicable(s)
if A’ = & then return failure
nondeterministically choose a € A’
nondeterministically choose s’ € (s, a) (4)
if s € Visited then return failure
7(s) « a; Visited + VisitedU {s'}; s < &

Algorithm 5.2: Planning for solutions by forward search.

to the possible outcomes of the chosen action. In this section, we present
algorithms that search And/Or graphs to find solutions.

5.3.1 Planning by Forward Search

We first present a simple algorithm that finds a solution by searching the
And/Or graph forward from the initial state. Find-Solution (see Algo-
rithm 5.2) is guaranteed to find a solution if it exists. The solution may
be either safe or unsafe. It is a simple modification of forward state-space
search algorithms for deterministic planning domains (see Chapter 2). The
main point related to nondeterminism is in the “progression” line (see line
(7)), where we nondeterministically search for all possible states generated
by (s, a).

Find-Solution simply searches the And/Or graph to find a path that
reaches the goal, without keeping track of which states are generated by
which action. In this way, Find-Solution ignores the real complexity of non-
determinism in the domain. It deals with the And-nodes as if they were
Or-nodes, that is, as if it could choose which outcome would be produced
by each action.

Recall that the nondeterministic choices “nondeterministically choose a €
A" and “nondeterministically choose s’ € y(s,a)” correspond to an abstrac-
tion for ignoring the precise order in which the algorithm tries actions a
among all the applicable actions to state s and alternative states s’ among
the states resulting from performing a in s.

Example 5.13. Consider the planning problem described in Example 5.2.
Let the initial state sy be pos(item)=on_ship, and let the set of goal states
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Find-Safe-Solution (£, 59, Sy)

T

Frontier < {so}

for every s € Frontier\ S, do
Frontier <— Frontier\ {s}
if Applicable(s) = @ then return failure
nondeterministically choose a € Applicable(s)
T U (s,a)
Frontier <— Frontier U (7(s,a) \ Dom(7))
if has-unsafe-loops(, a, Frontier) then return failure

return m

Algorithm 5.3: Planning for safe solutions by forward search.

Sy be {pos(item)=gatel, pos(item)=gate2}. Find-Solution proceeds forward
from the initial state on_ship. It finds initially only one applicable action,
that is, unload. It then expands it into at_harbor, one of the possible non-
deterministic choices is s’ = parkingl, which gets then expanded to gate2;
m1 (see Example 5.4) is generated in one of the possible nondeterministic
execution traces. O

Algorithm 5.3 is a simple algorithm that finds safe solutions. The al-
gorithm performs a forward search and terminates when all the states in
Frontier are goal states. Find-Safe-Solution fails if the last action introduces
a “bad loop”, that is, a state from which no state in Frontier is reachable.
The routine has-unsafe-loops checks whether a “bad loop” is introduced. A
“bad loop” is introduced when the set of states resulting from performing
action a, which are not in the domain of 7, will never lead to the frontier:

has-unsafe-loops(, a, Frontier) iff
ds € (v(s,a) N Dom(7)) such that §(s,7) N Frontier = &.

Algorithm 5.4 is a simple algorithm that finds safe acyclic solutions. The
algorithm is the same as Find-Safe-Solution, but in the failure condition. It
fails if the last action introduces a loop, that is, a state from which the state
itself is reachable by performing the plan:

has-loops(, a, Frontier) iff
ds € (v(s,a) N Dom(m)) such that s € (s, m)
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Find-Acyclic-Solution (£, 59, Sy)

T I

Frontier + {so}

for every s € Frontier\ Sy do
Frontier <— Frontier \ {s}
if Applicable(s) = & then return failure
nondeterministically choose a € Applicable(s)
T+ mU (s, a)
Frontier <— Frontier U (y(s,a) \ Dom(7))
if has-loops(m, a, Frontier) then return failure

return m

Algorithm 5.4: Planning for safe acyclic solutions by forward search.

Example 5.14. Consider the planning problem P with do-
main X the nondeterministic domain described in Example 5.2,
initial state pos(item)=on_ship, and set of goal states S, as
{pos(item)=gatel, pos(item)=gate2}. Find-Acyclic-Solution starts from
the initial state on_ship, for every state s in the frontier expands the frontier
by performing ~y(s,a). A successful trace of execution evolves as follows®:

Stepg :  on_ship

Step; : at_harbor

Stepy :  parking2, parkingl, transitl
Steps : transit3, gatel, gate2, transit2
Step, : gatel, gate?

5.3.2 Planning by MinMax Search

This section introduces a technique that is based on a cost model of actions.
Recall cost models defined in Chapter 2. We assign a cost to each action
that is performed in a state, cost(s,a). Weighting actions with cost can be
useful in some application domains, where, for instance, actions consume
resources or are more or less difficult or expensive to perform.

Algorithm 5.5 uses costs to identify which may be the best direction to
take. It starts from the initial state and selects actions with minimal costs

SFor simplicity, in the following we use on_ship, at_harbor, and so on, as names of states
rather than a state variable notation.
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Find-Acyclic-Solution-by-MinMax (%,50,5,)
return Compute-worst-case-for-action(.Sy, Sy, 00, @)

Compute-worst-case-for-action(.S, Sy, 8, ancestors)
d + —o0
7 @
// if S is nonempty, this loop will be executed at least once:
for every s € S
if s € ancestors then
return (7/,00)
(m,c) < Choose-best-action(s, Sy, 3, ancestors U{s})
7 «—mun
'« max(c, ¢)
if ¢ > 3 then
break

return (7', )

Algorithm 5.5: Planning for safe acyclic solutions by MinMax Search.

among the ones that are applicable. We are interested in finding a solution
with the minimum accumulated cost, that is, the minimum of the costs of
each action that is selected in the search. Because the domain model is
nondeterministic and 7(s, a) results in different states, we want to minimize
the worst-case accumulated cost, that is, the maximum accumulated cost of
each of the possible states in (s, a). This is given by the following recursive
formula:

() 0 if s is a goal,
c(s) =
MiNge Applicable(s) (COSt(a) + Maxy ey (sq) ¢(s’)) otherwise.

For this reason, the algorithm is said to perform a “MinMax search.” While
performing the search, the costs of actions that are used to expand the next
states are accumulated, and the algorithm checks whether the accumulated
cost becomes too high with respect to alternative selections of different ac-
tions. In this way, the accumulated cost is used to find an upper bound in
the forward iteration.

Find-Acyclic-Solution-by-MinMax (Algorithm 5.5) finds safe acyclic solu-
tions for nondeterministic planning problems in domains that may have
cycles. It returns a pair (m,c), where 7 is a safe acyclic solution that is
worst-case optimal, that is, the maximum cost of executing 7 is as low as

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.


http://cambridge.org/9781107037274

Section 5.3 215

Choose-best-action(s, Sy, /3, ancestors)
if s € Sy then
return (&, 0)
else if Applicable(s) = @ then
return (&, oo)
else do
c=o00
// this loop will always be executed at least once:
for every a € Applicable(s) do
(7', ) +— Compute-worst-case-for-action(7y(s, a), Sy, 3, ancestors)
if ¢ > ¢ + cost(s,a) then do
¢+ + cost(s,a)
7(s) < a
B« min(B,c)

return (7, c)

Algorithm 5.6: The policy with minimal cost over actions.

possible, and ¢ is the maximum cost of executing 7.
Find-Acyclic-Solution-by-MinMax implements a depth-first search by min-
imizing the maximum sum of the costs of actions along the search. It al-
ternates recursively between calls to Choose-best-action (Algorithm 5.6) and
Compute-worst-case-for-action. The former calls the latter on the set of states
v(s, a) resulting from the application of actions a that are applicable to the
current state s, where Compute-worst-case-for-action returns the policy 7’
and its corresponding cost . Visited states are accumulated in the “an-
cestors” variable. Choose-best-action then updates the cost of m with the
cost of the action (¢ = ¢ + cost(s,a)), and updates the policy with the
selected action in the current state (m = 7’ U (s,a)). In the Choose-best-
action procedure, [ keeps track of the minimum cost of alternative policies
computed at each iteration, which is compared with the maximum cost com-
puted over paths in m by Compute-worst-case-for-action (see the instruction
¢ = max(d,c)). If the current children’s maximum cost ¢’ is greater than
or equal to the current minimum cost 3, then the policy 7’ gets discarded
and control gets back to Choose-best-action which chooses a different action.
Indeed, while we are considering each state s’ € v(s,a), the worst-case
cost of a policy that includes an action a is greater than the maximum cost
at each s’ visited so far. We know that elsewhere in the And/Or graph there
exists a policy whose worst case cost is less than 8. If the worst-case cost of
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a policy that includes a is greater or equal to 5, then we can discard a.

Find-Acyclic-Solution-by-MinMax’s memory requirement is linear in the
length of the longest path from sy to a goal state, and its running time is
linear in the number of paths from sg to a goal state.

Find-Acyclic-Solution-by-MinMax ignores the possibility of multiple paths
to the same state. If it comes to a state s again along a different path,
it does exactly the same search below s that it did before. One could use
memoization techniques to store these values rather than recomputing them
— which would produce better running time but would require exponentially
more memory. See Exercise 5.9.

5.4 Symbolic Model Checking Techniques

The conceptually simple extension led by nondeterminism causes a practical
difficulty. Because one action can lead to a set of states rather than a single
state, planning algorithms that search for safe (cyclic and acyclic) solutions
need to analyze all the states that may result from an action. Planning based
on symbolic model checking attempts to overcome the difficulties of planning
in nondeterministic domains by working on a symbolic representation of
sets of states and actions. The underlying idea is based on the following
ingredients:

e Algorithms search the state space by working on sets of states, rather
than single states, and on transitions from sets of states through sets
of actions, rather than working separately on each of the individual
transition.

e Sets of states, as well as sets of transitions, are represented as propo-
sitional formulas, and search through the state space is performed by
logical transformations over propositional formulas

e Specific data structures, Binary Decision Diagrams (BDDs), are used
for the compact representation and effective manipulation of proposi-
tional formulas

Example 5.15. In this example we give a first intuition on how a symbolic
representation of sets of states can be advantageous. Consider the planning
problem P with the nondeterministic domain 3 described in Example 5.2,
the initial state sg is the state labeled in Figure 5.1 as on_ship, and goal
states S, = {gatel, gate2}. The states of this simple planning domain can
be described by a single state variable indicating the position of the item,
for example, a container. The state variable pos(item) can assume values
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pos(item)=gatel

0 1
pos(item)=gate2

@
1

0 1
0 1
Figure 5.6: BDD for pos(item) = gatel V pos(item) = gate2

on_ship, at_harbor, parkingl, parking2, transitl, transit2, transit3, gatel, and
gate2.

Now let’s suppose that at each position, the item can be either on the
ground or on a vehicle for transportation. We would have a second variable
loaded, the value of which is either on_ground or on_vehicle.

Let’s also suppose that we have a variable that indicates whether a con-
tainer is empty, full, or with some items inside. The domain gets to 54
states.

Now, if we want to represent the set of states in which the container is
ready to be loaded onto a truck, this set can be compactly represented by the
formula pos(item) = gatel V pos(item) = gate2. This is a symbolic, compact
representation of a set of states. Now suppose that further 10 state variables
are part of the domain representation. There may be many states in which
the container is ready to be loaded onto a truck, while their representation
is the same as before: pos(item) = gatel V pos(item) = gate2.

BDDs provide a way to implement the symbolic representation just in-
troduced. A BDD is a directed acyclic graph (DAG). The terminal nodes
are either “truth” or “falsity” (alternatively indicated with 0 and 1, respec-
tively). The corresponding BDDis in Figure 5.6. O

In the rest of this section, we describe the algorithms for planning via
symbolic model checking both as operation on sets of states and as the
corresponding symbolic transformations on formulas.
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5.4.1 Symbolic Representation of Sets of States

A state variable representation, where each variable x; can have a value
v;; € Range(z;), can be mapped to an equivalent representation based on
propositional variables. We can represent a state by means of assignments
to propositional variables rather than assignments to state variables: For
each state variable x; and for each value v;; € Range(z;), we have a binary
variable that is true if x; = v;;, and z; = vy, is false for each k # j.

In symbolic model checking, a state is represented by means of propo-
sitional variables (that is, state variables that have value either true (T) or
false (F)) that hold in that state. We write P(s) a formula of propositional
variables whose unique satisfying assignment of truth values corresponds to
s. Let x be a vector of distinct propositional variables.

This representation naturally extends to any set of states @ C S. We
associate a set of states with the disjunction of the formulas representing
each of the states.

sEQ

The satisfying assignments of P(Q) are the assignments representing the
states of Q.

Example 5.16. In Example 5.2, consider the case in which the item (e.g., a
car) that needs to be moved to a parking area may get damaged. Moreover,
the parking area can be either open or closed, and the area can be either
full or have a slot where the item can be stored. We can represent the set
of states of this domain with three propositional variables in x:

x1 : status(car) = damaged
Zo : areaavailability = open
x5 : areacapacity= full

The set of states S of the domain has eight states. The single state s; in
which the item is not damaged, the storage area is open, and there is a slot
available for storage can be represented by the assignment of truth values
to the three proposition variables

azlkF
IL’Q%T
1‘3(—F

or analogously by the truth of the formula

P(81) = —x1 A2 A 0Z3.
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The four states in which the car is undamaged is represented by the single
variable assignment
Tl < F

or analogously by the truth of the formula

P(Q) = 1.
]

The main effectiveness of the symbolic representation is that the cardi-
nality of the represented set is not directly related to the size of the formula.
As a further advantage, the symbolic representation can provide an easy
way to ignore irrelevant information. For instance, in the previous example,
notice that the formula —x;, because it does not say anything about the
truth of x9 and x3, represents four states, where the item is not damaged in
all of them. The whole state space S (eight states) can thus be represented
with the propositional formula that is always true, T, while the empty set
can be represented by falsity, F. These simple examples give an intuitive idea
of one of the main characteristics of a symbolic representation of states: the
size of the propositional formula is not directly related to the cardinality of
the set of states it represents. If we have one billion propositional variables
to represent 210° states, with a proposition of length one, for example, z,
where x is one of the propositional variables of , we can represent all the
states where x is true.

For these reasons, a symbolic representation can have a dramatic im-
provement over an explicit state representation which enumerates the states
of a state transition system.

Another advantage of the symbolic representation is the natural encoding
of set-theoretic transformations (e.g., union, intersection, complementation)
with propositional connectives over propositional formulas, as follows:

P(Q1UQ2) = P(Q1)V P(Q2)
P(@Q1NQ2) = P(Q1)AP(Q2)
PS—-Q) = PE)AN-PQ)

5.4.2 Symbolic Representation of Actions and Transitions

We can use a vector of propositional variables, say y, to name actions.
Naming actions with a binary string of y bits will allow us to use BDDs
at the implementation level in the next sections. If we have n actions, we
can use [logn] propositional variables in y. For instance, in the previous
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example, we can use variables y; and 72 in ¥ to name actions park, move,
and deliver. We can use for instance the following encoding:

P(park) = =y1 A —ya  P(move) = y1 A —yo  P(deliver) = —y; A yo.

Now we represent symbolically the transition function v(s). We will call
the states in 7(s) the next states. To represent next states, we need a further
vector of propositional variables, say, ', of the same dimension of z. Each
variable ' € 2’ is called a next-state variable. We need it because we need
to represent the relation between the old and the new variables. Similarly
to P(s) and P(Q), P'(s) and P'(Q) are the formulas representing state s
and the set of states Q using the next state variables in 2’. A transition is
therefore an assignment to variables in , y, and =’

Example 5.17. Consider Example 5.16 and Example 5.2.  Suppose
the item to be moved is a car. The unloading operation may dam-
age the car, and the parking area may be closed and full,” We have
therefore some level of nondeterminism. Let x4 and x5 be the proposi-
tional variable for pos(car)=on_ship and pos(car)=at_harbor. The transition
pos(car)=at_harbor € ~(pos(car)=on_ship, unload) can be symbolically repre-
sented as®
x4 A (=Y A —y2) A s,

which means that in the next state the car is at the harbor and may or may
not be damaged. O

We define now the transition relation R corresponding to the transi-
tion function ~y (this will be convenient for the definition of the symbolic
representation of transition relations):

Vs € S,Va € A,Vs' € S (R(s,a,s) < s €(s,a)).

In the rest of this section, we adopt the following notation:”

e Given a set of states @, Q(z) is the propositional formula representing
the set of states () in the propositional variables a;

e R(z,y,z’) is the propositional formula in the propositional variables
z, y, and z’ representing the transition relation.

"This nondeterminism models the fact that we do not know at planning time whether
the parking area will be available.

8Here we omit the formalization of the invariant that states what does not change.

9Recall that a set of states is represented by a formula in state variables in x.
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We also adopt a QBF-like notation, the logic of Quantified Boolean For-
mulas, a definitional extension of propositional logic in which propositional
variables can be universally and existentially quantified. According to this
notation, we have:

e JzQ(z) stands for Q(z)[z < T|V Q(z)[z < F|, where [z < T]| stands
for the substitution of z with T in the formula;

o VzQ(z) stands for Q(z)[z + T] A Q(z)[x + F|.

Let us show how operations on sets of states and actions can be represented
symbolically. Consider the set of all states s’ such that from every state in
Q, s’ is a possible outcome of every action. The result is the set of states
containing any next state s’ that for any state s in @ and for any action a
in A satisfies the relation R(s,a,s’): 1

{s€S|Vs€eQand Va € A. R(s,a,s)}.

Such set can be represented symbolically with the following formula,
which can be represented directly as a BDD:

(Fzy(R(z,y,2) A Q@)))[2" + 2].

In this formula, the “and” operation symbolically simulates the effect of the
application of any applicable action in A to any state in ). The explicit
enumeration of all the possible states and all the possible applications of
actions would exponentially blow up, but symbolically we can compute all
of them in a single step.

Policies are relations between states and actions, and can therefore be
represented symbolically as propositional formulas in the variables z and y.
In the following, we write such a formula as 7(z,y).

We are now ready to describe the planning algorithms based on symbolic
model checking. In the subsequent sections, we consider an extension of the
definition of planning problem where we allow for a set of initial states rather
than a single initial state.

5.4.3 Planning for Safe Solutions

In Find-Safe-Solution-by-ModelChecking, Algorithm 5.7, univpol is the so-
called “universal policy,” that is, the set of all state-action pairs (s, a) such
that a is applicable in s. Notice that starting from the universal policy may

"9The formula is equivalent to J,c 4 ,c 4 V(s, a).
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Find-Safe-Solution-by-ModelChecking(33, s9, Sg)
univpol < {(s,a) | s € S and a € Applicable(s) }
7 < SafePlan(univpol, Sy)
if so € (Sg UDom(r)) then return m
else return(failure)

SafePlan(mg,Sy)

T D

' mg

while m # 7’ do
w7
m '\ {(s,a) € 7' | v(s,a) £ (Y5 UDom(7))} (1)
7’ < PruneUnconnected(7’, Sy) (%)

return RemoveNonProgress(7’, Sy) (4id)

Algorithm 5.7: Planning for safe solutions by symbolic model checking.

PruneUnconnected(m,Sy)
Oldr « fail
Newr < @
while Oldr # Newr do
Old7 < Newr
Newr < 7 N preimgpol(Sy U Dom(New))
return Newm

Algorithm 5.8: PruneUnconnected: Removing unconnected states.

appear unfeasible in practice, because the set of all state-action pairs can
be very large. We should not forget, however, that very large sets of states
can be represented symbolically in a compact way. Indeed, the symbolic
representation of the universal policy is:

univpol = Jz'R(z,y,z’),

which also represents the applicability relation of an action in a state.
Find-Safe-Solution-by-ModelChecking calls the SafePlan routine that re-
fines the universal policy by iteratively eliminating pairs of states and cor-
responding actions. This is done in two steps. First, line () removes from
7’ every state-action pair (s, a) for which ~(s,a) includes a nongoal state s’
that has no applicable action in 7’. Next, line () removes from 7’ every
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state-action pair (s,a) for which 7’ contains no path from s to the goal.
This second step is performed by the routine PruneUnconnected (see Algo-
rithm 5.8). PruneUnconnected repeatedly applies the intersection between
the current policy 7w and the “preimage” policy, that is, preimgpol applied
to the domain of the current policy and the goal states. The preimage pol-
icy, given a set of states Q C S, returns the policy that has at least one
out-coming state to the given set of states:

preimgpol(Q) = {(s,a) [ v(s,a) N Q # T}

preimgpol(Q) is represented symbolically as a formula in the current state
variables £ and the action variables y:

preimgpol(Q) = 3z’ (R(z,y,2') A Q(x')).

The pruning of outgoing and unconnected states is repeatedly performed
by the while loop in SafePlan until a fixed point is reached. Then in line
(ii1), SafePlan removes states and corresponding actions in the policy that
do not lead toward the goal. This is done by calling the RemoveNonProgress
routine (see Algorithm 5.9) that repeatedly performs the pruning in two
steps. First, the preimage policy prew that leads to the domain of the policy
or to the goal state in computed (“preimage policy” step). Then the states
and actions that lead to the same domain of the preimage policy or to the
goal are pruned away by the PruneStates routine (let @ C S):

PruneStates(m, Q) = {(s,a) € 7| s € Q}.

The routine PruneStates that eliminates the states and actions that lead to
the same domain of a policy is computed symbolically as follows:

PruneStates(m, Q) = 7(z,y) A ~Q(x)).

SafePlan thus returns the policy 7 that has been obtained from the universal
policy by removing outgoing, unconnected and nonprogressing actions. Find-
Safe-Solution-by-ModelChecking finally tests whether the set of states in the
returned policy union with the goal states contains all the initial states. If
this is the case, 7 is a safe solution; otherwise no safe solution exists.

Example 5.18. Let us consider the planning problem on the domain de-
scribed in Example 5.2, initial state sy where pos(car)=on_ship, and goal
states S; = {pos(car)=gate2}. The “elimination” phase of the algorithm
does not remove any policy from the universal policy. Indeed, the goal
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RemoveNonProgress(,S,)

Oldr « fail

Newn + &

while Oldr # Newr do
prem <— 7 N preimgpol(Sy U Dom(New))
Old7 - Newr
Newr < PruneStates(prem, S, U Dom(New))

return Newr

Algorithm 5.9: RemoveNonProgress: Removing states/actions that do not
lead towards the goal.

state is reachable from any state in the domain, and therefore there are no
outgoing actions. As a consequence, function RemoveNonProgress receives
in input the universal policy and refines it, taking only those actions that
may lead to a progress versus the goal. The sequence 7; of policies built by
function RemoveNonProgress is as follows (in the following we indicate with
parkingl the state where pos(car)=parkingl, etc.):

Step0 : O

Step 1 : m(parkingl) = deliver; m(transit2) = move

Step 2 : my(parkingl) = deliver; ma(transit2) = move; mo(at_harbor) = park;
ma(transitl) = move

Step 3 : m3(parkingl) = deliver; w3(transit2) = move; m3(at_harbor) = park;
m(transitl) = move; m3(parking2) = back; 73 (transit3) = back;
m3(gatel) = back; 3(on_ship) = unload

Step4 : w3
O

A remark is in order. Algorithm 5.7 can find either safe cyclic or safe
acyclic solutions. It can be modified such that it looks for a safe acyclic
solution, and only if there is no such solution does it search for a safe cyclic
solution (see Exercise 5.11).

5.4.4 Planning for Safe Acyclic Solutions

Find-Acyclic-Solution-by-ModelChecking (Algorithm 5.10) performs a back-
ward breadth-first search from the goal toward the initial states. It returns
a safe acyclic solution plan 7 if it exists, otherwise it returns failure. The
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Find-Acyclic-Solution-by-ModelChecking (%, So, Sy)

7o < failure

T O

while (mg # m and So € (S4 U Dom(7))) do
strongprem < strongpreimgpol(S, U Dom(7))
T < T
7 <— 7 U PruneStates(strongprern, Sq U Dom(7))

if (So C (Sy UDom(7)))
then return =
else return failure

Algorithm 5.10: Planning for acyclic solutions by symbolic model checking

policy 7 is constructed iteratively by the while loop. At each iteration step,
the set of states S for which a safe acyclic policy has already been found is
given in input to the routine strongpreimgpol, which returns a policy that
contains the set of pairs (s,a) such that a is applicable in s and such that a
leads to states which are all in @ C S

strongpreimgpol(Q) = {(s,a) | a € Applicable(s) and ~(s,a) C Q}.

The routine strongpreimgpol, which returns a policy that contains the set
of pairs (s,a) such that a is applicable in s and such that a leads to states
which are all in ) C S:

strongpreimgpol(Q) = Vz'(R(z,y,x') — Q(z')) N Jx'R(z,y,x'),

which states that any next state must be in () and the action represented by y
must be applicable. Notice that both preimgpol(Q) and strongpreimgpol(Q)
are computed in one step. Moreover, policies resulting from such computa-
tion may represent an extremely large set of state-action pairs.

The routine PruneStates that eliminates the states and actions that lead
to the same domain of a policy,

PruneStates(m, Q) = {(s,a) e 7| s € Q}
can be represented symbolically very simply by the formula
(2, y) A —Q(x)).

PruneStates removes from strongprer the pairs (s,a) such that a solution
is already known. This step is what allows to find the worst-case optimal
solution.
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Example 5.19. Let us consider the planning problem on the domain de-
scribed in Example 5.2, initial set of states Sy = {on_ship}, and goal
states S, = {gatel, gate2}. The sequence 7; of policies built by algorithm
Find-Acyclic-Solution-by-ModelChecking is as follows:

Q

0

w1 @ mi(transit3) = move; 7 (transit2) = move

mo @ ma(transit3) = move; ma(transit2) = move;
ma(parkingl) = deliver; mo(parking2) = deliver

w3 ma(transit3) = move; 3(transit2) = move;
m3(parkingl) = deliver; w3(parking2) = deliver;
m3(transitl) = move

ma @ my(transit3) = move; m4(transit2) = move;
m4(parkingl) = deliver; 4(parking2) = deliver;
ma(transitl) = move; m4(at_harbor) = park

75 ms(transit3) = move; 75 (transit2) = move;
75 (parkingl) = deliver; 75 (parking2) = deliver;
75 (transitl) = move; 75 (at_harbor) = park;
ms5(on_ship) = unload

T : s

Notice that at the fifth iteration, PruneStates removes from 75 all the state-
action pairs that move the container back (action back) from states such that
a solution is already known. For instance, 75(parking2) = back, 75(gatel) =
back, and so on. ]

5.4.5 BDD-based Representation

In the previous section, we showed how the basic building blocks of the
planning algorithm can be represented through operations on propositional
formulas. In this section, we show how specific data structures, Binary
Decision Diagrams (BDDs) , can be used for the compact representation
and effective manipulation of propositional formulas.

A BDD is a directed acyclic graph (DAG). The terminal nodes are either
True or False (alternatively indicated with 0 and 1, respectively). Each
nonterminal node is associated with a boolean variable and with two BDDs,
which are called the left and right branches. Figure 5.7 (a) shows a BDD
for the formula (a; <> b1) A (a2 <> b2) A (ag <> bs).

Given a BDD, the value corresponding to a given truth assignment to the
variables is determined by traversing the graph from the root to the leaves,
following each branch indicated by the value assigned to the variables. A
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path from the root to a leaf can visit nodes associated with a subset of all
the variables of the BDD. The reached leaf node is labeled with the resulting
truth value. If v is a BDD, its size |v| is the number of its nodes.!! If n is a
node, we will use var(n) to denote the variable indexing node n. BDDs are
a canonical representation of boolean formulas if

e there is a total order < over the set of variables used to label nodes,
such that for any node n and correspondent nonterminal child m, their
variables must be ordered, var(n) < var(m), and

e the BDD contains no subgraphs that are isomorphic to the BDD itself.

The choice of variable ordering may have a dramatic impact on the dimen-
sion of a BDD. For example, Figure 5.7 depicts two BDDs for the same
formula (a1 <> b1) A (a2 <> ba) A (a3 <+ bg) obtained with different variable
orderings.'?

BDDs can be used to compute the results of applying the usual boolean
operators. Given a BDD that represents a formula, it is possible to transform
it to obtain the BDD representing the negation of the formula. Given two
BDDs representing two formulas, it is possible to combine them to obtain
the BDD representing the conjunction or the disjunction of the two formulas.
Substitution and quantification on boolean formulas can also be performed
as BDD transformations.

5.5 Determinization Techniques

Recent works address the problem of planning in nondeterministic domains
by determinizing the planning domain. Intuitively the idea is to consider
one of the possible many outcomes of a nondeterministic action at a time,
using an efficient classical planning technique to find a plan that works in the
deterministic case. Then different nondeterministic outcomes of an action
are considered and a new plan for that state is computed, and finally the
results are joined in a contingent plan that considers all the possible out-
comes of actions. Of course, it may be that when a partial plan is extended

UNotice that the size can be exponential in the number of variables. In the worst
case, BDDs can be very large. We do not search through the nodes of a BDD, however,
but rather represent compactly (possibly very large) sets of states and work on such a
representation of sets of states.

12A state variable representation can lead to a variable ordering in which closely re-
lated propositions are grouped together, which is critical to good performance of BDD
exploration.
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Figure 5.7: Two BDDs for the formula (a; <+ b1) A (a2 <> b2) A (a3 <> b3).

to consider new outcomes, no solution is possible, and the algorithm must
find an alternative solution with different actions.

5.5.1 Guided Planning for Safe Solutions

Before getting into the details, we show a basic idea underlying determiniza-
tion techniques. Safe solutions can be found by starting to look for (possibly
unsafe) solutions, that is, plans that may achieve the goal but may also be
trapped in states where no action can be executed or in cycles where there
is no possibility of termination. The idea here is that finding possibly un-
safe solutions is much easier than finding safe solutions. Compare indeed
the algorithm for finding solutions Find-Solution and the one for finding
safe solutions Find-Safe-Solution in Section 5.3. Whereas Find-Solution does
not distinguish between And-branches and Or-branches, Find-Safe-Solution
needs to check that there are no unsafe loops, and this is done with the
has-unsafe-loops routine.

Algorithm 5.11 is based on this idea, that is, finding safe solutions by
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Guided-Find-Safe-Solution (X,s0,5)
if s9 € Sy then return(o)
if Applicable(sp) = @ then return(failure)
T O
loop
Q < leaves(sg,m) \ Sy
if Q = @ then do
T m\{(s,a) €| s &F(s0,7m)}
return()
select arbitrarily s € Q
n! < Find-Solution(X, s, Sy)
if 7/ # failure then do
T mU{(s,a) €’ | s ¢ Dom(r)}
else for every s’ and a such that s € y(s',a) do
e m\{(0)}

make a not applicable in s’

Algorithm 5.11: Guided planning for safe solutions.

starting from possibly unsafe solutions that are found by Find-Solution.

Guided-Find-Safe-Solution takes in as input a planning problem in a non-
deterministic domain 3 with initial state sy and goal states S,. If a safe
solution exists, it returns the safe solution .

The algorithm checks first whether there are no applicable actions in sq.
If this is the case, it returns failure.

In the loop, @ is the set of all nongoal leaf states reached by 7 from the
initial state. If there are no nongoal leaf states, then 7 is a safe solution.
When we have the solution, we get rid of the part of m whose states are not
reachable from any of the initial state (we say we “clean” the policy).

If there are instead nongoal leaf states reached by m, then we have to go
on with the loop. We select arbitrarily one of the nongoal leaf states, say,
s, and find a (possibly unsafe) solution from initial state s with the routine
Find-Solution, see Algorithm 5.2.

If Find-Solution does not return failure, then 7’ is a (possibly unsafe)
solution, and therefore we add to the current policy 7 all the pairs (s, a) of
the (possibly unsafe) solution 7’ that do not have already a state s in 7.

If a (possibly unsafe) solution does not exists (the else part of the con-
ditional) this means we are trapped in a loop or a dead end without any
possibility of getting out. According to Definition 5.9, then, this is not a
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safe solution. We therefore get rid from 7 of all the pairs (s', a) that lead to
dead-end state s. We implement this by making action a not applicable in
s'.13 In this way, at the next loop iteration, we will not have the possibility
to become stuck in the dead end.

5.5.2 Planning for Safe Solutions by Determinization

The idea underlying the Guided-Find-Safe-Solution algorithm is to use
possibly-unsafe solutions to find safe solutions. Find-Solution returns a path
to the goal by considering only one of the many possible outcomes of an
action. Looking for just one action outcome and finding paths inspires the
idea of determinization. If we replace each action a leading from state s to
n states si,..., S, with n deterministic actions ay, ..., ay,, each one leading
to a single state s1,...,s,, we obtain a deterministic domain, and we can
use classical efficient planners to find solutions in the nonderministic domain
as sequences of actions in the deterministic domain. We will have then to
transform a sequential plan into a corresponding policy, and to extend it
to consider multiple action outcomes. According to this idea, we define a
determinization of a nondeterministic domain.'*

Algorithm 5.12 exploits domain determinization and replaces Find-
Solution in Guided-Find-Safe-Solution with search in a deterministic domain.
Here we use the simple forward search algorithm Forward-search presented
in Chapter 2, but we could use a more sophisticated classical planner, as
long as it is complete (i.e., it finds a solution if it exists). This algorithm
is similar to the first algorithm for planning by determinization proposed in
literature.

Find-Safe-Solution-by-Determinization is like Guided-Find-Safe-Solution,
except for the following steps:

1. The determinization step: We add a determinization step. The
function mk-deterministic returns a determinization of a nondetermin-
istic planning domain.

2. The classical planner step: We apply Forward-search on the deter-

13This operation can be done in different ways, and depends on which kind of repre-
sentation we use for the domain. This operation may not be efficient depending on the
implementation of 3.

4 The operation of transforming each nondeterministic action into a set of deterministic
actions is complicated by the fact that we have to take into account that in different states
the same action can lead to a set of different states. Therefore, if the set of states has
exponential size with respect to the number of state variables, then this operation would
generate exponentially many actions.
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Find-Safe-Solution-by-Determinization (¥,s9,54)
if s9 € Sy then return(o)
if Applicable(sp) = @ then return(failure)
T O
Y4 < mk-deterministic(X)
loop

Q < leaves(sg,m) \ Sy
if Q = @ then do
T\ {(5,a) € 7 | 5 ¢ A(s0,m)}
return(m)
select s € Q
p' < Forward-search (24, s, S)
if p’ # fail then do
7'+ Plan2policy(p/, s)
7w+ mU{(s,a) € 7’| s ¢ Dom(m)}
else for every s’ and a such that s € y(s',a) do
r e 7\ {(50)}
make the actions in the determinization of a
not applicable in s

Algorithm 5.12: Planning for safe solutions by determinization.

ministic domain X; rather than using Find-Solution on the nondeter-
ministic domain 3. In general, we could apply any (efficient) classical
planner.

3. The plan2policy transformation step: We transform the se-
quential plan p’ found by Forward-search into a policy (see routine
Plan2policy, Algorithm 5.13), where ~,4(s, a) is the v of ¥, obtained by
the determinization of ¥. The routine det2nondet returns the original
nondeterministic action corresponding to its determinization a;.

4. The action elimination step: We modify the deterministic domain
Y4 rather than the nondeterministic domain X.

5.6 Online approaches

In Chapter 1 (see Section 1.3.3), we introduced the idea of interleaving plan-
ning and acting. Interleaving is required because planning models are just
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Plan2policy(p = (a1, ..., an),s)
T
loop for ¢ from 1 to n do
7 < m U (s, det2nondet(a;))
s < va(s, a;)
return m

Algorithm 5.13: Transformation of a sequential plan into a corresponding
policy.

Figure 5.8: Offline versus run-time search spaces.

approximations, and sensing is required to adapt to a changing environ-
ment. Another motivation is the ability to deal with realistic large domains.
Dealing with large state spaces is even more difficult in the case of nondeter-
ministic domains. The idea is that while offline planners have to find a large
policy exploring a huge state space, if we interleave acting and planning, we
significantly reduce the search space. We need indeed to find a partial pol-
icy, for example, the next few “good” actions, perform all or some of them,
and repeat these two interleaved planning and acting steps from the state
that has been actually reached. This is the great advantage of interleaving
acting and planning: we know exactly which of the many possible states
has been actually reached, and the uncertainty as well as the search space
is significantly reduced.

Intuitively, the difference in search space between planning offline and
interleaving planning and acting is shown in Figure 5.8. In the case of
purely offline planning, uncertainty in the actual next state (and therefore
the number of states to search for) increases exponentially from the initial
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state (the left vertex of the triangle) to the set of possible final states (the
right part of the triangle): the search space is depicted as the large triangle.
In planning and acting, we plan just for a few next steps, then we act and we
know exactly in which state the application of actions results. We repeat the
interleaving of planning and acting until we reach a goal state. The search
space is reduced to the sequence of small triangles depicted in Figure 5.8.

Notice that there is a difference between the search space depicted in
Figure 5.8 and the ones depicted in Figures 1.3 and 1.4, because here we
have uncertainty in the outcome of each action, and the base of each small
triangle represents all the possible outcomes of an action rather than the
different outcomes of the search for each different action in a deterministic
domain.

The selection of “good” actions (i.e., actions that tend to lead to the goal)
can be done with estimations of distances from and reachability conditions
to the goal, like in heuristic search, and by learning step by step after each
application better estimates of the distance.

A critical issue is the possibility of getting trapped in dead ends. In safely
explorable domains (see also Chapter 6), that is, domains where execution
cannot get trapped in situations where there is no longer a path to the goal,
it is possible to devise methods that are complete, i.e., that guarantee to
reach the goal if there exists a solution, and that guarantee the termination
of the planning/acting loop if no solution exists. However, not all domains
are safely explorable, and not all actions are reversible. A navigation robot
can be trapped in a hole where no navigation operation is possible anymore;
a bank transaction is critical and cannot be easily undone. Even worse, the
actor may not easily recognize that it is trapped in a dead end. For instance,
a navigation robot can enter an area where it is possible to navigate but it
is impossible to get out of that area. Despite these problems, planning and
acting methods remain a viable solution to problems that cannot be solved
purely offline.

In this section, we present some basic techniques that can be used to
interleave planning and execution.

5.6.1 Lookahead

The idea underlying lookahead methods is to generate a partial plan to
interleave planning and acting. The Lookahead-Partial-Plan procedure, Al-
gorithm 5.14, interleaves partial planning in line (i) with acting in line (i7).
At each loop, Lookahead searches for a partial plan rooted at s. It returns a
partial plan as a policy « that is partially defined, at least in s. A context-
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Lookahead-Partial-Plan(X, sq, Sy)
S < S0
while s ¢ S, and Applicable(s) # @ do
7 <—Lookahead(s, 6) ()
if = @ then return failure
else do
perform partial plan 7 (i)
s < observe current state

Algorithm 5.14: Interleaving planning and execution by lookahead.

dependent vector of parameters 6 restricts in some way the search for a
solution. Working with a progressively generated policy, defined when and
where it is needed, allows us to deal with large domain models that cannot
be represented a priori and with partial domain knowledge. This approach
combines naturally with a generative definition of ¥. A full specification
of a domain is not necessary to a partial exploration, as discussed in more
detail in Chapter 6.

There are different ways in which the generated plan can be partial and
different ways for interleaving planning and acting. Indeed, the procedure
Lookahead-Partial-Plan is parametric along two dimensions:

The first parametric dimension is in the call to the lookahead planning
step, that is, Lookahead(s, #). The parameter 6 determines the way in which
the generated plan 7 is partial. For instance, it can be partial because
the lookahead is bounded, that is, the forward search is performed for a
bounded number of steps without reaching the goal. In the simplest case,
Lookahead(s, §) can look ahead just one step, choose an action a (in this
case T = a), and at the next step perform action a. This is the extreme
case of interleaving in which the actor is as reactive as possible. In general,
however, Lookahead(s, #) can look ahead for n > 1 steps.'® The greater n is,
the more informed is the choice on the partial plan to execute; the drawback
is that the cost of the lookahead increases. In the extreme case in which the
lookahead reaches the goal from the initial state sq, if performing the found
plan succeeds, then there is no actual interleaving.

Rather than specifying the bound as a number of steps to search, 6 can
specify other kinds of bounds for the plan generation phase, for example,
some real-time interruption mechanism corresponding to the planning dead-

'5In nondeterministic domains, lookahead for n steps means to generate a branching
tree.
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line and the need to switch to acting.

However, there are other ways in which the generated plan is partial. For
instance, Lookahead can consider a some of the outcomes of a nondetermin-
istic action, that is, only some of its possible outcomes of a nondeterministic
action, and in this way the lookahead procedure can reach the goal. Even
if the goal is reached, the plan is still partial because it is not guaranteed
that the execution will actually go through the considered outcomes of the
actions. In the extreme case, Lookahead can consider just one of the possible
outcomes of an action, look for a possibly unsafe solution to the goal or, in
other words, pretend that the domain model is deterministic. In this case,
the lookahead procedure is not bounded, but the plan is still partial. The
policy 7 in this case can be reduced to a sequential plan.

It is of course possible to combine the two types of partiality — bounded
lookahead and partial number of outcomes — in any arbitrary way.

The second parametric dimension is in the application of the partial
plan that has been generated, i.e., in the execution of the partial plan .
Independently of the lookahead, we can still execute 7w in a partial way.
Suppose, for instance, that we have generated a branching plan of depth n;
we can decide to perform m < n steps.

Two approaches to the design of a Lookahead procedure are presented
next:

e lookahead by determinization, and
e lookahead with a bounded number of steps.

The former approach does not bound the search to a limited number of
steps, but searches for a (possibly unsafe) solution to the goal. At execution
time, it checks whether the reached state corresponds to the one predicted
by the (possibly unsafe) solution. The latter approach bounds the search
to a limited number of steps (in the simplest case, just one step), selects an
action according to some heuristics, memorizes the results, and performs a
value update to learn a better heuristics in possible future searches.

5.6.2 Lookahead by Determinization

Lookahead can be realized by determinizing the domain. FS-Replan (Al-
gorithm 5.15) illustrates a determinization relaxation introduced in Sec-
tion 5.5.2. The idea is to generate a path 74 from the current state to a goal
for for all outcomes of the determinized domain >; using a deterministic
planner — in this case Forward-search, but it could be any efficient determin-
istic planner, as in the case of the offline determinization (Algorithm 5.12).
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FS-Replan (3, s,5,)
g < I
while s ¢ S, and Applicable(s) # @ do
if m4 undefined for s then do
74 < Plan2policy(Forward-search(¥y, s, 5), 5)
if g = failure then return failure
perform action 74(s)
s < observe resulting state

Algorithm 5.15: Online determinization planning and acting algorithm.

The actor acts using 7y until reaching a state s that is not in the domain
of mg. At that point, a new deterministic plan starting at s is generated.
If the planning domain is safely explorable and because Forward-search is a
complete deterministic planner, then FS-Replan will lead to a goal. If the
domain has dead ends, then FS-Replan is not guaranteed to reach the goal.
Notice the relation between FS-Replan and Lookahead-Partial-Plan. In
the case FS-Replan the parameter 6 of Lookahead-Partial-Plan is realized by
the condition checking whether 74 is undefined for the current state s. FS-
Replan does not look ahead for only some steps, but until the goal is reached
according to a simplified (i.e., determinized) model of the domain.

5.6.3 Lookahead with a Bounded Number of Steps

MinMazx Learning Real Time A* (MinMax LRTA*, Algorithm 5.16) searches
the state space forward from the initial state so until in line (4), the termi-
nation checking step, the search reaches the goal or a state that has no
applicable actions. In line (7i), the action selection step, the algorithm looks
for the best worst-case action. This is the action a that produces the small-
est maximum value for h(s’), where h(s’) is the estimated distance from s’
to the goal. In line (7), the value update step, the algorithm improves the
estimate h(s) using the h-values of s’s children. This step is useful if we
perform multiple runs of the planning and acting routine and we learn from
each run.

MinMax LRTA* is guaranteed to terminate and to generate a solution
only in safely explorable domains. Notice that the termination condition
Applicable(s) # @ can check only whether we are in a direct dead end , but
in order to check whether we may end up in a indirect dead end we would
need to explore all of the states that are reachable from s.
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MinMax LRTA* (X, so, Sq)
S < S0
while s ¢ S, and Applicable(s) # @ do ()
a < aJrgrninaeApplicable(s) maxs/ew(s,a)h(sl) (Z’L)
h(s) < max{h(s), 1 + maxgcy(sayh(s’)} (i)
perform action a
s <— the current state

Algorithm 5.16: MinMax Learning Real Time A*.

MinMax LRTA* can easily be extended to deal with domains that include
costs of actions. We need only to replace the formula in the value update
step with this: h(s) <= max{h(s),c(s,a) + maxyc,(s.q)h(s')}.

To choose the action a, the algorithm does a lookahead of one step. It
is possible to extend it to look ahead n steps by generating a partial search
tree by searching forward from the current state s. Then we can update
the values in the local search space by assigning at each state the minmax
distance under the assumptions that such values do not overestimate the
correct minmax distance to the goal.

5.7 Refinement Methods with Nondeterministic
Models

In Chapter 3, we introduced a formalism for operational models based on
refinement methods. A method specifies how to accomplish a task (an ab-
stract activity of some kind) by refining it into other activities that are less
abstract. These activities may include other tasks that will need further
refinement. We devised the SeRPE and IRT algorithms to do refinement
planning and choose among different possible refinements in a deterministic
model. We extended the formalism to include goals, which can be further
refined with different refinement methods.

In this section, we use nondeterministic models in refinement methods.
This allows us to model commands and tasks with nondeterministic out-
comes, and to search for safe cyclic or acyclic solutions. We consider tasks
that are specified with programs. Tasks can be iteratively refined in sub-
tasks and goals through programs that contain the usual control constructs,
like constructs for sequences of steps, conditionals, loops, and so on. Plan-
ning algorithms that use deterministic models, such as SeRPE and IRT, can
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simply simulate the execution through such control structures and replace
commands with the corresponding -, which leads from one state to a single
state. Planning algorithms that use nondeterministic models must instead
take into account that programs might be executed in different states. A
simple simulation starting from one state does not allow us to know ex-
actly in which state the program will be executed. This makes the planning
algorithms much more complicated.

In the following subsections, we first recall the formalism for tasks and
adapt it to nondeterministic models (Section 5.7.1). We then define context-
dependent plans (Section 5.7.2). They are more expressive than policies
because they can take into account the context in which a step of the plan is
executed, and the context can depend of the steps that have been executed
so far. In the subsequent two subsections, we provide a planning algorithm
to generate context dependent plans that achieve tasks. We do this in two
steps. First, we generate automatically search automata from given tasks
(Section 5.7.3). Search automata are used to guide the search for context-
dependent plans. Second, we define the planning algorithm that exploits
the generated planning automata (Section 5.7.4).

5.7.1 Tasks in Refinement Methods

We start from a slightly revised version of the formalism defined in Chap-
ter 3, Section 3.1.2. A refinement method is a task with a body.'® The body
is a program that refines the task into a sequence of subtasks, commands,
and goals. The program contains usual control structures, like sequences,
conditionals, and loops, over tasks, goals, and commands.
In Section 3.1.2 we defined the following kinds of tasks:
e A reachability goal g, that is, a partial state variable assignment
Ty = v,...,Tp = v, for each z;,...,xp € X, and each v; €
Range(z;),...,vr € Range(xy). To distinguish between safe cyclic
and safe acyclic solutions (see Definition 5.10 and Definition 5.11, re-
spectively), we now have two kinds of reachability goals:

— achieve-cyclic(g)
— achieve-acyclic(g)

e A command cmd. We model each command in a nondeterministic
domain ¥ = (A, S,v), where ~ is nondeterministic: v: S x A — 25.

1Here we do not have a separate precondition field but use conditional tasks.
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e A sequence of tasks: t1;t2, where t1 and 5 are tasks.

e A conditional task: if p then t1 else to, where t1 and ¢y are tasks and
p is partial variable assignment.

e An iterative task: whilep dot, where t is a task and p is partial variable
assignment.

e A test: test p, where p is partial variable assignment.

We also will define another kind of task that is specifically useful when we
plan in nondeterministic domains:

o A failure-handling task:
if t1 fails then to, where t; and to are tasks.

The failure-handling task if t1 fails then to is the basic construct for handling
failure. It expresses a preference to achieve t; if possible, and to try to
achieve ty only if ¢; is impossible.

5.7.2 Context-Dependent Plans

Policies as defined so far are stationary or memoryless policies, that is, they
always perform the same action in the same state, independently of the
actions that have been previously performed and the states that have been
previously visited. Policies are not enough to represent plans that can satisfy
tasks with programs in the body a refinement methods. Plans should take
into account previously-executed steps. Consider for instance a sequence
of tasks ti1;to, where both ¢; and to are reachability goals, for example,
t1 = achieve acyclic g1 and to = achieve acyclic ga. In this case, we might
need to perform different actions (and execute the different corresponding
commands) in the same state depending on whether the actor is trying to
achieve the first goal in the first task g; or the second task go. As a simple
example, consider the case in which a robot has to move to a given location
and has to come back afterward. Similar examples can be given for the
constructs for conditional and iterative tasks, as well for failure-handling
and recovery constructs.

One could address this issue by extending the representation of a state
to include all relevant data, for example, the history of states visited so
far. This might work in theory, but its implementation is not practical. We
take a different approach by introducing the notion of context. A context
specifies which subtask the actor is in the process of satisfying. For instance,
in the previous example, where we have the task t1;ts, then the actor is in a
context while trying to satisfy task ¢, and in a different context while trying
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Figure 5.9: An example of nondeterministic planning domain

to satisfy task to. In this way, actions to be performed can depend not only
on the current state of the domain but also on the “internal state” of the
actor, on its “intention” to satisfy one subtask or another. To represent this
kind of plans, we introduce the notion of context-dependent plan.

Definition 5.20. (Context-dependent Plans) A context-dependent plan
7 for a domain ¥ = (S, A, ) is a structure (C, ¢, act, ctxt), where:

e (' is a set of contexts, representing the internal state of the actor
® (g is the initial context,
e act: S x C — A is the action function, and

o ctzt: S x C x 8 — (C is the context function. O

If we are in a state s and in a context ¢, then act(s, ¢) returns the action
to be performed by the plan, while ctxt(s,c,s’) associates to each reached
state s’ a new context. The pair (s,c¢) € S x C defines the state of the
context-dependent plan.

Example 5.21. In Figure 5.9, we have a nondeterministic planning domain
for a navigation robot. Each state s; corresponds to a location of the robot
in a building. Some of the actions for moving the robot are nondetermin-
istic. Let us suppose that the robot is initally in state s;, and the task is
achieve-acyclic(sq); achieve-cyclic(sy).
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’ state ‘ context ‘ action ‘ next state | next context
sl cl move(rl,I1,12) s2 c2
sl c2 move(rl,I1,14) sl cl
sl c2 move(rl,I1,14) s4 cl
s2 c2 move(rl,12,I1) sl c2
s4 cl move(rl,l4,I1) sl cl

Figure 5.10: A context-dependent plan.

There is no policy on the set of states S = {s1, s2, s3, s4} that can achieve
such task. The context-dependent plan in Figure 5.10 achieves instead the
task (we write the context-dependent plan in a tabular form to make it
easier to read). O

An important remark is in order. One may think that it is enough to
define policies on the domain of pairs state contexts S x C rather than on
the set of states S, and reuse all the algorithms and approach defined so far.
Notice however, that we need to know which are the possible contexts in C,
and this can be done in practice only with a generative approach that, given
a task, constructs the contexts corresponding to the subtasks. This will be
explained in Section 5.7.3.

We need to define now when a context-dependent plan achieves a task.
In the following, we provide just an intuitive idea.

e When t is achieve-cyclic(g) or achieve-acyclic(g), then 7 satisfies ¢ if
and only if 7 is equivalent to a safe cyclic solution or a safe acyclic
solution for g, respectively.

e When ¢ is a command ¢md, then 7 achieves ¢ in state (s, ¢) if and only
if there exists an action a corresponding to c¢md that is applicable in
state (s,c). Otherwise, it fails.

e When t is a sequence t1;to, then 7 achieves t if and only if 7 achieves
first ¢1 and, if #; is achieved , then 7 achieves t5. If m achieves t; and
then it does not achieve ts9, then 7 fails. If w does not achieve t1, then
7 fails.

e When t is if p then t; else ty, then m needs to satisfy t; if p holds in
(s,¢), and it needs to satisfy to if p does not hold in (s, c).

e When t is while p do t1, then m must satisfy cyclically ¢; while p holds.
Moreover, 7 should guarantee the termination of the loop.
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e When ¢ is test p, then m must lead to a state (s, c) where p holds.

e When t is if t; fails then to, then m must satisfy £;. In the case it fails
(i.e., there is no possibility to satisfy ¢1), then is must satisfy to.

5.7.3 Search Automata

In this subsection, we define a mapping from tasks to a class of automata
called Search Automata. In the subsequent subsection (see Section 5.7.4),
we show how search automata can be used to guide the search for context-
dependent plans.

The states of each search automaton correspond to the contexts of the
plan under construction, according to Definition 5.20. Given a task, we
generate the contexts that we need in the context-dependent plan. It is a
generative approach, which allows us determine the set of contexts C'. The
transitions from a state (context) to other states (contexts) of each search
automaton define constraints on the states that have to be searched for by
the planning algorithm.

Definition 5.22. (Search Automata) Let S be the set of states of the
planning domain. A search automaton is a tuple (C, ¢, T, RB) where:

e C is the set of states of the search automaton.”
e ¢g € (C is the initial state of the search automaton.

e T'(c) = (t1,...,tm) is the list of transition for state ¢ € C. Each
transition ¢; is either

— normal, in which case t; € 2% x (C' x {always, some})*
— immediate, in which case t; € 2% x (C' U {succ, fail}).

e RB ={rby,...,rb,}, with rb; C C is the set of red blocks, states where
the execution cannot stay forever. O

A list of transitions T'(¢) is associated to each state c¢. Each transition
determines the behavior that should be satisfied if we move from ¢ to T'(c).
The order of the list represents the preference among these transitions. It
is important to have such order among transitions because it will allow us

1"We intentionally call the set of states of the search automaton C, like the set of
contexts of the context-dependent plans in Definition 5.20. Indeed, the states of the
search automaton correspond to the contexts of the plan that is generated by the algorithm
described in Section 5.7.4.
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to distinguish between “main” tasks that we need to achieve from recovery
tasks we need to achieve only if the main task cannot be achieved.

The transitions of a search automaton are either normal or immediate.
The former transitions correspond to performing an action in the plan. The
latter ones describe updates in the search state, which do not correspond to
performing an action.'®

The normal transitions are defined by a condition on the states of the
planning domain and by a list of target search states. Each target search
state is marked either by always or some. Let p be a partial state assignment.
State s satisfies a normal transition (p, ((c},k)),...,(c,,k},))), with k] €
{always, some}, if it satisfies condition p, and if there is some action a from
s such that:

e all the next states reachable from s when performing action a are
compatible with some of the target search states, and

e for each target search state marked some, there is a compatible next
state.

When a target search state is marked with some, it means that there should
be always at least one next state that satisfies a condition. It is used in the
case of safe cyclic solutions, in which we have to guarantee that from each
state we should reach a given goal.

The immediate transitions are defined by both a condition and by a
target search state. A state satisfies an immediate transition (p,c’) if it
satisfies condition p and if it is compatible with the target state ¢. Special
target search states succ and fail are used to represent success and failure:
all states are compatible with success, while no state is compatible with
failure.

The red blocks of a search automaton represent sets of search states
where the execution cannot stay forever. Typically, a red block consists of
the set of search states in which the execution is trying to achieve a given
condition, as in the case of a reachability goal. If an execution persists inside
such a set of search states, then the condition is never reached, which is not
acceptable for a reachability goal. In the search automaton, a red block is
used to represent the fact that any valid execution should eventually leave
these search states.

We now describe the search automata that are automatically constructed

¥Immediate transitions resemble e-transitions of classical automata theory. An e-
transition allows an automaton to change its state spontaneously, that is without con-
suming an input symbol [286].
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success

fail

Figure 5.11: Search automaton for safe acyclic solutions.

from tasks. Rather than providing the formal definition of the search au-
tomata, we represent them using a graphical notation. We start with the
search automaton for a reachability goal p, that is, a safe solution as de-
fined in Section 5.2.3. We have to distinguish the case of cyclic from acyclic
solutions (see Definitions 5.10 and 5.11, respectively).

Let us start with acyclic solutions (see Figure 5.11). The search au-
tomaton has two search states: ¢y (the initial state) and ¢;. There are two
transitions leaving state c¢;. The first one, guarded by condition p, is a suc-
cess transition that corresponds to the cases where p holds in the current
domain state. The second transition, guarded by condition —p, represents
the case in which p does not hold in the current state, and therefore, to
achieve goal p in a safe acyclic way, we have to ensure that the goal can be
achieved from all the next states. We recall that this is the condition for the
plannig algorithm that will be devised in the next section (Section 5.7.4). We
remark that the second transition is a normal transition because it requires
performing an action in the plan; the first transition, instead, is immediate.
In the diagrams, we distinguish the two kinds of transitions by using thin
arrows for the immediate ones and thick arrows for the normal ones. A do-
main state is compatible with state ¢ only if it satisfies in a safe acyclic way
goal p, that is, if condition p holds in the current state (first transition from
c1) or if the goal will be reachable in all the next states (second transition
from ¢;).

According to the semantics of safe acyclic solutions, it is not possible
for the search to stay in state ¢; forever, as this corresponds to the case
in which condition p is never reached. That is, set {c;} is a red block of
the search automaton. In the diagrams, states that are in a red block are
marked in grey. State ¢y takes into account that it is not always possible
to ensure that condition p will be eventually reached, and that if this is not
the case, then p cannot be satisfied in a safe acyclic way, and therefore the
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success

fail

Figure 5.12: Search automaton for safe cyclic solutions.

search fails. The precedence order among the two transitions from state cg,
represented by the small circular dotted arrow between them, guarantees
that the transition leading to a failure is followed only if it is not possible
to satisfy the constraints of state c;.

We provide now the search automaton for safe cyclic solutions (see Fig-
ure 5.12). The difference with respect to the search automaton for safe
acyclic solutions is in the transition from ¢; guarded by condition —p. In
this case we do not require that the goal holds from all the next states, but
only from some of them. Therefore, the transition has two possible targets,
namely states ¢; (corresponding to the next states were we expect to achieve
the safe cyclic solution for p) and ¢¢ (for the other next states). The seman-
tics of safe cyclic solutions requires that there should be always at least one
next state that satisfies the definition of safe cyclic solution for goal p; that
is, target ¢y of the transition is marked by some in the search automaton.
This “non-emptiness” requirement is represented in the diagram with the
mark some on the arrow leading back to ¢;. The preferred transition from
state ¢g is the one that leads to c¢;. This ensures that the algorithm will try
to find a safe cyclic solution whenever possible.

» success

fail

Figure 5.13: Search automaton for primitive actions.
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Figure 5.13 shows the simple search automaton for the primitive action
a € A corresponding to a command. The transition from the state ¢; guar-
antees that a domain state is acceptable only if the next state is achieved by
performing action a, that is, only if the next state is reachable by performing
action a.

The search automaton for the sequence ti;ts is shown in Figure 5.14
The initial state of the compound automaton coincides with the initial state
of automaton A; for ¢;, and the transitions that leave A; with success
are redirected to the initial state of A;,, the automaton for t. The search
automaton for the conditional task if p then t1 else to is in Figure 5.15. The
context ¢y immediately moves the acting to the initial context of one of the
search automata for the tasks t; or to according to the current domain state,
i.e. whether the property p holds in the current domain state or not.

The search automaton for the while loop while p do t; is in Figure 5.16.
The context cg has two immediate transitions guarded by the conditions p
and —p. The former leads to the initial context of the automaton for ¢1, i.e.,
the body of the cycle, and the latter leads to the success of the compound
automaton. The successful transitions of the automaton for ¢; return back to
context cg, but the failure transition for ¢; falsifies the compound automaton.
The context ¢y is marked as a red block. It guaranties that the loop is finite.

Figure 5.17 shows the simple search automaton for test p. All transitions
are immediate, because action performing is not required. The automaton
only checks that the current domain state satisfies formula p.

Figure 5.18 shows the search automaton for the failure-handling con-
struct if t1 fails then t3. The search automaton is defined similarly to that
for sequences t1;to. The difference is that in this case, the transitions that
leave Ay, (the search automaton for ¢;) with failure are redirected to the
initial state of Ay,.

————> success

Figure 5.14: Search automaton for the sequence t1; 5.
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succ

fail

» fail

succ

Figure 5.16: Search automaton for loop task while p do t1.

5.7.4 Planning Based on Search Automata

As stated in the previous section, the search automata that we have gen-
erated in the previous section are used to guide the search of the planning
algorithm that we present in this section. The algorithm is guaranteed to
find solution plans if a solution exists. It terminates with failure otherwise.
The algorithm works on sets of states. For this reason, it is specially suited
for symbolic model checking techniques (see Section 5.4).

Algorithm 5.17 is the main procedure for generating plan 7. It takes in
input a nondeterministic planning domain 3., a set of initial states Sy, and
a task t as defined in Section 5.7.1. It works in three main steps. In the
first step, build_automaton constructs the search automaton as defined in
Section 5.7.3. The states in the resulting automaton are the contexts of the
generated context-dependent plan 7 that is being built (see Definition 5.20),
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Figure 5.18: Search automaton for failure-handling task if t1 fails then to.

and the transitions represent the possible evolutions of the contexts. In the
second step, compute_associated_states explores the planning domain and
associates a set of states of the planning domain to each state in the search
automaton. Intuitively, these are the states for which a plan exists from
the given context. In the third step, synthesize-plan constructs a plan by
exploiting the information on the states associated to the context.

Once the search automaton is built by the function build_automaton, the
planning algorithm proceeds by associating to each context in the search
automaton a set of states in the planning domain. The association is built
by compute_associated_states, see Algorithm 5.18. The algorithm starts with
an optimistic association, which assigns all the states in the planning domain
(S is the set in ¥ = (S, A,7)) to each context (line (i)). The algorithm

Plan-with-search-automata(X, Sy, t)
automaton < build_automaton (X, Sy, t)
AssociatedStates = compute_associated_states(3, Sy, t, automaton)
7 = synthesize-plan(automaton, AssociatedStates)
return m

Algorithm 5.17: Planning based on search automata
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compute _associated_states(3, Sp, t, automaton)
foreach ¢ € automaton.C' do assoc(c) < S ©)
Green-Block «+ {c € C such that Vrb; € RB ¢ ¢ rb;} (i1)
Blocks < { Green-Block} U RB
while 3b € Blocks such that a fixed point is not reached do (7
if b € RB then for each ¢ € b do assoc(c) < & (v
while Je¢ € b such that ¢ needs update do v
assoc(c) «+ update-ctxt(automaton, assoc, c) (vi
return assoc

)
)
)
)

Algorithm 5.18: Associating states to contexts.

computes the so-called Green-Block of contexts (see line (7)), which is the
set of contexts that are not contained in any red block (see Section 5.7.3
and Definition 5.22). We need indeed to distinguish contexts in the green
block from those in red blocks because the search should eventually leave a
context in a red block, whereas this is not required for contexts in the green
block.

The association is then iteratively refined. At any iteration of the loop
(lines (i11)—(vi)), a block of context is chosen, and the corresponding asso-
ciations are updated. Those states are removed from the association, from
which the algorithm discovers that the tasks in the context are not satis-
fiable. The algorithm terminates when a fixed point is reached, that is,
whenever no further refinement of the association is possible: in this case,
the while condition at line (74) evaluates to false for each b € Blocks and the
guard of the while loop fails.

The chosen block of contexts may be either one of the red blocks or the
green block. In case the green block is chosen, the refinement step must
guarantee that all the states associated to the contexts are “safe,” that is,
that they never lead to contexts where the goal can no longer be achieved.
This refinement (lines (v)—(vi)) is obtained by choosing a context in the green
block and by “refreshing” the corresponding set of states (function update-
ctxt). Once a fixed point is reached and all the refresh steps on the contexts
in b do not change the association (i.e., no context in b needs updates), the
loop at lines (v)—(vi) is left, and another block is chosen.

In the case of red blocks, the refinement needs to guarantee not only that
the states in the association are “safe” but also that the goal is eventually
resolved, that is, that the contexts in the red block are eventually left. To
this purpose, the sets of states associated to the red block contexts are
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initially emptied (line (iv)). Then, iteratively, one of the red-block contexts
is chosen, and its association is updated (lines (v))-(vi)). In this way, a least
fixed point is computed for the states associated to the red block.

The core step of compute_associated_states is function update-ctxt. It
takes in input the search automaton (C,cg, T, RB), the current association
of states assoc, that is, a function assoc : C' — 2°, and a context ¢ € C' and
returns the new set of states in .S to be associated to context c. It is defined
as follows:

update-ctxt(automaton, assoc, c) =
{s € S| 3trans € T'(c) such that s € trans-assoc(automaton, trans, assoc)}.

According to this denition, a state s is compatible with a search state c
if it satisfies the conditions of some transition ¢ from that search state. If
trans = (p, ) is an immediate transition, then:

trans-assoc(automaton, trans, assoc) = {s € S | s = p and s € assoc(c)},

where we assume that assoc(fail) = @ and assoc(succ) = S. That is, in the
case of an immediate transition, we require that s satisfies property p and
that it is compatible with the new search state ¢’ according to the current
association assoc.

If trans = (p, ((¢}, k}), - .., (c,, k},)) is a normal transition, then:

trans-assoc(automaton, trans, assoc) =
{s € S| s = pand Ja € Applicable(s) such that
(s,a) € gen-preimage((assoc(c)), k), ..., (assoc(c,,), k.,))}

where:
gen-preimage((S1, k1), ..., (Sn, kn)) =
{(s,a) | 3S] € S1...5; C Sj such that
v(s,a) =S1U...US) and
SinS; = ifi# jand S # @ if k; = some}

Also in the case of normal transitions, trans-assoc requires that s satisfies
property p. Moreover, it requires that there is some action a such that the
next states y(s, a) satisfy the following conditions:

e all the next states are compatible with some of the target search states,
according to association assoc; and

e some next state is compatible with each target search state marked as
some.
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These two conditions are enforced by requiring that the state-action pair
(s,a) appears in the generalized preimage of the sets of states assoc(c})
associated by assoc to the target search states ;.

It is now possible to explain in more detail the iterative refinement at
lines (4ii)—(vi) in Algorithm 5.18. Recall that in the iterative refinement
loop, the following conditions are enforced:

e (C1) a domain state s is associated to a search state ¢ only if s can
satisfy the condition described by some transition of ¢;

e (C2) actions from a given state s cannot be performed if they stay
forever inside a red block.

In each step of the iterative refinement, either a search state in the green
block is selected and the corresponding set of domain states is refined ac-
cording to (C1); or a red block is selected and all the sets of domain states
associated to its search states are refined according to (C2). The refinement
algorithm terminates when no further refinement step is possible, that is,
when a fixed point is reached.

Function update-ctxt(automaton, assoc, c) is used in the refinement steps
corresponding to (C1) as well as in the refinement steps corresponding to
(C2). In the former case, the refinement step simply updates assoc(c) to
the value of update-ctxt(automaton, assoc,c). In the latter case, the re-
finement should guarantee that any valid execution eventually leaves the
search states in the selected red block rb;. To this purpose, the empty
set of domain states is initially associated to the search states in the
red block; then, iteratively, one of the search states ¢ € rb; is chosen,
and its association assoc(c) is updated to update-ctxt(automaton, assoc,c).
These updates terminate when a fixed point is reached, that is, when
assoc(c) = update-ctxt(automaton, assoc, c) for each ¢ € rb;. In this way,
a least fixed point is computed, which guarantees that a domain state is
associated to a search state in the red block only if there is a plan from that
domain state that leaves the red block in a finite number of actions.

Finally, extract_plan extracts a plan by using the information about the
associated domain states to each search state. Indeed, once a stable associ-
ation assoc from search states to sets of domain states is built for a search
automaton, a plan can be easily obtained. The contexts for the plan cor-
respond to the states of the search automaton. The information necessary
to define functions act and ctzt is implicitly computed during the execution
of the refinement steps. Indeed, function trans-assoc defines the possible
actions a = act(s, c) to be performed in the state-context pair (s, ¢), namely
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Figure 5.19: Nondeterministic model for an open-door method.

the actions that satisfy the constraints of one of the normal transitions of the
search automaton. Moreover, function gen-preimage defines the next acting
context ctrt(s,c,s’) for any possible next state s’ € v(s,a).

5.8 Acting with Input/Output Automata

In this section we introduce a different kind of nondeterministic model to
represent refinements at the acting level. It is based on the notion of in-
put/output automata and allows us to model refinements with a distributed
approach.

Example 5.23. Consider Example 3.4 of opening a door. For simplicity,
here we consider the case in which the door is not locked. The robot does
not know whether the door can be opened by pulling, pushing or sliding
the door. Moreover, we assume the robot has no reliable way to detect in
advance how the door should be opened. The open-door action is refined in a
single refinement method the model of which is partly shown in Figure 5.19.
For the sake of simplicity, the acting states are simply labeled instead of
giving a full definition of their state variables as in Example 3.4. In states
s2, 84, and sg the door has been opened by pushing, pulling, and sliding it,
respectively. When in s, if the robot tries to pull the door but the door is
still closed, we then go to state s3. When in s3, if the robot tries to push
the door but the door is still closed, we then go to state s;. We assume
that if we are in state sg, the door can be opened by sliding it. In this
simple example, we assume that after a failing attempt to open the door the
robot can retry, possibly with different parameters for the commands, such
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as increased forces. O

5.8.1 Input/Output Automata

In Example 5.23, we suppose we have a robot that is not able to recognize
(e.g., by artificial vision capabilities) the way to open the door. The robot
therefore tries to open the door by pulling, then by pushing, and finally by
sliding the door. Suppose now that, rather than equipping the robot with
suc