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Foreword

Over ten years ago, Malik Ghallab, Dana Nau, and Paolo Traverso gave us
the first—and to date only—comprehensive textbook dedicated to the field
of Automated Planning, providing a much needed resource for students,
researchers and practitioners. Since then, this rich field has continued to
evolve rapidly. There is now a unified understanding of what once seemed
disparate work on classical planning. Models and methods to deal with
time, resources, continuous change, multiple agents, and uncertainty have
substantially matured. Cross-fertilization with other fields such as software
verification, optimization, machine learning, and robotics has become the
rule rather than the exception. A phenomenal range of applications could
soon be within reach—given the right future emphasis for the field.

Today, the authors are back with a new book, Automated Planning and
Acting. As the title indicates, this is not a mere second edition of the older
book. In line with the authors’ analysis of where the future emphasis should
lie for the field to realize its full impact, the book covers deliberative compu-
tational techniques for both planning and acting, that is for deciding which
actions to perform and also how to perform them. Automated Planning and
Acting is more than a graduate textbook or a reference book. Not only
do the authors outstandingly discharge their duties of educating the reader
about the basics and much of the recent progress in the field, but they also
propose a new framework from which the community can start to intensify
research on deliberative acting and its integration with planning.

These aims are reflected in the book’s content. The authors put the
integration of planning and acting at the forefront by dedicating an entire
chapter to a unified hierarchical model and refinement procedures that suit
the needs of both planning and acting functions. Each chapter devoted to
a particular class of representations also includes significant material on the
integration of planning and acting using these representations. Overall, the
book is more focused than its predecessor, and explores in even greater depth
models and approaches motivated by the needs of planning and acting in
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Foreword xvii

the real world, such as handling time and uncertainty. At the same time,
the authors successfully balance breadth and depth by providing an elegant,
concise synthesis of a larger body of work than in their earlier text.

There is no doubt that Automated Planning and Acting will be the text
I require my students to read when they first start, and the goto book on
my shelf for my own reference. As a timely source of motivation for game-
changing research on the integration of planning and acting, it will also help
shape the field for the next decade.

Sylvie Thiébaux
The Australian National University
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Preface

This book is about methods and techniques that a computational agent can
use for deliberative planning and acting, that is, for deciding both which
actions to perform and how to perform them, to achieve some objective.
The study of deliberation has several scientific and engineering motivations.

Understanding deliberation is an objective for most cognitive sciences. In
artificial intelligence research, this is done by modeling deliberation through
computational approaches to enable it and to allow it to be explained. Fur-
thermore, the investigated capabilities are better understood by mapping
concepts and theories into designed systems and experiments to test empir-
ically, measure, and qualify the proposed models.

The engineering motivation for studying deliberation is to build systems
that exhibit deliberation capabilities and develop technologies that address
socially useful needs. A technological system needs deliberation capabilities
if it must autonomously perform a set of tasks that are too diverse – or must
be done in environments that are too diverse – to engineer those tasks into
innate behaviors. Autonomy and diversity of tasks and environments is a
critical feature in many applications, including robotics (e.g., service and
personal robots; rescue and exploration robots; autonomous space stations,
satellites, or vehicles), complex simulation systems (e.g., tutoring, training
or entertainment), or complex infrastructure management (e.g., industrial
or energy plants, transportation networks, urban facilities).

Motivation and Coverage

The coverage of this book derives from the view we advocated in our previous
work [230], which we now briefly summarize.

Automated planning is a rich technical field, which benefits from the
work of an active and growing research community. Some areas in this field
are extensively explored and correspond to a number of already mature

Authors’ manuscript. Published by Cambridge University Press. Do not distribute. xviii

http://cambridge.org/9781107037274


Preface xix

techniques. However, there are other areas in which further investigation
is critically needed if automated planning is to have a wider impact on a
broader set of applications. One of the most important such areas, in our
view, is the integration of planning and acting. This book covers several
different kinds of models and approaches – deterministic, hierarchical, tem-
poral, nondeterministic and probabilistic – and for each of them, we discuss
not only the techniques themselves but also how to use them in the integra-
tion of planning and acting.

The published literature on automated planning is large, and it is not
feasible to cover all of it in detail in a single book. Hence our choice of what
to cover was motivated by putting the integration of planning and acting
at the forefront. The bulk of research on automated planning is focused
on a restricted form called classical planning, an understanding of which is
prerequisite introductory material, and we cover it in part of Chapter 2. But
we have devoted large parts of the book to extended classes of automated
planning and acting that relax the various restrictions required by classical
planning.

There are several other kind of deliberation functions, such as monitor-
ing, reasoning about one’s goals, reasoning about sensing and information-
gathering actions, and learning and otherwise acquiring deliberation models.
Although these are not our focus, we cover them briefly in Chapter 7.

The technical material in this book is illustrated with examples inspired
from concrete applications. However, most of the technical material is the-
oretical. Case studies and application-oriented work would certainly enrich
the integration of planning and acting view developed in here. We plan to
devote a forthcoming volume to automated planning and acting applications.

Using This Book

This work started as a textbook project, to update our previous textbook
on automated planning [231]. Our analysis of the state of the art led us
quickly to embrace the objective of covering planning and acting and their
integration and, consequently, to face two obstacles:

• The first problem was how to cover a domain whose scope is not easily
amenable to a sharp definition and that requires integrating conceptu-
ally heterogenous models and approaches. In contrast to our previous
book, which was focused on planning, this one proved harder to con-
verge into a reasonably united perspective.

• The second problem was how to combine a textbook approach, that
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xx Preface

is, a coherent synthesis of the state of the art, with the development of
new material. Most of this new material is presented in comprehensive
detail (e.g., in Chapter 3) consistent with a textbook use. In a few
parts (e.g., Section 4.5.3), this new material is in preliminary form and
serves as an invitation for further research.

This book can be used as a graduate-level textbook and as an infor-
mation source for scientists and professionals in the field. We assume the
reader to be familiar with the basic concepts of algorithms and data struc-
tures at the level that one might get in an undergraduate-level computer
science curriculum. Prior knowledge of heuristic search techniques would
also be helpful, but is not strictly necessary because the appendices provide
overviews of needed tools.

A complete set of lecture slides for this book and other auxiliary materials
are available online.
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Chapter 1

Introduction

This chapter introduces informally the concepts and technical material de-
veloped in the rest of the book. It discusses in particular the notion of
deliberation, which is at the core of the interaction between planning and
acting. Section 1.1 motivates our study of deliberation from a computa-
tional viewpoint and delineates the scope of the book. We then introduce
a conceptual view of an artificial entity, called an actor, capable of acting
deliberately on its environment, and discuss our main assumptions. Delib-
eration models and functions are presented next. Section 1.4 describes two
application domains that will be simplified into illustrative examples of the
techniques covered in rest of the book.

1.1 Purpose and Motivations

1.1.1 First Intuition

What is deliberative acting? That is the question we are studying in this
book. We address it by investigating the computational reasoning principles
and mechanisms supporting how to choose and perform actions.

We use the word action to refer to something that an agent does, such
as exerting a force, a motion, a perception or a communication, in order to
make a change in its environment and own state. An agent is any entity
capable of interacting with its environment. An agent acting deliberately is
motivated by some intended objective. It performs one or several actions
that are justifiable by sound reasoning with respect to this objective.

Deliberation for acting consists of deciding which actions to undertake
and how to perform them to achieve an objective. It refers to a reasoning
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2 Chapter 1

process, both before and during acting, that addresses questions such as the
following:

• If an agent performs an action, what will the result be?

• Which actions should an agent undertake, and how should the agent
perform the chosen actions to produce a desired effect?

Such reasoning allows the agent to predict, to decide what to do and how do
it, and to combine several actions that contribute jointly to the objective.
The reasoning consists of using predictive models of the agent’s environment
and capabilities to simulate what will happen if the agent performs an action.
Let us illustrate these abstract notions intuitively.

Example 1.1. Consider a bird in the following three scenes:

• To visually track a target, the bird moves its eyes, head, and body.

• To get some food that is out of reach, the bird takes a wire rod, finds
a wedge to bend the wire into a hook, uses the hook to get the food.

• To reach a worm floating in a pitcher, the bird picks up a stone and
drops it into the pitcher, repeats with other stones until the water has
risen to a reachable level, and then picks up the worm.

Example 1.1 mentions actions such as moving, sensing, picking, bending
and throwing. The first scene illustrates a precise coordination of motion
and sensing that is called visual servoing. This set of coordinated actions
is certainly purposeful: it aims at keeping the target in the field of view.
But it is more reactive than deliberative. The other two scenes are sig-
nificantly more elaborate: they demand reasoning about causal relations
among interdependent actions that transform objects, and the use of these
actions to achieve an objective. They illustrate our intuitive notion of acting
deliberately.

The mechanisms for acting deliberately have always been of interest to
philosophy.1 They are a subject of intense research in several scientific
disciplines, including biology, neuroscience, psychology, and cognitive sci-
ences. The deliberative bird behaviors of Example 1.1 have been observed
and studied from the viewpoint of how deliberative capabilities are devel-
oped, in species of corvids such as crows [597] or rooks [71, 70]. Numerous
other animal species have the ability to simulate their actions and deliber-

1In particular, the branch of philosophy called action theory, which explores questions
such as, “What is left over if I subtract the fact that my arm goes up from the fact that
I raise my arm?” [610].
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ate on the basis of such simulations.2 The sophisticated human deliberation
faculties are the topic of numerous research, in particular regarding their
development in infants and babies, starting from the work of Piaget (as in
[478, 479]) to the recent diversity of more formal psychology models (e.g.,
[563, 19, 461]).

We are interested here in the study of computational deliberation capa-
bilities that allow an artificial agent to reason about its actions, choose them,
organize them purposefully, and act deliberately to achieve an objective. We
call this artificial agent an actor. This is to underline the acting functions on
which we are focusing and to differentiate them from the broader meaning
of the word “agent.” We consider physical actors such as robots, as well as
abstract actors that act in simulated or virtual environments, for example,
through graphic animation or electronic Web transactions. For both kinds
of actors, sensory-motor functions designate in a broad sense the low-level
functions that implement the execution of actions.

1.1.2 Motivations

We address the issue of how an actor acts deliberately by following the
approaches and methods of artificial intelligence (AI). Our purpose proceeds
from the usual motivations of AI research, namely:

• To understand, through effective formal models, the cognitive capa-
bilities that correspond to acting deliberately.

• To build actors that exhibit these capabilities.

• To develop technologies that address socially useful needs.

Understanding deliberation is an objective for most cognitive sciences.
The specifics of AI are to model deliberation through computational ap-
proaches that allow us to explain as well as to generate the modeled capa-
bilities. Furthermore, the investigated capabilities are better understood by
mapping concepts and theories into designed systems and experiments to
test empirically, measure, and qualify the proposed models. The technologi-
cal motivation for endowing an artificial actor with deliberation capabilities
stems from two factors:

• autonomy, meaning that the actor performs its intended functions
without being directly operated by a person, and

2In the interesting classification of Dennett [150], these species are called Popperian,
in reference to the epistemologist Karl Popper.
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• diversity in the tasks the actor can perform and the environments in
which it can operate.

Without autonomy, a directly operated or teleoperated device does not
usually need to deliberate. It simply extends the acting and sensing capa-
bilities of a human operator who is in charge of understanding and decision
making, possibly with the support of advice and planning tools, for example,
as in surgical robotics and other applications of teleoperation.

An autonomous system may not need deliberation if it operates only
in the fully specified environment for which it has been designed. Man-
ufacturing robots autonomously perform tasks such as painting, welding,
assembling, or servicing a warehouse without much deliberation. Similarly,
a vending machine or a driverless train operates autonomously without a
need for deliberation. For these and similar examples of automation, delib-
eration is performed by the designer. The system and its environment are
engineered so that the only variations that can occur are those accounted for
at the design stage in the system’s predefined functioning envelope. Diver-
sity in the environment is not expected. A state outside of the functioning
envelope puts the system into a failure mode in which a person takes delib-
erate actions.

Similarly, a device designed for a unique specialized task may perform
it autonomously without much deliberation, as long the variations in its
environment are within its designed range. For example, a vacuum-cleaning
or lawn mowing robot does not deliberate, but it can cope autonomously
with its specialized tasks in a reasonable range of lawns or floors. However,
it may cease to function properly when it encounters a slippery floor, a steep
slope, or any condition outside of the range for which it was designed.

When a designer can account, within some functioning envelope, for all
the environments and tasks a system will face and when a person can be in
charge of deliberating outside of this envelope, by means of teleoperation or
reprogramming, then deliberation generally is not needed in the system it-
self. Such a system will be endowed with a library of reactive behaviors (e.g.,
as the bird’s visual target tracking in Example 1.1) that cover efficiently its
functioning envelope. However, when an autonomous actor has to face a
diversity of tasks, environments and interactions, then achieving its purpose
will require some degree of deliberation. This is the case in many robotics
applications, such as service and personal robots, rescue and exploration
robots, autonomous space stations and satellites, or even driverless cars.
This holds also for complex simulation systems used in entertainment (e.g.,
video games) or educational applications (serious games). It is equally ap-
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plicable to many control systems that manage complex infrastructures such
as industrial or energy plants, transportation networks, and urban facilities
(smart cities).

Autonomy, diversity in tasks and environments, and the need for de-
liberation are not binary properties that are either true or false. Rather,
the higher the need for autonomy and diversity, the higher the need for
deliberation. This relationship is not restricted to artificial systems. Nu-
merous natural species (plants and some invertebrates such as sponges or
worms) have been able to evolve to fit into stable ecological niches, appar-
ently without much deliberation. Species that had to face rapid changes in
their environment and to adapt to a wide range of living conditions had to
develop more deliberation capabilities.

1.1.3 Focus and Scope

We address deliberation from an AI viewpoint. Our focus is on the rea-
soning functions required for acting deliberately. This focus involves two
restrictions:

• We are not interested in actions that consists solely of internal com-
putations, such as adding “2 + 3” or deducing that “Socrates is mor-
tal.” These computations are not actions that change the state of the
world.3 They can be used as part of the actor’s deliberation, but we
take them as granted and outside of our scope.

• We are not concerned with techniques for designing the sensing, ac-
tuation, and sensory-motor control needed for the low-level execution
of actions. Sensory-motor control (e.g., the visual servoing of Exam-
ple 1.1) can be essential for acting, but its study is not within our
scope. We assume that actions are performed with a set of primitives,
which we will call commands, that implement sensory-motor control.
The actor performs its actions by executing commands. To deliberate,
it relies on models of how these commands work.

The scope of this book is not limited to the most studied deliberation
function, which is planning what actions to perform. Planning consists of
choosing and organizing the actions that can achieve a given objective. In
many situations, there is not much need for planning: the actions to perform
are known. But there is a need for significant deliberation in deciding how
to perform each action, given the context and changes in the environment.

3The borderline between computational operations and actions that change the external
world is not as sharp for an abstract actor as for a physical one.
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We develop the view that planning can be needed for deliberation but is
seldom sufficient. We argue that acting goes beyond the execution of low-
level commands.

Example 1.2. Dana finishes breakfast in a hotel restaurant, and starts
going back to his room. On the way, he notices that the elevator is not on
his floor and decides to walk up the stairs. After a few steps he becomes
aware that he doesn’t have his room key which he left on the breakfast table.
He goes back to pick it up.

In this example, the actor does not need to plan the simple task of going
to his room. He continually deliberates while acting: he makes opportunistic
choices, simulates in advance and monitors his actions, stops when needed
and decides on alternate actions.

Deliberation consists of reasoning with predictive models as well as ac-
quiring these models. An actor may have to learn how to adapt to new
situations and tasks, as much as to use the models it knows about for its de-
cision making. Further, even if a problem can be addressed with the actor’s
generic models, it can be more efficient to transform the explicit computa-
tions with these models into low-level sensory-motor functions. Hence, it is
natural to consider learning to act as a deliberation function. Section 7.3
offers a brief survey on learning and model acquisition for planning and
acting. However, our focus is on deliberation techniques using predefined
models.

1.2 Conceptual View of an Actor

1.2.1 A Simple Architecture

An actor interacts with the external environment and with other actors. In
a simplified architecture, depicted in Figure 1.1(a), the actor has two main
modules: a set of deliberation functions and an execution platform.

The actor’s sensory-motor functions are part of its execution platform.
They transform the actor’s commands into actuations that execute its ac-
tions (e.g., the movement of a limb or a virtual character). The execution
platform also transforms sensed signals into features of the world (e.g., to
recognize a physical or virtual object, or to query information from the
Web). The capabilities of the platform are explicitly described as models of
the available commands.

Deliberation functions implement the reasoning needed to choose, or-
ganize, and perform actions that achieve the actor’s objectives, to react
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Figure 1.1: Conceptual view of an actor (a); its restriction to planning and
acting (b).

adequately to changes in the environment, and to interact with other ac-
tors, including human operators. To choose and execute commands that
ultimately achieve its objectives, the actor needs to perform a number of
deliberation functions. For example, the actor must commit to intermediate
goals, plan for those goals, refine each planned action into commands, re-
act to events, monitor its activities to compare the predicted and observed
changes, and decide whether recovery actions are needed. These deliberation
functions are depicted in Figure 1.1(b) as two main functions: planning and
acting. The acting function is in charge of refining actions into commands,
reacting to events, and monitoring.

1.2.2 Hierarchical and Continual Online Deliberation

The view presented in Section 1.2.1 can be a convenient first approach for
describing an actor, but one must keep in mind that it is an oversimplifica-
tion.

Example 1.3. To respond to a user’s request, a robot has to bring an object
o7 to a location room2 (see Figure 1.2). To do that, it plans a sequence of
abstract actions such as “navigate to,” “fetch,” and “deliver.” One of these
refines into “move to door,” “open door,” “get out,” and “close door.” Once
the robot is at the door, it refines the “open door” action appropriately for
how it perceives that particular door.
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Figure 1.2: Multiple levels of abstraction in deliberative acting. Each solid
red arrow indicates a refinement of an abstract action into more concrete
ones. Each dashed blue arrow maps a task into a plan of actions.

The robot’s deliberation can be accomplished by a collection of hierar-
chically organized components. In such a hierarchy, a component receives
tasks from the component above it, and decides what activities need to be
performed to carry out those tasks. Performing a task may involve refining
it into lower-level steps, issuing subtasks to other components below it in the
hierarchy, issuing commands to be executed by the platform, and reporting
to the component that issued the task. In general, tasks in different parts
of the hierarchy may involve concurrent use of different types of models and
specialized reasoning functions.

This example illustrates two important principles of deliberation: hier-
archical organization and continual online processing.
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• Hierarchically organized deliberation. Some of the actions the actor
wishes to perform do not map directly into a command executable
by its platform. An action may need further refinement and plan-
ning. This is done online and may require different representations,
tools, and techniques from the ones that generated the task. A hierar-
chized deliberation process is not intended solely to reduce the search
complexity of offline plan synthesis. It is needed mainly to address
the heterogeneous nature of the actions about which the actor is de-
liberating, and the corresponding heterogeneous representations and
models that such deliberations require.

• Continual online deliberation. Only in exceptional circumstances will
the actor do all of its deliberation offline before executing any of its
planned actions. Instead, the actor generally deliberates at runtime
about how to carry out the tasks it is currently performing. The delib-
eration remains partial until the actor reaches its objective, including
through flexible modification of its plans and retrials. The actor’s pre-
dictive models are often limited. Its capability to acquire and maintain
a broad knowledge about the current state of its environment is very
restricted. The cost of minor mistakes and retrials are often lower
than the cost of extensive modeling, information gathering, and thor-
ough deliberation. Throughout the acting process, the actor refines
and monitors its actions; reacts to events; and extends, updates, and
repairs its plan on the basis of its perception focused on the relevant
part of the environment.

Different parts of the actor’s hierarchy often use different representations
of the state of the actor and its environment. These representations may
correspond to different amounts of detail in the description of the state
and different mathematical constructs. In Figure 1.2, a graph of discrete
locations may be used at the upper levels, while the lower levels may use
vectors of continuous configuration variables for the robot limbs.

Finally, because complex deliberations can be compiled down by learning
into low-level commands, the frontier between deliberation functions and the
execution platform is not rigid; it evolves with the actor’s experience.

1.2.3 Assumptions

We are not seeking knowledge representation and reasoning approaches that
are effective across every kind of deliberation problem and at every level of a
hierarchically organized actor. Neither are we interested in highly specialized
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actors tailored for a single niche, because deliberation is about facing diver-
sity. Instead, we are proposing a few generic approaches that can be adapted
to different classes of environments and, for a given actor, to different levels
of its deliberation. These approaches rely on restrictive assumptions that
are needed from a computational viewpoint, and that are acceptable for the
class of environments and tasks in which we are interested.

Deliberation assumptions are usually about how variable, dynamic, ob-
servable, and predictable the environment is, and what the actor knows and
perceives about it while acting. We can classify them into assumptions re-
lated to the dynamics of the environment, its observability, the uncertainty
managed in models, and how time and concurrency are handled.

• Dynamics of the environment. An actor may assume to be in a static
world except for its own actions, or it may take into account exogenous
events and changes that are expected and/or observed. In both cases
the dynamics of the world may be described using discrete, continu-
ous or hybrid models. Of these, hybrid models are the most general.
Acting necessarily involves discontinuities in the interaction with the
environment,4 and these are best modeled discretely. But a purely dis-
crete model abstracts away continuous processes that may also need
to be modeled.

• Observability of the environment. It is seldom the case that all the
information needed for deliberation is permanently known to the ac-
tor. Some facts or parameters may be always known, others may be
observable if specific sensing actions are performed, and others will
remain hidden. The actor may have to act on the basis of reasonable
assumptions or beliefs regarding the latter.

• Uncertainty in knowledge and predictions. No actor is omniscient. It
may or may not be able to extend its knowledge with specific actions.
It may or may not be able to reason about the uncertainty regard-
ing the current state of the world and the predicted future (e.g., with
nondeterministic or probabilistic models). Abstracting away uncer-
tainty during a high-level deliberation can be legitimate if the actor
can handle it at a lower level and correct its course of action when
needed.

• Time and concurrency. Every action consumes time. But delibera-
tion may or may not need to model it explicitly and reason about its
flow for the purpose of meeting deadlines, synchronizing, or handling

4Think of the phases in a walking or grasping action.
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concurrent activities.

Different chapters of the book make different assumptions about time,
concurrency, and uncertainty. Except for Section 7.4 on hybrid models, we’ll
restrict ourself to discrete approaches. This is consistent with the focus and
scope discussed in Section 1.1.3, because it is primarily in sensory-motor
functions and commands that continuous models are systematically needed.

1.3 Deliberation Models and Functions

1.3.1 Descriptive and Operational Models of Actions

An actor needs predictive models of its actions to decide what actions to
do and how to do them. These two types of knowledge are expressed with,
respectively, descriptive and operational models.

• Descriptive models of actions specify the actor’s “know what.” They
describe which state or set of possible states may result from perform-
ing an action or command. They are used by the actor to reason about
what actions may achieve its objectives.

• Operational models of actions specify the actor’s “know how.” They
describe how to perform an action, that is, what commands to execute
in the current context, and how organize them to achieve the action’s
intended effects. The actor relies on operational models to perform
the actions that it has decided to perform.

In general, descriptive models are more abstract than operational mod-
els. Descriptive models abstract away the details, and focus on the main
effects of an action; they are useful at higher levels of a deliberation hierar-
chy. This abstraction is needed because often it is too difficult to develop
very detailed predictive models, and because detailed models require infor-
mation that is unknown at planning time. Furthermore, reasoning with
detailed models is computationally very complex. For example, if you plan
to take a book from a bookshelf, at planning time you will not be concerned
with the available space on the side or on the top of the book to insert your
fingers and extract the book from the shelf. The descriptive model of the
action will abstract away these details. It will focus on where the book is,
whether it is within your reach, and whether you have a free hand with
which to pick it up.

The simplifications allowed in a descriptive model are not possible in an
operational model. To actually pick up the book, you will have to determine

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


12 Chapter 1

precisely where the book is located in the shelf, which positions of your
hand and fingers are feasible, and which sequences of precise motions and
manipulations will allow you to perform the action.

Furthermore, operational models may need to include ways to respond
to exogenous events, that is, events that occur because of external factors
beyond the actor’s control. For example, someone might be standing in front
of the bookshelf, the stool that you intended to use to reach the book on a
high shelf might be missing, or any of a potentially huge number of other
possibilities might interfere with your plan.

In principle, descriptive models can take into account the uncertainty
caused by exogenous events, for example, through nondeterministic or prob-
abilistic models (see Chapters 5 and 6), but the need to handle exogenous
events is much more compelling for operational models. Indeed, exogenous
events are often ignored in descriptive models because it is impractical to
try to model all of the possible joint effects of actions and exogenous events,
or to plan in advance for all of the contingencies. But operational models
must have ways to respond to such events if they happen, because they can
interfere with the execution of an action. In the library example, you might
need to ask someone to move out of the way, or you might have to stand on
a chair instead of the missing stool.

Finally, an actor needs descriptive models of the available commands in
order to use them effectively, but in general it does not need their operational
models. Indeed, commands are the lower-level sensory-motor primitives em-
bedded in the execution platform; their operational models correspond to
what is implemented in these primitives. Taking this remark to the extreme,
if one assumes that every known action corresponds to an executable com-
mand, then all operational models are embedded in the execution platform
and can be ignored at the deliberation level. This assumption seldom holds.

1.3.2 Description of States for Deliberation

To specify both descriptive and operational models of actions, we will use
representational primitives that define the state of an actor and its environ-
ment; these are called state variables. A state variable associates a relevant
attribute of the world with a value that changes over time. The definition
of a state with state variables needs to include enough details for the actor’s
deliberations, but it does not need to be, nor can it be, exhaustive.

In a hierarchically organized actor, different deliberative activities may
need different amounts of detail in the state description. For example, in
actions such as “grasp knob” and “turn knob” at the bottom of Figure 1.2,
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to choose the commands for grasping and operating the handle, the actor
needs to reason about detailed parameters such as the robot’s configuration
coordinates and the position and shape of the door handle. Higher up, where
the actor refines “bring o7 to room2” into actions such as “go to hallway”
and “navigate to room1,” such details are not needed. It is more conve-
nient there to reason about the values of more abstract variables, such as
location(robot) = room1 or position(door) = closed. To establish correspon-
dences between these abstract variables and the detailed ones, the actor
could have definitions saying, for example, that location(robot) = room1
corresponds to a particular area in an Euclidean reference frame.

The precise organization of a hierarchy of data structures and state rep-
resentations is a well-known area in computer science (e.g., [522]). It may
take different forms in application domains such as robotics, virtual reality,
or geographic information systems. Here, we’ll keep this point as simple as
possible and assume that at each part of an actor’s deliberation hierarchy,
the state representation includes not only the variables used in that part
of the hierarchy (e.g., the robot’s configuration coordinates at the bottom
of Figure 1.2), but also the variables used higher up in the hierarchy (e.g.,
location(robot)).

An important issue is the distinction and correspondence between pre-
dicted states and observed states. When an actor reasons about what might
happen and simulates changes of state to assess how desirable a course of
action is, it uses predicted states. When it reasons about how to perform
actions in some context, it relies on observed states; it may contrast its ob-
servations with its expectations. Predicted states are in general less detailed
than the observed one; they are obtained as a result of one or several pre-
dictions starting from an abstraction of the current observed state. To keep
the distinction clear, we’ll use different notations:

• s ∈ S is a predicted state;

• ξ ∈ Ξ is an observed state.

Because of partial and inaccurate observations, there can be uncertainty
about the present observed state as well as about the future predicted states.
Furthermore, information in a dynamic environment is ephemeral. Some of
the values in ξ may be out-of-date: they may refer to things that the actor
previously observed but that it cannot currently observe. Thus, ξ is the
state of the actor’s knowledge, rather than the true state of the world. In
general, the actor should be endowed with appropriate means to manage
the uncertainty and temporality of the data in ξ.
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Observability is an additional issue. As underlined in Section 1.2.3, some
information relevant to the actor’s behavior can be momentarily or perma-
nently hidden; it must be indirectly inferred. In the general case, the design
of an actor should include the following distinctions among state variables:

• A variable is invisible if it is not observable but can only be estimated
from observations and a priori information.

• A variable is observable if its value can be obtained by performing
appropriate actions. At various points, it may be either visible if its
value is known to the actor, or hidden if the actor must perform an
observation action to get its value.

For simplicity, we’ll start out by assuming that the values of all state vari-
ables are precisely known at every moment while acting. Later in the book,
we’ll consider more realistically that some state variables are observable but
can only be observed by performing some specific actions. In Chapter 5,
we deal with a specific case of partial observability: in Section 5.8.4, we
transform a partially observable domain into an abstracted domain whose
states are sets of states. We also examine (in Chapter 6) the case in which
some state variables are permanently or momentarily observable but others
remain hidden. The class of models known as partially observable models,
in which every state variable is assumed to be either always known or always
hidden, is discussed in Section 6.8.3.

1.3.3 Planning Versus Acting

The simple architecture of Figure 1.1(b) introduces planning and acting
as respectively finding what actions to perform and how to refine chosen
actions into commands. Here, we further discuss these two functions, how
they differ, and how they can be associated in the actor’s deliberation.

The purpose of planning is to synthesize an organized set of actions
to carry out some activity. For instance, this can be done by a lookahead
procedure that combines prediction steps (Figure 1.3: when in state s, action
a is predicted to produce state s′) within a search through alternative sets
of actions for a set that leads to a desired goal state.

Planning problems vary in the kinds of actions to be planned for, the
kinds of predictive models that are needed, and the kinds of plans that
are considered satisfactory. For some kinds of problems, domain-specific
planning methods have been developed that are tailor-made for that kind
of problem. For instance, motion planning synthesizes a geometric and
kinematic trajectory for moving a mobile system (e.g., a truck, a robot,
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Figure 1.3: Planning as a combination of prediction steps and a search
mechanism.

or a virtual character); perception planning synthesizes an organized set of
sensing and interpretation actions to recognize an object or to build a three-
dimensional model of a scene; infrastructure planning synthesizes plans to
deploy and organize facilities, such as a public transportation infrastructure,
to optimize their usage or to meet the needs of a community. Many other
such examples can be given, such as flight navigation planning, satellite
configuration planning, logistics planning, or industrial process planning.

There are, however, commonalities to many forms of planning. Domain-
independent planning tries to grasp these commonalities at an abstract level,
in which actions are generic state transformation operators over a widely
applicable representation of states as relations among objects.

Domain-independent and domain-specific planning complement each
other. In a hierarchically organized actor, planning takes place at multi-
ple levels of the hierarchy. At high levels, abstract descriptions of a prob-
lem can be tackled using domain-independent planning techniques. The
example shown in Figure 1.2 may require a path planner (for moving to
locations), a manipulation planner (for grasping the door handle), and a
domain-independent planner at the higher levels of the hierarchy.

Acting involves deciding how to perform the chosen actions (with or
without the help of a planner) while reacting to the context in which the
activity takes place. Each action is considered as an abstract task to be
refined, given the current context, progressively into actions or commands
that are more concrete. Whereas planning is a search over predicted states,
acting requires a continual assessment of the current state ξ, to contrast it
with a predicted state s and adapt accordingly. Consequently, acting also
includes reacting to unexpected changes and exogenous events, which are
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independent from the actor’s activity.

The techniques used in planning and acting can be compared as fol-
lows. Planning can be organized as an open-loop search, whereas acting
needs to be a closed-loop process. Planning relies on descriptive models
(know-what); acting uses mostly operational models (know-how). Domain-
independent planners can be developed to take advantage of commonalities
among different forms of planning problems, but this is less true for acting
systems, which require more domain-specific programming.

The relationship between planning and acting is more complex than a
simple linear sequence of “plan then act.” Seeking a complete plan before
starting to act is not always feasible, and not always needed. It is feasible
when the environment is predictable and well modeled, for example, as for
a manufacturing production line. It is needed when acting has a high cost
or risk, and when actions are not reversible. Often in such applications, the
designer has to engineer out the environment to reduce diversity as much as
possible beyond what is modeled and can be predicted.

In dynamic environments where exogenous events can take place and
are difficult to model and predict beforehand, plans should be expected to
fail if carried out blindly until the end. Their first steps are usually more
reliable than the rest and steer toward the objectives. Plan modification and
replanning are normal and should be embedded in the design of an actor.
Metaphorically, planning is useful to shed light on the road ahead, not to
lay an iron rail all the way to the goal.

The interplay between acting and planning can be organized in many
ways, depending on how easy it is to plan and how quickly the environment
changes. A general paradigm is the receding horizon scheme, which is illus-
trated in Figure 1.4. It consists of repeating the two following steps until
the actor has accomplished its goal:

(i) Plan from the current state toward the goal, but not necessarily all
the way to the goal.

(ii) Act by refining one or a few actions of the synthesized plan into com-
mands to be executed.

A receding horizon approach can be implemented in many ways. Op-
tions include various planning horizon, number of actions to perform at
each planning stage, and what triggers replanning. Furthermore, the plan-
ning and acting procedures can be run either sequentially or in parallel with
synchronization.

Suppose an actor does a depth-first refinement of the hierarchy in Fig-
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Planning stage
Acting stage

Figure 1.4: Receding horizon scheme for planning and acting.

ure 1.2. Depending on the actor’s planning horizon, it may execute each
command as soon as one is planned or wait until the planning proceeds a
bit farther. Recall from Section 1.3.2 that the observed state ξ may differ
from the predicted one. Furthermore, ξ may evolve even when no commands
are being executed. Such situations may invalidate what is being planned,
necessitating replanning.

The interplay between acting and planning is relevant even if the plan-
ner synthesizes alternative courses of action for different contingencies (see
Chapters 5 and 6). Indeed, it may not be worthwhile to plan for all possible
contingencies, or the planner may not know in advance what all of them are.

1.3.4 Other Deliberation Functions

We have mentioned deliberation functions other than planning and acting:
perceiving, monitoring, goal reasoning, communicating, and learning. These
functions (surveyed in Chapter 7) are briefly described here.

Perceiving goes beyond sensing, even with elaborate signal processing
and pattern matching methods. Deliberation is needed in bottom-up pro-
cesses for getting meaningful data from sensors, and in top-down activities
such as focus-of-attention mechanisms, reasoning with sensor models, and
planning how to do sensing and information gathering. Some of the issues
include how to maintain a mapping between sensed data and deliberation
symbols, where and how to use the platform sensors, or how to recognize
actions and plans of other actors.

Monitoring consists of comparing observations of the environment with
what the actor’s deliberation has predicted. It can be used to detect and in-
terpret discrepancies, perform diagnosis, and trigger initial recovery actions
when needed. Monitoring may require planning what observation actions
to perform, and what kinds of diagnosis tests to perform. There is a strong
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relationship between planning techniques and diagnosis techniques.
Goal reasoning is monitoring of the actor’s objectives or mission, to keep

the actor’s commitments and goals in perspective. It includes assessing their
relevance, given the observed evolutions, new opportunities, constraints or
failures, using this assessment to decide whether some commitments should
be abandoned, and if so, when and how to update the current goals.

Communicating and interacting with other actors open numerous delib-
eration issues such as communication planning, task sharing and delegation,
mixed initiative planning, and adversarial interaction.

Learning may allow an actor to acquire, adapt, and improve through ex-
perience the models needed for deliberation and to acquire new commands to
extend and improve the actor’s execution platform. Conversely, techniques
such as active learning may themselves require acting for the purpose of
better learning.

1.4 Illustrative Examples

To illustrate particular representations and algorithms, we’ll introduce a
variety of examples inspired by two application domains: robotics and oper-
ations management. We’ll use highly simplified views of these applications
to include only the features that are relevant for the issue we’re trying to
illustrate. In this section, we provide summaries of the real-world context
in which our simple examples might occur.

1.4.1 A Factotum Service Robot

We will use the word factotum to mean a general-purpose service robot that
consists of a mobile platform equipped with several sensors (lasers, cameras,
etc.) and actuators (wheels, arms, forklift) [329]. This robot operates in
structured environments such as a mall, an office building, a warehouse or
a harbor. It accomplishes transportation and logistics tasks autonomously
(e.g., fetching objects, putting them into boxes, assembling boxes into con-
tainers, moving them around, delivering them or piling them up in storage
areas).

This robot platform can execute parameterized commands, such as local-
ize itself in the map, move along a path, detect and avoid obstacles, identify
and locate items, grasp, ungrasp and push items. It knows about a few ac-
tions using these commands, for example, map the environment (extend or
update the map), goto a destination, open a door, search for or fetch an
item.
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These actions and commands are specified with descriptive and opera-
tional models. For example, move works if it is given waypoints in free space
or an obstacle-free path that meet kinematics and localization constraints;
the latter are, for example, visual landmarks required by action localize.
These conditions need to be checked and monitored by the robot while per-
forming the actions. Concurrency has to be managed. For example, goto
should run in parallel with detect, avoid, and localize.

Factotum needs domain-specific planners, for example, a motion planner
for move, a manipulation planner for grasp (possibly using locate, push, and
move actions). Corresponding plans are more than a sequence or a partially
ordered set of commands; they require closed-loop control and monitoring.

At the mission-preparation stage (the upper levels in Figure 1.2), it is
legitimate to view a logistics task as an organized set of abstract subtasks
for collecting, preparing, conveying, and delivering the goods. Each subtask
may be further decomposed into a sequence of still abstract actions such
as goto, take, and put. Domain-independent task planning techniques are
needed here.

However, deliberation does not end with the mission preparation stage.
A goto action can be performed in many ways depending on the environment
properties: it may or may not require a planned path; it may use different lo-
calization, path following, motion control, detection, and avoidance methods
(see the “goto” node in Figure 1.2). A goto after a take is possibly different
from the one before because of the held object. To perform a goto action in
different contexts, the robot relies on a collection of skills defined formally
by methods. A method specifies a way to refine an action into commands.
The same goto may start with a method (e.g., follow GPS waypoints) but
may be pursued with more adapted methods when required by the environ-
ment (indoor without GPS signal) or the context. Such a change between
methods may be a normal progression of the goto action or a retrial due to
complications. The robot also has methods for take, put, open, close, and
any other actions it may need to perform. These methods endow the robot
with operational models (its know-how) and knowledge about how to choose
the most adapted method with the right parameters.

The methods for performing actions may use complex control constructs
with concurrent processes (loops, conditionals, semaphores, multithread and
real-time locks). They can be developed from formal specifications in some
representation and/or with plan synthesis techniques. Different represen-
tations may be useful to cover the methods needed by the factotum robot.
Machine learning techniques can be used for improving the methods, acquir-
ing their models, and adapting the factotum to a new trade.
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In addition to acting with the right methods, the robot has to monitor
its activity at every level, including possibly at the goal level. Prediction of
what is needed to correctly perform and monitor foreseen activities should be
made beforehand. Making the right predictions from the combined models
of actions and models of the environment is a difficult problem that involves
heterogeneous representations.

Finally, the robot requires extended perception capabilities: reasoning
on what is observable and what is not, integrating knowledge-gathering ac-
tions to environment changing actions, acting in order to maintain sufficient
knowledge for the task at hand with a consistent interpretation of self and
the world.

1.4.2 A Complex Operations Manager

A Harbor Operations Manager (HOM) is a system that supervises and con-
trols all the tasks performed in a harbor.5 Examples of such tasks include
unloading cars from ships, parking them in storage areas, moving them to
a repair area, performing the repair, preparing the delivery of cars accord-
ing to orders, and loading them onto trucks when the trucks arrive at the
harbor. Some of these operations are performed by human workers, others
automatically by machines such as the factotum robot of previous section.
This complex environment has several features that require deliberation:

• It is customizable: for example, delivery procedures can be customized
according to the car brand, model, or retailer-specific requirements.

• It is variable: procedures for unloading/loading cars depend on the car
brands; storage areas have different parking procedures, for example.

• It is dynamic: ships, cars, trucks, and orders arrive dynamically.

• It is partially predictable and controllable: cars may be damaged and
need repair, storage areas may not be available, orders have unpre-
dictable requirements, ships and trucks have random delays, for ex-
ample.

At a high level, an HOM has to carry out a simple sequence of abstract
tasks: 〈unload, unpack, store, wait-for-order, treatment, delivery〉 (see Fig-
ure 1.5). This invariant plan is easily specified by hand. The deliberation
problem in an HOM is not in the synthesis of this plan but in the dynamic
refinement of its tasks in more concrete subtasks. For example, an HOM

5Example inspired from a facility developed for the port of Bremen, Germany [76, 100].
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Figure 1.5: Deliberation components for a Harbor Operations Manager.

refines the abstract task store of Figure 1.5 into subtasks for registering a
car to be stored, moving it, and other tasks, down to executable commands.

Moreover, the tasks to be refined and controlled are carried out by differ-
ent components, for example, ships, gates, and storage or repair areas. Each
ship has its own procedure to unload cars to a gate. A gate has its own pro-
cedure to accept cars that are unloaded to the deck. A natural design option
is therefore to model the HOM in a distributed way, as a set of interacting
deliberation components. The interactions between ships and gates, gates
and trucks, and trucks and storage areas must be controlled with respect
to the global constraints and objectives of the system. To do that, HOM
must deal with uncertainty and nondeterminism due to exogenous events,
and to the fact that each component may – from the point of view of the
management facility – behave nondeterministically. For instance, in the task
to synchronize a ship with a gate to unload cars, the ship may send a re-
quest for unloading cars to the unloading manager, and the gate may reply
either that the request meets its requirements and the unloading operation
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can proceed according to some unloading specifications, or that the request
cannot be handled. The management facility may not know a priori what
the request, the unloading specifications, and reply will be.

In summary, an HOM relies on a collection of interacting components,
each implementing its own procedures. It refines the abstract tasks of the
high-level plan into a composition of these procedures to address each new
object arrival and adapt to each exogenous event. The refinement and adap-
tation mechanisms can be designed through an approach in which the HOM
is an actor organized into a hierarchy of components, each abstract action
is a task to be further refined and planned for, and online planning and
acting are performed continually to adapt and repair plans. The approach
embeds one or several planners within these components, which are called
at run-time, when the system has to refine an abstract action to adapt to
a new context. It relies on refinement mechanisms that can be triggered at
run-time whenever an abstract action in a procedure needs to be refined or
an adaptation needs to be taken into account.

1.5 Outline of the Book

This chapter has provided a rather abstract and broad introduction. Chap-
ter 2 offers more concrete material regarding deliberation with deterministic
models and full knowledge about a static environment. It covers the “clas-
sical planning” algorithms and heuristics, with state-space search, forward
and backward, and plan-space search. It also presents how these planning
techniques can be integrated online with acting.

Chapter 3 is focused on refinement methods for acting and planning.
It explores how a unified representation can be used for both functions, at
different levels of the deliberation hierarchy, and in different ways. It also
discusses how the integration of planning and acting can be performed.

Chapter 4 is about deliberation with explicit time models using a rep-
resentation with timelines and chronicles. A temporal planner, based on
refinement methods, is presented together with the constraint management
techniques needed for handling temporal data. Using the techniques from
Chapter 3, we also discuss the integration of planning and acting with tem-
poral models.

Uncertainty in deliberation is addressed in Chapters 5 and 6. The main
planning techniques in nondeterministic search spaces are covered in Chap-
ter 5, together with model checking and determinization approaches. In this
chapter, we present online lookahead methods for the interleaving of plan-
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ning and acting. We also show how nondeterministic models can be used
with refinements techniques that intermix plans, actions, and goals. We
discuss the integration of planning and acting with input/output automata
to cover cases such as the distributed deliberation in the HOM example.

We cover probabilistic models in Chapter 6. We develop heuristic search
techniques for stochastic shortest path problems. We present online ap-
proaches for planning and acting, discuss refinement methods for acting
with probabilistic models, and analyze the specifics of descriptive models
of actions in the probabilistic case together with several practical issues for
modeling probabilistic domains.

Chapters 2 through 6 are devoted to planning and acting. Chapter 7
briefly surveys the other deliberation functions introduced in Section 1.3.4:
perceiving, monitoring, goal reasoning, interacting, and learning. It also
discusses hybrid models and ontologies for planning and acting.
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Deliberation with
Deterministic Models

Having considered the components of an actor and their relation to the
actor’s environment we now need to develop some representational and al-
gorithmic tools for performing the actor’s deliberation functions. In this
chapter we develop a simple kind of descriptive model for use in planning,
describe some planning algorithms that can use this kind of model, and
discuss some ways for actors to use those algorithms.

This chapter is organized as follows. Section 2.1 develops state-variable
representations of planning domains. Sections 2.2 and 2.3 describe forward-
search planning algorithms, and heuristics to guide them. Sections 2.4
and 2.5 describe backward-search and plan-space planning algorithms. Sec-
tion 2.6 describes some ways for an actor to use online planning. Sections
2.7 and 2.8 contain the discussion and historical remarks, and the student
exercises.

2.1 State-Variable Representation

The descriptive models used by planning systems are often called planning
domains. However, it is important to keep in mind that a planning domain
is not an a priori definition of the actor and its environment. Rather, it
is necessarily an imperfect approximation that must incorporate trade-offs
among several competing criteria: accuracy, computational performance,
and understandability to users.
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2.1.1 State-Transition Systems

In this chapter, we use a simple planning-domain formalism that is similar
to a finite-state automaton:

Definition 2.1. A state-transition system (also called a classical planning
domain) is a triple Σ = (S,A, γ) or 4-tuple Σ = (S,A, γ, cost), where

• S is a finite set of states in which the system may be.

• A is a finite set of actions that the actor may perform.

• γ : S × A → S is a partial function called the prediction function
or state-transition function. If (s, a) is in γ’s domain (i.e., γ(s, a) is
defined), then a is applicable in s, with γ(s, a) being the predicted
outcome. Otherwise a is inapplicable in s.

• cost : S ×A→ [0,∞) is a partial function having the same domain as
γ. Although we call it the cost function, its meaning is arbitrary: it
may represent monetary cost, time, or something else that one might
want to minimize. If the cost function isn’t given explicitly (i.e., if
Σ = (S,A, γ)), then cost(s, a) = 1 whenever γ(s, a) is defined.

To avoid several of the difficulties mentioned in Chapter 1, Definition 2.1
requires a set of restrictive assumptions called the classical planning assump-
tions:

1. Finite, static environment. In addition to requiring the sets of states
and actions to be finite, Definition 2.1 assumes that changes occur
only in response to actions: if the actor does not act, then the current
state remains unchanged. This excludes the possibility of actions by
other actors, or exogenous events that are not due to any actor.

2. No explicit time, no concurrency. There is no explicit model of time
(e.g., when to start performing an action, how long a state or action
should last, or how to perform other actions concurrently). There is
just a discrete sequence of states and actions 〈s0, a1, s1, a2, s2, . . .〉.1

3. Determinism, no uncertainty. Definition 2.1 assumes that we can
predict with certainty what state will be produced if an action a is
performed in a state s. This excludes the possibility of accidents or

1This does not prohibit one from encoding some kinds of time-related information
(e.g., timestamps) into the actions’ preconditions and effects. However, to represent and
reason about actions that have temporal durations, a more sophisticated planning-domain
formalism is usually needed, such as that discussed in Chapter 4.
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Figure 2.1: A two-dimensional network of locations connected by roads.

execution errors, as well as nondeterministic actions, such as rolling a
pair of dice.

In environments that do not satisfy the preceding assumptions, classical
domain models may introduce errors into the actor’s deliberations but this
does not necessarily mean that one should forgo classical models in favor of
other kinds of models. The errors introduced by a classical model may be
acceptable if they are infrequent and do not have severe consequences, and
models that do not use the above assumptions may be much more complex
to build and to reason with.

Let us consider the computational aspects of using a state-transition
system. If S and A are small enough, it may be feasible to create a lookup
table that contains γ(s, a) and cost(s, a) for every s and a, so that the
outcome of each action can be retrieved directly from the table. For example,
we could do this to represent an actor’s possible locations and movements
in the road network shown in Figure 2.1.

In cases in which Σ is too large to specify every instance of γ(s, a) explic-
itly, the usual approach is to develop a generative representation in which
there are procedures for computing γ(s, a) given s and a. The specification
of Σ may include an explicit description of one (or a few) of the states in S;
other states can be computed using γ.

The following is an example of a domain-specific representation, that
is, one designed specifically for a given planning domain. We then develop
a domain-independent approach for representing any classical planning do-
main.
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(a) (b)

Figure 2.2: Geometric model of a workpiece, (a) before and (b) after com-
puting the effects of a drilling action.

Example 2.2. Consider the task of using machine tools to modify the
shape of a metal workpiece. Each state might include a geometric model
of the workpiece (see Figure 2.2), and information about its location and
orientation, the status and capabilities of each machine tool, and so forth.
A descriptive model for a drilling operation might include the following:

• The operation’s name and parameters (e.g., the dimensions, orienta-
tion, and machining tolerances of the hole to be drilled).

• The operation’s preconditions, that is, conditions that are necessary for
it to be used. For example, the desired hole should be perpendicular to
the drilling surface, the workpiece should be mounted on the drilling
machine, the drilling machine should have a drill bit of the proper size,
and the drilling machine and drill bit need to be capable of satisfying
the machining tolerances.

• The operation’s effects, that is, what it will do. These might include
a geometric model of the modified workpiece (see Figure 2.2(b)) and
estimates of how much time the action will take and how much it will
cost.

The advantage of domain-specific representations is that one can choose
whatever data structures and algorithms seem best for a given planning
domain. The disadvantage is that a new representation must be developed
for each new planning domain. As an alternative, we now develop a domain-
independent way to represent classical planning domains.

2.1.2 Objects and State Variables

In a state-transition system, usually each state s ∈ S is a description of the
properties of various objects in the planner’s environment. We will say that
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a property is rigid if it remains the same in every state in S, and it is varying
if it may differ from one state to another. To represent the objects and their
properties, we will use three sets B, R, and X, which we will require to be
finite:

• B is a set of names for all of the objects, plus any mathematical con-
stants that may be needed to represent properties of those objects.
We will usually divide B into various subsets (robots, locations, math-
ematical constants, and so forth).

• To represent Σ’s rigid properties, we will use a set R of rigid relations.
Each r ∈ R will be an n-ary (for some n) relation over B.

• To represent Σ’s varying properties, we will use a set X of syntactic
terms called state variables, such that the value of each x ∈ X depends
solely on the state s.

Which objects and properties are in B, R, and X depends on what parts
of the environment the planner needs to reason about. For example, in
Figure 1.2, the orientation of the robot’s gripper may be essential for de-
liberating about a low-level task such as “open door,” but irrelevant for a
high-level task such as “bring 07 to room2.” In a hierarchically organized
actor, these tasks may be described using two state spaces, S and S′ whose
states describe different kinds of objects and properties.

Here are examples of B and R. We will say more about X shortly.

Example 2.3. Figure 2.3 depicts some states in a simple state-transition
system. B includes two robots, three loading docks, three containers, three
piles (stacks of containers), the Boolean constants T and F, and the constant
nil:

B = Robots ∪Docks ∪ Containers ∪ Piles ∪ Booleans ∪ {nil};
Booleans = {T,F};

Robots = {r1, r2};
Docks = {d1, d2, d3};

Containers = {c1, c2, c3};
Piles = {p1, p2, p3}.

We will define two rigid properties: each pair of loading docks is adjacent if
there is a road between them, and each pile is at exactly one loading dock.

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


Section 2.1 29

unload(r1,c1,c2,p1,d1)	
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Figure 2.3: A few of the states and transitions in a simple state-transition
system. Each robot can hold at most one container, and at most one robot
can be at each loading dock.

To represent these properties, R = {adjacent, at}, where

adjacent = {(d1, d2), (d2, d1), (d2, d3), (d3, d2), (d3, d1), (d1, d3)};
at = {(p1, d1), (p2, d2), (p3, d2)}.

In the subsequent examples that build on this one, we will not need to reason
about objects such as the roads and the robots’ wheels, or properties such
as the colors of the objects. Hence B and R do not include them.

Definition 2.4. A state variable over B is a syntactic term

x = sv(b1, . . . , bk), (2.1)

where sv is a symbol called the state variable’s name, and each bi is a member
of B. Each state variable x has a range,2 Range(x) ⊆ B, which is the set of
all possible values for x.

2We use range rather than domain to avoid confusion with planning domain.
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Example 2.5. Continuing Example 2.3, let

X = {cargo(r), loc(r), occupied(d), pile(c), pos(c), top(p)

| r ∈ Robots, d ∈ Docks, c ∈ Containers, p ∈ Piles},

where the state variables have the following interpretations:

• Each robot r can carry at most one container at a time. We let
cargo(r) = c if r is carrying container c, and cargo(r) = nil otherwise.
Hence Range(cargo(r)) = Containers ∪ {nil}.
• loc(r) is robot r’s current location, which is one of the loading docks.

Hence Range(loc(r)) = Docks.

• Each loading dock d can be occupied by at most one robot at a time.
To indicate whether d is occupied, Range(occupied(d)) = Booleans.

• pos(c) is container c’s position, which can be a robot, another con-
tainer, or nil if c is at the bottom of a pile. Hence Range(pos(c)) =
Containers ∪ Robots ∪ {nil}.
• If container c is in a pile p then pile(c) = p, and if c is not in any pile

then pile(c) = nil. Hence Range(pile(c)) = Piles ∪ {nil}.
• Each pile p is a (possibly empty) stack of containers. If the stack is

empty then top(p) = nil, and otherwise top(p) is the container at the
top of the stack. Hence Range(top(p)) = Containers ∪ {nil}.

A variable-assignment function over X is a function s that maps each
xi ∈ X into a value zi ∈ Range(xi). If X = {x1, . . . , xn}, then because a
function is a set of ordered pairs, we have

s = {(x1, z1), . . . , (xn, zn)}, (2.2)

which we often will write as a set of assertions:

s = {x1 = z1, x2 = z2, . . . , xn = zn}. (2.3)

Because X and B are finite, so is the number of variable-assignment func-
tions.

Definition 2.6. A state-variable state space is a set S of variable-assignment
functions over some set of state variables X. Each variable-assignment func-
tion in S is called a state in S.
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If the purpose of S is to represent some environment E, then we will
want each state in s to have a sensible interpretation in E. Without getting
into the formal details, an interpretation is a function I that maps B, R,
and X to sets of objects, rigid properties, and variable properties in some
environment E, in such a way that each s ∈ S corresponds to a situation
(roughly, a combination of the objects and properties in the image of I)
that can occur in E.3 If a variable-assignment function does not correspond
to such a situation, then should not be a state in S.4

Example 2.7. Continuing Example 2.5, let us define the state-variable
state space S depicted in Figure 2.3. The state s0 is the following variable-
assignment function:

s0 = {cargo(r1) = nil, cargo(r2) = nil,
loc(r1) = d1, loc(r2) = d2,
occupied(d1) = T, occupied(d2) = T, occupied(d3) = F,
pile(c1) = p1, pile(c2) = p1, pile(c3) = p2,
pos(c1) = c2, pos(c2) = nil, pos(c3) = nil,
top(p1) = c1, top(p2) = c3, top(p3) = nil}.

(2.4)

In the same figure, the state s1 is identical to s0 except that cargo(r1) = c1,
pile(c1) = nil, pos(c1) = r1, and top(p1) = c2.

In Example 2.5, the sizes of the state variables’ ranges are

|Range(cargo(r1))| = |Range(cargo(r2))| = 4,

|Range(loc(r1))| = |Range(loc(r2))| = 3,

|Range(occupied(d1))| = |Range(occupied(d2))| = |Range(occupied(d3))| = 2,

|Range(pile(c1))| = |Range(pile(c2))| = |Range(pile(c3))| = 4,

|Range(pos(c1))| = |Range(pos(c2))| = |Range(pos(c3))| = 6,

|Range(top(p1))| = |Range(top(p2))| = |Range(top(p3))| = 4.

Thus the number of possible variable-assignment functions is

42 × 32 × 23 × 43 × 63 × 43 = 1, 019, 215, 872.

3The details are quite similar to the definition of an interpretation in first-order logic
[535, 517]. However, in first-order logic, E is a static domain rather than a dynamic
environment, hence the interpretation maps a single state into a single situation.

4This is ideally how an interpretation should work, but in practice it is not always
feasible to define an interpretation that satisfies those requirements completely. As we
said in Section 2.1, a planning domain is an imperfect approximation of the actor and its
environment, not an a priori definition.
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However, fewer than 750 of these functions are states in S. A state-variable
assignment function is a state in S if and only if it has an interpretation in
the environment depicted in Figure 2.3.

One way to specify the members of S is to give a set of consistency
constraints (i.e., restrictions on what combinations of variable assignments
are possible) and to say that a state-variable assignment function is a state
in S if and only if it satisfies all of the constraints. Here are some examples
of consistency constraints for S. A state s cannot have both loc(r1) = d1

and loc(r2) = d1, because a loading dock can only accommodate one robot
at a time; s cannot have both pos(c1) = c3 and pos(c2) = c3, because two
containers cannot have the same physical location; and s cannot have both
pos(c1) = c2 and pos(c2) = c1, because two containers cannot be on top of
each other. Exercise 2.2 is the task of finding a complete set of consistency
constraints for S.

The preceding example introduced the idea of using consistency con-
straints to determine which variable-assignment functions are states but said
nothing about how to represent and enforce such constraints. Throughout
most of this book, we avoid the need to represent such constraints explicitly,
by writing action models in such a way that if s is a state and a is an action
that is applicable in s, then γ(s, a) is also a state. However, in Chapter 4, we
will use a domain representation in which some of the constraints are rep-
resented explicitly and the planner must make sure never to use an action
that would violate them.

2.1.3 Actions and Action Templates

To develop a way to write action models, we start by introducing some
terminology borrowed loosely from first-order logic with equality:

Definition 2.8. A positive literal, or atom (short for atomic formula), is
an expression having either of the following forms:

rel(z1, . . . , zn) or sv(z1, . . . , zn) = z0,

where rel is the name of a rigid relation, sv is a state-variable name, and
each zi is either a variable (an ordinary mathematical variable, not a state
variable) or the name of an object. A negative literal is an expression having
either of the following forms:

¬rel(z1, . . . , zn) or sv(z1, . . . , zn) 6= z0.

A literal is ground if it contains no variables, and unground otherwise.

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


Section 2.1 33

In the atom sv(z1, . . . , zn) = z0, we will call sv(z1, . . . , zn) the atom’s
target. Thus in Equation 2.3, a state is a set of ground atoms such that
every state variable x ∈ X is the target of exactly one atom.

Definition 2.9. Let l be an unground literal, and Z be any subset of the
variables in l. An instance of l is any expression l′ produced by replacing
each z ∈ Z with a term z′ that is either an element of Range(z) or a variable
with Range(z′) ⊆ Range(z).

Definition 2.9 generalizes straightforwardly to any syntactic expression
that contains literals. We will say that such an expression is ground if it
contains no variables and it is unground otherwise. If it is unground, then
an instance of it can be created as described in Definition 2.9.

Definition 2.10. Let R and X be sets of rigid relations and state variables
over a set of objects B, and S be a state-variable state space over X. An
action template5 for S is a tuple α = (head(α),pre(α), eff(α), cost(α)) or
α = (head(α),pre(α), eff(α)), the elements of which are as follows:

• head(α) is a syntactic expression6 of the form

act(z1, z2, . . . , zk),

where act is a symbol called the action name, and z1, z2, . . . , zk are
variables called parameters. The parameters must include all of the
variables (here we mean ordinary variables, not state variables) that
appear anywhere in pre(α) and eff(α). Each parameter zi has a range
of possible values, Range(zi) ⊆ B.

• pre(α) = {p1, . . . , pm} is a set of preconditions, each of which is a
literal.

• eff(α) = {e1, . . . , en} is a set of effects, each of which is an expression
of the form

sv(t1, . . . , tj)← t0 (2.5)

where sv(t1, . . . , tj) is the effect’s target, and t0 is the value to be
assigned. No target can appear in eff(α) more than once.

5In the artificial intelligence planning literature, these are often called planning opera-
tors or action schemas; see Section 2.7.1.

6The purpose of head(α) is to provide a convenient and unambiguous way to refer to
actions. An upcoming example is load(r1, c1, c2, p1, d1) at the end of Example 2.12.
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• cost(α) is a number c > 0 denoting the cost of applying the action.7

If it is omitted, then the default is cost(α) = 1.

We usually will write action templates in the following format (e.g., see
Example 2.12). The “cost” line may be omitted if c = 1.

act(z1, z2, . . . , zk)
pre: p1, . . . , pm
eff: e1, . . . , en

cost: c

Definition 2.11. A state-variable action is a ground instance a of an action
template α that satisfies the following requirements: all rigid-relation literals
in pre(a) must be true in R, and no target can appear more than once in
eff(a). If a is an action and a state s satisfies pre(a), then a is applicable in
s, and the predicted outcome of applying it is the state

γ(s, a) = {(x,w) | eff(a) contains the effect x←w}
∪ {(x,w) ∈ s | x is not the target of any effect in eff(a)}. (2.6)

If a isn’t applicable in s, then γ(s, a) is undefined.

Thus if a is applicable in s, then

(γ(s, a))(x) =

{
w, if eff(a) contains an effect x←w,

s(x), otherwise.
(2.7)

Example 2.12. Continuing Example 2.5, suppose each robot r has an ex-
ecution platform that can perform the following commands:

• if r is at a loading dock and is not already carrying anything, r can
load a container from the top of a pile;

• if r is at a loading dock and is carrying a container, r can unload the
container onto the top of a pile; and

• r can move from one loading dock to another if the other dock is
unoccupied and there is a road between the two docks.

To model these commands, let A comprise the following action templates:

7This can be generalized to make cost(α) a numeric formula that involves α’s param-
eters. In this case, most forward-search algorithms and many domain-specific heuristic
functions will still work, but most domain-independent heuristic functions will not, nor
will backward-search and plan-space search algorithms (Sections 2.4 and 2.5).
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load(r, c, c′, p, d)
pre: at(p, d), cargo(r) = nil, loc(r) = d, pos(c) = c′, top(p) = c
eff: cargo(r) = c, pile(c)← nil, pos(c)← r, top(p)← c′

unload(r, c, c′, p, d)
pre: at(p, d), pos(c) = r, loc(r) = d, top(p) = c′

eff: cargo(r)← nil, pile(c)← p, pos(c)← c′, top(p)← c

move(r, d, d′)
pre: adjacent(d, d′), loc(r) = d, occupied(d′) = F
eff: loc(r)← d′, occupied(d)←F, occupied(d′)←T

In the action templates, the parameters have the following ranges:

Range(c) = Containers; Range(c′) = Containers ∪ Robots ∪ {nil};
Range(d) = Docks; Range(d′) = Docks;
Range(p) = Piles; Range(r) = Robots.

Let a1 be the state-variable action load(r1, c1, c2, p1, d1). Then

pre(a1) =

{at(p1, d1), cargo(r1) = nil, loc(r1) = d1, pos(c1) = c2, top(p1) = c1}.

Let s0 and s1 be in Example 2.5 and Figure 2.3. Then a1 is applicable in
s0, and γ(s0, a1) = s1.

2.1.4 Plans and Planning Problems

Definition 2.13. Let B, R, X, and S be as in Section 2.1.2. Let A be a
set of action templates such that for every α ∈ A, every parameter’s range
is a subset of B, and let A = {all state-variable actions that are instances of
members ofA}. Finally, let γ be as in Equation 2.6. Then Σ = (S,A, γ, cost)
is a state-variable planning domain.

Example 2.14. If B, R, X, S, A and γ are as in Examples 2.3, 2.5, 2.7,
and 2.12, then (S,A, γ) is a state-variable planning domain.

Just after Definition 2.6, we discussed the notion of an interpretation of
a state space S. We now extend this to include planning domains. An inter-
pretation I of a state-variable planning domain Σ in an environment E is an
interpretation of S in E that satisfies the following additional requirement:
under I, each a ∈ A corresponds to an activity in E such that whenever
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a is applicable in a state s ∈ S, performing that activity in a situation
corresponding to s will produce a situation corresponding to γ(s, a).8

Definition 2.15. A plan is a finite sequence of actions

π = 〈a1, a2, . . . , an〉.

The plan’s length is |π| = n, and its cost is the sum of the action costs:
cost(π) =

∑n
i=1 cost(ai).

As a special case, 〈〉 is the empty plan, which contains no actions. Its
length and cost are both 0.

Definition 2.16. Let π = 〈a1, . . . , an〉 and π′ = 〈a′1, . . . , a′n′〉 be plans and
a be an action. We define the following concatenations:

π.a = 〈a1, . . . , an, a〉;
a.π = 〈a, a1, . . . , an〉;
π.π′ = 〈a1, . . . , an, a′1, . . . , a′n′〉;
π.〈〉 = 〈〉.π = π.

Definition 2.17. A plan π = 〈a1, a2, . . . , an〉 is applicable in a state s0 if
there are states s1, . . . , sn such that γ(si−1, ai) = si for i = 1, . . . , n. In this
case, we define

γ(s0, π) = sn;

γ̂(s0, π) = 〈s0, . . . , sn〉.

As a special case, the empty plan 〈〉 is applicable in every state s, with
γ(s, 〈〉) = s and γ̂(s, 〈〉) = 〈s〉.

In the preceding, γ̂ is called the transitive closure of γ. In addition to
the predicted final state, it includes all of the predicted intermediate states.

Definition 2.18. A state-variable planning problem is a triple P =
(Σ, s0, g), where Σ is a state-variable planning domain, s0 is a state called
the initial state, and g is a set of ground literals called the goal. A solution
for P is any plan π = 〈a1, . . . , an〉 such that the state γ(s0, π) satisfies g.

Alternatively, one may write P = (Σ, s0, Sg), where Sg is a set of goal
states. In this case, a solution for P is any plan π such that γ(s0, π) ∈ Sg.

8Ideally one would like to put a similar requirement on the interpretation of the action’s
cost, but we said earlier that its interpretation is arbitrary.
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Forward-search (Σ, s0, g)
s← s0; π ← 〈〉
loop

if s satisfies g, then return π
A′ ← {a ∈ A | a is applicable in s}
if A′ = ∅, then return failure
nondeterministically choose a ∈ A′ (i)
s← γ(s, a); π ← π.a

Algorithm 2.1: Forward-search planning schema.

For a planning problem P , a solution π is minimal if no subsequence
of π is also a solution for P , shortest if there is no solution π′ such that
|π′| < |π|, and cost-optimal (or just optimal, if it is clear from context) if

cost(π) = min{cost(π′) | π′ is a solution for P}.

Example 2.19. Let P = (Σ, s0, g), where Σ is the planning domain in
Example 2.12 and Figure 2.3, s0 is as in Equation 2.4, and g = {loc(r1) = d3}.
Let

π1 = 〈move(r1, d1, d3)〉;
π2 = 〈move(r2, d2, d3),move(r1, d1, d2),move(r2, d3, d1),move(r1, d2, d3)〉;
π3 = 〈load(r1, c1, c2, p1, d1), unload(r1, c1, c2, p1, d1),move(r1, d1, d3)〉.

Then π1 is a minimal, shortest, and cost-optimal solution for P ; π2 is a
minimal solution but is neither shortest nor cost-optimal; and π3 is a solution
but is neither minimal nor shortest nor cost-optimal.

2.2 Forward State-Space Search

Many planning algorithms work by searching forward from the initial state
to try to construct a sequence of actions that reaches a goal state. Forward-
search, Algorithm 2.1, is a procedural schema for a wide variety of such
algorithms. In line (i), the nondeterministic choice is an abstraction that
allows us to ignore the precise order in which the algorithm tries the alterna-
tive values of a (see Appendix A). We will use nondeterministic algorithms
in many places in the book to discuss properties of all algorithms that search
the same search space, irrespective of the order in which they visit the nodes.
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Deterministic-Search(Σ, s0, g)
Frontier← {(〈〉, s0)} // (〈〉, s0) is the initial node
Expanded← ∅
while Frontier 6= ∅ do

select a node ν = (π, s) ∈ Frontier (i)
remove ν from Frontier and add it to Expanded
if s satisfies g then (ii)

return π
Children← {(π.a, γ(s, a)) | s satisfies pre(a)}
prune (i.e., remove and discard) 0 or more nodes

from Children, Frontier and Expanded (iii)
Frontier← Frontier ∪ Children (iv)

return failure

Algorithm 2.2: Deterministic-Search, a deterministic version of Forward-
search.

Deterministic-Search, Algorithm 2.2, is a deterministic version of Forward-
search. Frontier is a set of nodes that are candidates to be visited, and
Expanded is a set of nodes that have already been visited. During each loop
iteration, Deterministic-Search selects a node, generates its children, prunes
some unpromising nodes, and updates Frontier to include the remaining
children.

In the Deterministic-Search pseudocode, each node is written as a pair ν =
(π, s), where π is a plan and s = γ(s0, π). However, in most implementations
ν includes other information, for example, pointers to ν’s parent and possibly
to its children, the value of cost(π) so that it will not need to be computed
repeatedly, and the value of h(s) (see Equation 2.8 below). The “parent”
pointers make it unnecessary to store π explicitly in ν; instead, ν typically
contains only the last action of π, and the rest of π is computed when needed
by following the “parent” pointers back to s0.

Many forward-search algorithms can be described as instances of
Deterministic-Search by specifying how they select nodes in line (i) and prune
nodes in line (iii). Presently we will discuss several such algorithms; but first,
here are some basic terminology and concepts.

The initial or starting node is (〈〉, s0), that is, the empty plan and the
initial state. The children of a node ν include all nodes (π.a, γ(s, a)) such
that a is applicable in s. The successors or descendants of ν include all of
ν’s children and, recursively, all of the children’s successors. The ancestors
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of ν include all nodes ν ′ such that ν is a successor of ν ′. A path in the search
space is any sequence of nodes 〈ν0, ν1, . . . , νn〉 such that each νi is a child
of νi−1. The height of the search space is the length of the longest acyclic
path that starts at the initial node. The depth of a node ν is the length of
the path from the initial node to ν. The maximum branching factor is the
maximum number of children of any node. To expand a node ν means to
generate all of its children.

Most forward-search planning algorithms attempt to find a solution with-
out exploring the entire search space, which can be exponentially large.9

To make informed guesses about which parts of the search space are more
likely to lead to solutions, node selection (line (i) of Deterministic-Search)
often involves a heuristic function h : S → R that returns an estimate of
the minimum cost of getting from s to a goal state:

h(s) ≈ h∗(s) = min{cost(π) | γ(s, π) satisfies g}. (2.8)

For information on how to compute such an h, see Section 2.3.
If 0 ≤ h(s) ≤ h∗(s) for every s ∈ S, then h is said to be admissible.

Notice that if h is admissible, then h(s) = 0 whenever s is a goal node.
Given a node ν = (π, s), some forward-search algorithms will use h to

compute an estimate f(ν) of the minimum cost of any solution plan that
begins with π:

f(ν) = cost(π) + h(s) ≈ min{cost(π.π′) | γ(s0, π.π
′) satisfies g}. (2.9)

If h is admissible, then f(ν) is a lower bound on the cost of every solution
that begins with π.

In many forward-search algorithms, the pruning step (line (iii) of
Deterministic-Search) often includes a cycle-checking step:

remove from Children every node (π, s) that has an ancestor
(π′, s′) such that s′ = s.

In classical planning problems (and any other planning problems where the
state space is finite), cycle-checking guarantees that the search will always
terminate.

2.2.1 Breadth-First Search

Breadth-first search can be written as an instance of Deterministic-Search in
which the selection and pruning are done as follows:

9The worst-case computational complexity is expspace-equivalent (see Section 2.7),
although the complexity of a specific planning domain usually is much less.
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• Node selection. Select a node (π, s) ∈ Children that minimizes the
length of π. As a tie-breaking rule if there are several such nodes,
choose one that minimizes h(s).

• Pruning. Remove from Children and Frontier every node (π, s) such
that Expanded contains a node (π′, s). This keeps the algorithm from
expanding s more than once.

In classical planning problems, breadth-first search will always terminate
and will return a solution if one exists. The solution will be shortest but
not necessarily cost-optimal.

Because breadth-first search keeps only one path to each node, its worst-
case memory requirement is O(|S|), where |S| is the number of nodes in the
search space. Its worst-case running time is O(b|S|), where b is the maximum
branching factor.

2.2.2 Depth-First Search

Although depth-first search (DFS) is usually written as a recursive algo-
rithm, it can also be written as an instance of Deterministic-Search in which
the node selection and pruning are done as follows:

• Node selection. Select a node (π, s) ∈ Children that maximizes the
length of π. As a tie-breaking rule if there are several such nodes,
choose one that minimizes h(s).

• Pruning. First do cycle-checking. Then, to eliminate nodes that the
algorithm is done with, remove ν from Expanded if it has no children in
Frontier∪Expanded, and do the same with each of ν’s ancestors until
no more nodes are removed. This garbage-collection step corresponds
to what happens when a recursive version of depth-first search returns
from a recursive call.

In classical planning problems, depth-first search will always terminate and
will return a solution if one exists, but the solution will not necessarily
be shortest or cost-optimal. Because the garbage-collection step removes
all nodes except for those along the current path, the worst-case memory
requirement is only O(bl), where b is the maximum branching factor and l
is the height of the state space. However, the worst-case running time is
O(bl), which can be much worse than O(|S|) if there are many paths to each
state in S.
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2.2.3 Hill Climbing

A hill climbing (or greedy) search is a depth-first search with no backtrack-
ing:

• Node selection. Select a node (π, s) ∈ Children that minimizes h(s).

• Pruning. First, do cycle-checking. Then assign Frontier← ∅, so that
line (iv) of Algorithm 2.2 will be the same as assigning Frontier ←
Children.

The search follows a single path, and prunes all nodes not on that path. It is
guaranteed to terminate on classical planning problems, but it is not guar-
anteed to return an optimal solution or even a solution at all. Its worst-case
running time is O(bl) and its the worst-case memory requirement is O(l),
where l is the height of the search space and b is the maximum branching
factor.

2.2.4 Uniform-Cost Search

Like breadth-first search, uniform-cost (or least-cost first) search does not
use a heuristic function. Unlike breadth-first search, it does node selection
using the accumulated cost of each node:

• Node selection. Select a node (π, s) ∈ Children that minimizes cost(π).

• Pruning. Remove from Children and Frontier every node (π, s) such
that Expanded contains a node (π′, s). In classical planning problems
(and any other problems in which all costs are nonnegative), it can be
proved that cost(π′) ≤ cost(π), so this step ensures that the algorithm
only keeps the least costly path to each node.

In classical planning problems, the search is guaranteed to terminate and to
return an optimal solution. Like breadth-first search, its worst-case running
time and memory requirement are O(b|S|) and O(|S|), respectively.

2.2.5 A*

A* is similar to uniform-cost search, but uses a heuristic function:

• Node selection. Select a node ν ∈ Children that minimizes f(ν) (de-
fined in Equation 2.9).

• Pruning. For each node (π, s) ∈ Children, if A* has more than one plan
that goes to s, then keep only the least costly one. More specifically,
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let

Vs = {(π′, s′) ∈ Children ∪ Frontier ∪ Expanded | s′ = s};

and if Vs contains any nodes other than (π, s) itself, let (π′, s) be the
one for which cost(π′) is smallest (if there is a tie, choose the oldest
such node). For every node ν ∈ Vs other than (π′, s), remove ν and
all of its descendants from Children, Frontier , and Expanded.

Here are some of A*’s properties:

• Termination, completeness, and optimality. On any classical planning
problem, A* will terminate and return a solution if one exists; and if
h is admissible, then this solution will be optimal.

• Epsilon-optimality. If h is ε-admissible (i.e., if there is an ε > 0 such
that 0 ≤ h(s) ≤ h∗(s) + ε for every s ∈ S), then the solution returned
by A* will be within ε of optimal [491].

• Monotonicity. If h(s) ≤ cost(γ(s, a)) +h(γ(s, a)) for every state s and
applicable action a, then h is said to be monotone or consistent. In
this case, f(ν) ≤ f(ν ′) for every child ν ′ of a node ν, from which it
can be shown that A* will never prune any nodes from Expanded, and
will expand no state more than once.

• Informedness. Let h1 and h2 be admissible heuristic functions such
that h2 dominates h1, i.e., 0 ≤ h1(s) ≤ h2(s) ≤ h∗(s) for every s ∈ S.10

Then A* will never expand more nodes with h2 than with h1,
11 and

in most cases, it will expand fewer nodes with h2 than with h1.

A*’s primary drawback is its space requirement: it needs to store every
state that it visits. Like uniform-cost search, A*’s worst-case running time
and memory requirement are O(b|S|) and O(|S|). However, with a good
heuristic function, A*’s running time and memory requirement are usually
much smaller.

2.2.6 Depth-First Branch and Bound

Depth-first branch and bound (DFBB) is a modified version of depth-first
search that uses a different termination test than the one in line (ii) of
Algorithm 2.2. Instead of returning the first solution it finds, DFBB keeps

10Dominance has often been described by saying that “h2 is more informed than h1,”
but that phrase is somewhat awkward because h2 always dominates itself.

11Here, we assume that A* always uses the same tie-breaking rule during node selection
if two nodes have the same f -value.
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searching until Frontier is empty. DFBB maintains two variables π∗ and c∗,
which are the least costly solution that has been found so far, and the cost
of that solution. Each time DFBB finds a solution (line (ii) of Deterministic-
Search), it does not return the solution but instead updates the values of π∗

and c∗. When Frontier is empty, if DFBB has found at least one solution
then it returns π∗, and otherwise it returns failure. Node selection and
pruning are the same as in depth-first search, but an additional pruning
step occurs during node expansion: if the selected node ν has f(ν) ≥ c∗,
DFBB discards ν rather than expanding it. If the first solution found by
DFBB has a low cost, this can prune large parts of the search space.

DFBB has the same termination, completeness, and optimality proper-
ties as A*. Because the only nodes stored by DFBB are the ones in the
current path, its space requirement is usually much lower than A*’s. How-
ever, because it does not keep track of which states it has visited, it may
regenerate each state many times if there are multiple paths to the state;
hence its running time may be much worse than A*’s. In the worst case, its
running time and memory requirement are O(bl) and O(bl), the same as for
DFS.

2.2.7 Greedy Best-First Search

For classical planning problems where nonoptimal solutions are acceptable,
the search algorithm that is used most frequently is Greedy Best-First Search
(GBFS). It works as follows:

• Node selection. Select a node (π, s) ∈ Children that minimizes h(s).

• Pruning. Same as in A*.

Like hill climbing, GBFS continues to expand nodes along its current path
as long as that path looks promising. But like A*, GBFS stores every state
that it visits. Hence it can easily switch to a different path if the current
path dead-ends or ceases to look promising (see Exercise 2.4).

Like A*, GBFS’s worst-case running time and memory requirement are
O(b|S|) and O(|S|). Unlike A*, GBFS is not guaranteed to return optimal
solutions; but in most cases, it will explore far fewer paths than A* and find
solutions much more quickly.

2.2.8 Iterative Deepening

There are several search algorithms that do forward-search but are not in-
stances of Deterministic-Search. Several of these are iterative-deepening al-
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gorithms, which gradually increase the depth of their search until they find
a solution. The best known of these is iterative deepening search (IDS),
which works as follows:

for k = 1 to ∞,
do a depth-first search, backtracking at every node of depth k
if the search found a solution, then return it
if the search generated no nodes of depth k, then return failure

On classical planning problems, IDS has the same termination, complete-
ness, and optimality properties as breadth-first search. Its primary advan-
tage over breadth-first search is that its worst-case memory requirement is
only O(bd), where d is the depth of the solution returned if there is one, or
the height of the search space otherwise. If the number of nodes at each
depth k grows exponentially with k, then IDS’s worst-case running time is
O(bd), which can be substantially worse than breadth-first search if there
are many paths to each state.

A closely related algorithm, IDA*, uses a cost bound rather than a depth
bound:

c← 0
loop

do a depth-first search, backtracking whenever f(ν) > c
if the search found a solution, then return it
if the search did not generate an f(ν) > c, then return failure
c← the smallest f(ν) > c where backtracking occurred

On classical planning problems, IDA*’s termination, completeness, and op-
timality properties are the same as those of A*. IDA*’s worst-case memory
requirement is O(bl), where l is the height of the search space. If the number
of nodes grows exponentially with c (which usually is true in classical plan-
ning problems but less likely to be true in nonclassical ones), then IDA*’s
worst-case running time is O(bd), where d is the depth of the solution re-
turned if there is one or the height of the search space otherwise. However,
this is substantially worse than A* if there are many paths to each state.

2.2.9 Choosing a Forward-Search Algorithm

It is difficult to give any hard-and-fast rules for choosing among the forward-
search algorithms presented here, but here are some rough guidelines.

If a nonoptimal solution is acceptable, often the best choice is to de-
velop a planning algorithm based on GBFS (e.g., [510, 613]). There are no
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guarantees as to GBFS’s performance; but with a good heuristic function,
it usually works quite well.

If one needs a solution that is optimal (or within ε of optimal) and has a
good heuristic function that is admissible (or ε-admissible), then an A*-like
algorithm is a good choice if the state space is small enough that every node
can be held in main memory. If the state space is too large to hold in main
memory, then an algorithm such as DFBB or IDA* may be worth trying,
but there may be problems with excessive running time.

For integration of planning into acting, an important question is how
to turn any of these algorithms into online algorithms. This is discussed
further in Section 2.6.

2.3 Heuristic Functions

Recall from Equation 2.8 that a heuristic function is a function h that returns
an estimate h(s) of the minimum cost h∗(s) of getting from the state s to
a goal state and that h is admissible if 0 ≤ h(s) ≤ h∗(s) for every state s
(from which it follows that h(s) = 0 whenever s is a goal node).

The simplest possible heuristic function is h0(s) = 0 for every state s.
It is admissible and trivial to compute but provides no useful information.
We usually will want a heuristic function that provides a better estimate of
h∗(s) (e.g., see the discussion of dominance at the end of Section 2.2.5). If
a heuristic function can be computed in a polynomial amount of time and
can provide an exponential reduction in the number of nodes examined by
the planning algorithm, this makes the computational effort worthwhile.

The best-known way of producing heuristic functions is relaxation. Given
a planning domain Σ = (S,A, γ) and planning problem P = (Σ, s0, g), re-
laxing them means weakening some of the constraints that restrict what the
states, actions, and plans are; restrict when an action or plan is applicable
and what goals it achieves; and increase the costs of actions and plans. This
produces a relaxed domain Σ′ = (S′, A′, γ′) and problem P ′ = (Σ′, s′0, g

′)
having the following property: for every solution π for P , P ′ has a solution
π′ such that cost′(π′) ≤ cost(π).

Given an algorithm for solving planning problems in Σ′, we can use it to
create a heuristic function for P that works as follows: given a state s ∈ S,
solve (Σ′, s, g′) and return the cost of the solution. If the algorithm always
finds optimal solutions, then the heuristic function will be admissible.

Just as domain representations can be either domain-specific or domain-
independent, so can heuristic functions. Here is an example of the former:

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


46 Chapter 2

Example 2.20. Let us represent the planning domain in Figure 2.1 as
follows. The objects include a set of locations and a few numbers:

B = Locations ∪Numbers;

Locations = {loc1, . . . , loc9};
Numbers = {1, . . . , 9}.

There is a rigid relation adjacent that includes every pair of locations that
have a road between them, and rigid relations x and y that give each loca-
tion’s x and y coordinates:

adjacent = {(loc0, loc1), (loc0, loc6), (loc1, loc0), (loc1, loc3), . . .};
x = {(loc0, 2), (loc1, 0), (loc2, 4), . . .};
y = {(loc0, 4), (loc1, 3), (loc2, 4), . . .}.

There is one state variable loc with Range(loc) = Locations, and 10 states:

si = {loc = loci}, i = 0, . . . , 9.

There is one action template:

move(l,m)
pre: adjacent(l,m), loc = l
eff: loc←m

cost: distance(l,m)

where Range(l) = Range(m) = Locations, and distance(l,m) is the Eu-
clidean distance between l and m:

distance(l,m) =
√

(x(l)− x(m))2 + (y(l)− y(m))2.

Consider the planning problem (Σ, s0, s8). One possible heuristic function
is the Euclidean distance from loc to the goal location,

h(s) = distance(s(loc), loc8),

which is the length of an optimal solution for a relaxed problem in which
the actor is not constrained to follow roads. This is a lower bound on the
length of every route that follows roads to get to loc8, so h is admissible.

It is possible to define a variety of domain-independent heuristic func-
tions that can be used in any state-variable planning domain. In the follow-
ing subsections, we describe several such heuristic functions, and illustrate
each of them in the following example.
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Figure 2.4: Initial state and goal for Example 2.21.

Example 2.21. Figure 2.4 shows a planning problem P = (Σ, s0, g) in a
planning domain Σ = (B,R,X,A) that is a simplified version of the one in
Figure 2.3. B includes one robot, one container, three docks, no piles, and
the constant nil:

B = Robots ∪Docks ∪ Containers ∪ {nil};
Robots = {r1};
Docks = {d1, d2, d3};

Containers = {c1}.

There are no rigid relations, that is, R = ∅. There are two state variables,
X = {cargo(r1), loc(c1)}, with

Range(cargo(r1)) = {c1, nil};
Range(loc(c1)) = {d1, d2, d3, r1}.

A contains three action templates:

load(r, c, l)
pre: cargo(r) = nil, loc(c) = l, loc(r) = l
eff: cargo(r)← c, loc(c)← r

cost: 1

unload(r, c, l)
pre: cargo(r) = c, loc(r) = l
eff: cargo(r)← nil, loc(c)← l

cost: 1

move(r, d, e)
pre: loc(r) = d
eff: loc(r)← e

cost: 1

The action templates’ parameters have the following ranges:

Range(c) = Containers; Range(d) = Range(e) = Docks;
Range(l) = Locations; Range(r) = Robots.
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P ’s initial state and goal are

s0 = {loc(r1) = d3, cargo(r1) = nil, loc(c1) = d1};
g = {loc(r1) = d3, loc(c1) = r1}.

Suppose we are running GBFS (see Section 2.2.7) on P . In s0, there are two
applicable actions: a1 = move(r1, d3, d1) and a2 = move(r1, d3, d2). Let

s1 = γ(s0, a1) = {loc(r1) = d1, cargo(r1) = nil, loc(c1) = d1}; (2.10)

s2 = γ(s0, a2) = {loc(r1) = d2, cargo(r1) = nil, loc(c1) = d1}. (2.11)

In line (i) of Algorithm 2.2, GBFS chooses between a1 and a2 by evaluating
h(s1) and h(s2). The following subsections describe several possibilities for
what h might be.

2.3.1 Max-Cost and Additive Cost Heuristics

The max-cost of a set of literals g = {g1, . . . , gk} is defined recursively as
the largest max-cost of each gi individually, where each gi’s max-cost is the
minimum, over all actions that can produce gi, of the action’s cost plus the
max-cost of its preconditions. Here are the equations:

∆max(s, g) = max
gi∈g

∆max(s, gi);

∆max(s, gi) =

{
0, if gi ∈ s,
min{∆max(s, a) | a ∈ A and gi ∈ eff(a)}, otherwise;

∆max(s, a) = cost(a) + ∆max(s,pre(a)).

In a planning problem P = (Σ, s0, g), the max-cost heuristic is

hmax(s) = ∆max(s, g).

As shown in the following example, the computation of hmax can be visual-
ized as an And/Or search going backward from g.

At the beginning of Section 2.3, we said that most heuristics are derived
by relaxation. One way to describe hmax is that it is the cost of an optimal
solution to a relaxed problem in which a goal (i.e., a set of literals such as
g or the preconditions of an action) can be reached by achieving just one of
the goal’s literals, namely, the one that is the most expensive to achieve.

Example 2.22. In Example 2.21, suppose GBFS’s heuristic function is
hmax. Figure 2.5 shows the computation of hmax(s1) = 1 and hmax(s2) = 2.
Because hmax(s1) < hmax(s2), GBFS will choose s1.
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Figure 2.5: Computation of hmax(s1, g) and hmax(s2, g).
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Figure 2.6: Computation of hadd(s1, g) and hadd(s2, g).
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Although hmax is admissible, it is not very informative. A closely related
heuristic, the additive cost heuristic, is not admissible but generally works
better in practice. It is similar to hmax but adds the costs of each set of
literals rather than taking their maximum. It is defined as

hadd(s) = ∆add(s, g),

where

∆add(s, g) =
∑
gi∈g

∆add(s, gi);

∆add(s, gi) =

{
0, if gi ∈ s,
min{∆add(s, a) | a ∈ A and gi ∈ eff(a)}, otherwise;

∆add(s, a) = cost(a) + ∆add(s,pre(a)).

As shown in the following example, the computation of hadd can be visualized
as an And/Or search nearly identical to the one for hmax.

Example 2.23. In Example 2.21, suppose GBFS’s heuristic function is
hadd. Figure 2.6 shows the computation of hadd(s1) = 2 and hadd(s2) = 3.
Because hadd(s1) < hadd(s2), GBFS will choose s1.

To see that hadd is not admissible, notice that if a single action a could
achieve both loc(r1)=d3 and loc(c1)=r1, then hadd(g) would be higher than
h∗(g), because hadd would count a’s cost twice.

Both hmax and hadd have the same time complexity. Their running time
is nontrivial, but it is polynomial in |A|+

∑
x∈X |Range(x)|, the total number

of actions and ground atoms in the planning domain.

2.3.2 Delete-Relaxation Heuristics

Several heuristic functions are based on the notion of delete-relaxation, a
problem relaxation in which applying an action never removes old atoms
from a state, but simply adds new ones.12

If a state s includes an atom x= v and an applicable action a has an
effect x ← w, then the delete-relaxed result of applying a will be a “state”
γ+(s, a) that includes both x= v and x=w. We will make the following
definitions:

12The hadd and hmax heuristics can also be explained in terms of delete-relaxation; see
Section 2.7.9.
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• A relaxed state (or r-state, for short) is any set ŝ of ground atoms such
that every state variable x ∈ X is the target of at least one atom in ŝ.
It follows that every state is also an r-state.

• A relaxed state ŝ r-satisfies a set of literals g if S contains a subset
s ⊆ ŝ that satisfies g.

• An action a is r-applicable in an r-state ŝ if ŝ r-satisfies pre(a). In this
case, the predicted r-state is

γ+(ŝ, a) = ŝ ∪ γ(s, a). (2.12)

• By extension, a plan π = 〈a1, . . . , an〉 is r-applicable in an r-state ŝ0 if
there are r-states ŝ1, . . . , ŝn such that

ŝ1 = γ+(ŝ0, a1), ŝ2 = γ+(ŝ1, a2), . . . , ŝn = γ+(ŝn−1, an).

In this case, γ+(ŝ0, π) = ŝn.

• A plan π is a relaxed solution for a planning problem P = (Σ, s0, g) if
γ+(s0, π) r-satisfies g. Thus the cost of the optimal relaxed solution is

∆+(s, g) = min{cost(π) | γ+(s, π) r-satisfies g}.

For a planning problem P = (Σ, s0, g), the optimal relaxed solution heuristic
is

h+(s) = ∆+(s, g).

Example 2.24. Let P be the planning problem in Example 2.21. Let
ŝ1 = γ+(s0,move(r1, d3, d1)) and ŝ2 = γ+(ŝ1, load(r1, c1, d1)). Then

ŝ1 = {loc(r1) = d1, loc(r1) = d3, cargo(r1) = nil, loc(c1) = d1};
ŝ2 = {loc(r1) = d1, loc(r1) = d3, cargo(r1) = nil, cargo(r1) = c1,

loc(c1) = d1, loc(c1) = r1}.

The r-state ŝ2 r-satisfies g, so the plan π = 〈move(r1, d3, d1), load(r1, c1, d1)〉
is a relaxed solution for P . No shorter plan is a relaxed solution for P , so
h+(s) = ∆+(s0, g).

Because every ordinary solution for P is also a relaxed solution for P , it
follows that h+(s) ≤ h∗(s) for every s. Thus h+ is admissible, so h+ can be
used with algorithms such as A* to find an optimal solution for P . On the
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HFF(Σ, s, g)
ŝ0 = s; A0 = ∅
for k = 1 by 1 until a subset of ŝk r-satisfies g do (i)
Ak ← {all actions that are r-applicable in ŝk−1}
ŝk ← γ+(ŝk−1, Ak)
if ŝk = ŝk−1 then // (Σ, s, g) has no solution (ii)

return ∞
ĝk ← g
for i = k down to 1 do (iii)

arbitrarily choose a minimal set of actions
âi ⊆ Ai such that γ+(ŝi, âi) satisfies ĝi

ĝi−1 ← (ĝi − eff(âi)) ∪ pre(âi)
π̂ ← 〈â1, â2, . . . , âk〉 (iv)
return

∑
{cost(a) | a is an action in π̂}

Algorithm 2.3: HFF, an algorithm to compute the Fast-Forward heuristic.

other hand, h+ is expensive to compute: the problem of finding an optimal
relaxed solution for a planning problem P is NP-hard [68].13

We now describe an approximation to h+ that is easier to compute. It
is based on the fact that if A is a set of actions that are all r-applicable in a
relaxed state ŝ, then they will produce the same predicted r-state regardless
of the order in which they are applied. This r-state is

γ+(ŝ, A) = ŝ ∪
⋃
a∈A

eff(a). (2.13)

HFF, Algorithm 2.3, starts at an initial r-state ŝ0 = s, and uses Equa-
tion 2.13 to generate a sequence of successively larger r-states and sets of
applicable actions,

ŝ0, A1, ŝ1, A2, ŝ2 . . . ,

until it generates an r-state that r-satisfies g. From this sequence, HFF
extracts a relaxed solution and returns its cost. Line (ii) whether the se-
quence has converged to an r-state that does not r-satisfy g, in which case
the planning problem is unsolvable.

The Fast-Forward heuristic, hFF(s), is defined to be the value returned
by HFF.14 The definition of hFF is ambiguous, because the returned value

13If we restrict P to be ground (see Section 2.7.1), then the problem is NP-complete.
14The name comes from the FF planner in which this heuristic was introduced; see

Section 2.7.9.
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from ŝ0:
 

Atoms in ŝ1:Actions in A1:Atoms in ŝ0:
loc(r1) = d1
loc(c1) = d1
cargo(r1) = nil

move(r1,d1,d3)
move(r1,d1,d2)

loc(r1) = d1
loc(c1) = d1

cargo(r1) = nil

loc(r1) = d3
loc(r1) = d2

load(r1,c1,d1)
cargo(r1) = c1
loc(c1) = r1

Figure 2.7: Computation of HFF(Σ, s1, g) = 2. The solid lines indicate the
actions’ preconditions and effects. The elements of ĝ0, â1, and ĝ1 are shown
in boldface.

may vary depending on HFF’s choices of âk, âk−1, . . . , â1 in the loop (iii).
Furthermore, because there is no guarantee that these choices are the opti-
mal ones, hFF is not admissible.

As with hmax and hadd, the running time for HFF is polynomial in |A|+∑
x∈X |Range(x)|, the number of actions and ground atoms in the planning

domain.

Example 2.25. In Example 2.21, suppose GBFS’s heuristic function is hFF,
as computed by HFF.

To compute hFF(s1), HFF begins with ŝ0 = s1, and computes A1 and ŝ1
in the loop at line (i). Figure 2.7 illustrates the computation: the lines to
the left of each action show which atoms in ŝ0 satisfy its preconditions, and
the lines to the right of each action show which atoms in ŝ1 are its effects.
For the loop at line (iii), HFF begins with ĝ1 = g and computes â1 and
ĝ0; these sets are shown in boldface in Figure 2.7. In line (iv), the relaxed
solution is

π̂ = 〈â1〉 = 〈{move(r1, d1, d3), load(r1, c1, d1)}〉.

Thus HFF returns hFF(s1) = cost(π̂) = 2.
Figure 2.8 is a similar illustration of HFF’s computation of hFF(s2). For

the loop at line (i), HFF begins with ŝ0 = s2 and computes the sets A1, ŝ1,
A2, and ŝ2. For the loop at line (iii), HFF begins with ĝ2 = g and computes
â2, ĝ1, â1, and ĝ0, which are shown in boldface in Figure 2.8. In line (iv),
the relaxed solution is

π̂ = 〈â1, â2〉 = 〈{move(r1, d2, d1)〉}, {〈move(r1, d1, d3), load(r1, c1, d1)}〉,
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from ŝ0:
 

 Atoms in ŝ2:
Actions in A2:

Atoms in ŝ1:Actions in A1:Atoms in ŝ0:
loc(r1) = d2
loc(c1) = d1
cargo(r1) = nil

move(r1,d2,d3)
move(r1,d2,d1)

 from ŝ1:

loc(r1) = d2
loc(c1) = d1

cargo(r1) = nil

loc(r1) = d3
loc(r1) = d1

move(r1,d1,d2)
move(r1,d3,d2)

move(r1,d1,d3)

move(r1,d2,d3)
move(r1,d2,d1)

move(r1,d3,d1)

load(r1,c1,d1)

loc(r1) = d2
loc(c1) = d1
cargo(r1) = nil

loc(r1) = d3
loc(r1) = d1

cargo(r1) = c1
loc(c1) = r1

Figure 2.8: Computation of HFF(Σ, s2, g) = 3. The solid lines indicate the
actions’ preconditions and effects. The atoms and actions in each ĝi and âi
are shown in boldface.

so HFF returns hFF(s2) = cost(π̂) = 3.

Thus hFF(s1) < hFF(s2), so GBFS will choose to expand s1 next.

The graph structures in Figures 2.7 and 2.8 are called relaxed planning
graphs.

2.3.3 Landmark Heuristics

Let P = (Σ, s0, g) be a planning problem, and let φ = φ1 ∨ . . . ∨ φm be
a disjunction of atoms. Then φ is a disjunctive landmark for P if every
solution plan produces an intermediate state (i.e., a state other than s0 and
g) in which φ is true.

The problem of deciding whether an arbitrary φ is a disjunctive land-
mark is PSPACE-complete [281]. However, that is a worst-case result; many
disjunctive landmarks can often be efficiently discovered by reasoning about
relaxed planning graphs [281, 509].

One way to to do this is as follows. Let s be the current state, and
g be the goal; but instead of requiring g to be a set of atoms, let it be
a set g = {φ1, . . . , φk} such that each φi is a disjunction of one or more
atoms. For each φi, let Ri = {every action whose effects include at least
one of the atoms in φi}. Let from Ri every action a for which we can show
(using a relaxed-planning-graph computation) that a’s preconditions cannot
be achieved without Ri, and let Ni = {a1, a2, . . . , ak} be the remaining set of
actions. If we pick a precondition pj of each aj in N , then φ′ = p1 ∨ . . .∨ pk
is a disjunctive landmark. To avoid a combinatorial explosion, we will not
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want to compute every such φ′; instead we will only compute landmarks
consisting of no more than four atoms (the number 4 being more-or-less
arbitrary). The computation can be done by calling RPG-landmark(s, φi)
once for each φi, as follows:

RPG-landmark(s, φ) takes two arguments: a state s, and a disjunction φ
of one or more atoms such that φ is false in s (i.e., s contains none of the
atoms in φ). It performs the following steps:

1. Let Relevant = {every action whose effects include at least one member
of φ}. Then achieving φ will require at least one of the actions in
Relevant. If some action a ∈ Relevant has all of its preconditions
satisfied in s, then 〈a〉 is a solution, and the only landmark is φ itself,
so return φ.

2. Starting with s, and using only the actions in A \ Relevant (i.e., the
actions that cannot achieve φ), construct a sequence of r-states and
r-actions ŝ0, A1, ŝ1, A2, ŝ2, . . . as in the HFF algorithm. But instead of
stopping when HFF does, keep going until an r-state ŝk is reached such
that ŝk = ŝk−1. Then ŝk includes every atom that can be produced
without using the actions in Relevant.

3. Let Necessary = {all actions in Relevant that are applicable in ŝk}.
Then achieving φ will require at least one of the actions in Necessary.
If Necessary = ∅ then φ cannot be achieved, so return failure.

4. Consider every disjunction of atoms φ′ = p1 ∨ . . . ∨ pm having the
following properties: m ≤ 4 (as we noted earlier, this is an arbitrary
limit to avoid a combinatorial explosion), every pi in φ′ is a precondi-
tion of at least one action in Necessary, every action in Necessary has
exactly one of p1, . . . , pm as a precondition, and s0 contains none of
p1, . . . , pm. Then none of the actions in Necessary will be applicable
until φ′ is true, so φ′ is a disjunctive landmark.

5. For every landmark φ′ found in the previous step, recursively call
RPG-landmark(s, φ′) to find additional landmarks.15 These landmarks
precede φ′, that is, they must be achieved before φ′. Return every φ′

and all of the landmarks found in the recursive calls.

The simple landmark heuristic is

hsl(s) = the total number of landmarks found by the preceding algorithm.

15In implementations, this usually is done only if every atom in φ′ has the same type,
for example, φ′ = loc(r1)= d1 ∨ loc(r2)= d1.
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Backward-search(Σ, s0, g0)
π ← 〈〉; g ← g0 (i)
loop

if s0 satisfies g then return π
A′ ← {a ∈ A | a is relevant for g}
if A′ = ∅ then return failure
nondeterministically choose a ∈ A′
g ← γ−1(g, a) (ii)
π ← a.π (iii)

Algorithm 2.4: Backward-search planning schema. During each loop itera-
tion, π is a plan that achieves g from any state that satisfies g.

Although the algorithm is more complicated than the HFF algorithm, its
running time is still polynomial.

Better landmark heuristics can be devised by doing additional compu-
tations to discover additional landmarks and by reasoning about the order
in which to achieve the landmarks. We discuss this further in Section 2.7.9.

Example 2.26. As before, consider the planning problem in Example 2.21.

To compute hsl(s1), we count the number of landmarks between s1 and
g. If we start in s1, then every solution plan must include a state in which
cargo(r1) = c1. We will skip the computational details, but this is the only
landmark that the landmark computation will find for s1. Thus hsl(s1) = 1.

If we start in state s2, then the landmark computation will find two
landmarks: cargo(s1) = c1 as before, and loc(r1) = d1 (which was not a
landmark for s1 because it was already true in s1). Thus hsl(s2) = 2.

2.4 Backward Search

Backward-search, Algorithm 2.4, does a state-space search backward from
the goal. As with Forward-search, it is a nondeterministic algorithm that has
many possible deterministic versions. The variables in the algorithm are as
follows: π is the current partial solution, g′ is a set of literals representing all
states from which π can achieve g, Solved is a set of literals representing all
states from which a suffix of π can achieve g, and A′ is the set of all actions
that are relevant for g′, as defined next.

Informally, we will consider an action a to be relevant for achieving a
goal g if a does not make any of the conditions in g false and makes at least

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


58 Chapter 2

one of them true. More formally:

Definition 2.27. Let g = {x1 = c1, . . . , xk = ck}, where each xi is a state
variable and each ci is a constant. An action a is relevant for g if the
following conditions hold:

• For at least one i ∈ {1, . . . , k}, effa contains xi ← ci.

• For i = 1, . . . , k, effa contains no assignment statement xi ← c′i such
that c′i 6= ci.

• For each xi that is not affected by a, pre(a) does not contain the
precondition xi 6= ci, nor any precondition xi = c′i such that c′i 6=
ci.

In line (ii) of Backward-search, γ−1(g, a) is called the regression of g
through a. It is a set of conditions that is satisfied by every state s such
that γ(s, a) satisfies g. It includes all of the literals in pre(a), and all literals
in g that a does not achieve:

γ−1(g, a) = pre(a) ∪ {(xi, ci) ∈ g | a does not affect xi} (2.14)

We can incorporate loop-checking into Backward-search by inserting the
following line after line (i):

Solved← {g}

and adding these two lines after line (iii):

if g ∈ Solved then return failure
Solved← Solved ∪ {g}

We can make the loop-checking more powerful by replacing the preceding
two lines with the following subsumption test :

if g ∈ Solved then return failure
if ∃g′ ∈ Solved s.t. g′ ⊆ g then return failure

Here, Solved represents the set of all states that are “already solved,” that
is, states from which π or one of π’s suffixes will achieve g0; and g′ represents
the set of all states from which the plan a.π will achieve g0. If every state
that a.π can solve is already solved, then it is useless to prepend a to π. For
any solution that we can find this way, another branch of the search space
will contain a shorter solution that omits a.
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Example 2.28. Suppose we augment Backward-search to incorporate loop
checking and call it on the planning problem in Example 2.21. The first
time through the loop,

g = {cargo(r1) = c1, loc(r1) = d3},

and there are three relevant actions: move(r1, d1, d3), move(r1, d2, d3),
and load(r1, c1, d3). Suppose Backward-search’s nondeterministic choice is
move(r1, d1, d3). Then in lines 7–10,

g ← γ−1(g,move(r1, d1, d3)) = {loc(r1) = d1, cargo(r1) = c1};
π ← 〈move(r1, d1, d3)〉;

Solved← {{cargo(r1) = c1, loc(r1) = d3}, {loc(r1) = d1, cargo(r1) = c1}}.

In its second loop iteration, Backward-search chooses nondeterministically
among three relevant actions in line 6: move(r1, d2, d1), move(r1, d3, d1),
and load(r1, c1, d1). Let us consider two of these choices.

If Backward-search chooses move(r1, d3, d1), then in lines 7–9,

g ← γ−1(g,move(r1, d3, d1)) = {loc(r1) = d3, cargo(r1) = c1};
π ← 〈move(r1, d3, d1),move(r1, d1, d3)〉;
g ∈ Solved, so Backward-search returns failure.

If Backward-search instead chooses load(r1, c1, d1), then in lines 7–10,

g ← γ−1(g, load(r1, c1, d1)) = {loc(r1) = d1, cargo(r1) = nil};
π ← 〈load(r1, c1, d1),move(r1, d1, d3)〉;

Solved← {{cargo(r1) = c1, loc(r1) = d3}, {loc(r1) = d1, cargo(r1) = c1},
{loc(r1) = d1, cargo(r1) = nil}}.

Consequently, one of the possibilities in Backward-search’s third loop itera-
tion is to set

π ← 〈move(r1, d1, d3), load(r1, c1, d1),move(r1, d1, d3)〉.

If Backward-search does this, then it will return π at the start of the fourth
loop iteration.

To choose among actions in A, Backward-search can use many of the
same heuristic functions described in Section 2.3, but with the following
modification: rather than using them to estimate the cost of getting from
the current state to the goal, what should be estimated is the cost of getting
from s0 to γ−1(g, a).
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2.5 Plan-Space Search

Another approach to plan generation is to formulate planning as a constraint
satisfaction problem and use constraint-satisfaction techniques to produce
solutions that are more flexible than linear sequences of ground actions. For
example, plans can be produced in which the actions are partially ordered,
along with a guarantee that every total ordering that is compatible with this
partial ordering will be a solution plan.

Such flexibility allows some of the ordering decisions to be postponed
until the plan is being executed, at which time the actor may have a better
idea about which ordering will work best. Furthermore, the techniques are
a first step toward planning concurrent execution of actions, a topic that we
will develop further in Chapter 4.

2.5.1 Definitions and Algorithm

The PSP algorithm, which we will describe shortly, solves a planning prob-
lem by making repeated modifications to a “partial plan” in which the ac-
tions are partially ordered and partially instantiated, as defined here.

A partially instantiated action is any instance of an action template. It
may be either ground or unground.

Informally, a partially ordered plan is a plan in which the actions are
partially ordered. However, some additional complication is needed to make
it possible (as it is in ordinary plans) for actions to occur more than once.
The mathematical definition is as follows:

Definition 2.29. A partially ordered plan is a triple π = (V,E, act) in
which V and E are the nodes and edges of an acyclic digraph, and each
node v ∈ V contains an action act(v).16 The edges in E represent ordering
constraints on the nodes in V , and we define v ≺ v′ if v 6= v′ and (V,E)
contains a path from v to v′. A total ordering of π is any (ordinary) plan
π′ = 〈act(v1), . . . , act(vn)〉 such that v1 ≺ v2 ≺ . . . ≺ vn and {v1, . . . , vn} =
V .

A partially ordered solution for a planning problem P is a partially or-
dered plan π such that every total ordering of π is a solution for P .

Definition 2.30. A partial plan is a 4-tuple π = (V,E, act, C), where
(V,E, act) is the same as in Definition 2.29 except that each action act(v)

16For readers familiar with partially ordered multisets [233], we essentially are defining
a partially ordered plan to be a pomset in which act(.) is the labeling function.
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may be partially instantiated, and C is a set of constraints. Each constraint
in C is either an inequality constraint or a causal link:

• An inequality constraint is an expression of the form y 6= z, where y
and z may each be either a variable or a constant.

• A causal link is an expression v1
x=b
99K v2, where v1 and v2 are two nodes

such that v1 ≺ v2, x= b is a precondition of act(v2), and x← b is an
effect of act(v1).

The purpose of a causal link is to designate act(v1) as the (partially
instantiated) action that establishes act(v2)’s precondition x = b. Conse-
quently, for every node such that v1 ≺ v3 ≺ v2, we will say that v3 violates
the causal link if x is the target of one of act(v3)’s effects, even if the effect
is x← b.17

A partial plan π = (V,E, act, C) is inconsistent if (V,E) contains a
cycle, C contains a self-contradictory inequality constraint (e.g., y 6= y) or a
violated causal link, or an action act(v) has an illegal argument. Otherwise
π is consistent.

Definition 2.31. If π = (V,E, act, C) is a consistent partial plan, then a
refinement of π is any sequence ρ of the following modifications to π:

• Add an edge (v, v′) to E. This produces a partial plan (V,E′, act, C)
in which v ≺ v′.
• Instantiate a variable x. This means replacing all occurrences of x with

an object b ∈ Range(x) or a variable y with Range(y) ⊆ Range(x).
This produces a partial plan (V,E, act′, C ′), where C ′ and act′ are the
instances of C and act produced by replacing x.

• Add a constraint c. This produces a partial plan (V,E, act, C ∪ {c}).
• Add a new node v containing a partially instantiated action a. This

produces a partial plan π′ = (V ′, E, act′, C), where V ′ = V ∪ {v} and
act′ = act ∪ {(v, a)}.

A refinement ρ is feasible for π if it produces a consistent partial plan.

17The reason for calling this a violation even if the effect is x← b is to ensure that PSP
(Algorithm 2.5) performs a systematic search [411, 336], that is, it does not generate the
same partial plan several times in different parts of the search space.
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PSP(Σ, π)
loop

if Flaws(π) = ∅ then return π
arbitrarily select f ∈ Flaws(π) (i)
R← {all feasible resolvers for f}
if R = ∅ then return failure
nondeterministically choose ρ ∈ R (ii)
π ← ρ(π)

return π

Algorithm 2.5: PSP, plan-space planning.

2.5.2 Planning Algorithm

The PSP algorithm is Algorithm 2.5. Its arguments include a state-variable
planning domain Σ = (B,R,X,A) and a partial plan π = (V,E, act, C) that
represents a planning problem P = (Σ, s0, g). The initial value of π is as
follows, where v0 and vg are nodes containing two dummy actions that PSP
uses to represent the initial state and goal:

• V = {v0, vg} and E = {(v0, vg)},
• act(v0) is a dummy action a0 that has pre(a0) = ∅ and eff(a0) = s0.

• act(vg) is a dummy action ag that has pre(ag) = g and eff(ag) = ∅.

• C = ∅, that is, there are not (yet) any constraints.

The reason for calling a0 and ag “dummy actions” is that they look syntac-
tically like actions but are not instances of action templates in A. Their sole
purpose is to represent s0 and g in a way that is easy for PSP to work with.

PSP repeatedly makes feasible refinements to π in an effort to produce a
partially ordered solution for P . PSP does this by finding flaws (things that
prevent π from being a solution to P ) and for each flaw applying a resolver
(a refinement that removes the flaw).

In PSP, Flaws(π) is the set of all flaws in π. There are two kinds of flaws:
open goals and threats. These and their resolvers are described next.

Open goals. If a node v ∈ V has a precondition p ∈ pre(act(v)) for which
there is no causal link, then p is an open goal. There are two kinds of
resolvers for this flaw:

• Establish p using an action in π. Let v′ be any node of π such that
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Figure 2.9: Initial state and goal for Example 2.32.

v 6≺ v′. If act(v) has an effect e that can be unified with p (i.e., made
syntactically identical to p by instantiating variables), then the fol-
lowing refinement is a resolver for p: instantiate variables if necessary

to unify p and e; add a causal link v′
e′
99K v (where e′ is the unified

expression); and add (v′, v) to E unless v′ ≺ v already.

• Establish p by adding a new action. Let a′ be a standardization of
an action template a ∈ A (i.e., a′ is a partially instantiated action
produced by renaming the variables in a to prevent name conflicts
with the variables already in π). If eff(a′) has an effect e that can be
unified with p, then the following refinement is a resolver for p: add a
new node v′ to V ; add (v′, a′) to act; instantiate variables if necessary

to unify p and e; add a causal link v′
e′
99K v; make v0 ≺ v′ by adding

(v0, v
′) to E; and add (v′, v) to E.

Threats. Let v1
x=b
99K v2 be any causal link in π, and v3 ∈ V be any node

such that v2 6≺ v3 and v3 6≺ v1 (hence it is possible for v3 to come between
v1 and v2). Suppose act(v3) has an effect y ← w that is unifiable with x,
that is, π has an instance (here we extend Definition 2.9 to plans) in which
both x and y are the same state variable). Then v3 is a threat to the causal
link. There are three kinds of resolvers for such a threat:

• Make v3 ≺ v1, by adding (v3, v1) to E.

• Make v2 ≺ v3, by adding (v2, v3) to E.

• Prevent x and y from unifying, by adding to C an inequality constraint
on their parameters.

Example 2.32. Figure 2.9 shows the initial state and goal for a simple
planning problem in which there are two robots and three loading docks, that
is, B = Robots ∪ Docks, where Robots = {r1, r2} and Docks = {d1, d2, d3}.
There are no rigid relations. There is one action template,
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occupied(d1)	=	r1

loc(r2)	=	d1
loc(r1)	=	d2

loc(r2)	=	d2
loc(r1)	=	d1

occupied(d2)	=	r2

occupied(d3)	=	nil

 ag a0

Figure 2.10: The initial partial plan contains dummy actions a0 and ag that
represent s0 and g. There are two flaws: ag’s two preconditions are open
goals.

move(r, d, d′)
pre: loc(r) = d, occupied(d′) = F
eff: loc(r)← d′,

where r ∈ Robots and d, d′ ∈ Docks. The initial state and the goal (see
Figure 2.9) are

s0 = {loc(r1) = d1, loc(r2) = d2, occupied(d1) = T,

occupied(d2) = T, occupied(d3) = F};
g = {loc(r1) = d2, loc(r2) = d1}.

Figure 2.10 shows the initial partial plan, and Figures 2.11 through 2.14
show successive snapshots of one of PSP’s nondeterministic execution traces.
Each action’s preconditions are written above the action, and the effects
are written below the action. Solid arrows represent edges in E, dashed
arrows represent causal links, and dot-dashed arrows represent threats. The
captions describe the refinements and how they affect the plan.

2.5.3 Search Heuristics

Several of the choices that PSP must make during its search are very sim-
ilar to the choices that a backtracking search algorithm makes in order to
solve constraint-satisfaction problems (CSPs); for example, see [517]. Conse-
quently, some of the heuristics for guiding CSP algorithms can be translated
into analogous heuristics for guiding PSP. For example:

• Flaw selection (line (i) of PSP) is not a nondeterministic choice, be-
cause all of the flaws must eventually be resolved, but the order in
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a1!=!move(r1,d,d2)

occupied(d1)!=!r1

loc(r2)!=!d1
loc(r1)!=!d2

loc(r2)!=!d2
loc(r1)!=!d1

occupied(d2)!=!r2

occupied(d3)!=!nil

 ag a0

occupied(d)!=!nil
occupied(d2)!=!r1

loc(r1)!=!d2

occupied(d2)!=!nil
loc(r1)!=!d

occupied(d')!=!nil
occupied(d1)!=!r2

loc(r2)!=!d1

occupied(d1)!=!nil
loc(r2)!=!d'

a2!=!move(r2,d',d1)

Figure 2.11: Resolving ag’s open-goal flaws. For one of them, PSP adds a1
and a causal link. For the other, PSP adds a2 and another causal link.

a1!=!move(r1,d1,d2)

occupied(d1)!=!r1

loc(r2)!=!d1
loc(r1)!=!d2

loc(r2)!=!d2
loc(r1)!=!d1

occupied(d2)!=!r2

occupied(d3)!=!nil

 ag a0

occupied(d1)!=!nil
occupied(d2)!=!r1

loc(r1)!=!d2

occupied(d2)!=!nil
loc(r1)!=!d1

a3!=!move(r,d2,d'')
occupied(d'')!=!nil

loc(r)!=!d''

occupied(d'')!=!r
occupied(d2)!=!nil

loc(r)!=!d2

a2!=!move(r2,d',d1)

occupied(d')!=!nil
occupied(d1)!=!r2

loc(r2)!=!d1

occupied(d1)!=!nil
loc(r2)!=!d'

Figure 2.12: Resolving a1’s open-goal flaws. For one of them, PSP substi-
tutes d1 for d (which also resolves a1’s free-variable flaw) and adds a causal
link from a0. For the other, PSP adds a3 and a causal link. The new action
a3 causes two threats (shown as red dashed-dotted lines).
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a1!=!move(r1,d1,d2)

occupied(d1)!=!r1

loc(r2)!=!d1
loc(r1)!=!d2

loc(r2)!=!d2
loc(r1)!=!d1

occupied(d2)!=!r2

occupied(d3)!=!nil

occupied(d')!=!nil
occupied(d1)!=!r2

loc(r2)!=!d1

occupied(d1)!=!nil
loc(r2)!=!d'

 ag a0

occupied(d1)!=!nil
occupied(d2)!=!r1

loc(r1)!=!d2

occupied(d2)!=!nil
loc(r1)!=!d1

a3!=!move(r2,d2,d')
occupied(d')!=!nil

loc(r2)!=!d'

occupied(d')!=!r2
occupied(d2)!=!nil

loc(r2)!=!d2

a2!=!move(r2,d',d1)

Figure 2.13: Resolving a2’s open-goal flaws. For one of them, PSP substi-
tutes r2 for r and d′ for d′′, and adds a causal link from a3. For the other,
PSP adds a causal link from a1. As a side effect, these changes resolve the
two threats.

a1!=!move(r1,d1,d2)

occupied(d1)!=!r1

loc(r2)!=!d1
loc(r1)!=!d2

loc(r2)!=!d2
loc(r1)!=!d1

occupied(d2)!=!r2

occupied(d3)!=!nil

occupied(d3)!=!nil
occupied(d1)!=!r2

loc(r2)!=!d1

occupied(d1)!=!nil
loc(r2)!=!d3

 ag a0

occupied(d1)!=!nil
occupied(d2)!=!r1

loc(r1)!=!d2

occupied(d2)!=!nil
loc(r1)!=!d1

a3!=!move(r2,d2,d3)
occupied(d3)!=!nil

loc(r2)!=!d3

occupied(d3)!=!r2
occupied(d2)!=!nil

loc(r2)!=!d2

a2!=!move(r2,d3,d1)

Figure 2.14: Resolving a3’s open-goal flaws. For one of them, PSP adds a
causal link. For the other, PSP substitutes d3 for d′ and adds a causal link.
The resulting partially ordered plan contains no flaws and hence solves the
planning problem.
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which PSP selects the flaws can affect the size of the search space gen-
erated by PSP’s nondeterministic choices in line (ii). Flaw selection is
analogous to variable ordering in CSPs, and the Minimum Remaining
Values heuristic for CSPs (choose the variable with the fewest remain-
ing values) is analogous to a PSP heuristic called Fewest Alternatives
First : select the flaw with the fewest resolvers.

• Resolver selection (line (ii) of PSP) is analogous to value ordering in
CSPs. The Least Constraining Value heuristic for CSPs (choose the
value that rules out the fewest values for the other variables) translates
into the following PSP heuristic: choose the resolver that rules out the
fewest resolvers for the other flaws.

The preceding heuristic ignores an important difference between plan-
space planning and CSPs. Ordinarily, the number of variables in a CSP
is fixed in advance, hence the search tree is finite and all solutions are
at exactly the same depth. If one of PSP’s resolvers introduces a new
action that has n new preconditions to achieve, this is like introducing
n new variables (and a number of new constraints) into a CSP, which
could make the CSP much harder to solve.

One way of adapting this heuristic to PSP is by first looking for re-
solvers that do not introduce open goals, and if there are several such
resolvers, then to choose the one that rules out the fewest resolvers for
the other flaws.

Although the preceding heuristics can help speed PSP’s search, imple-
mentations of PSP tend to run much more slowly than the fastest state-
space planners. Generally the latter are GBFS algorithms that are guided
by heuristics like the ones in Section 2.3, and there are several impediments
to developing an analogous version of PSP. Because plan spaces have no ex-
plicit states, the heuristics in Section 2.3 are not directly applicable, nor is
it clear how to develop similar plan-space heuristics. Even if such heuristics
were available, a depth-first implementation of PSP would be problematic
because plan spaces generally are infinite. Consequently, for solving prob-
lems like the ones in the International Planning Competitions [291], most
automated-planning researchers have abandoned PSP in favor of forward-
search algorithms.

On the other hand, some important algorithms for temporal planning
(see Chapter 4) are extensions of PSP and are useful for maintaining flex-
ibility of execution in unpredictable environments. An understanding of
PSP is useful to provide the necessary background for understanding those
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go(r, l, l′)
pre: adjacent(l, l′), loc(r) = l
eff: loc(r)← l′

navigate(r, l, l′)
pre: ¬adjacent(l, l′), loc(r) = l
eff: loc(r)← l′

take(r, l, o)
pre: loc(r) = l, pos(o) = l,

cargo(r) = nil
eff: pos(o)← r, cargo(r)← o

Figure 2.15: Action templates for Example 2.33.

algorithms.

2.6 Incorporating Planning into an Actor

We now consider what is needed for actors to utilize the planning algorithms
in this chapter. Because it is quite unlikely that the environment will satisfy
all of the assumptions in Section 2.1.1, a planning domain will almost never
be a fully accurate model of the actor’s environment. Hence if a planning
algorithm predicts that a plan π will achieve a goal g, this does not ensure
that π will achieve g when the actor performs the actions in π.

Example 2.33. To illustrate some of the things that can go wrong, suppose
a robot, rbt, is trying to accomplish the task “bring o7 to loc2” near the top
of Figure 1.2. To create an abstract plan for this task, suppose rbt calls a
planner on a planning problem P = (Σ, s0, g) in which Σ contains the action
templates shown in Figure 2.15, and

s0 = {loc(rbt) = loc3, pos(o7) = loc1, cargo(rbt) = nil},
g = {pos(o7) = loc2}.

The planner will return a solution plan π = 〈a1, a2, a3, a4, a5〉 in which the
actions are slightly more detailed versions of the ones near the top of Fig-
ure 1.2:

a1 = go(rbt,loc3,hall), a2 = navigate(rbt,hall,loc1),

a3 = take(rbt,loc1,o7), a4 = navigate(rbt,loc1,loc2),

a5 = put(rbt,loc2,o7).

When rbt tries to perform π, several kinds of problems may occur:
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1. Execution failures. Suppose rbt’s refinement of a1 involves opening a
door, as in Figure 1.2. Then a1 will succeed if the lower-level actions
work correctly or if there is a fixable problem (e.g., rbt’s gripper may
slip on the doorknob, but rbt may be able to reposition its gripper and
continue). However, if there is a problem that rbt cannot fix (e.g., the
door is locked or broken), then a1 will fail, and rbt will need to revise
π (e.g., by taking an alternate route to loc1).

2. Unexpected events. Suppose that once rbt finishes a1 and reaches the
hallway, someone puts an object o6 onto rbt. Then a2 is still appli-
cable, but a3 is not, because rbt can only hold one object at a time.
Depending on what o6 is and why it was put there, some possible
courses of action might be to remove o6 and then go to loc1, to take
o6 to loc1 and remove it there, or to take o6 somewhere else before
going to loc1.

3. Incorrect information. Suppose that when rbt tries to perform a2, a
navigation error causes it to go to a different location, loc4. To recover,
it will need to navigate from loc4 to loc1.

4. Partial information. Suppose loc1 is where o7 is normally stored,
but rbt cannot observe whether o7 is there except by going there.
Because state-variable representations assume that the current state
is always fully known, a planner that uses this formalism cannot create
a conditional plan such as

look for o7 in loc1; and if it’s not there then look for it in loc4.

As a work-around, if rbt thinks o7 is likely to be at loc1, then it could
include pos(o7) = loc1 in s0 when calling the planner. If rbt reaches
loc1 and o7 is not there, then rbt could call the planner with another
guess for o7’s location; and so forth.

Alternatively, we might want to give rbt a planner that can create
conditional plans or policies (see Chapters 5 and 6). But even then,
situations can arise in which the planner did not plan for all of the
possible contingencies because it did not know they were possible.
Thus rbt may still need work-arounds such as that just described.

Consequently, actors need ways to change their plans when problems are
detected. The following section describes some ways to do that.
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Run-Lookahead(Σ, g)
while (s← abstraction of observed state ξ) 6|= g do
π ← Lookahead(Σ, s, g)
if π = failure then return failure
a← pop-first-action(π); perform(a)

Algorithm 2.6: Run-Lookahead replans before every action.

Run-Lazy-Lookahead(Σ, g)
s← abstraction of observed state ξ
while s 6|= g do
π ← Lookahead(Σ, s, g)
if π = failure then return failure
while π 6= 〈〉 and s 6|= g and Simulate(Σ, s, g, π) 6= failure do
a← pop-first-action(π); perform(a)
s← abstraction of observed state ξ

Algorithm 2.7: Run-Lazy-Lookahead replans only when necessary.

Run-Concurrent-Lookahead(Σ, g)
π ← 〈〉; s← abstraction of observed state ξ
thread 1: // threads 1 and 2 run concurrently

loop
π ← Lookahead(Σ, s, g)

thread 2:
loop

if s |= g then return success
else if π = failure then return failure
else if π 6= 〈〉 and Simulate(Σ, s, g, π) 6= failure then
a← pop-first-action(π); perform(a)
s← abstraction of observed state ξ

Algorithm 2.8: Run-Concurrent-Lookahead does acting and replanning con-
currently.

2.6.1 Repeated Planning and Replanning

Algorithms 2.6 through 2.8 illustrate some ways for an actor to use a plan-
ner. In each of them, (Σ, s, g) is a planning problem, and Lookahead is an
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online planning algorithm, that is, a planning algorithm that incorporates
modifications (which we discuss in Section 2.6.2) to facilitate interaction
between planning and acting. An important consequence of these modifi-
cations is that the plan returned by Lookahead is not guaranteed to solve
(Σ, s, g). Ideally we might like it to be at least a partial solution, that is, a
plan that can be extended to produce a solution—but even that cannot be
guaranteed.

Recall from Section 1.3.2 that the planner’s initial state s is an abstrac-
tion that may differ from the actor’s current state ξ. It may omit parts
of ξ that are irrelevant for planning and may include hypothesized values
of state variables that the actor cannot currently observe, or it may be a
hypothetical future state. Similarly, the goal g in Algorithms 2.6–2.8 is for
planning purposes and may sometimes differ from what the actor ultimately
wants to achieve. For example, it may be a subgoal (see Section 2.6.2).

In each algorithm, pop-first-action removes and returns the first action
in π; and perform calls the actor’s acting component—which may execute
the action if it is a command to the execution platform or else refine it into
lower-level actions and commands.

Here are some comparisons among the procedures:

• Run-Lookahead is a simple version of the receding-horizon approach
in Figure 1.4. Each time it calls Lookahead, it performs only the first
action of the plan that Lookahead returned. This is useful, for example,
in unpredictable or dynamic environments in which some of the states
are likely to be different from what the planner predicted.

The biggest disadvantage of Run-Lookahead is that repeatedly waiting
for Lookahead may be impractical if Lookahead has a large running
time, and may be unnecessary if the action models are known to give
very accurate predictions.

• Run-Lazy-Lookahead executes each plan π as far as possible, calling
Lookahead again only when π ends or a plan simulator says that π will
no longer work properly. This can be useful in environments where it
is computationally expensive to call Lookahead and the actions in π
are likely to produce the predicted outcomes.

Simulate is the plan simulator, which may use the planner’s prediction
function γ or may do a more detailed computation (e.g., a physics-
based simulation) that would be too time-consuming for the planner
to use. Simulate should return failure if its simulation indicates that
π will not work properly – for example, if it finds that an action in π
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will have an unsatisfied precondition or if π is supposed to achieve g
and the simulation indicates that it will not do so.

The biggest disadvantage of Run-Lazy-Lookahead is that sometimes it
can be difficult to predict that replanning is needed without actually
doing the replanning to find out. In such cases, Run-Lazy-Lookahead
may fail to detect problems until it is too late to fix them easily. For
example, in Example 2.33, suppose rbt uses Run-Lazy-Lookahead, and
Lookahead returns the partial solution 〈a1, a2〉. In problem 2 of the
example, rbt will take o6 to loc1 without considering whether to leave
o6 in the hallway or take it elsewhere.

• Run-Concurrent-Lookahead is a receding-horizon procedure in which
the acting and planning processes run concurrently. Each time an
action is performed, the action comes from the most recent plan that
Lookahead has provided. This avoids Run-Lookahead’s problem with
waiting for Lookahead to return. Like Run-Lazy-Lookahead, it risks
continuing with an old plan in situations where it might be better to
wait for a new one, but the risk is lower because the plan is updated
more frequently.

The foregoing procedures are not the only possibilities. For example, there
are variants of Run-Lazy-Lookahead that maintain information [196] about
which actions in π establish the preconditions of other actions in π. This
information can be used to detect situations where an action can be removed
from π because it is no longer needed, or where a specific part of π needs to
be revised.

2.6.2 Online Planning

Most of the planning algorithms earlier in this chapter were designed to
run off-line. We now discuss how to adapt them for use with the acting
procedures in Section 2.6.1, which need to interact with planners that run
online. The biggest issue is that the planning algorithms were designed
to find plans that (according to the planner’s domain model) are complete
(and in some cases, optimal) solutions to the planning problem. In online
planning, the actor may need to start acting before such a plan can be found.

Most of the planning algorithms presented earlier – especially the ones
that use forward search – can be modified to end their search early and
return the best “partial solution” that they have found, and we will now
discuss several techniques for how to do that.

The term partial solution is somewhat misleading because there is no
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guarantee that the plan will actually lead to a goal. But neither can we
guarantee that an actor will reach the goal if it uses a purported “complete
solution plan.” As we discussed in Section 2.6.1, acting procedures may need
to deal with a variety of problems that were not in the planner’s domain
model.

Subgoaling. In each of the algorithms in the previous section, the goal g′

given to the planner does not have to be the actor’s ultimate goal g; instead
it may be a subgoal. If g′ is a subgoal, then once it has been achieved, the
actor may formulate its next subgoal and ask the planner to solve it.

How to formulate these subgoals is somewhat problematic, but one can
imagine several possible techniques. The elements of a compound goal g =
{g1, . . . , gk} could be used as subgoals, if one can decide on a reasonable order
in which to try to achieve them. Another possibility may be to compute an
ordered set of landmarks and choose the earliest one as a subgoal.

In practical applications, g′ usually is selected in a domain-specific man-
ner. For example, subgoaling with short-term objectives such as “get to
shelter” is used to plan actions for the computerized opponents in Killzone
2, a “first-person shooter” video game [585, 113]. The acting algorithm
is similar to Run-Concurrent-Lookahead, and the planner is similar to the
SeRPE algorithm that we discuss in Chapter 3. The actor runs the planner
several times per second, and the planner generates plans that are typi-
cally about four or five actions long. The main purpose of the planner is
to generate credible humanlike actions for the computerized opponents, and
it would not work well to do more elaborate planning because the current
state changes quickly as the game progresses.

Limited-horizon planning. Recall that in the receding-horizon tech-
nique, the interaction between the actor and planner is as depicted in Fig-
ure 1.4. Each time the actor calls Lookahead, the planner starts at the
current state and searches until it either reaches a goal or exceeds some
kind of limit, and then it returns the best solution or partial solution it has
found. Several of the algorithms in this section can easily be modified to do
that. Following are some examples.

We can modify A* (Section 2.2.5) to return if the least costly node in
Frontier has a cost that exceeds a limit cmax, by putting the following step
immediately after line (i) of Algorithm 2.2:

if cost(π) + h(s) > cmax, then return π
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Here is a modified version of IDS (Section 2.2.8) that uses a depth limit,
kmax:

for k = 1 to kmax:
do a depth-first search, backtracking at every node of depth
k, and keeping track of which node ν = (π, s) at depth k
has the lowest value f(ν)

if the search finds a solution, then return it
return π

Both A* and IDS can also be modified to use a time limit, by having them
throw an exception when time runs out. When the exception is thrown,
IDS would return the plan π mentioned in the preceding pseudocode, and
A* would return the plan found in the node ν = (π, s) ∈ Frontier that
minimizes f(ν).

Sampling. In a sampling search, the planner uses a modified version of
hill climbing (see Section 2.2.3) in which the node selection is randomized.
The choice can be purely random, or it can be weighted toward the actions in
Actions that produce the best values for h(γ(s, a)), using techniques similar
to the ones that we describe later in Section 6.4.4. The modified algorithm
could do this several times to generate multiple solutions and either return
the one that looks best or return the n best solutions so that the actor
can evaluate them further. Such a technique is used in the UCT algorithm
(Algorithm 6.20) in Chapter 6.

2.7 Discussion and Historical Remarks

2.7.1 Classical Domain Models

Classical representations. Problem representations based on state vari-
ables have long been used in control-system design [244, 528, 161] and oper-
ations research [559, 4, 285], but their use in automated-planning research
came much later [29, 31, 215]. Instead, most automated-planning research
has used representation and reasoning techniques derived from mathemat-
ical logic. This began with the early work on GPS [451] and the situation
calculus [413] and continued with the STRIPS planning system [197] and
the widely used classical18 representations [460, 472, 384, 231, 517].

18These are also called STRIPS representations but are somewhat simpler than the
representation used in the STRIPS planner [197].
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In a classical representation, all atoms have the same syntax as our rigid
relations. Each state s is represented as the set of all atoms that are true in
s, hence any atom not in this set is false in s. Each planning operator (the
classical counterpart of an action template) has preconditions and effects
that are literals.

Example 2.34. Here is a classical representation of s0 in Equation 2.4:

s0 = {loc(r1, d1), loc(r2, d2),
occupied(d1), occupied(d2),
pile(c1, p1), pile(c2, p1), pile(c3, p2),
pos(c1, c2), pos(c2, nil), pos(c3, nil),
top(p1, c1), top(p2, c3), top(p3, nil)}.

Here is a classical planning operator corresponding to the load action tem-
plate in Example 2.12:

load(r, c, c′, p, d)
pre: at(p, d), ¬cargo(r), loc(r, d), pos(c, c′), top(p, c)
eff: cargo(r), ¬pile(c, p), pile(c, nil), ¬pos(c, c′), pos(c, r),
¬top(p, c), top(p, c′)

The well-known PDDL planning language ([204, 216]) is based on a clas-
sical representation but incorporates a large number of extensions.

Classical planning domains can be translated to state-variable planning
domains, and vice versa, with at most a linear increase in size:

• Translating a classical planning operator into an action template in-
volves converting each logical atom p(t1, . . . , tn) into a Boolean-valued
state variable xp(t1, . . . , tn). This can be done by replacing each neg-
ative literal ¬p(t1, . . . , tn) with xp(t1, . . . , tn) = F, and each positive
literal p(t1, . . . , tn) with xp(t1, . . . , tn) = T. This produces an action
template that has the same numbers of parameters, preconditions, and
effects as the classical operator.

• Translating an action template α into a classical planning operator
involves converting each state-variable x(t1, . . . , tn) into a set of logical
atoms

{px(t1, . . . , tn, v) | v ∈ Range(x(t1, . . . , tn)}.

The conversion can be done as follows. For each expression
x(t1, . . . , tn) = v or x(t1, . . . , tn) 6= v in α’s preconditions, replace
it with px(t1, . . . , tn, v) or ¬px(t1, . . . , tn, v), respectively. For each ex-
pression x(t1, . . . , tn)← v′ in α’s effects, replace it with px(t1, ..., tn, v

′),
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and also do the following. If α’s preconditions include px(t1, . . . , tn, v)
for some v, then add to α a new effect ¬px(t1, . . . , tn, v). Otherwise,
add to α a new parameter u, a new precondition px(t1, . . . , tn, u), and
a new effect ¬px(t1, . . . , xn, u).

Note that the planning operator may have twice as many effects and
parameters as the action template. The reason is that each state vari-
able x(t1, . . . , tn) has only one value at a time, so the planning operator
must ensure that px(t1, . . . , tn, v) is true for only one v at a time. In
the state-variable representation, this happens automatically; but in
the classical representation, asserting a new value requires explicitly
deleting the old one.

The classical and state-variable representation schemes are expspace-
equivalent [182, 231]. In both of them, the time needed to solve a classical
planning problem may be exponential in the size of the problem descrip-
tion. We emphasize, however, that this is a worst-case result; most classical
planning problems are considerably easier.

Ground representations. A classical representation is ground if it con-
tains no unground atoms. With this restriction, the planning operators have
no parameters; hence each planning operator represents just a single action.
Ground classical representations usually are called propositional represen-
tations [105], because the ground atoms can be rewritten as propositional
variables.

Every classical representation can be translated into an equivalent propo-
sitional representation by replacing each planning operator with all of its
ground instances (i.e., all of the actions that it represents), but this incurs a
combinatorial explosion in the size of the representation. For the load oper-
ator in Example 2.34, if r, c, p, and d are the numbers of robots, containers,
piles, and locations, then the the number of load actions represented by the
operator is rc2pd.

More generally, if a planning operator has p parameters and each param-
eter has v possible values, then there are vp ground instances. Each of them
must be written explicitly, so the ground classical representation is larger
by a multiplicative factor of vp.

A ground state-variable representation is one in which all of the state
variables are ground. Each ground state variable can be rewritten as a state
variable that has no arguments (like an ordinary mathematical variable)
[31, 267, 510]. Every state-variable representation can be translated into an
equivalent ground state-variable representation, with a combinatorial explo-
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sion like the one in the classical-to-propositional conversion. If an action
template has p parameters and each parameter has v possible values, then
the ground representation is larger by a factor of vp.

The propositional and ground state-variable representation schemes are
both pspace-equivalent [104, 30]. They can represent exactly the same set
of planning problems as classical and state-variable representations; but as
we just discussed, they may require exponentially more space to do so. This
lowers the complexity class because computational complexity is expressed
as a function of the size of the input.

In a previous work [231, Section 2.5.4], we claimed that propositional and
ground state-variable representations could each be converted into the other
with at most a linear increase in size, but that claim was only partially cor-
rect. Propositional actions can be converted to state-variable actions with
at most a linear increase in size, using a procedure similar to the one we
used to convert planning operators to action templates. For converting in
the reverse direction, the worst-case size increase is polynomial but super-
linear.19

The literature contains several examples of cases in which the problem
representation and the computation of heuristic functions can be done more
easily with state variables than with propositions [268, 510]. Helmert [267,
Section 1.3] advances a number of arguments for considering ground state-
variable representations superior to propositional representations.

2.7.2 Generalized Domain Models

The state-variable representation in Section 2.1 can be generalized to let
states be arbitrary data structures, and an action template’s preconditions,
effects, and cost be arbitrary computable functions operating on those data
structures. Analogous generalizations can be made to the classical repre-
sentation by allowing a predicate’s arguments to be functional terms whose
values are calculated procedurally rather than inferred logically (see Fox and
Long [204]). Such generalizations can make the domain models applicable
to a much larger variety of application domains.

19We believe it is a multiplicative factor between lg v and v, where v is the max-
imum size of any state variable’s range. The lower bound follows from the obser-
vation that if there are n state variables, then representing the states may require
n lg v propositions, with commensurate increases in the size of the planning opera-
tors. The upper bound follows from the existence of a conversion procedure that
replaces each action’s effect x(c1, . . . , cn) ← d with the following set of literals:

{px(c1, . . . , cn, d)} ∪ {¬x(c1, . . . , cn, d
′) | d′ ∈ Range(x(c1, . . . , cn)) \ {d}}.
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With the preceding modifications, the forward-search algorithms in Sec-
tion 2.2 will still work correctly [460, 357, 287], but they will not be able to
use the domain-independent heuristic functions in Section 2.3, because those
heuristics work by manipulating the syntactic elements of state-variable and
classical representations. Instead, domain-specific heuristic functions will be
needed.

One way to generalize the action model while still allowing the use of
domain-independent heuristics is to write each action as a combination of
two parts – a “classical” part that uses a classical or state-variable represen-
tation and a “nonclassical” part that uses some other kind of representation
– and write separate algorithms to reason about the classical and nonclas-
sical parts. Ivankovic et al. [295] coordinate the two parts in a manner
somewhat like planning with abstraction (see Section 2.7.6). Gregory et al.
[246] use a “planning modulo theories” approach that builds on recent work
on SAT modulo theories [456, 41].

The action models in Section 2.1.3 can also be generalized in several
other ways, for example, to explicitly model the actions’ time requirements
or to model uncertainty about the possible outcomes. Such generalizations
are discussed in Chapters 4, 5, and 6.

2.7.3 Heuristic Search Algorithms

Heuristic functions that estimated the distance to the goal were first devel-
oped in the mid-1960s [450, 387, 160], and the A* algorithm was developed a
few years later by Hart et al. [255, 256]. A huge amount of subsequent work
has been done on A* and other heuristic search algorithms. Nilsson [460]
and Russell and Norvig [517]20 give tutorial introductions to some of these
algorithms, and Pearl [467] provides a comprehensive analysis of a large
number of algorithms and techniques. Our definition of problem relaxation
in Section 2.3 is based on Pearl’s.

Branch-and-bound algorithms have been widely used in combinatorial
optimization problems [373, 33, 425, 508]. DFBB (Section 2.2.6) is the best-
known version, but most forward-search algorithms (including, for example,
A*) can be formulated as special cases of branch-and-bound [290, 356, 447].

Although some related ideas were explored much earlier by Pohl [491],
the first version of GBFS that we know of is the algorithm that Russell and
Norvig [517] called “greedy search.” We believe the name “greedy best-first
search” was coined by Bonet and Geffner [82].

20The version of A* in Russell and Norvig [517] does not guarantee optimality unless h
is monotone (see Section 2.2.5) because of a subtle flaw in its pruning rule.
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Computer programs for games such as chess and checkers typically use
an acting procedure similar to Run-Lookahead (Algorithm 2.8). In these
programs, the Lookahead subroutine is similar to the time-limited version of
depth-first iterative deepening in Section 2.6.2, except that the depth-first
search is the well-known alpha-beta algorithm [338, 460, 517].

The IDA* algorithm in Section 2.2.8 is attributable to Korf [351].
Iterative-deepening algorithms are a special case of node-regeneration al-
gorithms that retract nodes to save space and regenerate them later if they
need to examine them again. There are several other search algorithms (e.g.,
the RBFS algorithm [353]) that do node regeneration in one way or another.
Zhang [625] provides a survey of such algorithms.

2.7.4 Planning Graphs

A planning graph is similar to HFF’s relaxed planning graphs (see Figures
2.7 and 2.8), but it also includes various mutex (i.e., mutual exclusion)
conditions: for example, two actions are mutex if they change the same
state variable to different values. Rather than including all r-applicable
actions, each Ak only includes the ones whose preconditions are not mutex
in ŝk. Weld [598] gives a good tutorial account of this.

Planning graphs were first used in Blum and Furst’s GraphPlan algo-
rithm [74]. Graphplan does an iterative-deepening search to generate suc-
cessively larger r-states. For each r-state ŝk such that the atoms of g are
non-mutex in ŝk, GraphPlan uses a backward-search backtracking algorithm
to look for a relaxed solution π such that the actions in each âi are non-
mutex. Such a π is often called a parallel plan or layered plan, and it is a
partially ordered solution (although not necessarily an optimal one).

It can be proven that if a planning problem P has a solution, then a suffi-
ciently large planning graph will contain a solution to P . Hence Graphplan is
complete. Furthermore, because GraphPlan’s backward search is restricted
to the planning graph, it usually can solve classical planning problems much
faster than planners based on Backward-search or PSP [598].

GraphPlan inspired a large amount of follow-up research on planning-
graph techniques. These can be classified roughly as follows. Some of them
extend planning graphs in various nonclassical directions, such as confor-
mant planning [548], sensing [600], temporal planning [549, 221, 395], re-
sources [340, 341, 556], probabilities [73], soft constraints [422], and dis-
tributed planning [296].

Others modify the planning-graph techniques to obtain improved per-
formance on classical-planning problems. Kautz and Selman’s BlackBox
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planner [323] translates a planning graph into a satisfiability problem and
searches for a solution using a satisfiability solver. Long and Fox’s STAN
[393] uses a combination of efficient planning-graph implementation and do-
main analysis. Gerevini and Serina’s LPG [225] does a stochastic local search
on a network of the actions in the planning graph.

2.7.5 Converting Planning Problems into Other Problems

Earlier we mentioned BlackBox’s technique of translating a planning graph
into a satisfiability problem. Blackbox can also be configured so that it
instead will translate the planning problem itself into a satisfiability problem
[321]. The basic idea is, for n = 1, 2 . . . , to take the problem of finding a
plan of length n, rewrite it as a satisfiability formula fn, and try to solve fn.
If the planning problem is solvable, then fn will be solvable for sufficiently
large n.

Some related approaches involve translating the planning graph into a
constraint-satisfaction problem [45] and translating a network-flow repre-
sentation of the planning problem into an integer programming problem
[571, 572]. Nareyek et al. [443] give an overview of such techniques.

2.7.6 Planning with Abstraction

Planning with abstraction refers not to the kind of abstraction described in
Chapter 1, but instead to a relaxation process in which an abstract planning
problem P ′ = (Σ′, s′0, g

′) is formed from a classical planning problem P =
(Σ, s0, g) by removing some of the atoms (and any literals that contain
those atoms) from P [519, 335, 333, 616, 235]. If a planner finds a solution
π′ = 〈a′1, . . . , a′n〉 for P ′, then π′ can be used to constrain the search for a
solution to P . The idea is to look for solutions π0, π1, . . . , πn, respectively,
for the following sequence of planning problems, in which each ai is the
action whose abstraction is a′i:

P0 = (Σ, s0,pre(a1));

P1 = (Σ, s1,pre(a2)), where s1 = γ(s0, π0);

. . . ;

Pn−1 = (Σ, sn−1,pre(an)), where sn−1 = γ(sn−2, πn−2);

Pn = (Σ, sn, g), where sn = γ(sn−1, πn−1).

If a condition called the downward refinement property [616, 402, 403] is
satisfied, then π1, . . . , πn will exist and their concatenation will be a solution
for P .
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Planning with abstraction typically is done at multiple levels. To con-
strain the search for a solution to P ′, one can first create and solve an
abstraction P ′′ of P ′; to constrain the search for a solution to P ′′, one can
first create and solve an abstraction P ′′′ of P ′′; and so forth.

An important characteristic of this approach is that in an abstraction of
a planning problem P , each state or action represents an equivalence class of
states or actions in P . Earlier, these equivalence classes were induced by the
removal of atoms, but there are other ways to create equivalence classes with
analogous properties and use them for planning with abstraction [402, 403].

There are many cases in which it is not possible to satisfy the downward
refinement property mentioned earlier, whence planning with abstraction is
not guaranteed to work. However, abstracted planning problems can also
be used to provide heuristic functions to guide the search for a solution to
the unabstracted problem (see abstraction heuristics in Section 2.7.9).

2.7.7 HTN Planning

In some planning domains, we may want the planner to use a set of recipes or
“standard operating procedures” for accomplishing some task. For example,
if we want to move container c1 from dock d1 to dock d2, then we might
want to specify that the proper way to accomplish this task is as follows:

Have a robot r go to d1, pick up c1, and then go to d2.

Such recipes can be written as HTN methods; see Section 3.5.2 for details.

The expressive power of HTN methods can be useful for developing prac-
tical applications [603, 444, 382], and a good set of methods can enable an
HTN planner to perform well on benchmark problems [394]. A drawback
of this approach is that it requires the domain author to write and debug a
potentially complex set of domain-specific recipes [308]. However, research
is being done on techniques for aiding this process (see Section 7.3.3).

2.7.8 Temporal Logic

Search-control rules written in temporal logic [28, 367] can be used to de-
scribe constraints that must be satisfied by the sequence of states that a
plan will generate. As an example, we discuss linear temporal logic (LTL)
[178, 106], a modal logic that extends first-order logic [535] to include ways
to reason about the sequences of states that a state-transition system might
go through.

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


82 Chapter 2

LTL formulas may include four modal operators X, F, G, and U (for
“neXt,” “Future,” “Globally,” and “Until”). These operators refer to prop-
erties of an infinite sequence of states Mi = 〈si, si+1, . . .〉. Here are the
possible forms an LTL formula φ might have, and the conditions under
which Mi satisfies φ:

• If φ is a statement in first-order logic, then Mi |= φ if si |= φ.

• If φ has the form Xψ where ψ is an LTL formula, then Mi |= φ if
Mi+1 |= ψ.

• If φ has the form Fψ where ψ is an LTL formula, then Mi |= φ if there
is a j ≥ i such that Mj |= ψ.

• If φ has the form Gψ where ψ is an LTL formula, then Mi |= φ if for
every j ≥ i, Mj |= ψ.

• If φ has the form ψ1 Uψ2 where ψ1 and ψ2 are LTL formulas, then
Mi |= φ if there is a k ≥ i such that Mk |= ψ2 and Mj |= ψ1 for
i ≤ j < k.

As in the HTN example earlier, suppose we want a robot r to move container
c1 from dock d1 to dock d2. Then we might want to specify the following
restriction on r’s behavior:

r should not leave d1 without first picking up c1, and r should
not put c1 down until it reaches d1.

If we represent states and actions using the classical representation in Ex-
ample 2.34, we can write that restriction as the following LTL formula:

G[at(r, d1)⇒ (at(r, d1) U pos(c1, r))]

∧G[pos(c1, r)⇒ (pos(c1, r) U at(r, d2))]

Such a formula can be used as a search-control rule in a forward-search
algorithm similar to the ones in Section 2.2, with modifications to make the
algorithm backtrack whenever the current plan π produces a sequence of
states such that γ̂(s0, π) does not satisfy the formula.

One domain-independent planner that works this way is TLPlan [28,
367]. Another that uses a different kind of temporal logic is TALplanner
[156, 155]. In addition, LTL has become popular for motion planning in
robotics [69, 611, 314].

The benefits and drawbacks of this approach are similar to the ones that
we stated earlier for HTN planning. On one hand, a good set of control
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rules can enable an temporal-logic planner to perform well [394], and the
expressive power of the control rules can be important in practical applica-
tions [157]. On the other hand, the domain author must write and debug
a potentially complex set domain-specific information [308], but research is
being done on techniques to aid this process (see Section 7.3.3).

2.7.9 Domain-Independent Planning Heuristics

For many years, it was tacitly assumed that good heuristic functions were
necessarily domain-specific. This notion was disproven when the domain-
independent hadd and hmax heuristics in Section 2.3.1 were developed by
Bonet and Geffner [82] for use in their HSP planning system. HSP’s ex-
cellent performance in the 1998 planning competition [416] sparked a large
amount of subsequent research on domain-independent planning heuristics.
Most of them can be classified roughly as delete-relaxation heuristics, land-
mark heuristics, critical-path heuristics, and abstraction heuristics [269]. We
discuss each of these classes next.

Delete-Relaxation Heuristics

Delete-relaxation and the h+ and hFF heuristics (see Section 2.3.2) were pi-
oneered primarily by Hoffmann [276, 280], and the name of the hFF heuristic
comes from its use in the FF planning system [278]. Delete-relaxation can
also be used to describe the hadd and hmax heuristics in Section 2.3.1; hmax

is the optimal parallel solution (see Section 2.7.4) for the delete-relaxed
problem [270, 68].

Helmert’s [266, 267] causal graph heuristic involves analyzing the plan-
ning domain’s causal structure using a directed graph whose nodes are all
of the state variables in the planning domain, and whose edges represent
dependencies among the state variables. Although it is not immediately ob-
vious that this is a delete-relaxation heuristic, a delete-relaxation heuristic
hcea has been developed that includes both the causal graph heuristic and
hadd as special cases [270].

Landmark Heuristics

The early work on landmarks by Porteous, Sebastia, and Hoffmann [493]
has been hugely influential, inspiring a large amount of additional work on
the subject. The landmark heuristic that we described in Section 2.3.3 is a
relatively simple one, and there are many ways to improve it.
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The problem of determining whether a fact is a landmark is PSPACE-
complete, and so is the problem of deciding whether one landmark must
precede another. Consequently, research on landmark generation has fo-
cused on the development of polynomial-time criteria that are sufficient (but
not necessary) to guarantee that a fact is a landmark or that one landmark
must proceed another. Some of the better-known approaches involve relaxed
planning graphs [281], domain transition graphs [509, 510], and hitting sets
[90].

Other work on landmarks includes, for example, using them to find
optimal solutions to planning problems [316], improving the efficiency of
planning by splitting planning problems into subproblems [584], and the
development of landmark heuristics for use in temporal planning [317].

Critical-Path Heuristics

There is a set {hm | m = 1, 2, . . .} of heuristic functions based loosely on the
notion of critical paths (an important concept in project scheduling). They
approximate the cost of achieving a goal g by the cost of achieving the most
costly subset of size m [261, 259]. More specifically, for m = 1, 2, . . . , let

∆m(s, g) =


0 if s |= g,

mina∈Rel(g) cost(a) + ∆m(s, γ−1(g, a)) if |g| ≤ m,
maxg′⊆g and |g′|≤m ∆m(s, g′) otherwise,

where Rel(g) is the set of all actions that are relevant for g (see Defini-
tion 2.27). Then hm(s) = ∆m(s, g). It is easy to show that h1 = hmax.

For each m, the heuristic hm is admissible; and if we hold m fixed then
hm can be computed in polynomial time in |A| +

∑
x∈X |Range(x)|, the

number of actions and ground atoms in the planning domain. However, the
computational complexity is exponential in m.

Abstraction Heuristics

An abstraction of a planning domain Σ is a γ-preserving homomorphism
from Σ onto a smaller planning domain Σ′. For each planning problem
P = (Σ, s0, g), this defines a corresponding abstraction P ′ = (Σ′, s′0, g

′); and
if we let c∗ denote the cost of an optimal solution to a planning problem,
then it follows that c∗(P ′) ≤ c∗(P ). If Σ′ is simple enough that we can
compute c∗(P ′) for every planning problem P ′ in Σ′, then the function h(s) =
c∗(Σ′, s′, g′) is an admissible heuristic for P .
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The best-known such abstraction is pattern database abstraction, an idea
that was originally developed by Culberson and Schaeffer [132] and first used
in domain-independent classical planning by Edelkamp [167]. The pattern
is a subset X ′ of the state variables in Σ, and the mapping from Σ to Σ′ is
accomplished by removing all literals with variables that are not in X ′. The
pattern database is a table (constructed by brute force) that gives c∗(P ′)
for every planning problem P ′ in Σ′.

One problem is deciding which state variables include in X ′; algorithms
have been developed to do this automatically [260, 272]. A bigger problem
is that the size of the pattern database and the cost of computing each
entry, both grow exponentially with the size of X ′. This problem can be
alleviated [168, 34] using symbolic representation techniques that we discuss
in Section 5.4, but it still is generally necessary to keep X ′ small [273].
Because the database provides no information pertaining to variables not in
X ′, this limits the informedness of h.

An awareness of this limitation has led to research on other kinds of cri-
teria for aggregating sets of states in Σ into individual state in Σ′, including
merge-and-shrink abstraction [271, 273] and structural-pattern abstraction
[319], as well as ways to improve the heuristic’s informedness by composing
several different abstractions [318].

2.7.10 Plan-Space Planning

The two earliest plan-space planners were NOAH [519] and NONLIN [561],
both of which combined plan-space search with HTN task refinement (see
Section 3.5.2). Initially plan-space planning was known as nonlinear plan-
ning, reflecting some debate over whether “linear” planning referred to the
structure of the planner’s current set of actions (a sequence instead of a par-
tial order) or to its search strategy that addresses one goal after the previous
one has been completely solved.

Korf [352] introduced distinctions among problems with fully indepen-
dent goals, serializable goals (where there is an ordering for solving the
goals without violating the previously solved ones), and arbitrarily interact-
ing goals.21 This goal dependence hierarchy was further refined by Barrett
and Weld [40], who introduced a planner-dependent notion of trivially and
laboriously serializable goals. According to their analysis, plan-space plan-
ners can more often lead to trivially serializable goals that are easily solved.

21For example, Exercise 2.10 in the next section uses a nonserializable planning problem
known as the Sussman anomaly [593].
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In a linear sequence of actions, it is trivial to check whether some con-
dition is true or not in some current state. But in a partially ordered and
partially instantiated set of actions, it is less easy to verify whether a propo-
sition is true before or after the execution of an action in a partially ordered
and partially instantiated set of actions. The so-called modal truth criterion
(MTC) [114] provided a necessary and sufficient condition for the truth of a
proposition at some point in a partial plan π and showed that if π contains
actions with conditional effects, then the evaluation of the MTC is NP-hard.
This complexity result led to a belief that plan-space planning with extended
representation is impractical, which is incorrect because planning does not
require a necessary and sufficient truth condition. It only has to enforce a
sufficient truth condition, which basically corresponds in PSP to the identi-
fication and resolution of flaws, performed in polynomial time. A detailed
analysis of the MTC in planning appears in [311].

The SNLP algorithm [411] introduced the concept of a systematic search
in which a plan-space planner generates each partial plan at most once
[306, 336]. We use this concept in Definition 2.30 (see the paragraph after
the definition).

The UCPOP planner [472, 38, 599] extended SNLP to handle some ex-
tensions to the classical domain representation, including conditional ef-
fects and universally quantified effects [469, 470] Several other extensions
have also been studied, such as incomplete information and sensing actions
[474, 184, 238] and some kinds of extended goals [601].

Other work related to planning performance has included studies of
search control and pruning [223], commitment strategies [423, 424, 622],
state space versus plan space [579], and domain features [337].

Kambhampati et al. [312, 310] provide a general formalization that takes
into account most of the above issues.

2.7.11 Online Planning

The automated planning literature started very early to address the prob-
lems of integrating a planner in the acting loop of an agent. Con-
comitant to the seminal paper on STRIPS [197], Fikes [196] proposed a
program called Planex for monitoring the execution of a plan and re-
vising planning when needed. Numerous contributions followed (e.g.,
[18, 252, 539, 580, 492, 442, 97]). Problems involving integration of clas-
sical planning algorithms (as discussed in this chapter) into the control ar-
chitecture of specific systems, such as spacecraft, robots, or Web services,
have been extensively studied. However, the dominant focus of many con-
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tributions has been the integration of planning and execution (rather than
acting), under an assumption that the plans generated by the planning al-
gorithms were directly executable – an assumption that is often unrealistic.
In the next chapter, we will return to the integration of planning and acting,
with refinement of actions into commands, and ways to react to events.

The receding-horizon technique has been widely used in control theory,
specifically in model-predictive control. The survey by Garcia et al. [211]
traces its implementation back to the early sixties. The general idea is to use
a predictive model to anticipate over a given horizon the response of a system
to some control and to select the control such that the response has some
desired characteristics. Optimal control seeks a response that optimizes a
criterion. The use of these techniques together with task planning has been
explored by Dean and Wellman [146].

Subgoaling has been used in the design of several problem-solving and
search algorithms (e.g., [371, 352]). In planning, issues such as serializ-
able goals and abstraction hierarchies with interesting properties have been
extensively studied (e.g., [39, 334, 616]). Sampling techniques have been
developed and are widely used for handling stochastic models of uncertainty
and nondeterminism, about which more is said in Chapter 6.

2.8 Exercises

2.1. Let P1 = (Σ, s0, g1) and P2 = (Σ, s0, g2) be two state-variable plan-
ning problems with the same planning domain and initial state. Let
π1 = 〈a1, . . . , an〉 and π2 = 〈b1, . . . , bn〉 be solutions for P1 and P2, re-
spectively. Let π = 〈a1, b1, . . . , an, bn〉.

(a) If π is applicable in s0, then is it a solution for P1? For P2? Why or
why not?

(b) E1 be the set of all state variables that are targets of the effects in
eff(a1), . . . , eff(an), and E2 be the set of all state variables that are
targets of the effects in eff(b1), . . . , eff(bn). If E1 ∩ E2 = ∅, then is π
applicable in s0? Why or why not?

(c) Let P1 be the set of all state variables that occur in
pre(a1), . . . ,pre(an), and P2 be the set of all state variables that oc-
cur in the preconditions of pre(b1), . . . ,pre(bn). If P1 ∩ P2 = ∅ and
E1 ∩ E2 = ∅, then is π applicable in s0? Is it a solution for P1? For
P2? Why or why not?
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2.2. Let S be the state-variable state space discussed in Example 2.7. Give
a set of restrictions such that s is a state of S if and only if it satisfies those
restrictions.

2.3. Give a state-variable planning problem P1 and a solution π1 for P1 such
that π1 is minimal but not shortest. Give a state-variable planning problem
P2 and a solution π2 for P2 such that π2 is acyclic but not minimal.

2.4. Under what conditions will GBFS switch to a different path if its cur-
rent path is not a dead end?

2.5. Let P be any solvable state-variable planning problem.

(a) Prove that there will always be an execution trace of Forward-search
that returns a shortest solution for P .

(b) Prove that there will always be an execution trace of Backward-search
that returns a shortest solution for P .

2.6. What might be an effective way to use hadd, hmax, hFF, and hsl with
Backward-search?

2.7. Figure 2.16 shows a planning problem involving two robots whose ac-
tions are controlled by a single actor.

(a) If we run Forward-search on this problem, how many iterations will
the shortest execution traces have, and what plans will they return?
For one of them, give the sequence of states and actions chosen in the
execution trace.

(b) If we run Backward-search on this problem, how many iterations will
the shortest execution traces have, and what plans will they return?
For one of them, give the sequence of goals and actions chosen in the
execution trace.

(c) Compute the values of hadd(s0) and hmax(s0).

(d) In the HFF algorithm, suppose that instead of exiting the loop at the
first value of k such that ŝk r-satisfies g, we instead keep iterating the
loop. At what value of k will |ŝk| reach its maximum? At what value
of k will |Ak| reach its maximum?

(e) Compute the value of hFF(s0).

(f) Compute the value of hsl(s0).
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take(r, l, c)
pre: loc(r) = l, pos(c) = l,

cargo(r) = nil
eff: cargo(r) = c, pos(c)← r

put(r, l, c)
pre: loc(r) = l, pos(c) = r
eff: cargo(r)← nil, pos(c)← l

move(r, l,m)
pre: loc(r) = l
eff: loc(r)←m

								loc1	 						loc2	

r1	 r2	
c1	 c2	

s0 = {loc(r1) = loc1, loc(r2) = loc2,

cargo(r1) = nil, cargo(r2) = nil,

pos(c1) = loc1, pos(c2) = loc2}

g = {pos(c1) = loc2, pos(c2) = loc2}

(a) action templates (b) initial state and goal

Figure 2.16: Planning problem for Exercise 2.7. In the action templates, r is
a robot, l and m are locations, and c is a container. In this problem, unlike
some of our previous examples, both robots may have the same location.

2.8. Here is a state-variable version of the problem of swapping the values
of two variables. The set of objects is B = Variables ∪ Numbers, where
Variables = {foo, bar, baz}, and Numbers = {0, 1, 2, 3, 4, 5}. There is one
action template:

assign(x1, x2, n)
pre: value(x2) =n
eff: value(x1)←n

where Range(x1) = Range(x2) = Variables, and Range(n) = Numbers. The
initial state and goal are

s0 = {value(foo) = 1, value(bar) = 5, value(baz) = 0};
g = {value(foo) = 5, value(bar) = 1}.

At s0, suppose GBFS is trying to choose between the actions a1 =
assign(baz,foo,1) and a2 = assign(foo,bar,5). Let s1 = γ(s0, a1) and s2 =
γ(s0, a2). Compute each pair of heuristic values below, and state whether
or not they will produce the best choice.

(a) hadd(s1) and hadd(s2).

(b) hmax(s1) and hmax(s2).

(c) hFF(s1) and hFF(s2).
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a1	=	assign(foo,bar,5)

value(bar)=1
value(foo)=5

value(bar)=5
value(foo)=1

value(baz)=0

finish start

value(foo)=5

value(bar)=5

value(bar)=1

value(x)=1
a2	=	assign(bar,x,1)

Figure 2.17: Partial plan for swapping the values of two variables.

(d) hsl(s1) and hsl(s2).

2.9. Figure 2.17 shows a partial plan for the variable-swapping problem in
Exercise 2.8.

(a) How many threats are there? What are they? What are their re-
solvers?

(b) Can PSP generate this plan? If so, describe an execution trace that
will produce it. If no, explain why not.

(c) In PSP’s search space, how many immediate successors does this par-
tial plan have?

(d) How many solution plans can PSP produce from this partial plan?

(e) How many of the preceding solution plans are minimal?

(f) Trace the operation of PSP if we start it with the plan in Figure 2.17.
Follow whichever of PSP’s execution traces finds the shortest plan.

2.10. Blocks world is a well-known classical planning domain in which some
children’s blocks, Blocks = {a, b, c, . . .}, are arranged in stacks of varying
size on an infinitely large table, table. To move the blocks, there is a robot
hand, hand, that can hold at most one block at a time.

Figure 2.18(a) gives the action templates. For each block x, loc(x) is x’s
location, which may be table, hand, or another block; and top(x) is the block
(if any) that is on x, with top(x) = nil if nothing is on x. Finally, holding
tells what block the robot hand is holding, with holding = nil if the hand is
empty.

(a) Why are there four action templates rather than just two?
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pickup(x)
pre: loc(x) = table, top(x) = nil,

holding = nil
eff: loc(x)← hand, holding←x

putdown(x)
pre: holding = x
eff: loc(x)← table, holding← nil

unstack(x, y)
pre: loc(x) = y, top(x) = nil,

holding = nil
eff: loc(x)← hand, top(y)← nil,

holding←x

stack(x, y)
pre: holding = x, top(y) = nil
eff: loc(x)← y, top(y)←x,

holding← nil

Range(x) = Range(y) = Blocks

a	
c	

b	

Objects = Blocks ∪ {hand, table, nil}
Blocks = {a, b, c}

s0 = {top(a) = c, top(b) = nil,

top(c) = nil, holding = nil,

loc(a) = table, loc(b) = table,

loc(c) = a}

g = {loc(a) = b, loc(b) = c}

(a) action templates (b) objects, initial state, and goal

Figure 2.18: Blocks-world planning domain, and a planning problem.

(b) Is the holding state variable really needed? Why or why not?

(c) In the planning problem in Figure 2.18(b), how many states satisfy g?

(d) Give necessary and sufficient conditions for a set of atoms to be a
state.

(e) Is every blocks world planning problem solvable? Why or why not?

2.11. Repeat Exercise 2.8 on the planning problem in Figure 2.18(b), with
s1 = γ(s0, unstack(c,a)) and s2 = γ(s0, pickup(b)).

2.12. Repeat Exercise 2.9 using the planning problem in Figure 2.18(b) and
the partial plan shown in Figure 2.19.

2.13. Let π be a partially ordered solution for a planning problem P =
(Σ, s0, g).

(a) Write a simple modification of Run-Lazy-Lookahead to execute π.

(b) Suppose your procedure is executing π, and let π′ be the part of π that
it has not yet executed. Suppose an unanticipated event invalidates
some of the total orderings of π′ (i.e., not all of them will still achieve
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hold=&x
clear(a)=T

unstack(x,a)

loc(b)=c
loc(a)=b

loc(a)=table
hold=nil

loc(b)=table

finish start

hold=nil

loc(x)=a
stack(a,b)
hold=a

hold=nil
clear(x)=T clear(b)=T

pickup(a)

loc(a)=table

hold=nil
clear(a)=T

loc(x)=table

putdown(x)
hold=x

loc(x)=hand

hold=nil
clear(x)=T

hold=a
loc(a)=hand

pickup(b)
clear(b)=T

hold=nil
loc(b)=table

hold=b
loc(b)=hand

loc(b)=c
stack(b,c)

hold=b
clear(c)=T

hold=nil
clear(c)=F

loc(a)=b
clear(b)=F

loc(c)=a
clear(a)=F
clear(b)=T
clear(c)=T

Figure 2.19: Partial plan for Exercise 2.12.

g). Write an algorithm to choose a total ordering of π′ that still
achieves g, if one exists.

2.14. If π = 〈a1, . . . , an〉 is a solution for a planning problem P , other
orderings of the actions in π may also be solutions for P .

(a) Write an algorithm to turn π into a partially ordered solution.

(b) Are there cases in which your algorithm will find a partially ordered
solution that PSP will miss? Are there cases in which PSP will find a
partially ordered solution that your algorithm will miss? Explain.

2.15. Let P be a planning problem in which the action templates and initial
state are as shown in Figure 2.16, and the goal is g = {loc(c1) = loc2}. In
the Run-Lazy-Lookahead algorithm, suppose the call to Lookahead(P ) returns
the following solution plan:

π = {take(r1,loc1,c1),move(r1,loc1,loc2), put(r1,loc2,c1)}.

(a) Suppose that after the actor has performed take(r1,loc1,c1) and
move(r1,loc1,loc2), monitoring reveals that c1 fell off of the robot and
is still back at loc1. Tell what will happen, step by step. Assume that
Lookahead(P ) will always return the best solution for P .

(b) Repeat part (a) using Run-Lookahead.
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(c) Suppose that after the actor has performed take(r1,loc1,c1), monitor-
ing reveals that r1’s wheels have stopped working, hence r1 cannot
move from loc1. What should the actor do to recover? How would
you modify Run-Lazy-Lookahead, Run-Lookahead, and Run-Concurrent-
Lookahead to accomplish this?
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Chapter 3

Deliberation with
Refinement Methods

Chapter 2 concentrated mostly on planning with descriptive action models.
Although it described some ways for an actor to receive guidance from such
a planner, it did not describe the operational models that an actor might
need to perform the planned actions. In the current chapter, we present a
formalism for operational models and describe how to use these models for
deliberative acting.

Section 3.1 describes a formalism for operational models based on re-
finement methods. A method specifies how to accomplish a task (an ab-
stract activity of some kind) by refining it into other activities that are
less abstract. These activities may include other tasks that will need fur-
ther refinement and commands that can be sent to the execution platform.
Section 3.2 describes an acting procedure, RAE, that uses a collection of re-
finement methods to generate and traverse a refinement tree similar to the
one in Figure 1.2. It recursively refines abstract activities into less abstract
activities, ultimately producing commands to the execution platform.

If we modify the refinement methods by replacing the commands with
descriptive models, the modified methods can also be used for planning. The
basic idea is to augment the acting procedure with predictive lookahead of
the possible outcome of commands that can be chosen. Section 3.3 describes
a planner, SeRPE, that does this. Section 3.4 describes how to integrate such
a planner into acting procedures.

Although the formalism in this chapter removes many of the simplifying
assumptions that we made in Chapter 2, it still incorporates some assump-
tions that do not always hold in practical applications. Section 3.5 discusses
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these and also includes historical remarks.

3.1 Operational Models

In this section, we present a formalism for operational models of actions,
and describe how to use these models for deliberative acting. This formalism
weakens or removes several of the simplifying assumptions that we made in
Section 2.1.1:

• Dynamic environment. The environment is not necessarily static. Our
operational models deal with exogenous events, that is, events due to
other causes than the actor’s actions.

• Imperfect information. In Section 2.1.1, we assumed that the actor
had perfect information about its environment. In reality, it is rare for
an actor to be able to know the current value of every state variable
and to maintain this knowledge while the world evolves. Operational
models often need to deal with what the actor knows or does not know
and how to acquire necessary information.

A convenient notation for handling partial knowledge is to extend the
range of every state variable to include a special symbol, unknown,
which is the default value of any state variable that has not been set
or updated to another value.

• Overlapping actions. Actions take time to complete, and multiple
actions may proceed simultaneously. To manage an agenda of over-
lapping activities, the formalism in this chapter includes cases in which
actions may proceed simultaneously. However, we will not introduce
a formal model of time durations until Chapter 4. For now, facts are
not time stamped but simply refer to the current state of the world.1

• Nondeterminism. An action may have multiple possible outcomes,
because of accidents, interfering exogenous events, or sensing and in-
formation acquisition. The actor has to systematically observe which
outcomes actually occur to respond accordingly. Our operational mod-
els provide a way to deal with such observations. However, we will not
introduce a formal model of nondeterministic actions and the ability
to reason about them until Chapter 5 and Chapter 6.

1 This does not preclude the author of a domain model from including a time stamp
as an ordinary state variable; other limited capabilities for handling temporal conditions
are briefly discussed in Section 3.2.4.
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• Hierarchy. Actors are often organized hierarchically, and our opera-
tional models provide a way to represent and organize a hierarchical
actor’s deliberations. However, the formalism still incorporates some
simplifying assumptions that do not always hold in practical applica-
tions. For example, a hierarchical actor may use different state and
action spaces in different parts of the hierarchy (rather than the same
ones throughout, as assumed in Section 3.1), and there are several
ways in which it may traverse the hierarchy (e.g., in layers, or as a
collection of components), rather than using depth-first recursion as
described in Section 3.2 and Section 3.3. For further discussion of
these issues, see Section 3.5.

• Discrete and Continuous Variables. Actors may need to deal with both
discrete and continuous variables. The operational model introduced
in this chapter allows for state variables whose range can be finite
or nonfinite, discrete or continuous. In Section 7.4, we discuss how to
reason about hybrid models that allow for both discrete and continuous
variables.

3.1.1 Basic Ingredients

We will use a state variable representation similar to the one in Defini-
tion 2.6, but with some generalizations. One of them is that if x ∈ X is
a state variable, then Range(x) can be finite or nonfinite, discrete or con-
tinuous. State variables ranging over multidimensional domains, such as
vectors, matrices and other data structures, are also permitted. For exam-
ple, we could let coordinates(r1) ∈ R3 be the current coordinates (in some
reference frame) of a robot r1.

Recall from Chapters 1 and 2 that ξ is the actor’s currently observed
state. A fact is any ground atom x=v in ξ. For example, if ξ contains
position(door3)=open and coordinates(r1)=(3.5, 7.61, 1.58), then door3 is cur-
rently open, and r1 is at the coordinates (3.5, 7.61, 1.58) in some reference
frame.

One way we used state variables in Chapter 2 was to test their values
(e.g., in an action’s preconditions). We do the same in this chapter, but
the tests will be more general. A simple test has the form (x ◦ v), where
◦ ∈ {=, 6=, <,>}. A compound test is a negation, conjunction, or disjunction
of simple and compound tests. Tests are evaluated with respect to the
current state ξ. In tests, the symbol unknown is not treated in any special
way; it is just one of the state variable’s possible values.

As in Chapter 2, a state variable also can be the target of an assignment
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statement, but here the assignments are more general. An assignment is
a statement of the form x ← expr, where expr may be any ground value
in Range(x), or any expression that returns a ground value in Range(x)
without having side effects on the current state. When the assignment is
executed, it will update the value of the state variable x to the value that
expr has in the current state ξ.

Three additional ingredients are needed in this representation:

• Tasks: a task is a label naming an activity to be performed. It is of the
form task-name(args), where task-name designates the task considered
and the task arguments args is an ordered list of objects and values. A
task is refined into subtasks and commands. The actor has to perform
external tasks, which are specified by the user or a planner, as well as
internal tasks that result from the refinement of other tasks.

• Events: an event designates an occurrence detected by the execution
platform; it is in the form event-name(args). Events are, for example,
the activation of an emergency signal or the arrival of a transportation
vehicle; they correspond to exogenous changes in the environment to
which the actor may have to react.

• Commands: a command is the name of a primitive function that can
be executed by the execution platform. It is in the form command-
name(args). When a command is triggered, there is a state variable in
ξ, denoted status(command) ∈ {running, done, failed}; it is updated by
the platform to express that the execution of that command is going
on, has terminated or failed.

Example 3.1. Consider a simple domain where a single robot is servicing a
harbor navigating in a topological map, searching for a particular container.
The objects are Robots = {r1}, Containers = {c1, c2, . . .}, and Locations =
{loc1, loc2, . . .}. The following state variables are kept up-to-date by the
robot’s execution platform:

• loc(r) ∈ Locations is the current location of robot r.

• load(r) ∈ Containers ∪ {nil} indicates whether robot r is carrying a
container, and if so then which one.

• pos(c) ∈ Locations ∪ Robots ∪ {unknown} gives a container’s position
at a location, on a robot, or unknown.

• view(l) ∈ {T, F} indicates whether the robot has perceived the content
of location l. When view(l)=T then for every container c in l, pos(c) = l
is a fact in ξ.
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The robot’s execution platform can execute the following commands:

• move-to(r, l): robot r goes to location l

• take(r, o, l): r takes object o at location l

• put(r, o, l): r puts o in l

• perceive(r, l): r perceives which objects are in a location l

These commands are applicable under some conditions, for example, move-
to requires the destination l to be reachable from the current location, and
take and put require r to be in l. Upon the completion of a command,
the platform updates the corresponding state variables. For example, when
perceive(r, l) terminates, view(l)=T and pos(c) = l for every container c in
l.

3.1.2 Refinement Methods

A refinement method is either a triple (task, precondition, body) or a triple
(event, precondition, body). The first field in a method, either a task or an
event, is its role; it tells what the method is about. When the precondition
holds in the current state, the method can be used to address the task or
event in its role by running a program given in the method’s body. This
program refines the task or event into a sequence of subtasks, commands,
and assignments.

As for actions, refinement methods are specified as parameterized
method templates that have one of the following forms:

method-name(arg1, . . . , argk)
task: task-identifier
pre: test

body: program

method-name(arg1, . . . , argk)
event: event-identifier

pre: test
body: program

where

• method-name is a unique symbol designating the method;

• arg1, . . . , argk are variables appearing in the method; an applicable
instance of a method binds these variables to objects and values;

• task-identifier gives the task to which the method is applicable; simi-
larly for an event;

• test specifies conditions under which the method may be used;
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• program is a sequences of steps with the usual control constructs (if-
then-else, while, loop, etc.).2 A step in this sequence is either an as-
signment, a command to the execution platform or a task that needs
further refinement. Assignments and commands are as defined in pre-
vious section.

An instance of a method template is given by the substitution of its vari-
ables arg1, . . . , argk by constants. A method whose role matches a current
task or event and whose precondition is satisfied by the current values of
the state variables in ξ has an applicable current instance. A method may
have several applicable instances for the current state, tasks, and events. An
applicable instance of a method, if executed, addresses a task or an event
by refining it into subtasks, commands, and updates in ξ, as specified in its
body.

3.1.3 Illustrations

Let us illustrate the refinement method representation with a few examples.

Example 3.2. Consider the task for the robot in Example 3.1 to pick up
a particular container c. The robot may know the location of c (i.e., this
information may be in ξ), in which case the robot goes to that location to
take c. Otherwise, the robot will have to look at the locations it can reach
until it finds what it is looking for. This is expressed through two tasks,
fetch and search, and the following refinement methods:

m-fetch(r, c)
task: fetch(r, c)
pre:

body: if pos(c) = unknown then search(r, c)
else if loc(r) = pos(c) then take(r, c, pos(c))
else do

move-to(r, pos(c))
take(r, c, pos(c))

m-fetch refines the task fetch into a task search when the position of c is
unknown; otherwise, it triggers the appropriate take and, if needed, move-to
commands to pick up c.

2We use informal pseudocode descriptions of the bodies of methods.
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m-search(r, c)
task: search(r, c)
pre: pos(c) = unknown

body: if ∃ l ∈ Locations such that view(l) = F then do
move-to(l)
perceive(l)
if pos(c) = l then take(r, c, l)
else search(r, c)

else fail

The method performs a search by going to a location l, the content of which
is not yet known, and perceiving l. If c is there, the robot takes it; otherwise
the method recursively searches in other locations. If all locations have been
perceived, the search task fails.

The above example illustrates two task refinement methods. Let us
provide the robot with a method for reacting to an event.

Example 3.3. Suppose that a robot in the domain of Example 3.1 may have
to react to an emergency call by stopping its current activity and going to
the location from where the emergency originates. Let us represent this
with an event emergency(l, i) where l is the emergency origin location and
i ∈ N is an identification number of this event. We also need an additional
state variable: emergency-handling(r)∈{T, F} indicates whether the robot r
is engaged in handling an emergency.

m-emergency(r, l, i)
event: emergency(l, i)

pre: emergency-handling(r)=F
body: emergency-handling(r)← T

if load(r) 6= nil then put(r, load(r))
move-to(l)
address-emergency(l, i)

This method is applicable if robot r is not already engaged in handling
an emergency. In that case, the method sets its emergency-handling state
variable; it unloads whatever the robot is loaded with, if any; it triggers the
command to go the emergency location, then it sets a task for addressing
this emergency. Other methods are supposed to switch back emergency-
handling(r) when r has finished with the task address-emergency.

The previous simple examples introduced the representation. Let us now
illustrate how refinement methods can be used to handle the more complex
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tasks discussed in Figure 1.2, such as opening a door. To keep the example
readable, we consider a one-arm robot and assume that the door is unlocked
(Exercises 3.9 and 3.10 cover other cases).

Example 3.4. Let us endow the robot with methods for opening doors. In
addition to the four state variables loc, load, pos, view introduced previously,
we need to characterize the opening status of the door and the position of
the robot with respect to it. The two following state variables fill that need:

• reachable(r, o) ∈{T, F}: indicates that robot r is within reach of object
o, here o is the door handle;

• door-status(d) ∈ {closed, cracked, open, unknown}: gives the opening
status of door d, a cracked door is unlatched.

Furthermore, the following rigid relations are used:

• adjacent(l, d): means that location l is adjacent to door d;

• toward-side(l, d): location l is on the “toward” side of door d (i.e.,
where the door hinges are);

• away-side(l, d): location l is on the “away” side of door d;

• handle(d, o): o is the handle of door d;

• type(d, rotates) or type(d,slide): door d rotates or slides;

• side(d, left) or side(d, right): door d turns or slides to left or to the
right respectively with respect to the “toward” side of the door.

The commands needed to open a door are as follows:

• move-close(r, o): robot r moves to a position where reachable(r, o)=T;

• move-by(r, λ): r performs a motion of magnitude and direction given
by vector λ;

• grasp(r, o): robot r grasps object o;

• ungrasp(r, o): r ungrasps o;

• turn(r, o, α): r turns a grasped object o by angle α ∈ [−π,+π];

• pull(r, λ): r pulls its arm by vector λ;

• push(r, λ): r pushes its arm by λ;

• monitor-status(r, d): r focuses its perception to keep door-status up-
dated;

• end-monitor-status(r, d): terminates the monitoring command.
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We assume that commands that take absolute parameters stop when an
obstacle is detected, for example, turn(r, o, α) stops when the turning reaches
a limit for the rotation of o, similarly for move-by.

m-opendoor(r, d, l, o)
task: opendoor(r, d)
pre: loc(r) = l ∧ adjacent(l, d) ∧ handle(d, o)

body: while ¬reachable(r, o) do
move-close(r, o)

monitor-status(r, d)
if door-status(d)=closed then unlatch(r, d)
throw-wide(r, d)
end-monitor-status(r, d)

m-opendoor is a method for the opendoor task. It moves the robot close to
the door handle, unlatches the door if it is closed, then pulls it open while
monitoring its status. It has two subtasks: unlatch and throw-wide.

m1-unlatch(r, d, l, o)
task: unlatch(r, d)
pre: loc(r, l)∧ toward-side(l, d)∧ side(d, left)∧ type(d, rotate)

∧ handle(d, o)
body: grasp(r, o)

turn(r, o, alpha1)
pull(r, val1)
if door-status(d)=cracked then ungrasp(r, o)
else fail

m1-throw-wide(r, d, l, o)
task: throw-wide(r, d)
pre: loc(r, l)∧ toward-side(l, d)∧ side(d,left)∧ type(d, rotate)

∧ handle(d, o)∧ door-status(d)=cracked
body: grasp(r, o)

pull(r, val1)
move-by(r, val2)

The preceding two methods are for doors that open by rotating on a hinge,
to the left and toward the robot. Other methods are needed for doors that
rotate to the right, doors that rotate away from the robot, and sliding doors
(see Exercise 3.7).

The method m1-unlatch grasps the door handle, turns then pulls the
handle before ungrasping. The method m1-throw-wide grasps the handle,
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pulls, then moves backward. Here alpha1 is a positive angle corresponding
to the maximum amplitude of the rotation of a door handle (e.g., about
1.5 rad), val1 is a small vector toward the robot (an amplitude of about
0.1 meter), and val2 is a larger vector backward (of about 1 meter). More
elaborate methods may, for example, survey the grasping status of whatever
the robot is grasping, or turn the handle in the opposite direction before
ungrasping it (see Exercise 3.8).

3.1.4 Updates of the Current State

Recall that ξ is the actual state of the world, not a predicted state. For
example, position(door3) gets the value open not when the robot decides to
open it but when it actually perceives it to be open. This state variable is
said to be observable. This does not mean that it is always known; it only
means that there are states in which it can be observed. In Examples 3.2
and 3.4, all state variables are observable. The value of some of them can
be at some point unknown, for example, pos(c) for containers at location l
where view(l)=F. Observable state variables are updated by the execution
platform when adequate sensing is performed.

Some state variables represent the deliberation state of the actor. In
Example 3.3, the state variable emergency-handling corresponds to a de-
liberation decision. It is said to be a computable state variable. Another
illustration of computable state variables is, for example, stable(o,pose)=T,
meaning that object o in some particular pose is stable, as a result of some ge-
ometric and dynamic computation. Computable state variables are updated
by methods when the corresponding decision or computation is performed.

Further, there are state variables that refer to observable properties of
the environment that change independently of the actor’s activity. For ex-
ample, when in room1, the robot detects that a person is there. But outside
of room1 the robot cannot trust such a fact indefinitely. At some point, it
has to consider that the location of that person is unknown unless it can
sense it again.

The general problem of maintaining the current state of the world re-
quires complex handling of uncertainty, time, and nonmonotonic reason-
ing. For example, there is a difference between knowing nothing about the
whereabouts of a person and having seen her some time ago in room1. This
knowledge erodes with time.

To keep things simple, we assume in this chapter that updates in ξ for
observed and computed state variables are timely and exact. Every state
variable has a value, possibly unknown. Known values correctly reflect the

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


104 Chapter 3

current state of the actor and its environments.

3.2 A Refinement Acting Engine

Refinement methods provide operational models for how to accomplish a
task or react to an event. This section defines a Refinement Acting Engine
(RAE), which provides the techniques needed for acting with this repre-
sentation. RAE is inspired from a programming language and open source
software, called OpenPRS, widely used in robotics.3 RAE is capable of try-
ing alternative methods in nondeterministic choices. Planning techniques
for performing informed choices are discussed in the following section.

After a global view, we will describe three procedures that implement a
simple version of RAE (Section 3.2.2). Some of the possible extensions of
that engine are then discussed (Section 3.2.4).

3.2.1 Global View

RAE uses a library of methods M to address new tasks the actor has to
perform and new events it has to react to. The input to RAE consists of
(i) a set of facts reflecting the current state of the world ξ, (ii) a set of
tasks to be performed and (iii) a set of events corresponding to exogenous
occurrences to which the actor may have to react. These three sets change
continually. Tasks come from task definition sources, for example, a planner
or a user. Events come from the execution platform, for example, through a
sensing and event recognition system. Facts come either from the execution
platform, as updates of the perceived state of the world, or from RAE, as
updates of its own reasoning state.

RAE outputs commands to the execution platform. It gets the plat-
form feedback about the perceived state of the world as updates in its input
through new facts and events. Figure 3.1 schematically depicts a simple
architecture for RAE that can be viewed as part of a more complete archi-
tecture, as in Figure 1.1(a).

Tasks given by the planner or the user, and events sent from the platform,
are called external (to distinguish them from tasks in refinement methods).
They appear in the input stream of the engine. RAE repeatedly reads its
input stream and addresses an external task or event as soon as it arrives. At

3We depart from the OpenPRS system (https://git.openrobots.org/projects/
openprs/wiki) by using a state variable representation and an abstract syntax and by
dropping a few nonessential programming facilities.

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

https://git.openrobots.org/projects/openprs/wiki
https://git.openrobots.org/projects/openprs/wiki
http://cambridge.org/9781107037274


Section 3.2 105
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Figure 3.1: A simple architecture for a refinement acting engine.

some points, there can be several external tasks and events being processed
concurrently.

To each external task or event τ that RAE reads in its stream, it asso-
ciates a LIFO stack that keeps track of how the refinement of τ is progress-
ing. There can be several such stacks being concurrently processed. The
refinement of τ is done according to a method in M, which may, at some
point, lead to a subtask τ ′ that will be put on top of the stack of τ . This
is pursued recursively. A refinement at any level by a method may fail, but
other methods may be applicable and are tried.

For each external task or event that RAE is currently processing, it main-
tains a refinement stack that is analogous to the execution stack of a com-
puter program. A refinement stack contains the following items:

• all pending subtasks in which an external task or event is being refined,

• the method currently tried for each pending subtask,

• the current execution step of each method, and

• previous methods tried for each subtask that failed.

A refinement stack is organized as a LIFO list of tuples:
stack=〈tuple1,. . . ,tuplek〉. Each tuple is of the form (τ,m, i, tried)
where τ is a task or an event, m is an instance of a method inM addressing
τ , i is a pointer to the current step in the body of m, and tried is a set of
instances of methods already tried for τ that failed to accomplish it. The
top tuple of a refinement stack corresponds to the active method.

Progressing in a refinement stack means advancing sequentially by one

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


106 Chapter 3

step in the body of the topmost method in the stack. The external task
or event that initiates a refinement stack remains under progress, at the
bottom of the stack, as long as this stack is not empty.

While RAE is advancing on a refinement stack, other external tasks and
events may appear in its input stream. RAE will create refinement stacks for
them too and will process all of its refinement stacks concurrently. At this
stage, RAE does not consider the possible dependencies among concurrent
stacks (extensions are discussed in Section 3.2.4). In particular, it does not
perform any ordering or synchronization between them. The management
of possible conflicts between concurrent stacks has to be taken care of in the
specification of the methods.

3.2.2 Main Algorithms

To describe RAE in more detail, we will use the following notation:

• M is the library of methods.

• Instances(M, τ, ξ) is the set of instances of methods in M whose pre-
conditions hold in ξ and whose role matches the task or event τ .

• m is an instance of a method in M.

• m[i] is the step in the body of m pointed at by pointer i; moving from
m[i] to the next step is done according to control statements in the
body of m, which are not counted as steps.

• type(m[i]) is either a command, an assignment or a task; if
type(m[i]) =command then status(m[i]) ∈ {running, failure, done} is
a state variable in ξ updated by the platform; its value informs RAE
about the execution status of that command.

• Agenda is the set of refinement stacks concurrently under progress,

• a stack ∈ Agenda is a LIFO list of tuples of the form (τ,m, i, tried)
where τ is an event, task, subtask, or goal; m is an instance of a
method that matches τ ; i is a pointer to the current step in the body
of m initialized to nil (no step has been executed); and tried is a set of
instances of methods already tried for τ that failed to accomplish it.

RAE relies on three procedures named RAE, Progress, and Retry. RAE is
the main loop of the engine (Algorithm 3.1). It repeats two steps forever:
(i) update of Agenda with respect to new external tasks and events that
are read in the input stream and (ii) progress by one step in the topmost
method of each stack in Agenda.
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Rae(M)
Agenda← ∅
loop

until the input stream of external tasks and events is empty do
read τ in the input stream
Candidates← Instances(M, τ, ξ)
if Candidates = ∅ then output(“failed to address” τ)
else do

arbitrarily choose m ∈ Candidates
Agenda← Agenda ∪ {〈(τ,m, nil,∅)〉}

for each stack ∈ Agenda do
Progress(stack)
if stack = ∅ then Agenda← Agenda \ {stack}

Algorithm 3.1: Main procedure of the Refinement Acting Engine (RAE).

To progress a refinement stack, Progress (Algorithm 3.2) focuses on the
tuple (τ,m, i, tried) at the top of the stack. If the method m has already
started (i 6= nil) and the current step m[i] is a command, then the running
status of this command is checked. If the command is still running, then
this stack has to wait. If the command failed, then alternative methods will
be tried. The execution of the next step of the top-most method takes place
only when the command is done. If i is the last step in the body of method
m, the current tuple is removed from the stack: method m has successfully
addressed τ . The following task in the stack will be resumed at the next
RAE iteration. If i is not the last step, the engine proceeds to the next step
in the body of m.

nextstep(m, i) increments pointer i taking into account control state-
ments, if any. These control statements are conditioned on tests determin-
istically computed for the current ξ. The next step m[i] is either a state
variable assignment, which is performed in ξ, a command whose execution
is triggered in the platform, or a task τ ′. In the latter case, instances of
methods applicable to τ ′ for current ξ are computed, one of which is chosen
to address τ ′. The corresponding tuple is added on top of the stack. If
there is no applicable method to τ ′, then the current method m failed to
accomplish τ , and other methods are tried.

The method m chosen by RAE to address τ may fail. If that happens,
RAE uses the Retry procedure to try other methods for τ (Algorithm 3.3).
Retry adds m to the set of method instances that have been tried for τ and
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Progress(stack)
(τ,m, i, tried)← top(stack)
if i 6= nil and m[i] is a command then do

case status(m[i])
running: return
failure: Retry(stack); return
done: continue

if i is the last step of m then
pop(stack) // remove stack ’s top element

else do
i← nextstep(m, i)
case type(m[i])

assignment: update ξ according to m[i]; return
command: trigger command m[i]; return
task: continue

τ ′ ← m[i]
Candidates ← Instances(M, τ ′, ξ)
if Candidates = ∅ then Retry(stack)
else do

arbitrarily choose m′ ∈ Candidates
stack ← push((τ ′,m′, nil,∅),stack)

Algorithm 3.2: RAE: progressing a refinement stack.

failed. If there are any method instances for τ that are not in that set
and are applicable in the current state ξ, then Retry chooses one of them;
the refinement of τ will proceed with that method. Otherwise, RAE cannot
accomplish τ . If the stack is empty, then τ is an external task or event.
Otherwise, Retry calls itself recursively on the topmost stack element, which
is the one that generated τ as a subgoal.

Although Retry implements a mechanism similar to backtracking, it is
not backtracking in the usual sense. It does not go back to a previous
computational node to pick up another option among the candidates that
were applicable when that node was first reached. If it finds another method
among those that are now applicable for the current state of the world ξ.
This is essential because RAE interact with a dynamic world. It cannot rely
on the set of Instances(M, τ, ξ) computed earlier, because some of these may
no longer be applicable, while new methods may be applicable.

Note that the same method instance that failed at some point may suc-
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Retry(stack)
(τ,m, i, tried)← pop(stack)
tried← tried ∪ {m}
Candidates ← Instances(M, τ, ξ)\ tried
if Candidates 6= ∅ then do

arbitrarily choose m′ ∈ Candidates
stack ← push((τ,m′, nil, tried),stack)

else do
if stack 6= ∅ then Retry(stack)
else do

output(“failed to accomplish” τ)
Agenda← Agenda\stack

Algorithm 3.3: RAE: trying alternative methods for a task.

ceed later on. However, RAE does not attempt to retry method instances
that it has already tried. In general, this would require a complex analysis
of the conditions responsible for the failed method to be sure that these
conditions no longer hold.

Example 3.5. Let us illustrate how RAE works, using the two methods
given in Example 3.2 and the problem depicted in Figure 3.2. The robot
r1 is at location loc3, which has been observed. Container c1 is in loc1,
and container c2 in loc2, but neither location has been observed, hence the
position of c1 and c2 is unknown. The task fetch(r1,c2) is given to RAE.

													loc1	

																loc3	
	
	
	

													loc2	c1	 c2	 													loc1	

												loc3	
	
	
	

													loc2	c1	

r1	

r1	 c2	

Figure 3.2: A simple environment

Figure 3.3 shows the tree of RAE methods called for fetch(r1,c2). Ini-
tially, method m-fetch(r1,c2) is applicable. That method refines fetch(r1,c2)
into search(r1,c2). Method m-search finds a location, say loc1, that has not
been seen yet. It triggers the commands move-to(loc1) then perceive(loc1);
because c2 is not in loc1, the method recursively refines into another search
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fetch(r1,c2)

m-fetch(r1,c2)

search(r1,c2)

m-search(r1,c2)

m-search(r1,c2)

move-to(loc1) perceive(loc1) search(r1,c2)

move-to(loc2) perceive(loc2) take(r1,c2)

Figure 3.3: Refinement tree of tasks, methods and commands for the task
fetch(r1,c2).

task. At this point, only loc2 remains unseen. The second instance of m-
search triggers the commands move-to(loc2), perceive(loc2), then take(r1,c2).
This terminates successfully the three methods in the stack.

Example 3.6. To illustrate the concurrent progressing of several stacks, let
us take a simple abstract example. A task τ1 is addressed with a method
m1 which refines it successively into subtasks τ11 then τ12. At this point
RAE has just one stack Agenda = {〈(τ11,m11, i

′,∅), (τ1,m1, i,∅)〉}. Note
that τ12 is not in the stack until τ11 finishes.

A task τ2 appears in the input stream of RAE. A new stack
〈(τ2,m2, nil,∅)〉 is created: Agenda = {〈(τ11,m11, i

′,∅), (τ1,m1, i,∅)〉,
〈(τ2,m2, nil,∅)〉}.

The next iteration of RAE progresses with one step in m11 and one
step in m2. The latter refines τ2 into τ21 then τ22. This gives Agenda =
{〈(τ11,m11, i

′,∅), (τ1,m1, i,∅)〉, 〈(τ21,m21, j
′,∅), (τ2,m2, j,∅)〉}.

The following iterations progress one step at a time in m11 and m21 until
one of these methods finishes, refines into some other subtasks (to be pushed
in its stack), or fails (leading to try other methods for the task).

Note that dependencies between activities corresponding to concurrent
stacks are not handled by this simple version of RAE (see Section 3.2.4).
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3.2.3 Goals in RAE

Goals, like tasks, refer to an actor’s objectives. The objective for a task
is to perform some activity. The objective for a goal is to reach a state ξ
where some condition g holds (see Definition 2.18). In some cases, an actor’s
objectives are more easily expressed through goals than through tasks.

Refinement methods are convenient for expressing and performing tasks.
We can easily extend the refinement method approach of RAE to handle
goals in a restricted way.4 Our previous definition of a method as a triple
(role, precondition, body) still holds. The role is now either a task, an event
or a goal. A goal g is specified syntactically by the construct achieve(g).

The body of a refinement method for any type of role is, as before,
a sequence of steps with control statements; each step is a command, an
assignment, or a refinement into a subtask or a subgoal. As we explain
shortly, a few modifications to RAE are sufficient to enable it to use such
methods. However, there is an important limitation.

Unlike the planning algorithms in Chapter 2, RAE does not search for
arbitrary sequences of commands that can achieve a goal g. Instead, just as
it would do for a task, RAE will choose opportunistically among the methods
in M whose roles match g. If M does not contain such a method, then g
will not be reachable by RAE. The same actor, with exactly the same set of
commands and execution platform, might be able to reach the goal g if M
contained a richer collection of methods. This limitation can be overcome,
but it requires using a planner, as we discuss in Sections 3.3 and 3.4.2.

Example 3.7. Consider the task fetch of Example 3.2. Instead of refining
it with another task, we may choose to refine it with a goal of making the
position of the container c known. The methods in Example 3.1 can be
rewritten as follows:

m-fetch(r, c)
task: fetch(r, c)
pre:

body: achieve(pos(c) 6= unknown)
move-to(pos(c))
take(r, c)

4See Section 5.7 for a more general handling of goals.
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m-find-where(r, c)
goal: achieve(pos(c) 6= unknown)
pre:

body: while there is a location l such that view(l)=F do
move-to(l)
perceive(l)

The last method tests its goal condition and succeeds as soon as g is met
with respect to current ξ. The position of c may become known by some
other means than the perceive command, for example, if some other actor
shares this information with the robot. These two methods are simpler than
those in Example 3.2.

Because achieve(g) has the semantics and limitations of tasks, it is pro-
cessed by RAE as a task. One may ask what is the advantage of introducing
goals in RAE? The main advantage is to allow for monitoring of the con-
dition g with respect to the observed environment expressed in ξ. For a
method m whose role is achieve(g), RAE can check before starting the body
of m whether g holds in current state ξ. It also performs this test at every
progression step in the body of m and when m finishes. If the test succeeds,
then the goal is achieved, and the method stops. If the test fails when the
progression finishes, then the method has failed, and the Retry process is
performed.

In the previous example, nothing needs to be done if pos(c) is known
initially; if not, the m-find-where method stops if that position becomes
known at some point of the while loop.

The monitoring test is easily implemented by making three modifications
to the Progress procedure, Algorithm 3.2:

• If the previous step m[i] is a command that returns failure: a Retry is
performed only when g does not hold in the current ξ.

• If i is the last step of m: if g is met in the current ξ, then the top tuple
is removed from the stack (success case); if not a Retry on current
stack is performed.

• After i is updated with nextstep(m, i): if g is met in the current ξ,
then the top tuple is removed from current stack without pursuing the
refinement further.

Note that if the previous step is a command that is still running, we postpone
the test until it finishes (no progress for the method in that case).

The monitoring capability allowed with goals is quite convenient.
It can be generalized to tasks by adding an extra field in methods:
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(role, precondition, expected-results, body). The expected-results field is a con-
dition to be tested in the same way as a goal.

3.2.4 Additional Features for RAE

As illustrated in previous examples, the behavior of the RAE is quite simple.
Additional features are needed to extend its capabilities and simplify the
specification of methods. For example it can be desirable to suspend, re-
sume, or stop a task depending on specific conditions or to refine a task into
concurrent subtasks. Furthermore, the choice of a method instance among
the set of candidates in RAE, Progress, and Retry needs to be well informed
(steps expressed as “arbitrarily choose m ∈ Candidates”). Let us discuss
informally a few possible extensions of this simple version of RAE.

Controlling the progress of tasks. The need for controlling the
progress of tasks can be illustrated in Example 3.3. The method m-
emergency is not supposed to be running in parallel with other previously
started tasks. The state variable emergency-handling, when set to true,
should suspend other currently running tasks.

A simple extension for controlling the progress of a task is to general-
ize the condition field in methods: the designer should be able to express
not only preconditions, as seen earlier, but also conditions under which the
engine is required to stop, suspend, or resume the progress of a task. The
needed modifications in the RAE procedures are the following:

• The precondition of a method is checked only once to define the appli-
cable Instances(M, τ, ξ); the stop and suspend conditions of a method
m, if any, have to be tested at each call of Progress for a stack where
m appears.

• This test has to be performed not only for the method m on top of the
stack, but also for the methods beneath it: stopping or suspending a
task means stopping or suspending the subtasks in which it is currently
being refined, that is, those that are above it in the stack.

• When a task is stopped the corresponding stack is removed from the
agenda; when a task is suspended, the corresponding stack remains
pending with no further progress, but its resume condition is tested at
each iteration of RAE to eventually pursue its progression.

Some commands may be running when a stop or suspend condition is set
on: the engine has to trigger corresponding orders to the execution platform
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to stop or suspend these commands when this is feasible.

It can be convenient to express control statements with respect to rela-
tive or absolute time. Let us assume that the value of the current time is
maintained in ξ as a state variable, called now. Alarms, watchdog timers,
periodic commands, and other temporal statements can be expressed in
the body of methods, for example by conditioning the progress of a task
(suspend, resume, stop) with respect to values of now. Because the main
loop of RAE progresses by just one step in the top-most methods of pend-
ing stacks, it is possible to implement a real-time control of tasks at an
intermediate level of reactivity (see Section 3.5).

Refining into concurrent subtasks. In the simple version of RAE, a
task is refined into sequential subtasks. It can be desirable to allow for
concurrent subtasks in a refinement step. For example, a robot may have
to tour a location exhaustively while concurrently performing appropriate
sensing actions to correctly accomplish a perceive action.

To specify a concurrent refinement, a step in the body of a method can
be expressed with a “concurrent” operator as follows:
{concurrent: 〈ν1,1, . . . , ν1,n〉〈ν2,1, . . . , ν2,m〉 . . . 〈νk,1, . . . , νk,l〉}

where each 〈νi,1, . . . , νi,j〉 is a sequence of steps as seen in the body of meth-
ods so far.

The refinement of a concurrent step splits into k parallel branches that
share the current instance of that method. The corresponding stack is split
into k substacks. There is an important difference with what we saw earlier
for the concurrent progression of several stacks. The latter correspond to in-
dependent tasks that may succeed or fail independently of each others. Here,
all the k substacks in which a concurrent refinement splits have to succeed
before considering that concurrent refinement step as being successful.

Choosing methods and stack ordering. Two types of choices have
been left open in RAE:

• which method among applicable ones to choose for addressing a task;

• in which order to progress the stacks in the current agenda.

Because all stacks have to be progressed at each iteration, the second
open choice is not as critical as the first. One may envision general heuris-
tics such as reacting to events first and then addressing new tasks, before
progressing on the old ones. Application specific heuristics should allow
refinement of this ordering choice.
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The choice of the appropriate method for addressing a task when several
are applicable should be based on an estimate of how effective a method
will be in the current context for that task. Domain-specific heuristics can
be convenient for making informed choices. Ideally, however, one needs pre-
dictive models and a lookahead capability to be able to compare alternative
courses of actions but RAE uses operational models without predictive capa-
bility: the refinement methods defined so far are solely reactive.5 Let us first
extend them for the purpose of planning in the next section, then we’ll come
back to this issue of informed choices in RAE with look-ahead mechanisms
in Section 3.4.

3.3 Refinement Planning

One way to help RAE make choices is to do refinement planning, that is,
to explore RAE’s search space in order to predict the outcomes of different
possible courses of action. This section describes two refinement-planning
algorithms, SeRPE and IRT, that can be used for that purpose. In both of
them, the basic idea is to do predictive simulations of RAE’s task refinement
process.

The planner’s initial state s0 will be RAE’s current state ξ, and the
planner will use methods like the ones that RAE uses; but instead of using
commands to an execution platform, the planner will use descriptive models
– action templates as in Chapter 2 – to predict the effects of the commands.
At points where RAE would choose a method m to use for some task or
goal τ , the planner will use search techniques like the ones in Chapter 2 to
explore several of the possible choices for m, to predict for each m whether
it will succeed in accomplishing τ .

As written, SeRPE and IRT require the classical planning assumptions
discussed in Section 2.1.1. Consequently, they cannot reason about how RAE
might handle situations in which actions have outcomes that are not known
in advance. For example, Example 3.2 involved searching for a container
using a command called perceive. We know in advance that if the actor
performs the perceive action, the values of some state variables will become
known, but we do not know what those values will be. Hence we cannot
write a classical action template for perceive.

5This does not prevent from embedding in these methods planning capabilities for
performing specific tasks or steps, as illustrated in Exercises 3.1, 3.2, and 3.3.
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3.3.1 Sequential Refinement Planning

Algorithm 3.4 is SeRPE (Sequential Refinement Planning Engine), a refine-
ment planning algorithm for situations in which there are no concurrent
tasks. In other words, these are situations in which RAE has only one refine-
ment stack and none of the refinement methods contain the “concurrent”
operator defined in Section 3.2.4. In Section 3.3.2, we discuss another plan-
ning algorithm, IRT, that loosens this restriction.

SeRPE generates plans by simulating RAE’s task refinement process. It
chooses task-refinement methods nondeterministically, but an implementa-
tion of SeRPE would make the choice using a search mechanism like the ones
in Section 2.2. SeRPE’s arguments are a set M of refinement methods, a
set A of action templates that are models of RAE’s commands, the state s
in which SeRPE’s planning should begin, and τ , a task to accomplish.

SeRPE nondeterministically chooses a method instance m that is both
relevant for τ and applicable in s, and calls Progress-to-finish to simulate
RAE’s execution of body(m). RAE would call Progress once for each step in
the execution of body(m); each of these calls is simulated by an iteration
of Progress-to-finish’s loop. In this loop, if m[i] is a command to perform,
Progress-to-finish uses a descriptive model of the command to predict what
the command will do. If m[i] is a task to accomplish, Progress-to-finish calls
SeRPE recursively: here, SeRPE’s recursion stack corresponds to RAE’s re-
finement stack for τ . If the execution trace completes successfully, Progress-
to-finish returns a plan that it predicts will accomplish τ . If the execution
trace fails, then SeRPE returns failure.

Lines (ii) and (iii) are SeRPE’s way of simulating the goal monitoring
described in Section 3.2.3.

In line (ii), SeRPE returns early if τ is a goal and s satisfies τ (denoted
by s |= τ). In line (iii), SeRPE fails if τ is a goal and m does not produce a
state that satisfies τ .

In line (i), SeRPE returns failure because there are no methods for τ . If
τ is a goal rather than a task, then a possible fallback might be to search
for any plan whose outcome satisfies τ , regardless of whether there are any
refinement methods to produce that plan. To modify SeRPE to do this, we
can replace line (i) with this:

if Candidates = ∅ then
if τ is a goal achieve(g) then return find-plan(Σ, s, g)

else return failure

where Σ is the planning domain (S,A, γ), A is the set of actions correspond-
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SeRPE(M,A, s, τ)
Candidates← Instances(M, τ, s)
if Candidates = ∅ then return failure (i)
nondeterministically choose m ∈ Candidates
return Progress-to-finish(M,A, s, τ,m)

Progress-to-finish(M,A, s, τ,m)
i← nil // instruction pointer for body(m)
π ← 〈〉 // plan produced from body(m)
loop

if τ is a goal and s |= τ then return π (ii)
if i is the last step of m then

if τ is a goal and s 6|= τ then return failure (iii)
return π

i← nextstep(m, i)
case type(m[i])

assignment: update s according to m[i]
command:
a← the descriptive model of m[i] in A
if s |= pre(a) then
s← γ(s, a); π ← π.a

else return failure
task or goal:
π′ ← SeRPE(M,A, s,m[i])
if π′ = failure then return failure
s← γ(s, π′); π ← π.π′

Algorithm 3.4: SeRPE, the Sequential Refinement Planning Engine.

ing to each command, and S is the set of states constructed with a generative
approach from s and γ. In the modification proposed for line (i), find-plan
could be one of the planning algorithms in Chapter 2, with modifications
to make it return control to SeRPE if it sees a goal for which there is an
applicable method (see the discussion of this in Section 3.5.2).

Refinement trees. SeRPE can be modified so that when invoked on a
task τ , instead of returning a plan π it returns a refinement tree. This is
a tree in which the root node contains the task or goal τ , the intermediate
nodes contain the methods chosen by SeRPE and the subtasks produced by
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those methods, and the terminal nodes contain the actions in π.

Such a modification will be useful for integrating SeRPE with RAE (see
Section 3.4), and the modification is relatively straightforward: in each of
SeRPE’s recursive calls, it would add to the tree a node containing the task
or action that SeRPE chose at this point in its search.

In the rest of this chapter, we refer to the input of RAE as a planning
problem P = (M,A, s, τ), whereM is a set of methods, A is a set of action
templates, s is a state, and τ is a task.

Example 3.8. Figure 3.4 shows a state in a planning domain similar to the
one in Example 2.12 except that there is only one robot. Consider the tasks
of uncovering a container and putting it into a specified pile. Following are
methods to accomplish those tasks in some (but not all) cases. The variables
in these methods have the following ranges: c ∈ Containers; r ∈ Robots;
d, d′ ∈ Docks; p, p′ ∈ Piles. There are three kinds of tasks:

• put-in-pile(c, p′) is the task of putting container c into pile p′ if it is not
already there. There are two methods for this task. One, for the case
where c is already in p′, does nothing. The other uses a robot to take
c, move (if it is not already there) to the dock where p′ is located, and
put c on p′. Here they are:

m1-put-in-pile(c, p′)
task: put-in-pile(c, p′)
pre: pile(c) = p′

body: // empty

m2-put-in-pile(r, c, p, d, p′, d′)
task: put-in-pile(c, p′)
pre: pile(c) = p ∧ at(p, d) ∧ at(p′, d′)

∧ p 6= p′ ∧ cargo(r) = nil
body: if loc(r) 6= d then navigate(r, d)

uncover(c)
load(r, c, pos(c), p, d)
if loc(r) 6= d′ then navigate(r, d′)
unload(r, c, top(p′), p′, d′)

• uncover(c) is the task of ensuring that c is at the top of a pile p. There
are two methods for this task: one for the case where c is already at
the top of p, and another that uses a robot r to move containers from
p to another pile p′ until c is at the top of p. The robot r must be
empty, and r and p′ must have the same location as p.
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Figure 3.4: The state s0 in Equation 3.1.

m1-uncover(c)
task: uncover(c)
pre: top(pile(c)) = c

body: // empty

m2-uncover(r, c, p, p′, d)
task: uncover(c)
pre: pile(c) = p ∧ top(p) 6= c

∧ at(p, d) ∧ at(p′, d) ∧ p 6= p′

∧ loc(r) = d ∧ cargo(r) = nil
body: while top(p) 6= c do

c′ ← top(p)
load(r, c′, pos(c′), p, d)
unload(r, c′, top(p′), p′, d)

• navigate(r, d′) is the task of moving r along some undetermined route
that ends at dock d′. In an actual application, such a task would
probably be handled by calling a specialized route-planning algorithm,
but in this simple example, we can use the following three methods.
The first is for the case in which r is already at d, and it does nothing.
The second one moves r to d′ if loc(r) is adjacent to d′. The third one
moves to an adjacent dock other than d′.

m1-navigate(r, d′)
task: navigate(r, d′)
pre: loc(r) = d′

body: // empty

m2-navigate(r, d′)
task: navigate(r, d′)
pre: loc(r) 6= d′ ∧

adjacent(loc(r), d′)
body: move(r, loc(r), d′)

m3-navigate(r, d, d′)
task: navigate(r, d′)
pre: loc(r) 6= d′ ∧ d 6= d′

∧ adjacent(loc(r), d)
body: move(r, loc(r), d)

navigate(r, d′)

Now consider the planning problem P = (M,A, s0, put-in-pile(c1, p2)),
whereM contains the six methods defined above, A contains the four actions
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Tree T1: Tree T2:
task

put-in-pile(c1,p2)

method
m2-put-in-pile(r1,c1,p1,d1,p2,d2)

task
uncover(c1)

method
m1-uncover(c1)

(no children)

task
navigate(r1,d2)

action
load(r1,c1,nil,p1,d1)

action
unload(r1,c1,c3,p2,d2)

method
m2-navigate(r1,d2)

action
move(r1,d1,d2)

task
put-in-pile(c1,p2)

method
m2-put-in-pile(r1,c1,p1,d1,p2,d2)

task
uncover(c1)

method
m1-uncover(c1)

(no children)

task
navigate(r1,d2)

action
load(r1,c1,nil,p1,d1)

action
unload(r1,c1,c3,p2,d2)

method
m3-navigate(r1,d3,d2)

task
navigate(r1,d2)

method
m2-navigate(r1,d2)action

move(r1,d1,d3) action
move(r1,d3,d2)

Figure 3.5: Refinement trees for two solution plans.

defined in Example 2.12, and s0 is the following state, which is shown in
Figure 3.4:

s0 = {cargo(r1) = nil, loc(r1) = d1,
occupied(d1) = T, occupied(d2) = F, occupied(d3) = F,
pile(c1) = p1, pile(c2) = p2, pile(c3) = p2,
pos(c1) = nil, pos(c2) = c3, pos(c3) = nil,
top(p1) = c1, top(p2) = c2, top(p3) = nil}.

(3.1)

If we do cycle-checking (see Section 2.2), then there are only two ways to
refine the subtask navigate(r1, d2), and Figure 3.5 shows the refinement trees
for both choices. These trees correspond to the following solution plans:

π1 = 〈load(r1, c1, c2, p1, d1),move(r1, d1, d2), unload(r1, c1, c3, p2, d2)〉;
π2 = 〈load(r1, c1, c2, p1, d1),move(r1, d1, d3),move(r1, d3, d2),

unload(r1, c1, c3, p2, d2)〉.
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																			d1	

											d3	
	

															d2	

p1							 											p2	
											p3	

c2	
c1	

c3	r1	 r2	

Figure 3.6: The initial state s0 from Example 2.5.

Discussion. For simplicity of presentation, we wrote the SeRPE pseu-
docode to choose a method m nondeterministically from the set of candi-
date methods. An implementation of SeRPE would make this choice using
search techniques like those in Section 2.2, modified to search over methods
as well as actions. In such an implementation, the search algorithm’s effi-
ciency depends on what the refinement methods are like (writing the body
of a refinement method is basically a programming task), and what kinds of
search heuristics are used.

When RAE has a single task to accomplish, RAE’s refinement of that
task proceeds in a depth-first, left-to-right fashion, since that is the order
in which RAE will need to execute the actions. Because SeRPE works by
simulating RAE’s execution, it explores its search space in the same depth-
first, left-to-right fashion.

In some application domains, it would be desirable to have a planning
engine that can explore the nodes of the search space in a different order.
For example, to take an airplane trip from the United States to Europe, one
needs to get to the airport before taking a flight, but to plan the trip, one
usually wants to examine alternative flight itineraries before planning how
to get to the airport. Something like this can be accomplished by giving the
planner a different set of refinement methods than the ones used by the actor,
but that makes it difficult to ensure consistency between the deliberation
done by the planner and the deliberation done by the actor. An alterna-
tive approach is to combine task refinement with plan-space planning (see
Section 3.5.2) or to use input/output automata that allow for interactions
between different tasks (see Chapter 5).

3.3.2 Interleaved Plans

In Section 3.3.1, one of the restrictions was that none of the methods in
M could contain the “concurrent” programming construct described in Sec-
tion 3.2.4. The main reason for this restriction is the difficulty of reasoning
about what will happen when several primitive commands are running con-
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currently, which requires a temporal-planning model that we will not intro-
duce until Chapter 4. However, it can be useful to loosen the restriction by
allowing multiple tasks to be interleaved provided that at most one primitive
command will be executed at a time. Here is a motivating example:

Example 3.9. Let s0 be as shown in Figure 3.6. Suppose we want to move
c1 to p2 and move c3 to p1, using the following two plans:

π3 = 〈load(r1, c1, c2, p1, d1),move(r1, d1, d2), unload(r1, c1, p3, nil, d2)〉,
π4 = 〈load(r2, c3, nil, p2, d2),move(r2, d2, d3),move(r2, d3, d1),

unload(r2, c3, c2, p1, d1)〉.

If we tried to use either π3 or π4 alone, some of the actions would fail. Only
one robot can occupy a loading dock at a time, so neither robot can move
to the other dock unless the other robot first leaves that dock. We can
accomplish this by interleaving π3 and π4 to produce a plan such as this:

π5 = 〈load(r1, c1, c2, p1, d1), load(r2, c3, nil, p2, d2),

move(r2, d2, d3),move(r1, d1, d2),move(r2, d3, d1),

unload(r1, c1, p3, nil, d2)〉, unload(r2, c3, c2, p1, d1)〉.

To provide a way of specifying that a plan such as π5 is a permissible
solution, we will allow the body of a method to include steps of the form

{interleave: p1, . . . , pn},

where each pi is a sequence of steps 〈νi,1, . . . , νi,j〉 for some j. This operator
has the same semantics as the “concurrent” operator in Section 3.2.4, except
that only one command can be performed at a time.

Example 3.10. Continuing with Example 3.9, suppose that M includes
the following additional method, where c, c′ ∈ Containers and p, p′ ∈ Piles:

put-interleaved(c, p, c′, p′)
task: put-both(c, p, c′, p′)
pre: none

body: {interleave:
〈put-in-pile(c, p)〉,
〈put-in-pile(c′, p′)〉}

Then from the task put-both(c1, p2, c3, p1), we can get the refinement tree in
Figure 3.7, which corresponds to π5.
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task
put-in-pile(c1,p2)

method
m2-put-in-pile(r1,c1,p1,d1,p2,d2)

task
uncover(c1)

method
m1-uncover(c1)

(no children)
task

navigate(r1,d2)action
load(r1,c1,p1)

action
unload(r1,c1,p2)

method
m2-navigate(r1,d2)

action
move(r1,d1,d2)

task
put-in-pile(c3,p1)

method
m2-put-in-pile(r2,c3,p2,d2,p1,d1)

task
uncover(c3)

method
m1-uncover(c3)

(no children)

task
navigate(r2,d1)

action
load(r2,c3,p2)

action
unload(r2,c3,p1)

method
m-navigate(r2,d3,d1)

task
navigate(r2,d3)

method
m-navigate(r2,d2,d3)

action
move(r2,d2,d3)

method
put-interleaved(c1,p2,c3,p1)

interleave

task
put-both(c1,p2,c3,p1)

action
move(r2,d3,d1)

Figure 3.7: An interleaved refinement tree corresponding to π5.

Algorithm 3.5, the IRT (Interleaved Refinement Tree) algorithm, gener-
ates refinement trees like the one in Figure 3.7, in planning domains where
the bodies of the methods may include “interleave” statements. The IRT
pseudocode requires the planning domain to have no goals, that is, no tasks
of the form achieve(g). These could be added, but we omit them for sim-
plicity of presentation. IRT’s refinement trees contain five kinds of nodes:

• A task node and an action node contain a task or action, respectively.

• A method node or program node is labeled with a pair (p, i), where p
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IRT(D, s, τ)
π ← 〈〉
ρ← a new task node; data(ρ)← τ
Pending← {ρ}
while Pending 6= ∅ do

nondeterministically choose a node µ ∈ Pending
that has no children in Pending (i)

case type(µ)
task:
τ ← data(µ)
remove µ from Pending
M ← Instances(M(τ), s)
if M = ∅ then return failure
nondeterministically choose m ∈M
ν ← a new method node; data(ν)← (m, 0)
make ν a child of µ // this will be µ’s only child
insert ν into Pending

action:
a← data(µ)
remove µ from Pending
if a is not applicable in s then return failure
s← γ(s, a); π ← π.a

program or method:
v ← IRT-progress(D,µ, s,Pending)
if v = failure then return failure

return (π, ρ)

Algorithm 3.5: IRT, a refinement-planning algorithm that can do interleav-
ing. Interleaving nodes are handled by the IRT-progress subroutine, Algo-
rithm 3.6.

is a method or a program, and i is a program counter.

• An interleaving node represents a statement of the form
{interleave: p1, . . . , pk}. It is an empty node whose children
include program nodes ν1, . . . , νk.

Generally there may be many different possible orders in which to expand
the nodes below each interleaving node. IRT handles this by repeatedly
making nondeterministic choices from a list called Pending that includes all
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IRT-progress(D,µ, s,Pending)
(p, i)← data(µ)
if i is the last step of m then

remove µ from Pending
return

else if p[i] is a task then
ν ← a new task node; data(ν)← p[i]
append ν to µ’s list of children
insert ν into Pending

else if p[i] is a primitive command then do
ν ← a new action node; data(ν)← ap[i]
append ν to µ’s list of children
insert ν into Pending

else
// p[i] has the form {interleave: p1, . . . , pk}
ν ← a new interleaving node
append ν to µ’s list of children
for i = 1, . . . , k do
νi ← a new program node; data(ν)← (pi, 0)
insert νi into ν’s set of children
insert νi into Pending

Algorithm 3.6: Subroutine of IRT to simulate the next step in a method.

nodes IRT has not yet finished expanding.

Implementation considerations. The practical considerations for im-
plementing IRT are similar to the ones for implementing SeRPE. However,
the efficiency consideration is especially critical in IRT. The nondetermin-
istic choice in (i) makes IRT consider all feasible orderings of the nodes in
Pending. To implement IRT, it would be necessary to implement this as a
deterministic search. Because the number of feasible orderings can be ex-
ponentially large, this is not practical unless the algorithm has a way (e.g.,
some sort of heuristic guidance) to find a satisfactory ordering without too
much backtracking.

Simulating concurrency. IRT’s “interleave” operator can be used, in a
limited way, to do predictive simulations of concurrent tasks in RAE, by
making some changes to the domain representation. Recall that each action
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m-do-a
task: do-a
pre: // no preconditions

body: start-a, end-a

start-a
pre: p, running-a= F
eff: running-a← T

end-a
pre: running-a= T
eff: e, running-a← F

Figure 3.8: Translation of a command a into one refinement method and
two actions.

a is a descriptive model of a command to the execution platform. For
simplicity of presentation, let us assume that a’s preconditions need to be
true when the command starts executing, and a’s effects occur when the
command finishes executing. Instead of modeling the command with a single
action a, let us use a task named do-a, the body of which contains two actions
start-a and end-a that represent the command’s starting and ending points.6

If a’s preconditions and effects are p and e, then the method and the two
actions are as shown in Figure 3.8.

In the body of each method, let us replace all occurrences of the ac-
tion a with the task do-a, and replace all occurrences of “concurrent” with
“interleave”. Thus, {concurrent: a1, a2, . . . , an} will become

{interleave: do-a1, . . . , do-an}. (3.2)

In Figure 3.8, the state variable running-a prevents multiple overlapping
occurrences of the same action. If we want to allow multiple overlapping
occurrences for some reason, then IRT will need to be modified so that each
time it refines an instance of do-a, it uses a different state variable in start-a
and end-a.

Limitations. The biggest difficulty with this way of simulating concur-
rency is that IRT will impose a specific linear order on the starting points
and ending points of the actions in Equation 3.2. Without knowing some-
thing about the amount of time each action will take, there is no way to
know whether the ordering chosen by IRT is a realistic one; and even if it

6More generally, one may need to represent preconditions and effects that occur at
several points during a command’s execution. In this case, we would need to include one
or more additional actions during1-a, during2-a, . . . , so that there is an action at each
point where a precondition or effect occurs.
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is realistic, it will not provide sufficient flexibility to deal with situations
in which the duration of an action may vary and is not controllable. If we
extract a partial order from the linear order (which can be done reasoning
about which actions establish the preconditions of other actions) and mod-
ify the actions to include time stamps, it will alleviate the problem but not
fully solve it. Chapter 4 presents a more comprehensive way to reason about
time.

3.4 Acting and Refinement Planning

We now consider how to integrate refinement planning with acting. Sec-
tion 3.4.1 shows how to modify the procedures in Section 2.6 to use an online
version of SeRPE; and Section 3.4.2 describes REAP, a modified version of
RAE that incorporates a SeRPE-like refinement planner.

3.4.1 Planning and Acting at Different Levels

At the start of Section 3.3, our stated motivation for SeRPE was to provide
guidance for RAE by simulating its possible execution paths. However, an-
other possibility is to use SeRPE and RAE at different levels of an actor’s
hierarchy. The actor could use a SeRPE-like planning procedure to generate
plans consisting of abstract actions and a RAE-like acting procedure to re-
fine the abstract actions into lower-level commands, for example, as shown
in the planning and acting levels of Figure 1.2.

To illustrate some ways to accomplish this, Algorithms 3.7, 3.8, and
3.9 are straightforward modifications of the algorithms in Section 2.6.1. In
them, SeRPE-Lookahead is a version of SeRPE that has been modified to
incorporate online-planning techniques such as receding-horizon planning or
sampling (see Section 2.6.2), and Perform is a procedure for performing a
by using a RAE-like procedure to refine the action a into commands for the
actor’s execution platform.

Simulate is the same kind of plan simulator as in Section 2.6.1, except
that the third argument is a task τ rather than a goal g, and it is only when
τ = achieve(g) that Simulate will check whether π achieves g.

Example 3.11. Consider an actor that uses Refine-Lookahead. Suppose
that in line (i) of Refine-Lookahead, the state-abstraction function is the
identity function, that is, it always assigns s← ξ.

Suppose the actor begins with the state s0 shown in Figure 3.4 and the
task τ = put-in-pile(c1, p2). In the first iteration of the while loop, suppose
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Refine-Lookahead(M,A, τ)
while (s← abstraction of observed state ξ) 6|= τ do (i)
π ← SeRPE-Lookahead(M,A, s, τ)
if π = failure then return failure
a← pop-first-action(π)); Perform(a)

Algorithm 3.7: Replanning before every action.

Refine-Lazy-Lookahead(M,A, τ)
s← abstraction of observed state ξ
while s 6|= τ do
π ← SeRPE-Lookahead(M,A, s, τ)
if π = failure then return failure
while π 6= 〈〉 and s 6|= τ and Simulate(Σ, s, τ, π) 6= failure do
a← pop-first-action(π)); Perform(a)
s← abstraction of observed state ξ

Algorithm 3.8: Replanning only when necessary.

Refine-Concurrent-Lookahead(M,A, τ)
π ← 〈〉; s← abstraction of observed state ξ
thread 1: // threads 1 and 2 run concurrently

loop
π ← SeRPE-Lookahead(M,A, s, τ)

thread 2:
loop

if s |= τ then return success
else if π = failure then return failure
else if π 6= 〈〉 and Simulate(Σ, s, τ, π) 6= failure then
a← pop-first-action(π)); Perform(a)
s← abstraction of observed state ξ

Algorithm 3.9: Replanning concurrently with acting.

SeRPE-Lookahead returns

π1 = 〈load(r1, c1, c2, p1, d1),move(r1, d1, d2), unload(r1, c1, c3, p2, d2)〉.

Then Refine-Lookahead pops load(r1, c1, p1) from π1 and calls
Perform(load(r1, c1, p1)). If no execution errors or other unantici-

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


Section 3.4 129

pated events occur, then the observed state and its abstraction are
s1 = γ(s0, load(r1, c1, c2, p1, d1)).

In the second iteration of the while loop, if SeRPE-Lookahead’s nonde-
terministic choices are consistent with the ones it made the previous time,
then it returns

π2 = 〈move(r1, d1, d2), unload(r1, c1, c3, p2, d2)〉,

so Refine-Lookahead pops and performs move(r1, d1, d2). If no execution
errors or other unanticipated events occur, then the observed state and its
abstraction are s2 = γ(s1,move(r1, d1, d2)).

In the third iteration, if SeRPE-Lookahead’s nondeterministic choices are
consistent with its previous ones, then it returns

π3 = 〈unload(r1, c1, c3, p2, d2)〉,

so Refine-Lazy-Lookahead pops and performs unload(r1, c1, c3, p2, d2). If no
execution errors or other unanticipated events occur, then the observed state
and its abstraction are s3 = γ(s2, unload(r1, c1, c3, p2, d2)).

In the fourth loop iteration, s3 |= g, so Refine-Lazy-Lookahead exits.

Instead of Refine-Lookahead, suppose the actor uses Refine-Lazy-
Lookahead or Refine-Lazy-Lookahead, with the same abstraction function and
the same version of SeRPE-Lookahead as before. If no execution errors or
unanticipated events occur, then the actor will perform the same actions as
before, in the same order.

Limitations. Because Algorithms 3.7–3.9 are analogous to the procedures
in Section 2.6.1, they have several of the same trade-offs discussed in that
section. Moreover, as illustrated in the following example, additional prob-
lems can occur if the author of the domain model does not specify refinement
methods for all of the possible states in which SeRPE-Lookahead might be
invoked.

Example 3.12. Suppose a programmer writes a method m to accomplish
a task τ . This method is applicable in a state s0 and it produces a sequence
of commands 〈a1, a2, a3〉. Suppose the programmer believes s0 is the only
state in which the actor will ever be given τ as an external task, and thus
the programmer does not write any methods to accomplish τ in any other
state. Suppose the actor starts in a state ξ0 whose abstraction is s0 and uses
Refine-Lookahead:
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• Refine-Lookahead calls SeRPE-Lookahead(M,A, s0, τ), and SeRPE-
Lookahead uses m to produce a plan π.

• The actor removes the first action from π and performs it, pro-
ducing a state ξ1 whose abstraction is s1. Then Refine-Lookahead
calls SeRPE-Lookahead(M,A, s1, τ). Because m is inapplicable in s1,
SeRPE-Lookahead returns failure, even though the remaining actions
in π are still capable of accomplishing τ .

A similar problem will occur if the actor uses Refine-Concurrent-Lookahead.
If Refine-Lookahead returns a complete solution plan, the problem will not
occur if the actor uses Refine-Lazy-Lookahead, which will continue to perform
actions in π as long as Simulate predicts that π will execute correctly. But
the problem will occur in Refine-Lazy-Lookahead if SeRPE-Lookahead returns
a partial solution plan (e.g., if Refine-Lookahead does a receding-horizon
search).

A more robust (although more complicated) approach is to integrate
SeRPE-like refinement planning with RAE-like refinement acting at all levels
of the actor’s hierarchy. The next section describes a way to do that.

3.4.2 Integrated Acting and Planning

This section describes REAP (Refinement Engine for Acting and Planning).
Most of the REAP pseudocode (Algorithms 3.10, 3.11, and 3.12) is quite sim-
ilar to RAE in Section 3.2, except that REAP uses a planner (Refinement-tree
in the pseudocode) to help it choose methods in Candidates. Refinement-tree
is an online SeRPE-like planner similar to SeRPE-Lookahead in Section 3.4.1,
but modified to use Candidates rather than M as the methods for the task
τ and to return a refinement tree instead of a plan.

We introduced the notion of refinement trees briefly in Section 3.3.1 and
gave two examples in Figure 3.5. In more detail, if T is the refinement tree
for a task τ , then T has a root node t that is labeled with τ , and t has
one child u that is labeled with the method instance m that the planner
chose for τ . Let τ1, . . . , τk be the subtasks and actions in the planner’s
simulation of body(m), in the order that they were created. Then µ has
children t1, . . . , tk defined as follows. For each τi that is a task, ti is the root
node of the refinement tree for τi; and for each τi that is an action, ti is a
leaf node that is labeled with τi.

REAP-main calls Refinement-tree on a planning problem in which the
only methods available for the current state are the ones in Candidates. If
the planner returns a refinement tree T for a task τ , then the method at the
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REAP-main(M,A)
Agenda← ∅
loop

until the input stream of external tasks and events is empty do
read τ in the input stream
Candidates← Instances(M, τ, ξ)
if Candidates = ∅ then output(“failed to address” τ)
s← abstraction of observed state ξ
T ← Refinement-tree(Candidates,M,A, s, τ) (i)
if T = failure then

output(“failed to address” τ) (ii)
else do
m← the method instance at the top of T (iii)
Agenda← Agenda ∪ {〈(τ,m, nil,∅, T )〉}

for each stack ∈ Agenda do
REAP-progress(M, A, stack)
if stack = ∅ then Agenda← Agenda \ {stack}

Algorithm 3.10: Main procedure of REAP, a modified version of RAE that
calls a planner to choose method instances.

top of T is the one that the planner recommends using for τ , so REAP-main
chooses this method in line (iii).

In line (ii), REAP-main stops trying to accomplish τ if Refinement-tree
returns failure. However, REAP-main can be modified to incorporate various
fallback options. Depending on the planning domain and the developer’s
objectives, a modified version of REAP-main could call Refinement-tree with
a set M′ of fallback methods that it would not otherwise use, postpone
accomplishment of τ until the environment changes in a way that makes τ
feasible, or modify τ (see “goal reasoning” in Section 1.3.4) to make it easier
to accomplish.

In lines (ii)–(iii) of REAP-progress, the same approach is used to choose
a method m′ for the task τ ′. Because τ ′ is a subgoal of the task τ in
REAP-main, this can be viewed as a kind of subgoaling (see Section 2.6.2).
The same approach is used again in lines (i)–(ii) of REAP-retry.

Simulation. In line (i) of REAP-progress, Simulate is a plan simulator
like the one in Section 3.4.1, but with two significant differences. First, its
argument is a refinement tree T , and it simulates the plan contained in T ’s
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REAP-progress(M,A, stack)
(τ,m, i, tried, T )← top(stack)
if i 6= nil and m[i] is a command then

case status(m[i])
running: return
failure: REAP-retry(M,A, stack); return
done:
T ′ ← the unexecuted part of T
if Simulate(ξ, T ′) = failure then (i)

REAP-retry(M,A, stack); return
else continue

if i is the last step of m then
pop(stack) // remove (τ,m, i, tried, T )

else
i← nextstep(m, i)
case type(m[i])

assignment: update ξ according to m[i]; return
command: trigger command m[i]; return
task or goal: continue

τ ′ ← m[i]
Candidates← Instances(M, τ ′, ξ)
if Candidates = ∅ then

REAP-retry(M,A, stack); return
s← abstraction of observed state ξ
T ′ ← Refinement-tree(Candidates,M,A, s, τ) (ii)
if T ′ = failure then REAP-retry(M, A, stack)
else do
m′ ← the topmost method in T ′ (iii)
stack ← push((τ ′,m′, nil,∅, T ′),stack)

Algorithm 3.11: REAP’s procedure for progressing a refinement stack.

leaf nodes. Second, REAP-progress calls it many times on many different
refinement trees.

Every time REAP-progress refines a stack element, it calls Refinement-tree
in line (ii). Hence each stack element (τ,m, tried, T ) contains a refinement
tree that is a subtree of the refinement tree in the stack element below it.
To obtain a prediction of whether the rest of body(m) will execute correctly,
REAP-progress calls Simulate(ξ, T ) in line (i). If the simulation predicts a
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REAP-retry(M,A, stack)
(τ,m, i, tried, T )← pop(stack)
tried← tried ∪ {m}
Candidates← Instances(M, τ, ξ) \ tried
if Candidates = ∅ then output(“failed to address” τ)
s← abstraction of observed state ξ
T ′ ← Refinement-tree(Candidates,M,A, s, τ) (i)
if T ′ 6= failure then
m′ ← the topmost method in T ′ (ii)
push((τ,m′, nil, tried, T ′), stack)

else
if stack 6= ∅ then REAP-retry(M,A, stack)
else do

output(“failed to accomplish” τ)
Agenda← Agenda \ stack

Algorithm 3.12: REAP’s version of RAE’s Retry subroutine.

failure, then REAP-progress calls REAP-retry.

Example 3.13. Let us repeat Example 3.11 using REAP. As before, we will
suppose that no execution errors or unforeseen events occur.

In REAP-main’s first loop iteration, it reads τ = put-in-pile(c1, p2)
and calls Refinement-tree. Suppose Refinement-tree returns the re-
finement tree T1 in Figure 3.5. The topmost method in T is
m = carry-to-pile(r1, c1, p1, d1, c3, p2, d2), and REAP-main puts stack1 =
〈(τ,m, nil,∅, T )〉 into Agenda. Assuming that nothing else arrives in the
input stream, REAP-main calls REAP-progress repeatedly on stack1 until τ
has been accomplished, as follows:

• In the first call to REAP-progress, the top element of the stack
is (τ,m, nil,∅, T ). After the call to nextstep, this is replaced by
(τ,m, i,∅, T ), with i pointing to τ1 = uncover(c1). REAP-progress
calls Refinement-tree, which returns a tree T1 that is a copy of T ’s left-
most branch. The topmost method in T1 is m1 = m-uncover(c1), and
REAP-progress pushes (τ1,m1, nil,∅, T1) onto stack1.

• In the second call to REAP-progress, the top element of stack1 is
(τ1,m1, nil,∅, T1). Because c1 is already uncovered, the method
produces no actions or subtasks, and REAP-progress removes
(τ1,m1, nil,∅, T1) from stack1.
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• In the third call to REAP-progress, i points at uncover(c1) until nextstep
is called. Afterward, i points at the action load(r1, c1, p1), which REAP-
progress sends as a command to the execution platform. In the fourth
call to REAP-progress, let us suppose that the command is still running.
Then REAP-progress just returns.

• In the fifth call to REAP-progress, suppose the command has fin-
ished. Then Simulate returns success, and the call to nextstep makes
i point to τ2 = navigate(r1, d2). REAP-progress calls Refinement-tree,
which returns a tree T2 that is a copy of T ’s third branch. The top-
most method in T2 is m2 = m2-navigate(r1, d1, d2), and REAP-progress
pushes (τ2,m2, nil,∅, T2) onto stack1.

• In the sixth call to REAP-progress, the top element of the stack is
(τ2,m2, nil,∅, T2). After the call to nextstep, this is replaced by
(τ2,m2, i,∅, T2), with i pointing to the action move(r1, d1, d2). REAP-
progress sends it as a command to the execution platform. In the
seventh and eighth calls to REAP-progress, suppose the command is
still running. Then REAP-progress returns.

• In the ninth call to REAP-progress, suppose the command has finished.
Then Simulate returns success, and i is the last step of m, so REAP-
progress removes (τ2,m2, i,∅, T2) from stack1.

• In the tenth call to REAP-progess, the top element of the stack is
(τ1,m1, i,∅, T1), and i points at τ2 = navigate(r1, d2). After the call to
nextstep, i points at the action unload(r1, c1, c3, p2, d2). REAP-progress
sends it as a command to the execution platform. In the eleventh
call to REAP-progress, suppose the command is still running. Then
REAP-progress returns.

• In the twelfth call to REAP-progress, suppose the command has fin-
ished. Then Simulate returns success, and i is the last step of m, so
REAP-progress removes (τ1,m1, i,∅, T1) from stack1.

At this point, Agenda is empty, so REAP-main continues to iterate its main
loop without any further calls to REAP-progess unless something new arrives
in the input stream.

Comparison with RAE. In our examples, often only one method instance
was applicable in a given state. In such cases, RAE would have chosen the
same method instance as REAP, without needing to call a planner. Thus it
may not be immediately evident to the reader why REAP’s planner is useful.
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It is useful in two ways:

• In situations where multiple method instances are applicable, planning
can be useful to explore the alternatives and suggest which method
instance to use. For example, in Example 3.13, REAP had to choose
whether to go directly from d1 to d2, or to go from d1 to d3 and then
to d2. Here, the planner was useful for telling it what route to choose.

• By using the planner to look ahead, REAP sometimes can detect cases
when future failure is inevitable, so that it can abandon the current
course of action and try something else. This may enable it to accom-
plish a task in cases where RAE would just continue until the failure
occurred.

3.5 Discussion and Historical Remarks

3.5.1 Refinement Acting

Early planning and acting systems relied on a uniform set of action primi-
tives, that is, planned actions were assument to be directly executable with-
out refinement. This is exemplified in Planex by Fikes [196], one of the first
acting systems, which was coupled with the STRIPS planner. Planex as-
sumes correct and complete state updates after each action execution, from
which it detects failures but also opportunities for pursuing a plan. It relies
on triangle tables to monitor the progress of a plan with respect to the goal.

The lack of robustness of this and similar systems was addressed by var-
ious approaches for specifying operational models of actions and techniques
for context-dependent refinement into lower level commands. Among these,
procedure-based systems are quite popular. RAP (Reactive Action Pack-
age), proposed by Firby [199], is an early example. Each package is in charge
of satisfying a particular goal, corresponding to a planned action. Deliber-
ation chooses the appropriate package according to the current context.

PRS (Procedural Reasoning System), by Ingrand et al. [293], is a widely
used procedure-based action refinement and monitoring system. As in RAP,
one writes procedures to achieve goals or react to particular events and ob-
servations. The system commits to goals and tries alternative procedures
when needed. It allows for concurrent procedure execution and multithread-
ing. Some planning capabilities were added to PRS by Despouys and In-
grand [152] to anticipate execution paths leading to failure by simulating
the execution of procedures and exploring different branches.

TCA by Simmons [539] and TDL by Simmons and Apfelbaum [541] ex-
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tend the capabilities of procedure-based systems with a wide range of syn-
chronization constructs between commands and temporal constraints man-
agement. These and other timeline-oriented acting systems, such as RMPL
of Ingham et al. [292] are further discussed in Section 4.6.

XFRM by Beetz and McDermott [49] uses transformation rules to modify
hand written conditional plans expressed in a representation called Reactive
Plan Language [48]. It searches in plan space to improve its refinements,
using simulation and probabilities of possible outcomes. It replaces the
currently executed plan on the fly if it finds another one more adapted to
the current situation. Beetz [47] extended this approach with more elaborate
reactive controllers.

Other procedure-based approaches have been proposed, such as IPEM
by Ambros-Ingerson and Steel [18], EXEC by Muscettola et al. [441], or
CPEF by Myers [442]. Concurrency and synchronization issues, which often
arise at the command level, have been addressed by a few Petri net–based
systems. For example, Wang et al. [595] model with Petri nets the proper
order of the execution of commands and their required coordination. The
model can be used in simulation for verification and performance testing.
Similar approaches have been pursued by Barbier et al. [36] and Ziparo
et al. [629] to specify an acting system whose properties can be validated
with reachability and deadlock analysis.

Finite State Automata have also been used as acting models, in which an
abstract action is represented as an FSA whose transitions are labelled with
sensory-motor signals and commands. For example, FSA have been used
jointly with IxTeT by Chatilla et al. [115]. Verma et al. [583] illustrate in
PLEXIL a representation in which the user specifies nodes as computational
abstractions. A node can monitor events, execute commands, or assign
values to variables. It may refer hierarchically to a list of lower level nodes.
Execution is controlled by constraints (start, end), guards (invariant), and
conditions.

SMACH, the ROS execution system of Bohren et al. [79], also imple-
ments an automata-based approach. The user writes a set of hierarchical
state machines. Each state corresponds to the execution of a particular com-
mand. The interface with ROS actions, services, and topics is very natural,
but the semantics of constructs available in SMACH is limited for reasoning
on goals and states. Let us also mention the approach of Pistore et al. [486],
based on the Business Process Execution Language (BPEL, of Andrews et al.
[22]), which proposes to plan and compose asynchronous software services
represented as state transition systems. The approach produces a controller
that takes into account uncertainty and the interleaving of the execution

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


Section 3.5 137

of different processes. It is extended by Bucchiarone et al. [101] to deal at
run-time with a hierarchical representation that includes abstract actions;
Pistore and Traverso [485] address the problem of automated synthesis and
run-time monitoring of processes. This work is further discussed in Chap-
ter 5.

Unlike the procedure-based approaches, automata and Petri net ap-
proaches allow for formal analysis, such as reachability and dead locks check-
ing, which can be critical for the specification and the verification of acting
models. A few systems try to overcome the engineering bottleneck of hand
specification of procedures or automata by relying on logic inference mech-
anisms for extending high-level specifications. Examples are the Temporal
Action Logic approach of Doherty et al. [158] for monitoring (but not action
refinement) and the situation calculus approach. The latter is exemplified in
GOLEX by Hähnel et al. [251], an execution system for the GOLOG plan-
ner. In GOLOG and GOLEX, the user specifies respectively planning and
acting knowledge in the situation calculus representation. GOLEX provides
Prolog hand-programmed “exec” clauses that explicitly define the sequence
of commands a platform has to execute. It also provides monitoring prim-
itives to check the effects of executed actions. GOLEX executes the plan
produced by GOLOG, but even if the two systems rely on the same logic
programming representation, they remain completely separated, limiting the
interleaving of planning and acting. The Platas system of Claßen et al.
[124] relies on GOLOG with a mapping between the PDDL langage and
the Situation Calculus. The Readylog language of Ferrein and Lakemeyer
[194], a derivative of GOLOG, combines planning with programming. It
relies on a decision-theoretic planner used by the acting component when a
problem needs to be solved. The acting component monitors and perceives
the environment through passive sensing, and acts or plans accordingly.

Finally, there are several systems that rely on probabilistic approaches,
possibly with sampling techniques, which are discussed in Section 6.8.

3.5.2 Refinement Planning

HTN planning. Hierarchical Task Network (HTN) planning uses HTN
methods, which are like refinement methods except that instead of being a
program to execute, the body of a method is a partially or totally ordered
set of tasks and actions, along with constraints that the state variables need
to satisfy over various parts of the partial ordering.

The first HTN planning systems, which were developed in the mid-1970s
[520, 561], used plan-space HTN planning, that is, they combined HTN task
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refinement with plan-space search [307]. Theoretical models for plan-space
HTN planning began to be developed in the early 1990s [615, 309], culminat-
ing in a formal semantics [180], a provably correct planning algorithm [181],
and analysis showing that HTN planning has greater expressive power than
classical planning [179]. Work was also done on making plan-space HTN
planning more efficient using planning-graph techniques [397, 396].

Most current HTN planning algorithms use a forward-search procedure
such as the one in SeRPE (Algorithm 3.4). For example, the SHOP al-
gorithm [446] can be rewritten as a special case of SeRPE, and a slightly
modified version7 of the SHOP2 algorithm [448] can be rewritten as a special
case of IRT (Algorithm 3.5), using HTN methods that include “interleave”
operators. The approach of Biundo and Schattenberg [72] integrates HTN
with plan space planning; it has been extended with efficient heuristics us-
ing task decomposition and landmarks [177, 52]. Other extensions to HTN
planning have been proposed, for example, to temporal planning [110] (see
Chapter 4) and planning with preferences [553].

A recent formal model of HTN search spaces [10] has shown that because
they have a more complex structure than classical search spaces, there is a
wider variety of possible ways to search them, including some possibilities
for which no planning algorithms have yet been written. The model suggests
it may be feasible to develop domain-independent HTN planning heuristics
using a relaxation of one of these search spaces, but such heuristics have not
yet been developed.

HTN methods can be useful for encoding “standard operating pro-
cedures” for accomplishing tasks in various application domains [603].
Some examples include scheduling [604], logistics and crisis management
[133, 562, 72], spacecraft planning and scheduling [1, 183], equipment con-
figuration [6], manufacturing process planning [550], evacuation planning
[438], computer games [551, 113], and robotics [430, 431].

Combining refinement planning and classical planning. When a
classical planner is trying to achieve a goal g, it may examine any sequence
of actions that it thinks will lead toward g. When a refinement planner
is trying to accomplish a task, it will examine only those action sequences
that can be produced using the available refinement methods. Thus if we

7The modification is to remove SHOP2’s requirement that a method m’s precondi-
tions must be evaluated in the same state as the preconditions of the first action in the
decomposition tree below m. Enforcing such a requirement is not feasible in dynamic
environments, and IRT and RAE do not attempt to do so.
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use refinement planning to plan for a task of the form achieve(g), this can
be considered a way of constraining the search for g.

On one hand, constraining the search in this manner can convey a sub-
stantial efficiency advantage [445]. On the other hand, Example 3.12 demon-
strates that unless the planner is given a comprehensive set of methods that
cover all of the possible tasks to accomplish, and all of the possible situ-
ations in which they might need to be accomplished, planning can fail in
situations in which one would want it to succeed. Consequently, several
researchers have investigated ways to combine the advantages of both re-
finement planning and classical planning by using refinement methods when
they are applicable and classical planning when no refinement methods are
available.

One approach involves running a classical planner and an HTN planner
as two separate subroutines, with the refinement planner passing control to
the classical planner whenever it encounters a task for which no methods
have been defined, and the classical planner passing control to the refinement
planner whenever it encounters an “action” that matches the head of an
HTN method [220].

Another approach achieves the same kind of effect by compiling a set
of HTN methods (subject to certain restrictions because HTN planning has
greater expressivity than classical planning) into a set of classical “actions”
whose names, preconditions, and effects encode the steps involved in apply-
ing the methods, and using these actions in a classical planner [8].

A third approach [533] uses an HTN-like formalism in which there are
goals rather than tasks, and the body of a method is a sequence of goals and
actions. If the planner encounters a goal for which there is an applicable
method then it uses the method. Otherwise it invokes a landmark-based
forward search. During each episode of landmark generation, the planner
treats the landmarks as intermediate goals, reverting to refinement planning
whenever it encounters a landmark for which there is an applicable method.

3.5.3 Translating Among Multiple Domain Models

Throughout this chapter, we assumed that all of the refinements took place
in the same state space. However, in applications in which refinements are
done at multiple levels of abstraction (e.g., see Figure 1.2), different state
and action representations may be needed at different levels of abstraction.

In principle, the algorithms and procedures in this chapter can be gen-
eralized to accommodate this, using techniques somewhat like the ones used
in abstraction heuristics (see Section 2.7.9). However, such a generalization
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will require formal definitions of the relationships among tasks, states and
actions at different levels, translation algorithms based on these definitions,
and planning and acting algorithms that can accommodate these transla-
tions. A comprehensive approach for this problem has yet to be developed.

3.6 Exercises

3.1. Modify the m-search method of Example 3.2 by assuming it uses a
planning function, plan-path, which computes an optimized sequence of lo-
cations with content that is not yet known; the search proceeds according
to this sequence.

3.2. Complete the methods of Example 3.2 by considering that move-to
is not a command but a task addressed by a method that calls a motion
planner, which returns a trajectory, then controls the motion of the robot
along that trajectory.

3.3. Complete the methods of Example 3.2 by considering that perceive
is not a command but a task that requires calling a perception planner
that returns a sequence of observation poses. Define two methods: (i) for a
complete survey of a location where perceive goes through the entire sequence
of observation poses and (ii) for a focus perception that stops when the
searched object is detected.

3.4. Analyze how the methods in Exercises 3.1, 3.2, and 3.3 embed plan-
ning capabilities in refinement methods at the acting level. Relate this to
Figure 1.2 and the discussion in Section 1.2.2.

3.5. Combine the two scenarios of Examples 3.2 and 3.3: while the robot
is searching for a container, it has to react to an emergency. What needs
to be done to ensure that the robot returns to its search when the task
address-emergency finishes (see Section 3.2.4)?

3.6. In Example 3.4, in the body of m-opendoor, why is the first word
“while” rather than “if”?

3.7. Complete the methods of Example 3.4 for refining the tasks unlatch(r, d)
and throw-wide(r, d) when the door turns to the right, when the door opens
away from the robot, and when the door slides.

3.8. Complete the methods of Example 3.4 with appropriate steps to survey
the grasping status of whatever the robot is grasping and to turn the handle
in the opposite direction before ungrasping it.
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3.9. Extend Example 3.4 for a robot with two arms: the robot uses its left
(or right) arm if the door turns or slides to the left (or right, respectively).
Add a method to move an object from one of the robot’s hands to the other
that can be used if the hand holding the object is needed for the opening
the door.

3.10. Extend Example 3.4 for the case in which the door might be locked
with an RFID lock system and the robot’s RFID chip is attached to its left
arm.

3.11. Redefine the pseudocode of RAE, Progress, and Retry to implement
the extensions discussed in Section 3.2.4 for controlling the progress of a
task.

3.12. Implement and test the fetch task of Example 3.2 in OpenPRS
(https://git.openrobots.org/projects/openprs/wiki). Integrate the
results of Exercise 3.1 in your implementation; use for plan-path a simple
Dijkstra graph-search algorithm. Is it possible to extend your OpenPRS
implementation to handle the requirements stated in Exercise 3.5?

3.13. In Example 3.8, rewrite the two methods for put-in-pile(c, p′) as a
single method. What are the benefits and drawbacks of having them as one
method rather than two?

3.14. For the task uncover(c) in Example 3.8, write a method or set of
methods for the case where there are containers on c but no other pile at
the same dock.

3.15. Professor Prune says that the m-navigate method in Example 3.8 can
cause excessive backtracking. Is he correct? Explain why or why not, and
if he is correct, then write a better method or set of methods.

3.16. Following is a domain-specific acting algorithm to find near-optimal
solutions for blocks world problems (see Exercise 2.10), where “optimal”
means the smallest possible number of actions. In it, s0 is an initial state
in which holding = nil, and g is a set of loc atoms (e.g., as in Figure 2.18).
Here are some definitions of terms used in the algorithm:

• For each block b, if g contains an atom of the form loc(b) = c, then
goal(b) = c. If there is no such atom, then goal(b) = nil.

• A block b is unfinished if s0(loc(b)) 6= goal(b) and goal(b) 6= nil, or if
s0(loc(b)) is an unfinished block. Otherwise b is finished.

• A block b is clear if top(b) = nil.
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Here is the acting algorithm:

Stack-blocks(s0, g)
while there is at least one unfinished block do

if there is an unfinished clear block b such that
goal(b) = table or goal(b) is a finished clear block

then
move b to goal(b)

else
choose a clear unfinished block b
move b to table

(a) What sequence of actions will this algorithm produce for the planning
problem in Exercise 2.10(b)?

(b) Write a set of refinement methods that encode this algorithm. You
may assume that there is already a function finished(b) that returns
true if b is finished and false otherwise.

3.17. Suppose we try to use SeRPE on the problem in Example 3.6. Draw
as much of the refinement tree as you can. What problem prevents you from
drawing the entire refinement tree? Suggest a way to resolve the problem.

3.18. Rewrite the pseudocode for SeRPE, replacing the nondeterministic
choice with depth-first backtracking.

3.19. In Example 3.11, suppose that every time r1 starts down the road
from d1 to d2, it hits a bump that knocks c1 off of r1 and back onto p1.

(a) What sequence of commands will ARP-lazy, ARP-interleaved, and ARP-
asynchronous execute?

(b) What sequence of commands will REAP execute?

3.20. In Exercise 3.16, suppose that when the robot hand tries to pick up
a block, sometimes it will drop the block onto the table.

(a) What sequence of commands will ARP-lazy, ARP-interleaved, and ARP-
asynchronous execute?

(b) What sequence of commands will REAP execute? What kind of mod-
ification could you make to REAP to make it keep trying until it suc-
ceeds?

3.21. Redo Example 3.11 using a refinement planner that does a receding-
horizon search. More specifically, the planner is a modified version of SeRPE
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that generates the first two actions of every refinement plan (hence it looks
at all partial plans of two steps or less), and it returns the partial plan that
(according to some kind of heuristic evaluation) is closest to accomplishing
the task or goal. You can assume that the heuristic evaluation always gives
accurate results.
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Chapter 4

Deliberation with Temporal
Models

This chapter is about planning and acting approaches in which time is ex-
plicit in the descriptive and operational models of actions, as well as in
the models of the expected evolution of the world. It describes several al-
gorithms and computation methods for handling durative and concurrent
activities with respect to a predicted dynamics.

The first section addresses the need of making time explicit in the delib-
eration of an actor. A knowledge representation for modeling actions with
temporal variables is presented in Section 4.2. It relies on an extension of
the refinement methods introduced earlier, which are seen here as chronicles,
that is, collections of assertions and tasks with explicit temporal constraints.
A planning algorithm with temporal refinement methods is developed in Sec-
tion 4.3. The basic techniques for managing temporal constraints and the
controllability of temporal plans are then presented in Section 4.4. Acting
problems with temporal domain models, are discussed, considering different
types of operational models in Section 4.5. The chapter concludes with a
discussion and historical remarks, followed by exercises.

4.1 Introduction

To perform an action, different kinds of resources may need to be borrowed
(e.g., space, tools) or consumed (e.g., energy). Time is a resource required
by every action, but it differs from other types of resources. It flows indepen-
dently from the actions being performed, and it can be shared ad infinitum
by independent actors as long as their actions do not interfere with each
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other.

In previous chapters, we left time implicit in our models: an action
produced an instantaneous transition from one state to the next. However,
deliberative acting often requires explicit temporal models of actions. Rather
than just specifying an action’s preconditions and effects, temporal models
must specify what things an action requires and what events it will cause
at various points during the action’s performance. For example, moving a
robot r1 from a loading dock d1 to a loading dock d2 does not require d2’s
availability at the outset but it does require it shortly before r1 reaches d2.

Actions may, and sometimes must overlap, even if their conditions and
effects are not independent. As one example, r1 may move from d1 to
d2 while r2 is concurrently moving from d2 to d1. As another, opening a
door that has a knob and a spring latch that controls the knob requires
two tightly synchronized actions: (i) pushing and maintaining the latch
while (ii) turning the knob. Modeling such concurrency requires an explicit
representation of time.

Goals are sometimes constrained with absolute deadlines. Events may be
expected to occur at future time periods, for example, the arrival of sched-
uled ships at a harbor. Actions may have to be located in time with respect
to expected events or deadlines. Time can be required qualitatively, to han-
dle synchronization between actions and with events, and quantitatively, to
model the duration of actions with respect to various parameters.

In summary, the main motivations for making time explicit in planning
and acting are the following:

• modeling the duration of actions;

• modeling the effects, conditions, and resources borrowed or consumed
by an action at various moments along its duration, including delayed
effects;

• handling the concurrency of actions that have interacting and joint
effects;

• handling goals with relative or absolute temporal constraints;

• planning and acting with respect to exogenous events that are expected
to occur at some future time; and

• planning with actions that maintain a value while being executed, as
opposed to just changing that value (e.g., tracking a moving target, or
keeping a spring latch in some position).

An explicit representation of time for the purpose of acting and planning
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can be either:

• “State-oriented”: one keeps the notion of global states of the world, as
we have done so far, and one includes time explicitly in the model of
the transitions between states (e.g., as in timed automata and various
forms of temporal logics). The dynamics of the world are modeled
as a collection of global snapshots, each of which gives a complete
description of the domain at some time point.

• “Time-oriented”: one represents the dynamics of the world as a col-
lection of partial functions of time, describing local evolutions of state
variables. Instead of a state, the building block here is a timeline (hori-
zontal slice in Figure 4.1) that focuses on one state variable and models
its evolution in time. Time-oriented approaches use either instants or
intervals as temporal primitives, with qualitative and/or quantitative
relations.

We use the time-oriented approach in this chapter; a comparison to the
state-oriented approach is briefly discussed in Section 4.6.

1
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Figure 4.1: State-oriented versus time-oriented views.

4.2 Temporal Representation

This section describes timelines, chronicles, and temporal refinement meth-
ods for modeling and reasoning about actions.
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4.2.1 Assertions and Timelines

We rely on a quantitative discrete model of time described by a collection
of temporal variables, for example, t, t′, t1, t2, . . .; each variable designates
a time point. An interval is a pair [t, t′] such that t < t′; its duration is
t′ − t > 0. We also use open intervals, for example, [t, t′), in the usual
sense. For simplicity, we assume that temporal variables range over the set
of integers.1

These temporal variables will not be instantiated at planning time into
precise values. They will be constrained with respect to other temporal
variables or constants; we will have to keep the constraints consistent. The
value of a temporal variable will be set by the execution platform when an
action is performed, that is, when the commands executing that action are
triggered or when their effects are observed. In other words, a temporal
variable remains constrained but uninstantiated as long as it refers to the
future. It is instantiated with a value corresponding to the current time
when the fact that this variable qualifies takes place, either controlled or
observed by the actor. After that point, the variable refers to the past.

Temporal constraints are specified with the usual arithmetic operators
(<,≤,=, etc.) between temporal variables and integer constants, for exam-
ple, t < t′ says that t is before t′; d ≤ t′ − t ≤ d′ constrains the duration of
the interval [t, t′] between the two bounds d and d′.

In the time-oriented view, each state variable x is a function of time;
hence the notation x(t) refers to the value of that variable at time t. The
knowledge about the evolution of a state variable as a function of time is
represented with temporal assertions.

Definition 4.1. A temporal assertion on a state variable x is either a per-
sistence or a change:

• A persistence, denoted [t1, t2]x = v, specifies that x(t) = v for every t
in the interval t1 ≤ t ≤ t2.
• A change, denoted [t1, t2]x:(v1, v2), specifies that the value of x changes

over the interval [t1, t2] from x(t1) = v1 to x(t2) = v2, with v1 6= v2.

As a shorthand, [t]x = v stands for [t, t+1)x=v and [t]x : (v, v′) stands for
[t, t+1]x:(v, v′); the former gives the value of x at a single time point and the
latter expresses a transition from v to v′ over two consecutive time-points.
In general, and assertion [t, t′]x:(v, v′) does not model how the change takes
place within the interval [t, t′]; it can be gradual over possibly intermediate

1This assumption avoids some minor issues regarding closed versus open intervals.
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values or instantaneous at any moment in [t, t′]. However, if t′ = t+ 1, then
the value of x changes discretely from v at time t to v′ at time t+ 1.

For example, the assertion [t1, t2]loc(r1):(loc2,loc3) says that r1’s loca-
tion changes from loc2 to loc3. The precise moments of this change and
intermediate values of loc(r1) are not stated by this assertion. Their values
will be established by the command that performs the change from loc2 to
loc3.

Temporal assertions are parameterized, for example, [t1, t2]loc(r):(l, loc1)
states that some robot r moves from a location l to loc1. The values of r
and l will be fixed at some planning or acting stage; the values of t1 and t2
are instantiated only at acting time.

Definition 4.2. A timeline is a pair (T , C) where T is a conjunction of
temporal assertions on a state variable, possibly parameterized with object
variables, and C is a conjunction of constraints on the temporal variables
and the object variables of the assertions in T .

T and C are denoted as sets of assertions and constraints. Constraints
on temporal variables are unary and binary inequalities and equalities. Con-
straints on object variables are with respect to rigid relations, for example,
connected(l,loc1), or binding constraints, as in the following example.

Example 4.3. The whereabouts of the robot r1, as depicted in Figure 4.2,
can be expressed with the following timeline:

({[t1, t2]loc(r1):(loc1, l), [t2, t3]loc(r1)=l, [t3, t4]loc(r1):(l, loc2)},
{t1 < t2 < t3 < t4, l 6= loc1, l 6= loc2})

In this timeline, T has three assertions: one persistence and two changes; C
has temporal and object constraints. The constraints are in this particular
case entailed from the three intervals and two change assertions in T . In-
stances of the timeline are substitutions of possible values in these assertions
for the five variables l, t1, . . . , t4.

Note that this timeline does not say what happens between t1 and t2; all
we know is that r1 leaves loc1 at or after t1, and it arrives at l at or before t2.
To say that these two changes happen exactly at t1 and t2, we can add the fol-
lowing assertions in the timeline: [t1, t1+1] loc(r1):(loc1,route), and [t2−1, t2]
loc(r1):(route, l), where route is some intermediate location. These asser-
tions say that [t1]loc(r1)=loc1, [t1 + 1]loc(r1)=route, [t2 − 1]loc(r1)=route,
and [t2]loc(r1) = l.

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


Section 4.2 149

1

time
lo
c(
r1
)

loc1

loc2

l

t1 t2 t3 t4

Change

Persistence

Figure 4.2: A timeline for the state variable loc(r1). The positions of the
points on the two axes are qualitative; the rough lines do not necessarily
represent linear changes.

Temporal assertions in a timeline (T , C) are expressed with temporal and
object variables that can be instantiated within their respective domains
with the usual unification mechanisms. Not every instance of a timeline
makes sense as a possible evolution of the corresponding state variable.

Definition 4.4. An instance of (T , C) is consistent if it satisfies all the
constraints in C and does not specify two different values for a state variable
at the same time. A timeline (T , C) is consistent if its set of consistent
instances is not empty.

A pair of temporal assertions is possibly conflicting (conflicting, for
short), if it can have inconsistent instances; otherwise, it is nonconflict-
ing. Because change assertions abstract away the precise times at which
the changes occur, we consider that two assertions [t1, t2]x:(v1, v2) and
[t′1, t

′
2]x:(v′1, v

′
2) are conflicting if they overlap in time, unless the overlap

is only at their endpoints (i.e., v2 = v′1 and t2 = t′1, or v′2 = v1 and t′2 = t1)
or if they are strictly identical.

A separation constraint for a pair of conflicting assertions is a conjunction
of constraints on object and temporal variables that exclude inconsistent
instances. The set of separation constraints of a conflicting pair of assertions
contains all possible conjunctions that exclude inconsistent instances.

Example 4.5. The two persistence assertions {[t1, t2] loc(r)=loc1, [t3, t4]
loc(r1)=l} are conflicting, because they can have inconsistent instances. For
example, if r = r1, l 6= loc1 and either t1 ≤ t3 ≤ t2 or t1 ≤ t4 ≤ t2, then the
robot r1 would have to be at loc1 and at l 6= loc1 simultaneously.

The assertions {[t1, t2]loc(r1) = loc1, [t2, t3]loc(r1) : (loc1, loc2)} is non-
conflicting: they have no inconsistent instances.
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The pair {[t1, t2]loc(r1) = loc1, [t3, t4]loc(r1) : (l, l′)} is conflicting. A
separation constraint is (t2 = t3, l = loc1).

The set of separation constraints for that pair is:
{(t2 < t3), (t4 < t1), (t2 = t3, l = loc1), (t4 = t1, l

′ = loc1)}.

A set of assertions is conflicting if any pair of the set is. A separation
constraint for a set of conflicting assertions is a consistent conjunction of
constraints that makes every pair of the set nonconflicting. Note that a set
of assertions may have separation constraints for every pair while there is
no consistent conjunction of separation constraints for the entire set.

Example 4.6. Consider the set of assertions
{[t1, t2]loc(r1):(loc1, loc2), [t2, t3]loc(r1)=l, [t3, t4]loc(r1):(loc3, loc4)}. The
constraint l = loc2 is a separation for the first two assertions, while the
constraint l = loc3 is required for the last two assertion.

Note that the consistency of a timeline (T , C) is a stronger notion than
just satisfying the constraints in C. It also requires the assertions in T to
have a nonconflicting instance that satisfies C. A timeline is inconsistent if
in particular there are no separation constraints, or none that is consistent
with C. A convenient case is when C includes the separation constraints
needed by T . For such a case, satisfying the constraints in C guarantees the
consistency of the timeline. This is the notion of secure timelines.

Definition 4.7. A timeline (T , C) is secure if and only if it is consistent
and every instance that meets the constraints in C is consistent.

In a secure timeline (T , C), no instance that satisfies C will specify dif-
ferent values for the same state variable at the same time. In other words,
every pair of assertions in T is either nonconflicting or has a separation con-
straint entailed from C. A consistent timeline may possibly be augmented
with separation constraints to make it secure.

Example 4.8. The timeline ({[t1, t2]loc(r1)=loc1, [t3, t4] loc(r1):(loc1,
loc2)}, {t2 < t3}) is secure; its assertions are nonconflicting. The time-
line ({[t1, t2] loc(r)=loc1, [t3, t4]loc(r1)=l}, {t1 < t2, t3 < t4}) is consistent
but not secure; when augmented with either (r 6= r1) or (t2 < t3) it becomes
secure.

Another important notion is that of the causal support of an assertion in
a timeline. Timelines are used to reason about the dynamic evolution of a
state variable. An actor’s reasoning about a timeline requires every element
in this evolution to be either given by its observation or prior knowledge
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(e.g., for the initial state), or explained by some reason due the actor’s own
actions or to the dynamics of the environment. For example, looking at
the timeline in Figure 4.2, the locations of the robot in l, then in loc2, are
explained by the two change assertions in that timeline. However, nothing
explains how the robot got to loc1; we have to state an assertion saying that
it was there initially or brought there by a move action.

Definition 4.9. An assertion [t, t′]x=v or [t, t′]x:(v, v′) in a timeline is
causally supported if the timeline contains another assertion [t′′, t]x=v or
[t′′, t]x:(v′′, v) that asserts the value v at time t.

Note that by definition of the intervals [t′′, t] and [t, t′] we have t′′ < t < t′.
Hence this definition excludes circular support, that is, assertion α cannot
support assertion β while β supports α, regardless of whether this support
is direct or by transitivity via some other assertions.

Example 4.10. In Example 4.3 assertion [t2, t3]loc(r1)=l is supported by
[t1, t2]loc(r1):(loc1, l). Similarly, assertion [t3, t4]loc(r1):(l, loc2) is supported
by [t2, t3]loc(r1)=l. However, the first assertion in that timeline is unsup-
ported: nothing asserts [t1] loc(r1)=loc1.

It may be possible to support an assertion in a timeline by
adding constraints on object and temporal variables. For example,
[t1, t2]loc(r1):(loc1,loc2) can be supported by [t, t′]loc(r)=l if the following
constraints are added to the timeline: (t′ = t1, r=r1, l = loc1). Another way
of supporting an assertion is by adding a persistence condition. For example,
in the timeline ({[t1, t2]loc(r1):(loc1,loc2), [t3, t4]loc(r1):(loc2,loc3)}, {t1 <
t2 < t3 < t4}), the second assertion can be supported by adding the fol-
lowing persistence: [t2, t3] loc(r1)=loc2. Adding a change assertion can also
be used to support assertions. As we’ll see in Section 4.3.3, adding a new
action to a plan results in new assertions that can provide the required
support.

It is convenient to extend to sets of timelines the previous notation and
definitions. If T is a set of temporal assertions on several state variables
and C are constraints, then the pair (T , C) corresponds to a set of timelines
{(T1, C1), . . . , (Tk, Ck)}. (T , C) is consistent or secure if each of its timelines
is. While reasoning about actions and their effects, an actor will perform
the following operations on a set of timelines (T , C):
• add constraints to C, to secure a timeline or support its assertions; for

example, for the first timeline in Example 4.8, the constraint t2 = t3
makes the assertion [t3, t4]loc(r1):(loc1, loc2) supported.
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• add assertions to T , for example, for the timeline in Figure 4.2 to take
into account additional motions of the robot.

• instantiate some of the variables, which may possibly split a timeline of
the set with respect to different state variables, for example, assertions
related to loc(r) and loc(r′) refer to the same state variable, but that
timeline will be split if r is instantiated as r1 and r′ as r2.

4.2.2 Actions

We model an action as a collection of timelines. More precisely, a primitive
action template, or a primitive for short, is a triple (head, T , C), where head
is the name and arguments of the primitive, and (T , C) is a set of timelines.
The reader may view this representation as an extension of the action tem-
plates of Chapter 2 with explicit time expressing conditions and effects at
different moments during the time span of an action.

Example 4.11. Suppose several robots are moving in a connected network
of roads connected to some loading docks. Fixed in each dock are one crane
and several piles where containers are stacked. A dock can contain at most
one robot at a time. Robots and cranes can carry at most one container at
a time. Waypoints in roads guide the robot navigation.

The objects in this domains are of the following types: r ∈ Robots, k ∈
Cranes, c ∈ Containers, p ∈ Piles, d ∈ Docks, w ∈ Waypoints.

The invariant structure of the domain is given by three rigid relations:

attached ⊆ (Cranes ∪ Piles)×Docks

adjacent ⊆ Docks×Waypoints

connected ⊆Waypoints×Waypoints

The domain is described with the following state variables:

loc(r) ∈ Docks ∪Waypoints for r ∈ Robots

freight(r) ∈ Containers ∪ {empty} for r ∈ Robots

grip(k) ∈ Containers ∪ {empty} for k ∈ Cranes

pos(c) ∈ Robots ∪ Cranes ∪ Piles for c ∈ Containers

stacked-on(c) ∈ Containers ∪ {empty} for c ∈ Containers

top(p) ∈ Containers ∪ {empty} for p ∈ Piles

occupant(d) ∈ Robots ∪ {empty} for d ∈ Docks.
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The constant empty means that a robot, a crane, a pile, or a dock is empty,
or that a container is not stacked on any other container.

The task in this example is to bring containers from their current position
to a destination pile. It is specified with primitives, tasks, and methods (to
which we’ll come back in the next section). The primitives are the following:

leave(r, d, w) : robot r leaves dock d to an adjacent waypoint w,

enter(r, d, w) : r enters d from an adjacent wyapoint w,

navigate(r, w,w′) : r navigates from waypoint w to a connected one w′,

stack(k, c, p) : crane k holding container c stacks it on top of pile p,

unstack(k, c, p) : crane k unstacks a container c from the top of pile p,

put(k, c, r) : crane k holding a container c and puts it onto r,

take(k, c, r) : crane k takes container c from robot r.

A descriptive model of leave is specified by the following template:

leave(r, d, w)
assertions: [ts, te]loc(r):(d,w)

[ts, te]occupant(d):(r, empty)
constraints: te ≤ ts + δ1

adjacent(d,w)

This expression says that the leave action changes the location of r from
dock d to the adjacent waypoint w, with a delay smaller than δ1 after the
action starts at ts; the dock d is empty when the action ends at te.

Similarly, enter is defined by the following action template:

enter(r, d, w)
assertions: [ts, te]loc(r):(w, d)

[ts, te]occupant(d):(empty, r)
constraints: te ≤ ts + δ2

adjacent(d,w)

The take primitive is specified as follows:

take(k, c, r)
assertions: [ts, te]pos(c):(r, k)

[ts, te]grip(k):(empty, c)
[ts, te]freight(r):(c, empty)
[ts, te]loc(r)=d

constraints: attached(k, d), attached(p, d)
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The assertions in this primitive say that a container c loaded on r at ts
is taken by crane k at te; r remains in the same dock as k.

Similar specifications are required for the primitives put(k, c, r), to put
a container on r, stack(k, c, p), to put the container c held by k on top of
pile p, unstack(k, c, p), to take with k the top container c of pile p, and nav-
igate(r, w,w′) to navigate between connected waypoints (see Exercise 4.1).

Note that actions leave, enter, take, and so on, are said to be primitive
at the planning level, but they will be refined at the acting level. We’ll see
in Example 4.25 how to further refine them into executable commands.

As illustrated in Example 4.11, primitives are specified as assertions and
constraints on temporal variables and object variables. By convention, ts
and te denote the starting point and ending point of each primitive. The tem-
poral variables of an action template are not in its list of parameters because
we are going to handle them differently from the object variables. The plan-
ner will instantiate object variables, but it will only constrain the temporal
variables with respect to other time points. Their instantiation into con-
stants is performed at acting time, from the triggering of controllable time
points and the observation of the uncontrollable points (see Section 4.4.3).

Note that this representation does not use two separate fields for
preconditions and effects. A change assertion in a primitive, such as
[ts, t]grip(k):(empty, c), expresses both the precondition that crane k should
be empty at time ts and the effect that k holds container c at time t. The
temporal assertions in a primitive refer to several instants, not necessarily
ordered, within the timespan of an action.

Temporal and object variables in a primitive are free variables. To make
sure that different instances of a primitive, say take, refer to different vari-
ables ts, te, k, r, c, we rely on the usual variable renaming, which is detailed
later in the chapter.

4.2.3 Methods and Tasks

We define a task as in the previous chapter, that is, a label naming an
activity to be performed by refining it into a collection of subtasks and
primitives. A task has temporal qualifications, written as follows:

[t, t′]task.

The preceding expression means that task takes place over an interval con-
tained within [t, t′], that is, it starts at or after t, and finishes at or before
t′. Note that [t, t′]task has different semantics than a persistence condition
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on a state variable. It just says task should happen within [t, t′] and does
not require task to persist throughout the entire interval.

A task is refined into subtasks and primitives using refinement meth-
ods. A temporal refinement method is a tuple (head, task, refinement, T , C),
where head is the name and arguments of the methods, task gives the task
to which the method applies, refinement is the set of temporally qualified
subtasks and primitives in which it refines task, T are assertions and C con-
straints on temporal and object variables. A temporal refinement method
does not need a separate precondition field, as in the methods of previous
chapter. This is because temporal assertions may express conditions as well
as effects in a flexible way and at different moments. Temporal refinement
methods are illustrated in Example 4.12.

Example 4.12. Let us further develop the domain in Example 4.11 by
specifying a few tasks as temporal refinement methods. The task of bringing
containers to destination piles can be broken into the following tasks: bring,
move, uncover, load, and unload. Some of the methods for performing these
tasks are the following:

m-bring(r, c, p, p′, d, d′, k, k′)
task: bring(r, c, p) # r brings container c to pile p

refinement: [ts, t1]move(r, d′)
[ts, t2]uncover(c, p′)
[t3, t4]load(k′, r, c, p′)
[t5, t6]move(r, d)
[t7, te]unload(k, r, c, p)

assertions: [ts, t3]pile(c)=p′

[ts, t3]freight(r)=empty
constraints: attached(p′, d′), attached(p, d), d 6= d′

attached(k′, d′), attached(k, d)
t1 ≤ t3, t2 ≤ t3, t4 ≤ t5, t6 ≤ t7

This method refines the bring task into five subtasks to move the robot to
d′ then to d, to uncover container c to have it at the top of pile p′, to load the
robot in d′ and unload in d in the destination pile p. As depicted in Figure 4.3,
the first move and uncover are concurrent (t2 and t3 are unordered). When
both tasks finish, the remaining tasks are sequential. Container c remains
in its original pile, and robot r remains empty until the load task starts.
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Figure 4.3: Assertions, actions and subtasks of a refinement method for the
bring task. The diagonal arrows represent precedence constraints.

m-move1(r, d, d′, w, w′)
task: move(r, d) #moves a robot r to a dock d

refinement: [ts, t1]leave(r, d′, w′)
[t2, t3]navigate(w′, w)
[t4, te]enter(r, d, w)

assertions: [ts, ts + 1]loc(r)=d′

constraints: adjacent(d,w), adjacent(d′, w′), d 6= d′

connected(w,w′)
t1 ≤ t2, t3 ≤ t4

This method refines the move to a destination dock d into three successive
steps: leave the starting dock d′ to an adjacent waypoint w′, navigate to a
connected waypoint w adjacent to the destination and enter the destination
d, which is required to be empty only when the robot gets there. The move
task requires additional methods to address cases in which the robot starts
from a road or when it is already there (see Exercise 4.2).
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m-uncover(c, p, k, d, p′)
task: uncover(c, p) #un-pile p until its top is c

refinement: [ts, t1]unstack(k, c′, p)
[t2, t3]stack(k, c′, p′)
[t4, te]uncover(c, p)

assertions: [ts, ts + 1]pile(c)=p
[ts, ts + 1]top(p)=c′

[ts, ts + 1]grip(k)=empty
constraints: attached(k, d), attached(p, d)

attached(p′, d), p 6= p′, c′ 6= c
t1 ≤ t2, t3 ≤ t4

This method refines the uncover task into unstacking the container at
the top of pile p and moving it to a nearby pile p′ and then invoking uncover
again recursively if the top of p is not c. Another method should handle the
case where c is at the top of p.

Finally, the task load can be refined into unstack and put primitives; task
unload is similarly refined into take and stack (see Exercise 4.2).

As in primitives, assertions in methods specify conditions as well as ef-
fects at any moment during the duration of the task. Note that the specific
conditions of subtasks and primitives of a task τ should be expressed in
their respective definitions, instead of being in the specification of the meth-
ods handling task τ . Redundancy between conditions in methods of tasks,
and conditions in subtasks and primitives is not desirable. For example,
the primitive enter has the assertion [ts, te]occupant(d):(empty, r); the same
assertion (with different variables that will be unified with ts, te, d and r)
may appear in the method m-move1, but it is not needed. Redundancy, as
well as incomplete specifications, are sources of errors.

Planning and acting procedures will view tasks as labelled networks with
associated contraints. For example, a task bring in Example 4.12 can be the
root of a network whose first successor with method m-bring is a task move,
which in turn leads with m-move1 to the primitive leave. A leaf in a task
network is a primitive. An inner node is a task, which, at some point in the
planning and/or acting process, is either:

• refined : it is associated with a method; it has successors labelled by
subtasks and primitives as specified in the method with the associated
constraints or

• nonrefined : its refinement with an applicable method is pending.
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This refinement mechanism takes place within a data structure called a
chronicle.

4.2.4 Chronicles

A chronicle is a collection of temporally qualified tasks, primitives, and
assertions with associated constraints. It is used, among other things, to
give the initial specifications of a planning problem, including the following:

(i) the tasks to be performed;

(ii) the current and future known facts that will take place independently
of the planned activities; and

(iii) the assertions to be achieved; these are constraints on future states of
the world, that planning will have to satisfy.

Because the elements in (ii) are also expressed as temporal assertions, we
refer to them as a priori supported assertions to distinguish them from as-
sertions in (iii), which require support from the planned activities. More
formally:

Definition 4.13. A chronicle is a tuple (A,ST , T , C) where A is a set of
temporally qualified primitives and tasks, ST is a set of a priori supported
assertions, T is a set of assertions, and C is a conjunction of constraints on
the temporal and object variables in A,ST , and T .

Example 4.14. Let us augment the domain of Example 4.12 by specifying
that a pile p can be on a ship, and that a crane k on a dock d can unstack
containers from that pile p only when the corresponding ship is docked at d
(see Exercise 4.3).

Consider the case in which this domain has two robots r1 and r2, initially
in dock1 and dock2, respectively. A ship ship1 is expected to be docked at
dock3 at a future interval of time; it has a pile, pile-ship1, the top element of
which is a container c1. The problem is to bring container c1 to dock4 using
any robot and to have the two robots back at their initial locations at the
end. This problem is expressed with the following chronicle:
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φ0 :
tasks: [t, t′]bring(r, c1, dock4)

supported: [ts]loc(r1)=dock1
[ts]loc(r2)=dock2
[ts + 10, ts + δ]docked(ship1)=dock3
[ts]top(pile-ship1)=c1
[ts]pos(c1)=pallet

assertions: [te]loc(r1) = dock1
[te]loc(r2) = dock2

constraints: ts < t < t′ < te, 20 ≤ δ ≤ 30, ts = 0

By convention, ts and te denote the starting and end points of a chronicle.
Here ts has an absolute value (origin of the clock).

Chronicles will also be used to express partial plans that will be progres-
sively transformed by the planner into complete solution plans.

Example 4.15. Consider two robots r1 and r2 in the domain of Exam-
ple 4.12 performing concurrent actions where each robot moves from its dock
to the other robot’s dock as depicted in Figure 4.4. The following chronicle
(where ST and T are not detailed) expresses this set of coordinated actions:

φ :
tasks: [t0, t1]leave(r1,dock1,w1)

[t1, t2]navigate(r1,w1,w2)
[t3, t4]enter(r1,dock2,w2)
[t′0, t

′
1]leave(r2,dock2,w2)

[t′1, t
′
2]navigate(r2,w2,w1)

[t′3, t
′
4]enter(r2,dock1,w1)

supported: ST
assertions: T

constraints: t′1 < t3, t1 < t′3, ts < t0, ts < t′0, t4 < te, t
′
4 < te

adjacent(dock1,w1), adjacent(dock2,w2)
connected(w1,w2)

This chronicle says that r1 leaves dock1 before r2 enters dock1 (t1 < t′3);
similarly, r2 leaves dock2 before r1 gets there (t′1 < t3). Each action navigate
starts when the corresponding leave finishes (t1 and t′1). However, an enter
may have to wait until after the navigate finishes (t2 to t3) and the way is
free.
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time
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dock1
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enter  
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Figure 4.4: Temporally qualified actions of two robots, r1 and r2. The
diagonal arrows represent the precedence constraints t′1 < t3 and t1 < t′3.

The set T of assertions in a chronicle φ = (A,ST , T , C) contains all
the assertions of the primitives already in A, for example, leave and enter
in Example 4.15. When a task τ ∈ A is refined with a method m, τ is
replaced in A by the subtasks and primitives specified in m, and T and
C are augmented with the assertions and constraints of m and those of its
primitives.

When a task is refined, the free variables in methods and primitives
are renamed and possibly instantiated. For example, enter is specified in
Example 4.11 with the free variables r, d, w, ts, te. In the first instance of
enter in the chronicle of Example 4.15, these variables are respectively bound
to r1, dock2, w2, t3, and t4. In the second instance of enter, they are
bounded to r2, dock1, w1, t′3, t

′
4. The general mechanism for every instance

of a primitive or a method is to rename the free variables in its template
to new names, then to constrain and/or instantiate these renamed variables
when needed.

Furthermore, when refining a task and augmenting the assertions and
contraints of a chronicle, as specified by a method, we need to make sure
that (T , C) remains secure. Separation constraints will be added to C to
handle conflicting assertions. The consistency of the resulting constraints
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will be checked. This is detailed in Section 4.4.

Finally, all the assertions of a chronicle must be supported through the
mechanisms presented next.

4.3 Planning with Temporal Refinement Methods

A temporal planning domain Σ is defined by giving the sets of objects, rigid
relations and state variables of the domain, and by specifying the primitives
and methods for the tasks of the domain.

A planning problem is defined as a pair (Σ, φ0), where Σ is a tempo-
ral planning domain and φ0 = (A,ST , T , C) is an initial chronicle . This
chronicle gives the tasks to perform, the goals to achieve, and the supported
assertions stating the initial and future states of the world that are expected
to occur independently of the activities to be planned for. The pair (T , C)
in φ0 is required to be secure. Note that the planning problem φ0 is defined
in terms of tasks as well as goals. Hence planning will proceed by refinement
of tasks as well as by generative search for goals.

Partial plans are also expressed as chronicles. A chronicle φ defines a
solution plan when all its tasks have been refined and all its assertions are
supported. At that point, φ contains all the primitives initially in φ0 plus
those produced by the recursive refinement of the tasks in φ0, according
to methods in Σ, and those possibly needed to support the assertions in
φ0 or required by the task refinements. It also contains the assertions and
constraints in φ0 plus those of the primitives in φ and the methods used in
the task refinements, together with their constraints and possible separation
constraints. More formally:

Definition 4.16. A chronicle φ is a valid solution plan of the temporal
planning problem (Σ, φ0) if and only if the following conditions hold:

(i) φ does not contain nonrefined tasks;

(ii) all assertions in φ are causally supported, either by supported asser-
tions initially in φ0 or by assertions from methods and primitives in
the plan; and

(iii) the chronicle φ is secure.

Condition (i) says that all tasks in φ0 have been refined recursively down
into primitives; this is similar to what we saw in Section 3.3.1. Condition (ii)
extends to temporal domains the notion of causal link seen in Section 2.5.
Condition (iii) is a requirement to make sure that the solution chronicle
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cannot have inconsistent instances. This is because a solution plan has in
general non-instantiated temporal and object variables, which are instanti-
ated at execution time (see Section 4.4.3 and Section 4.5).

4.3.1 Temporal Planning Algorithm

A temporal planning algorithm proceeds by transforming the initial chroni-
cle φ0 with refinement methods and the addition of primitives and separation
constraints until the preceding three conditions are met. Let φ be the cur-
rent chronicle in that transformation process; φ may contain three types of
flaws with respect to the requirements of a valid plan in Definition 4.16:

• φ has nonrefined tasks : violates condition (i)

• φ has nonsupported assertions : violates condition (ii), and

• φ has conflicting assertions : violates condition (iii).

Because φ is obtained by transforming φ0, when φ does not contain non-
refined tasks, then all tasks of φ0 have been refined into actions, that is,
planning primitives.

A flaw of one of the preceding three types is addressed by finding its re-
solvers , that is, ways of solving that flaw. The planning algorithm chooses
a resolver nondeterministically and transforms the current chronicle accord-
ingly. This is repeated until either the current chronicle is without flaws,
that is, it is a valid solution or a flaw has no resolver, in which case the
algorithm must backtrack to previous choices. Algorithm 4.1, TemPlan, is a
recursive algorithm to do this.

TemPlan(φ,Σ)
Flaws ← set of flaws of φ
if Flaws=∅ then return φ
arbitrarily select f ∈ Flaws (i)
Resolvers ← set of resolvers of f (ii)
if Resolvers=∅ then return failure
nondeterministically choose ρ ∈ Resolvers (iii)
φ← Transform(φ, ρ) (iv)
Templan(φ,Σ)

Algorithm 4.1: A chronicle temporal planner.

In Algorithm 4.1, step (i) is a heuristic choice of the order in which the
resolvers of a given flaw are searched. This choice affects the performance
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but not the completeness of the algorithm. Step (iii) is a backtracking point
in a deterministic implementation of TemPlan: all resolvers for a flaw may
need to be tried to ensure completeness.

The main technical issues in this temporal planning algorithm are the
following:

• How to find the flaws in φ and their resolvers, and how to transform φ
with a resolver ρ, that is, the Transform subroutine in Templan. This
is discussed for the different types of flaws in Sections 4.3.2 to 4.3.4.

• How to organize and explore the search space efficiently. This is dis-
cussed in Section 4.3.5.

• How to check and maintain the consistency of the constraints in φ.
This is discussed in Section 4.4.

4.3.2 Resolving Nonrefined Tasks

An nonrefined task is easy to detect in the current φ. A resolver for a flaw
of that type is an applicable instance of a temporal refinement method for
the task. An instance is obtained by renaming all variables in the method
and instantiating some of these variables with the task parameters and with
the variables and constraints of the current chronicle φ.

An instance m of a method is applicable to a chronicle φ when its task
matches a task in φ and all the constraints of m are consistent with those
of φ. Transforming φ = (A,ST , T , C) with such a resolver m consists of the
following transformations of φ:

• replacing in A the task by the subtasks and actions of m,

• adding the assertions of m and those of the primitives in m either to
ST if these assertions are causally supported or to T , and

• adding to C the constraints of m and those of its actions.

Note that an applicable instance of a method m may have assertions that
are not causally supported by φ. For instance, in Example 4.12, the method
m-bring is applicable for refining a task bring(r, c, p) if m-bring has an in-
stance such that the constraints (attached(p′, d′), attached(p, d), d 6= d′, t2 ≤
t1, t3 ≤ t1) are consistent with those of current φ, given the current binding
constraints of these variables. However, the assertion [ts, t1]freight(r)=empty
in that method may or may not be already supported by another assertion
in φ. If it is not, then refining a task in φ with m-bring adds a nonsupported
assertion in the current chronicle.
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4.3.3 Resolving Nonsupported Assertions

Nonsupported assertions in φ = (A,ST , T , C) are those initially in φ0 plus
those from the refinement of tasks and the insertion of primitives. As dis-
cussed in Section 4.2.1, the three ways to support an assertion α ∈ T and
move it to ST are the following:

• add in C constraints on object and temporal variables,

• add in ST a persistence assertion, and

• add in A a task or primitive that brings an assertion supporting α.

For the last type of resolver, a supporting assertion for α may come
from either a primitive or a method for a task. Supporting α by inserting
the body of a method in φ is equivalent to refining a task. Supporting it with
a primitive introduces primitives in the plan, which may not result from the
refinement of tasks. The use of a primitive as a resolver for supporting an
unsupported assertion is a generative search for a goal, similar to what we
have seen in plan-space planning (Section 2.5). Let us assume at this point
that all primitives in Σ can be freely used to augment a plan for supporting
assertions, as well as through task refinement methods. We’ll discuss this
assumption in Section 4.3.7.

4.3.4 Resolving Conflicting Assertions

Flaws corresponding to conflicting assertions are more easily handled in an
incremental way by maintaining φ as a secure chronicle and keeping track of
what is needed for it to remain secure. The mechanisms here are a general-
ization of those used in Section 2.5 for handling threats in plan-space plan-
ning. There are, however, several substantial differences (see Exercise 4.7).

All assertions in φ0 are required to be nonconflicting. Every transfor-
mation of φ by refinement, addition of persistence assertions or constraints,
or addition of tasks or primitives requires detecting and marking as flaws
potential conflicts between newly added assertions and those of current φ.
Resolvers for a potential conflict are sets of separation constraints consis-
tent with the constraints in the current φ, as discussed in Section 4.2.1. The
corresponding transformation consists of adding the chosen separation con-
straints to those of φ. One way of keeping the current φ secure is to detect
and solve potential conflicts at every transformation step. However, other
flaw selection strategies can be applied.
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4.3.5 Search Space

The search space of TemPlan is a directed acyclic graph in which search
states are chronicles. An edge (φ, φ′) in this graph is such that φ′ =
Transform(φ, ρ), ρ being a resolver for some flaw in φ. The graph is acyclic
because each edge augments the previous chronicle with additional con-
straints, primitives, and/or assertions and there is no removal transforma-
tion. In general, however, the search space is not finite: it can grow indefi-
nitely from the addition of new primitives and tasks. It can be made finite
by the specification of global constraints, such as the total duration of the
plan.

Starting from φ0, TemPlan explores a subtree of this complex search
space. The problems for organizing and exploring this space are in many as-
pects similar to those of algorithm PSP in Section 2.5. Both follow the same
approach of transforming a partial plan by finding flaws and repairing them.
Their types of flaws are, however, different. Flaws corresponding to nonre-
fined tasks do no exist in PSP; they are inherent to the refinement methods
used here. The nonsupported assertion flaws extend the open goal flaws of
PSP to temporal domains. Similarly, conflicting assertions generalize what
we referred to as threats in PSP.

Both the Templan and PSP algorithms use a dynamic constraint-
satisfaction approach in which new constraints and variables are repeatedly
added during the search for a solution. The constraint-satisfaction prob-
lem (CSP) approach is very general and allows taking into account not only
time and variable binding constraints, as in TemPlan, but also resource con-
straints, which are quite often part of planning problems. The Meta-CSP
framework, which expresses the disjunctions of possible resolvers for flaws as
(meta) constraints, can help formalize the integration of several types of con-
straints related to time and resources and possibly help in their resolution
(see discussion in Section 4.6.1).

The basic heuristics for TemPlan are similar to those of PSP. These are
basically variants of the variable-ordering and value-ordering heuristics of
CSP. A heuristic analogous to variable-ordering chooses a flaw f that has
the smallest number of resolvers (step (i) of TemPlan). For a heuristic anal-
ogous to value-ordering, the idea is to choose a resolver ρ that is the least
constraining for the current chronicle φ. This notion is more difficult to as-
sess; it leads to take into account differently resolvers that add constraints,
assertions, or refinement methods, from those that add new tasks or primi-
tives. Adding new tasks and primitives augments the size of the problem at
hand and requires the use of more elaborate heuristics.
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Advanced heuristics rely on elaborate extensions of domain transition
graphs, reachability graphs and some of the techniques presented in Sec-
tion 2.3. They can be integrated within various search strategies such as
iterative deepening or A*-based search. These considerations are essential
for designing an efficient implementation of TemPlan. Possible options for
heuristics and search strategies are briefly discussed in Section 4.6.2.

TemPlan is sound when it is implemented with sound subroutines for
finding flaws, resolvers and transforming chronicles. When a global con-
straint on the plan to find is set, such as the total duration of that plan
or its maximum number of actions, then TemPlan is also complete, that
is, at least one of its execution traces returns a solution plan, if there is
one. These properties are conditioned on the soundness and completeness
of the constraint handling procedures used in TemPlan, which are detailed
in Section 4.4.

4.3.6 Illustration

Let us illustrate some of the steps of TemPlan on a detailed example.

4

r1

k1

p’1
c1
c’1

d1 d2

d3 d4

w12

w13 w23

w34 r2

k2

k4k3

p1 p2

p3 p4

p’2
c2
c’2

Figure 4.5: A planning problem involving two robots, r1 and r2, servicing
four docks, d1 to d4; the task is to bring the containers c1 from pile p’1 to
p3 and c2 from p’2 to p4.
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Example 4.17. Consider the problem depicted in Figure 4.5 for the domain
of Example 4.11 where two robots, r1 and r2, are servicing four docks, d1 to
d4, connected with four roads, as illustrated. Starting from the initial state
shown in the figure, the task is to bring the containers c1 to pile p3 and c2
to p4. No constraint on the final location of the robots is stated. Hence, the
initial chronicle φ0 has no unsupported assertion (see Exercise 4.4).

At the first recursion of TemPlan, there are two flaws in current φ: the
nonrefined tasks bring(r, c1, p3) and bring(r′, c2, p4). Suppose the method
m-bring is used to refine the first task into move, uncover, load, move and
unload. At this point, c, p, p′, d, d′, k, k′ will be instantiated, respectively, to
c1, p3, p’1, d3, d1, k1, k3; r is constrained to be in {r1, r2} and the time
points are constrained as depicted in Figure 4.3.

At the following recursion, there are six nonrefined tasks in φ. Assume
m-bring is similarly used to refine bring(r′, c2, p4). Now the resulting chron-
icle contains ten nonrefined tasks (two uncovers, loads and unloads, and four
moves) as well as conflicting assertions related to the loc(r) and loc(r′) as-
sertions in the four load and unload tasks. Separation constraints are either
r 6= r′ or precedence constraints such that the tasks are run sequentially.

If the former separation is chosen, a final solution plan would be, for
example, to have r1 navigate to d2 while r2 navigates to d1. At the same
time, k1 uncovers c1 while k2 uncovers c2. Two synchronizations then take
place: before load(k2, r1, c2, p’2) and, concurrently, before load(k1, r2, c1,
p’1) (as in Figure 4.3). These two concurrent actions are then followed by
move(r1,d4) concurrently with move(r2,d3), and finally with the two unload
actions. The details of the remaining steps for reaching a solution are covered
in Exercise 4.5.

If we assume more realistically that navigation between waypoints is
constrained by the traversal of docks, and that no dock can contain more
than one robot at a time, then additional synchronizations will be required
for the motion of the two robots (see Exercise 4.6).

4.3.7 Free Versus Task-Dependent Primitives

This section discusses some of the issues for integrating in TemPlan a task-
oriented approach with refinement methods to a goal-oriented approaches
with a generative search mechanism. Indeed, the initial chronicle φ0 =
(A,ST , T , C) specifies (in A) the tasks to perform as well as (in T ) the goals
to achieve in the form of temporal assertions. However, the flexibility of the
representation and the search space can limit the computational performance
of the algorithm when the domain has few methods to depend on and relies
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significantly on generative search.

There is another issue regarding the use of primitives to support asser-
tions that relates to the specification style of a domain. A primitive a is
specified in our representation as a collection of assertions and constraints;
it is also a temporally qualified component of one or several methods. A
method m may contain other assertions and primitives that are needed as
a context for performing a. Hence a may or may not be freely usable in a
plan, independently of a method m that refines a task into several primitives,
including a.

These considerations motivate a distinction between free and task-
dependent primitives . A primitive is free if it can be used alone for sup-
porting assertions. A primitive is task-dependent if it can be used only as
part of a refinement method in generative planning. Such a property is a
matter of design and specification style of the planning domain.

Example 4.18. The designer of the domain in Example 4.24 may consider
that the primitives unload, load, stack, and unstack are free. These actions
can be performed whenever their specified conditions are met; they can be
inserted in a plan when their assertions are needed to support nonsupported
assertions. However, the primitives leave and enter can be specified as being
task-dependent; they should necessarily appear as the result of a decom-
position of a move task. In other words, the designer does not foresee any
reason to perform an action such as leave or enter except within tasks that
require leaving or entering a place.

The use of a task-dependent primitive branches over the choice of which
task to use if the same action appears in the decomposition of several tasks.
It introduces an nonrefined task flaw, which branches over several methods
for its decomposition.

Note that if all primitives in a domain are free, then the refinement
in Templan is limited to the tasks in the initial chronicle. However, if all
primitives are task-dependent, then refinement will be needed for every non-
supported assertion that cannot be supported by constraints and persistence
assertions.

4.4 Constraint Management

At each recursion of TemPlan, we have to find resolvers for current flaws and
transform the current chronicle φ by refinement and insertion of assertions,
constraints, primitives, and tasks. Each transformation must keep the set C
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of constraints in φ consistent; it must detect conflicts in the set of assertions
in φ and find separation constraints consistent with C. The steps (ii) and
(iv) of TemPlan (Algorithm 4.1) require checking the consistency of the
constraints in C.

Definition 4.2 introduces two types of constraints in C: temporal con-
straints and object constraints. Let us assume that these two types of con-
straints are decoupled, that is, there is no constraint that restricts the value
of a time point as a function of object variables, or vice versa. For example,
we introduced constant parameters δi in Example 4.11; there would be a
coupling if these delays where not constant but functions of which robot
r is doing the leave or which crane the unload actions. With this simpli-
fying assumption, C is consistent if and only if its object constraints and
its temporal constraints are consistent. Constraint checking relies on two
independent constraint managers for the two types of constraints. Let us
discuss them in the next sections.

4.4.1 Consistency of Object Constraints

A temporal planner must check and maintain the consistency of unary and
binary constraints on object variables that come from binding and separation
constraints and from rigid relations. This corresponds to maintaining a
general CSP over finite domains, the consistency checking of which is an
NP-complete problem. Restrictions on the representation that may give a
tractable CSP are not practical; even inequality constraints, such as x 6= y
in a separation constraint, make consistency checking NP-complete.

Filtering techniques, such as incremental arc or path consistency, are not
complete, but they are efficient and offer a reasonable trade-off for testing
the consistency of object constraint networks. Indeed, if TemPlan progresses
with an inconsistent set of object constraints, it will later detect that some
variables do not have consistent instantiations; it will have to backtrack.
Incomplete consistency checking in each search node does not reduce the
completeness of the algorithm, it just prunes fewer nodes in its search tree.
Hence, there is trade-off between (i) an early detection of all inconsistencies
with a complete but costly consistency checking at each node of the search,
and (ii) using incremental constraint filtering techniques and performing a
complete variable instantiation checking only at the end of TemPlan search,
which may require further backtracking.

A good principle for balancing this trade-off is to perform low complexity
procedures at each search node, and to keep more complex ones as part of the
search strategy. In that sense, filtering techniques efficiently remove many
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inconsistencies and reduce the search space at a low cost. They may be used
jointly with complete algorithms, such as forward-checking at regular stages
of the search. Such a complete consistency check has to be performed on the
free variables remaining in the final plan. Other trade-offs, such as choosing
flaws that lead to instantiate object variables, are also relevant for reducing
the complexity of maintaining variable binding constraints.

4.4.2 Consistency of Temporal Constraints

Simple Temporal Networks (STNs) provide a convenient framework for han-
dling temporal constraints. An STN is a pair (V, E), where V is a set of
temporal variables V = {t1, t2, . . . , tn}, and E is a set of binary constraints
of the form:

aij ≤ tj − ti ≤ bij , denoted rij = [aij , bij ], where aij and bij are integers.

Note that rij entails rj,i = [−bij ,−aij ]. To represent unary constraints (i.e.,
constraints on one variable rather than two), let us introduce an additional
temporal variable t0 with a fixed value t0 = 0. Then r0j = [a, b] represents
the constraint a ≤ tj ≤ b.

A solution to an STN (V, E) gives an integer value to each variable in V.
The STN is consistent if it has a solution that meets all the constraints in
E . It is minimal if every value in each interval rij belongs to a solution.

TemPlan proceeds by transforming a chronicle φ = (A,ST , T , C) such as
to meet the conditions of a solution plan. These transformations add in C
constraints of methods for refining tasks, constraints for supporting asser-
tions, and separation constraints for conflicting assertions. Each transfor-
mation should keep C consistent. The set of temporal constraints in C is an
STN (V, E), which evolves by the addition of new variables and constraints
while staying consistent. TemPlan requires checking incrementally that an
STN remains consistent when more variables and contraints are added to it.
This is more easily done when the network it is also maintained minimal, as
explained next.

Two operations are essential for checking the consistency of E :

• composition: rik • rkj = [aik + akj , bik + bkj ], which corresponds to the
transitive sum of the two constraints from i to j through k:
aik ≤ tk − ti ≤ bik and akj ≤ tj − tk ≤ bkj ;
• intersection: rij ∩ r′ij = [max{aij , a′ij},min{bij , b′ij}], which is the

conjunction of two constraints on (ti, tj): aij ≤ tj − ti ≤ bij and
a′ij ≤ tj − ti ≤ b′ij .
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Three constraints rik, rkj , and rij are consistent when rij ∩ (rik • rkj) 6= ∅.

1

t2

[1, 2]

t1

t3

[3, 4]

[2, 3]

Figure 4.6: A simple temporal network.

Example 4.19. Consider the network in Figure 4.6 where vertices are time
points and edges are labelled with temporal constraints: r12 = [1, 2], r2,3 =
[3, 4] and r13 = [2, 3]. r12 and r2,3 entail by transitivity r′13 = r12•r23 = [4, 6].
But r′13 is not compatible with r13: the upper bound of r13 is 3, smaller
than the lower bound of r′13 which is 4. That is r13 ∩ r′13 = ∅. There is
no pair of variables t1, t3 that can satisfy both r13 and r′13: this network is
inconsistent.

The path-consistency algorithm PC (Algorithm 4.2) tests all triples of
variables in V with a transitive update operation: rij ← rij ∩ (rik • rkj).
If a pair (ti, tj) is not constrained, then we take rij = (−∞,+∞); in that
sense, an STN corresponds implicitly to a complete graph.

PC(V, E)
for k = 1, . . . , n do

for each pair i, j such that 1 ≤ i < j ≤ n, i 6= k, and j 6= k do
rij ← rij ∩ [rik • rkj ]
if rij = ∅ then return inconsistent

Algorithm 4.2: Path consistency algorithm for simple constraint networks

PC is complete and returns the minimal network. Its complexity is
O(n3). It is easily transformed into an incremental version. Assume that
the current network (V, E) is consistent and minimal; a new constraint r′ij
is inconsistent with (V, E) if and only if rij ∩ r′ij = ∅. Furthermore, when
rij ⊆ r′ij the new constraint does not change the minimal network (V, E).
Otherwise rij is updated as rij ∩ r′ij and propagated over all constraints rik
and rkj with the transitive update operation; any change is subsequently
propagated. Incremental path consistency is in O(1) for consistency check-
ing and in O(n2) for updating a minimal network.
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1
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Figure 4.7: A consistent STN.

Example 4.20. Let us give the network in Figure 4.7 as input to PC (Al-
gorithm 4.2). The first iteration of PC for k = 1 with 2 ≤ i < j ≤ 5
does not change the constraints r23, r24, r25, r34, r35; it updates r25 as fol-
lows: r25 ← r25 ∩ [r21 • r15] = (−∞,+∞) ∩ [−2,−1] • [6, 7] = [4, 6]. The
remaining iterations confirm that this network is consistent and minimal
(see Exercise 4.9).

Another approach for maintaining the consistency of STNs is the Floyd-
Warshall all-pairs minimal distance algorithm. Here, a network (V,E) is
transformed into a distance graph, the vertices of which are again the time
points in V. Each constraint rij = [aij , bij ] of the network defines two edges
in the graph: (i) an edge from ti to tj labelled with a distance bij , and (ii)
an edge from tj to ti labelled with a distance −aij . The original network
is consistent if and only if there is no negative cycle in this distance graph.
The Floyd-Warshall algorithm checks consistency and computes minimal
distances between all pairs of vertices in the graph, in O(n3) time. An
incremental version of this algorithm has been devised for planning.

The Bellman-Ford algorithm computes the single source distances in
the distance graph. It can also be used for consistency checking with a
complexity in O(n × m), where n is the number of vertices and m the
number of edges of the distance graph. The graph is kept sparse (m < n2),
but the algorithm does not maintain a minimal network. There is also an
incremental version of this algorithm.
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4.4.3 Controllability of Temporal Constraints

TemPlan returns a valid chronicle that meets the conditions of Defini-
tion 4.16. Temporal variables in φ are generally not instantiated but related
with a set of consistent constraints. Let ts and te be the time points re-
ferring to the start and end of an action a in that plan. At acting time, a
will be triggered according to the constraints on ts. The precise triggering
moment of a is under the control of the actor. However, the moment at
which the action terminates, and the other intermediate instants while the
action is taking place, are generally not under its control. These time points
are observable, that is, the execution platform will report when the action
terminates and when the intermediate time points in its model are reached,
but these are not controllable. Let us discuss here the controllability issue
at the planning level, that is, what must be done at planning time to take
into account that some temporal variables of the plan are not controllable.

For an action a in [ts, te], a constraint on its controllable starting point
is such that: l ≤ ts − t ≤ u, where t is an observable time point, either
controllable or not. This requirement on ts can be met by choosing freely
the starting point in the range [l, u] after observing t. If required for meeting
other constraints, this interval can be squeezed into any other nonempty
interval [l′, u′] ⊆ [l, u]. However, a constraint on the end point of action a
such as l ≤ te − ts ≤ u, has a different meaning; it says that the duration
of the interval [ts, te] is a random number in the range [l, u]. This duration
will be observed once a terminates; we assume that it will range in the
uncertainty interval [l, u]. The actor has no freedom for the choice of te.
This constraint cannot be squeezed. Consequently, the transitive update
operation rij ← rij ∩ (rik •rkj) for checking and maintaining the consistency
of a network, which squeezes intervals, is not applicable to action durations.

These considerations are not specific to action durations. They hold
for any contingent time point and constraint. They apply in particular to
expected events that can be specified in the initial chronicle (as in Exam-
ple 4.14). We view the time distance between an absolute reference point
and the expected event as a contingent duration similar to that of an action.

Example 4.21. Consider the robot of Example 4.12 that has to achieve
a task, denoted bring&move, that will take it to dock1. Concurrently, the
crane at dock1 has to uncover a container that will be loaded on the robot.
The duration of bring&move from t1 to t2 is specified in the model of the
task to be in [30, 50] time units; task uncover from t2 to t3 takes 5 to 10 time
units. Further, the initial chronicle requires the two tasks to be synchronized
such that neither one lags after the other by more than 5 time units, that
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is, −5 ≤ t4 − t2 ≤ 5. This is depicted in Figure 4.8(a) (where the tasks
are depicted as plain arrows and the synchronization constraints as dashed
arrows).

2

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

bring&move

uncover

(a)

3

t1

t3

t2

t4

[30, 50]

[5, 10]

[-5, 5]

[15, 50] [0
, 1

5]

[25,55]

(b)

Figure 4.8: An uncontrollable network.

A direct application of PC to the network in Figure 4.8(a) shows that
this network is consistent; it returns the minimal network in Figure 4.8(b)
(see Exercise 4.11). Let us assume that this network is used by an actor
who only controls the triggering of the two tasks, that is, t1 and t3. It is
clear that t1 should precede t3 because [t1, t3] ⊆ [15, 50]. Suppose the first
task is triggered at time t1 = 0. When should the second task be triggered
such to meet the synchronization constraint between t2 and t4?

Let d and d′ be the respective durations of the two tasks. The synchro-
nization constraint says −5 ≤ t4− t2 ≤ 5, that is, −5 ≤ t3 + d′− d ≤ 5. The
choice of t3 should satisfy the constraints d− d′− 5 ≤ t3 and t3 ≤ d− d′+ 5
for all values of d and d′ in their respective intervals. Clearly this is not
feasible (e.g., taking d = 50, d′ = 5 for the lower bound and d = 30, d′ = 10
for the upper bound gives 40 ≤ t3 and t3 ≤ 25).

How do we explain this inconsistency in a network that is said to be
consistent and minimal (meaning that every value in the allowed constraints
is part of a solution)? The reason is simple: the consistency and minimality
of an STN assumes a full control over every variable, which is not the case
here. The reader can easily check that there is no problem in meeting all the
constraints if one can freely choose d and d′ in their intervals, for example,
d = 30, d′ = 10 leaves t3 ∈ [15, 25].

The actor does not control the end points of actions but it can observe
them. It may devise a conditional strategy on the basis of what it observes.
For example, it may start uncover at most 40 units after t1 or earlier if
bring&move finishes before. In this particular example, such a strategy does
not work, but if the actor can observe an intermediate time point between t1
and t2, this may make his synchronization problem controllable, as explained
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next.

The issues raised in the previous example are addressed through the
notion of Simple Temporal constraint Networks with Uncertainty (STNU).
An STNU is like an STN except that its time points and constraints are
partitioned into controllable ones and contingent ones.

Definition 4.22. An STNU is a tuple (V, Ṽ, E , Ẽ), where V and Ṽ are
disjoint sets of time points, and E and Ẽ are disjoint sets of binary constraints
on time points. V and E are said to be controllable; Ṽ and Ẽ are said to be
contingent. If [l, u] is a contingent constraint in Ẽ on the time points [ts, te],
then 0 < l < u <∞ and te is a contingent point in Ṽ.

The intuition is that elements in Ṽ denote the ending time points of ac-
tions, while contingent constraints in Ẽ model the positive nonnull durations
of actions, predicted with uncertainty. If [ts, te] ⊆ [l, u] is a contingent con-
straint, then the actual duration te− ts can be viewed as a random variable
whose value will be observed within [l, u], once the corresponding action
terminates. The actor controls ts: it assigns a value to it. However, it only
observes te, knowing in advance that it will be within the bounds set for
the contingent constraint on te − ts. A meaningful STNU cannot have a
contingent variable te, which is the end point of two contingent constraints.

The controllability issue is to make sure (at planning time) that there
exist values for the controllable variables such as for any observed value of
the contingent variables the contraints are met. One can view controllable
variables as being existentially quantified, while contingent ones are univer-
sally quantified. However, the actor does not need to commit to values for
all its controllable variables before starting to act. It can choose a value for
a controllable variable only when needed at acting time. It can make this
choice as a function of the observed values of past contingent variables.

Definition 4.23. A dynamic execution strategy for an STNU (V, Ṽ, E , Ẽ) is
a procedure for assigning values to controllable variables t ∈ V while acting,
in some order consistent with E , such that all the constraints in E related to t
are met, and given that the values of all contingent variables in Ṽ preceding t
are known and fit the constraints in Ẽ . An STNU is dynamically controllable
if there exists a dynamic execution strategy for it.

Example 4.24. As discussed at the end of Example 4.21, the STNU in
Figure 4.8(a) is not dynamically controllable. Now consider a modification
of this network in which task bring&move is broken down into two tasks:
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Figure 4.9: A dynamically controllable STNU.

bring from t1 to t then move from t′ to t2 (Figure 4.9). The total duration
[t1, t2] remains in [30, 50].

A dynamic execution strategy for this STNU can be the following: assign
t1, observe t, assign t′ at any moment after t in [0, 5] then assign t3 10 units
after t′. It is easy to check that, whatever the durations of the three tasks
are, within the bounds of the contingent constraints, the constraint [−5,+5]
on their end points t2 and t4 will be met.

These considerations lead to an additional requirement for TemPlan: to
synthesize a plan whose underlying STNU is dynamically controllable. Tem-
Plan has to test not only the consistency of the current temporal network
but also its dynamic controllability. It turns out that dynamic controllability
checking is feasible on the basis of an extension of the consistency-checking
algorithm. This extension is technically involved, but fortunately it does
not change the computational complexity of the algorithm.

A first step would be to consider an STNU just like an ordinary STN on
which PC is run: if the transitive update operation (rij ← rij ∩ (rik • rkj))
reduces any contingent constraint, then the network is not dynamically con-
trollable. A network in which all the contingent constraints are minimal
(in the PC sense) is said to be pseudo-controllable, a necessary but not a
sufficient condition of dynamic controllability.

Dynamic controllability can be analyzed with three constraints between
two controllable points and a contingent one, as depicted in Figure 4.10.
This network is assumed to be consistent and minimal. It may or may not
be dynamically controllable: depending on the values of the parameters and
the eventual observation of te, there may be cases in which it is possible to
choose t while meeting the constraints. To do so, further reductions on the
controllable constraints can be needed. These reductions would have to be
propagated to other time points that may possibly be related to ts, te, and
t.
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4

ts te
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[a, b]

[p, q] [u, v]

Figure 4.10: Basic constraints for dynamic controllability.

The position of t with respect to te fits into three main cases:

(i) v < 0 : t follows necessarily te; the observation of te allows the choice
of t while meeting the constraint [u, v].

(ii) u ≥ 0 : t is before or simultaneous with te. t has to be chosen before
observing te in an interval that meets all the constraints regardless
of the value of te, if such an interval exists. The constraint on [t, te]
requires te − v ≤ t ≤ te − u. At the latest te is such that te = ts + b;
at the earliest te = ts + a. Hence ts + b − v ≤ t ≤ ts + a − u. If this
inequality can be met, then the choice of t in [b−v, u−a] after ts meets
all the constraints. Constraint [p, q] has to be reduced to [b− v, a−u].
Note that [b−v, a−u] ⊆ [p, q] since the network is minimal. However,
[b−v, a−u] can be empty, in which case the network is not dynamically
controllable (see Exercise 4.12 and 4.13).

(iii) u < 0 and v ≥ 0 : t may either precede or follow te. A dynamic
execution strategy should wait for te until some point, and depending
on whether te has occurred or not at that point, different choices for
t will be taken. A reasoning identical to case (ii) shows that t cannot
be earlier than t ≥ ts + b− v, if te does not occur before. The waiting
point is ts + b− v. If a < b− v then either [ts, te] occurs in [a, b− v]:
the wait will make t follow te, and we are back to case (i), or [ts, te]
occurs in [b − v, b]: t is before te which is case (ii). If a ≥ b − v then
te cannot occur before the wait expires.

The preceding analysis gives the constraints to be reduced to satisfy
dynamic controllability (e.g., [p, q] reduced to [b− v, a− u] in case (ii)). It
also exhibits a ternary wait relation: t should wait until either te or ts+b−v.
The trick is to consider this wait as a particular binary relation on the pair
[ts, t]: the corresponding edge in the network is labelled with a constraint
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denoted 〈te, b−v〉. Specific propagation rules for handling jointly these wait
constraints and the normal ones in a network need to be devised.

Table 4.1: Constraint propagation rules for dynamic controllability, where
a′ = a − u, b′ = b − v, double arrows are contingent constraints, and 〈t, α〉
are wait constraints.

Conditions Propagated constraint

ts
[a,b]

===⇒ te , t
[u,v]−−−−→ te , u ≥ 0 ts

[b′,a′]−−−−→ t

ts
[a,b]

===⇒ te , t
[u,v]−−−−→ te , u < 0 , v ≥ 0 ts

〈te,b′〉−−−−−→ t

ts
[a,b]

===⇒ te , ts
〈te,u〉−−−−→ t ts

[min{a,u},∞]−−−−−−−−−→ t

ts
〈te,b〉−−−−→ t , t′

[u,v]−−−−→ t ts
〈te,b′〉−−−−−→ t′

ts
〈te,b〉−−−−→ t , t′

[u,v]
===⇒ t , te 6= t ts

〈te,b−u〉−−−−−−→ t′

These propagation rules are given in Table 4.1. A row in this table is
similar to the propagated contraint (rik • rkj) from i to j through k that we
used in PC. The left column gives the conditions under which a propagation
rule applies, and the right column states the constraint to be added to
the network according to that rule. Double arrows represent contingent
constraints, and angle brackets are wait constraints. The first and second
rules implement, respectively, the cases (ii) and (iii). The third rule adds
a lower bound constraint to a wait, which follows directly from the above
argument. The last two rules correspond to transitive propagations of a
wait.

It can be shown that a modified path consistency algorithm relying on
these rules is correct: a network is dynamically controllable if and only
if it is accepted by the algorithm. Furthermore, the reduced controllable
constraints obtained in the final network give a dynamic execution strategy.
The transposition of the wait constraints as a distance graph allows the
incremental testing of dynamic controllability with a an algorithm in O(n3)
inspired from Bellman-Ford.

Synthesis of dynamically controllable plans. From the preceding dis-
cussion, it is clear that the conditions in Definition 4.16 are not sufficient.
We need to add a fourth requirement that the temporal constraints in chron-
icle φ define a dynamically controllable STNU. This requirement has to be
taken into account in TemPlan as follows: dynamic controllability is checked
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whenever a resolver adds to current φ a contingent constraints; that resolver
is rejected if the resulting STNU is not dynamically controllable.

This strategy can, however, be demanding for computational resources.
Indeed, the complexity growth of dynamic controllability checking is polyno-
mial, but the constant factor is high. A possible compromise is to maintain
solely the pseudo-controllability of φ. The standard PC algorithm already
tests that a network is pseudo-controllable (no contingent constraint should
be reduced during propagation), a necessary condition for dynamic control-
lability. Hence consistency checking allows the ability to filter out incre-
mentally resolvers that make the STNU not pseudo-controllable. Dynamic
controllability is checked before terminating with a complete solution or at a
few regular stages. The risk of excessive backtracking, as for any incremental
filtering strategy, has to be assessed empirically.

4.5 Acting with Temporal Models

As seen in Chapter 3, acting deliberately may or may not rely on an a priori
synthesized plan. For critical applications with well-modeled domains and
limited variability, an actor first synthesizes a plan, then follows it as much
as possible by refining the plan steps into low-level commands and revising
the plan when needed. In less predictable and more variable environments,
it may be preferable to act by choosing opportunistically among available
methods relying, when feasible, on lookahead mechanisms. These general
considerations apply to temporal domains, with specific issues for handling
time constraints. This section presents successively the following:

• techniques for acting by refining the primitives in a temporal plan with
atemporal methods,

• techniques for acting without a temporal plan but with temporal re-
finement methods, and

• open issues where acting and planning with temporal methods are
mixed.

4.5.1 Acting with Atemporal Refinement Methods

The motivations here are those discussed in previous chapters and summa-
rized in Figure 1.1(b) and Figure 3.1: the actor plans, refines the planned
actions into commands and revises its plan when needed. It queries Tem-
Plan for producing a plan for the tasks it has to achieve; TemPlan receives
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as input the appropriate initial chronicle with the current state and the pre-
dicted exogenous events. It returns a chronicle φ that meets the conditions
of Definition 4.16.

Actions in the solution plan φ are primitives for TemPlan, for exam-
ple, leave, enter, stack, unstack, etc. (as in Example 4.11). However, these
primitives are compound tasks at the acting level, to be refined into com-
mands with appropriate refinement methods. This acting refinement goes
one level down in the representation hierarchy. We consider here primitive
refinements using the atemporal methods of Chapter 3.

Example 4.25. In Example 4.11, we defined several primitives such as leave
or unstack. Here are two methods to decompose them into commands:

m-leave(r, d, w, e)
task: leave(r, d, w)
pre: loc(r)=d, adjacent(d,w), exit(e, d, w)

body: until empty(e) wait(1)
goto(r, e)

The method m-leave waits until the exit e from dock d toward waypoint
w is empty, then it moves the robot to that exit. The method m-unstack
locates the grasping position for container c on top of a pile p, moves the
crane to that position, grasps it, ensures the grasp (e.g., closes latches) to
guarantee a firm grasp, raises the container slowly above the pile, then moves
away to the neutral position of that crane.

m-unstack(k, c, p)
task: unstack(k, c, p)
pre: pos(c)=p, top(p)=c, grip(k)=empty

attached(k, d), attached(p, d)
body: locate-grasp-position(k, c, p)

move-to-grasp-position(k, c, p)
grasp(k, c, p)
until firm-grasp(k, c, p) ensure-grasp(k, c, p)
lift-vertically(k, c, p)
move-to-neutral-position(k, c, p)

It is interesting to compare these methods with the descriptive models
of the same primitives in Example 4.11. Here effects are not predicted; they
will be observed from the execution of commands. However, the operational
models given in these methods detail the commands needed to perform the
action, including conditionals and loops.
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The acting refinement methods in this subsection are not temporal. In
other words, our model for refining an action into commands does not break
down its temporal qualifications from planning level to finer temporal re-
quirements at the execution level. As illustrated in the preceding example,
the temporal qualification [ts, te] of an action a in φ is not detailed into
smaller durations for the commands in which a is refined.

An important motivation for combining temporal planning with atem-
poral action refinement is the uncertainty in the duration of a, represented
through the interval [ts, te]. It certainly makes sense to reason about con-
tingent constraints at the abstract level of actions, but at the lower level
of commands, one may take into account a global constraint without refin-
ing it into bounds that can be even more uncertain and difficult to model
in a meaningful way. For example, it may be useful to account for the
time needed to open a door, which can be assessed from statistics. However,
breaking this duration into how long it takes to reach for the handle and how
long to turn the handle introduces more noise in operational models. There
is also a computational complexity issue for reasoning at a finer temporal
granularity level that is clarified next.

Acting with atemporal methods allows us to rely on the techniques seen
in Chapter 3 for refining a task into commands achieving it. We’ll use
an extended version of the reactive engine RAE, and call it eRAE. Even
without temporal refinement at the acting level, there is still a need for
temporal reasoning in eRAE: we require a dispatching function to trigger
actions and controllable events at the right moments. Dispatching takes
into account past occurrences and the current time; these are propagated
into the temporal network to keep it dynamically controllable.

Given a dynamically controllable STNU (V, Ṽ, E , Ẽ), dispatching has to
trigger elements of V at the right moment, given the observation of ele-
ments of Ṽ, and given the progress of current time, denoted now. Values
of observed and triggered time points are propagated in the network. The
network remains dynamically controllable as long as there are no violations
of contingent constraints, for example, the observed durations of actions fit
within their stated bounds. A violation of a contingent constraint can be
due to a delay exceeding the modeled upper bound, or to a failure of the
action. It can lead to a failure of the plan.

Recall that acting triggers only commands, not the effects specified the
action models. These effects have to be observed, as in RAE. There can be
several intermediate time points in the network maintained by TemPlan that
are not the beginnings and ends of actions, for example, point t in the defi-
nition of leave or unstack in Example 4.11. At the acting level, we consider
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them as contingent points. Constraints issued through propagation from
these intermediate points are essential for the dynamic controllability of the
network. However, unless there is a wait constraint for such an intermediate
point, it does not concern the dispatching algorithm. It can be removed
from the network used for dispatching.

Example 4.26. Assume that RAE is acting according to the plan in
Figure 4.4: it has to perform the three actions leave(r1,dock1), navi-
gate(r1,w1,w2), enter(r1,dock2) and the symmetrical three actions for r2.
The two leave actions are triggered concurrently in any order. As soon as an
exit is free, the robot gets to the corresponding way and immediately starts
its navigation. When a navigation finishes, the enter action is triggered only
when the other robot has left its original position.

A temporal network is grounded when at least one of its temporal vari-
able receives an absolute value with respect to current time. Before starting
the execution, the STNU may or may not be grounded, but as soon as
the execution of a plan starts, the network is necessarily grounded. In a
grounded network, every time point t is bounded within an absolute inter-
val [lt, ut] with respect to current time. As time goes by, some time points
in the network have occurred (i.e., triggered by the actor for controllable
points or observed for contingent ones), and others remain in the future.
Dispatching is concerned with the latter and more precisely with enabled
time points.

Definition 4.27. A controllable time point t ∈ [lt, ut] that remains in the
future is alive if the current time now ∈ [lt, ut]. Furthermore, t is enabled
if (i) t is alive, (ii) for every precedence constraints t′ < t, t′ has occurred,
and (iii) for every wait constraint 〈te, α〉, either te has occurred or α has
expired.

Recall that in a wait constraint 〈te, α〉, α is defined with respect to a
controllable time point ts. Thus α has expired when ts has occurred and
ts + α ≤ now (see Section 4.4.3).

Algorithm 4.3, the Dispatch algorithm, allows the actor to control when
to start each action. It triggers repeatedly enabled points whose upper
bound is now : these cannot wait any longer. It has the flexibility to trigger
any other enabled point; the arbitrary choice in step (i) of Dispatch can
be made with respect to domain specific considerations. It then propagates
in the network the value of triggered points. Because the network is dy-
namically controllable, this propagation is guaranteed to succeed and keep
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the network dynamically controllable as long as contingent constraints are
not violated. Initialization consists of deciding when to start the plan if
the network is not already grounded, that is, assigning a value (or absolute
bounds) to at least one enabled time point.

Dispatch(V, Ṽ, E , Ẽ)
initialize the network
while there are elements in V that have not occurred, do

update now

update contingent points in Ṽ that have been observed
enabled ← set of enabled time points
for every t ∈ enabled such that now= ut, trigger t
arbitrarily choose other points in enabled, and trigger them (i)
propagate in the network the values of triggered points

Algorithm 4.3: A dispatching function for eRAE.

The propagation step is the most costly one in Dispatch: its complexity
is in 0(n3) where n is the number of remaining future points in the net-
work. Ideally, this propagation should be fast enough to allow iterations
and updates of now that are consistent with the temporal granularity of the
plan. As discussed earlier about the motivation for atemporal refinement,
this complexity is lower when temporal refinement does not break down
primitives at the finer command level.

Example 4.28. Let us extend Example 4.26 by requiring robot r1 to bring
a container c1 in dock d2 to some destination. TemPlan synthesizes a plan
φ, part of which is shown in Figure 4.11. To keep the figure readable, the
value of the constraints and parameters are omitted; the end point of an
action starting at ti is implicitly named t′i. Note that some of the object
variables are instantiated, but some are not (e.g., c′); temporal variables in
φ are not instantiated.

The initial step in Dispatch triggers t1. When t′1 is observed, t2 is enabled
and triggered, which make t3 and t4 enabled. t3 will be triggered enough
in advance to free dock d2 allowing r1 to get in (at t5). Similarly for the
subtask of uncovering container c, which is triggered at t4. When t′2 and t′3
are observed, t5 become enabled and triggered. t7 will become enabled after
observing t′5 and t′6. The rest of the plan follows linearly.

The Dispatch algorithm is easily integrated into eRAE. Triggering the
starting point of an action a means putting a new task in the input stream
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Figure 4.11: Part of a temporal plan given to eRAE for execution.

of RAE (Algorithm 3.1), that is, starting a new stack for progressing on
the refinement of a. The upper bound on the duration of a is taken as a
deadline for terminating this stack. Progress, and eventually Retrace, will
pursue refinements in this stack until the action succeeds or fails, or until
the deadline is reached, which is another failure condition. The proximity
of the deadline can be used as a heuristics for prioritizing the most urgent
tasks in RAE.

Failures are addressed as plan repairs. For a deadline failure, the repair
can take two forms:

• stopping the delayed action and seeking alternate ways for achieving
the plan from the current state, as for other types of failure, or

• finishing the action despite the delay and repairing the remaining part
of the plan.

The latter option is preferable when the violated contingent constraint can
be resolved at the STNU propagation level. For example, if navigate(r1) in
Figure 4.11 takes slightly longer than the maximum duration specified, the
entire plan will still be feasible with a delay, which is possibly acceptable.
However, if this navigation is taking longer than expected because robot r1
broke down, a better option is to seek another robot to perform the task.
These considerations must be integrated in the actor’s monitoring function
(see Section 7.2).

Plan repair in case of a failure has to be performed with respect to the
current state, and to remaining predicted events and tasks whose achieve-
ment is still in the future. The repair can be local or global. In the latter
case, a full replanning is performed. A local repair can benefit from the plan-
space planning approach of TemPlan as follows. The failed action is removed
from the remaining chronicle φ together with all the assertions coming from
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that action template. This removal introduces flaws in φ with respect to
which TemPlan is recursively called. This can lead to other flaws (includ-
ing for the refinement of the task that lead the failure); it may or may not
succeed in finding a repair and may require a full replanning. Monitoring
should help assess the failure and decide whether to try a local repair.

In summary, this section illustrated how actions in a temporal plan can
be handled with an extended version of the acting engine RAE through
a dispatch function. Atemporal refinement methods are used to map, in
a context-dependent way, each action a into commands whose execution
achieves a.

4.5.2 Acting with Temporal Refinement Methods

Refinement methods can be used for both planning and acting (Chapter 3).
Temporal refinement methods can also be used for both functions. We
demonstrated their use for planning (Section 4.3). Let us discuss here tem-
poral refinement for acting.

There are cases in which the actor does not have to plan for the task
at hand. This can happen because that plan is trivially given in the task
model, descriptive models of actions are unreliable, or the environment is
too dynamic and acting with possible errors is not critical. In these cases
it may still be meaningful to reason about time at the acting level, even
without a temporal plan. This is evidently the case when acting has to be
synchronized with future predicted event, for example, take the next bus
and leave it at the train station stop.

The idea is to extend the refinement acting engine illustrated in Fig-
ure 3.1 with a library of temporal refinement methods. Let us call TemRAE
the corresponding engine. The methods used by this engine have two char-
acteristics (Section 4.2.3):

• their body is not a sequence of tasks, commands, assignments, and
control steps, as in RAE, but a chronicle with a collection of temporally
qualified tasks, assertions, and constraints, and

• they do not have a precondition field; they are conditioned on their
temporal assertions.

In RAE the evaluation of a conditional expression is with respect to the
current observed state ξ. In TempRAE, we need to extend ξ with temporal
qualifications to provide causal support to temporal assertions in chronicles
(Definition 4.9).

Extending ξ with temporal qualification may require, in general, main-
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taining the past timelines for every state variable as well as the predicted
future timelines for exogenous variables about which the actor has predic-
tions. To keep things simple, let us assume that the qualifications in tempo-
ral methods with respect to the past do not extend beyond when each state
variable acquired its current value (this assumption is akin to the Markovian
property, which is introduced in Section 6.1). With this assumption, our in-
terest in the past is satisfied by keeping track for each state the variable x
of a pair (t, x=v), meaning that the value of variable is x = v since time t.
In other words, the following assertion holds in ξ:

[t,now]x=v,where now it the value of current time.

ξ also contains predictions about exogenous future events, as seen in the ini-
tial chronicle in temporal planning. In this sense, ξ is a particular chronicle
which maintains the current present and the exogenous future.

TemRAE works in a similar way to RAE. It reads its input stream for a
task to perform. For each such a task τ , it finds M(τ), the set of methods
whose task is τ . It chooses a method m in M(τ) that is applicable for
current ξ; it refines τ according to the subtasks specified in m. There are,
however, differences in how methods are evaluated as applicable and in how
refinements proceed.

Definition 4.29. An instance in a method m ∈M(τ) is applicable for the
current chronicle ξ if and only if:

• every assertion in m is causally supported by ξ and

• the constraints in m are consistent with ξ and there are no conflicting
assertions.

The second condition guarantees that the application of this instance of
m to ξ (in the sense seen in Section 4.3.2) gives a secure chronicle. The
first condition represents a strong requirement. Assertions in m such as
[t, t′]x=v or [t, t′]x:(v, v′), where t ≤ ts ≤ t′ and ts is the starting point of
m, needs naturally to be supported before any command issued from the
refinement of m can begin. Moreover, according to this definition, assertions
in m about the future have also to be supported by predictions in ξ, for m
to be applicable to ξ. In other words, assertions that are required to be
supported by the effects of actions, other than those in m or issued from the
refinement of its subtasks, are not allowed by TempRAE. This is because the
acting engine is not inserting additional actions to satisfy the requirements
of a method.
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It is interesting to compare the previous definition to Definition 4.16 of
a valid solution plan. Their difference is with respect to nonrefined tasks,
forbidden in a solution plan but allowed here, because TemRAE refines a
task τ with the subtasks in a method m. Let us illustrate how this can be
done through an example.

Example 4.30. Consider the domain specified in Example 4.11. Assume
that TempRAE is given a set of methods to handle the tasks bring, move, and
uncover of Example 4.12, in addition to methods for leave, enter, navigate,
unload, load, stack, and unstack, as illustrated in the previous section.

The task is to bring a container c1, which is now in pile p1 in dock d1,
to a pile p2 in d2. There is now an empty robot r1 in d3. An instance
of the method m-bring is applicable to this task with c=c1, p=p2, p′=p1,
d=d2, d′=d1, r=r1; ts can be instantiated to now : TemRAE triggers the
tasks move(r1,d1) and uncover(c1). Because of the constraints t2 ≤ t1 and
t3 ≤ t1, the three other tasks have to wait until both move and uncover
finish.

The method m-move1 is applicable to move(r1,d1). The action leave will
be triggered; when it is observed that it has finished, navigate then enter will
be successively triggered.

Concurrently with this process, TempRAE addresses the uncover task:
method m-uncover is applicable; it will lead to triggering a succession of
unstack and stack actions until d1 is at the top of pile p1.

The termination of the last actions issued from the refinement of
move(r1,d1) and uncover(c1) will set respectively time points t2 and t3 of
m-bring, allowing the method to pursue on the remaining subtasks load,
move and unload.

As illustrated in the previous example, TemRAE requires an elaborate
bookkeeping mechanism, in particular for monitoring observed changes, as
reported in ξ, with respect to expected time points, before progressing in
its refinements. We are not providing a detailed pseudocode specification of
TempRAE, but let us discuss briefly its main principles and limitations.

TempRAE selects a method m applicable for a task τ ; it refines τ into a
collection of temporally qualified subtasks. Progressing in this refinement re-
quires a synchronization according to the temporal specifications in m. This
synchronization is based on a simplified dispatching algorithm that triggers
enabled controllable time points and waits for expected contingent ones.
TempRAE can implement a Retry procedure for trying alternative methods
if the chosen one fails (similar to the atemporal case in Algorithm 3.3): a
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Retry is possible as long as upper bounds on a task and its refinements have
not been violated.

The limitations of TempRAE are due to its lack of lookahead. As un-
derlined from Definition 4.29, temporal refinement acting cannot cope with
the requirement of a future change that is not brought by the subtasks of
a method and their refinements. Furthermore, the STNU corresponding to
the entire refinement tree of a task τ is not guaranteed to be dynamically
controllable. This STNU is discovered progressively as tasks and actions are
achieved and effects and events are observed. Precedence constraints with
respect to contingent events or absolute time (e.g., bringing a container be-
fore the scheduled departure of a ship) may lead to deadline failures. In
this approach, it is the responsibility of the designer to specify methods
that refine into dynamically controllable networks. Techniques presented in
Section 4.4.3 can be used to verify this requirement.

4.5.3 Acting and Planning with Temporal Methods

As clear from the previous discussion, a temporally constrained domain
cannot to be always addressed with reactive refinement. TempRAE requires
enough lookahead for the choice of its methods and the dynamic controlla-
bility of the temporal network.

One approach is to plan for the task at hand with TemPlan then act
with TempRAE on the basis of the methods and the dynamically control-
lable STNU found at the planning stage. Here, TempRAE does not need to
test the applicability of its methods with the restrictive Definition 4.29. This
testing is done at planning time by adding, when and where needed, actions
in the plan to support every assertions in the predicted future. TempRAE
has to monitor that the current ξ is the one expected at planning time.
TempRAE has also to synchronize the subtasks and actions in the plan with
a Dispatch algorithm according to the constraints in the dynamically con-
trollable STNU.

The preceding approach is not substantially different from what we de-
veloped in Section 4.5.1 with atemporal refinement for acting. However,
there can be a significant difference if the actor is able to control the level
at which refinement planning is pursued in a context-dependent way. The
idea is to allow TemPlan to decide not refine a subtask. This can be done if
TempPlan can evaluate the likely effects and temporal bounds of that sub-
task and assess that they are sufficient to stop planning and start acting on
a partial plan that contains unrefined tasks. These can be refined at act-
ing time, by planning concurrently with acting on some other predecessor
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subtasks, or even when an unrefined task is dispatched.

The implementation of this idea requires further research, in particular
for defining the likely effects and bounds of a subtask and assessing whether
a partial plan is acceptable and can be used to start acting with. Approaches
in that direction are discussed in the next section.

4.6 Discussion and Historical Remarks

4.6.1 Temporal Representation and Reasoning

Temporal models are widely used in artificial intelligence well beyond plan-
ning. Numerous works are devoted to knowledge representations and rea-
soning techniques for handling time, in particular, for dealing with change,
events, actions, and causality; see, for example, Allen [11], McDermott
[414], Shoham [536], Shoahm and McDermott [534], Sandewall [523], and
the handbook of Fisher et al. [200].

Most of the work cited above relies on a state-oriented view based on
various temporal logics. The timeline approach, developed in this chapter,
decomposes a reasoning task into a specialized solver say a planner and a
temporal reasoner, that maintains, through queries and updates, a consis-
tent network of temporal references. In addition to planning, this approach
is used in other applications, such as temporal databases [99], monitoring
[500], diagnosis [98, 374], multi-media document management [187, 5], video
interpretation [591], and process supervision [162, 163].

Temporal networks can use as primitives either time points or intervals;
they can manage either qualitative or quantitative constraints. A synthetic
introduction to temporal networks can be found in Ghallab et al. [231, chap-
ter 13] and the recent book of Barták et al. [44].

Qualitative approaches to temporal reasoning were introduced by Allen
[13] with a specific algebra over intervals and a path consistency filtering
algorithm. Vilain and Kautz [588] introduced the point algebra and showed
that the consistency checking problem is NP-complete. Several tractable
subclasses of the interval or the time point algebra have been proposed,
for example, by Vilain et al. [589], Meiri [419], Nebel and Burckert [449]
and Drakengren and Jonsson [164]. Other authors, such as Ligozat [385],
Golumbic and Shamir [242] and Jonsson et al. [302], studied representations
integrating time points and intervals and their tractable subclasses.

Quantitative approaches to handling time relied initially on linear equa-
tions and linear programming techniques, for example, in Malik and Binford
[400]. Temporal constraint satisfaction problems and their tractable sub-

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


190 Chapter 4

class of Simple Temporal Networks, used in this chapter, were introduced
by Dechter et al. [147]. Several improvements have been proposed, for ex-
ample, for the incremental management of STNs by Cesta and Oddi [111]
or Planken [487]. Various extensions to STNs have been studied, such as
preferences in Khatib et al. [328] or specific constraints in Koubarakis [354].

The controllability issue and STNUs were introduced by Vidal and Ghal-
lab [587]. Different levels of strong, weak and dynamic controllability were
analyzed in Vidal and Fargier [586]. Algorithms for the strong and weak
controllability cases were respectively proposed by Cimatti et al. [119] and
Cimatti et al. [118]. State space planning with strong controllability is
studied by Cimatti et al. [120]. A polynomial algorithm for dynamic con-
trollability was proposed by Morris et al. [433] and improved in Morris and
Muscettola [434]. Incremental dynamic controllability has been introduced
by Stedl and Williams [557]; the algorithm of cubic complexity is due to
Nilsson et al. [458, 459].

Constraints in planning can play an important role. Naturally authors
have sought ways to efficiently structure them, in particular with meta-
CSPs. A meta-CSP is a CSP above lower level CSPs. Its meta-variables
are the lower level constraints; their values are alternative ways to com-
bine consistently these constraints. For example, with disjunctive temporal
constraints the values correspond to possible disjuncts. The approach has
been used in different CSP settings, such as for example the management
of preferences in temporal reasoning by Moffitt and Pollack [428], Moffitt
[427] or Barták et al. [44]. It has been applied to temporal planning by
several authors, for example, Gerevini et al. [222], Rodriguez-Moreno et al.
[515] and Gregory et al. [245]. It appears to be particularly appealing for
handling temporal and other constraints on different kind of resources, as
illustrated by Mansouri and Pecora [401].

4.6.2 Temporal Planning

There is a long and rich history of research in temporal planning. Numerous
temporal planners have been proposed, starting from early HTN planners
such as Deviser by Vere [581], SIPE by Wilkins [604], FORBIN by Dean
et al. [141] or O-PLAN by Currie and Tate [133]; these planners integrate
various temporal extensions to HTN representations and algorithms.

The state-oriented view in temporal planning extends the classical model
of instantaneous precondition-effect transitions with durative actions. The
basic model considers a start point and a duration. It requires preconditions
to hold at the start and effects at the end of an action; this is illustrated
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in TGP by Smith and Weld [547] or in TP4 by Haslum and Geffner [262].
Extensions of this model with conditions that prevail over the duration of
the action, (as in the model of Sandewall and Rönnquist [524]) have been
proposed, for example, in the SAPA planner of Do and Kambhampati [154],
or in the domain description language specifications PDDL2.1 of Fox and
Long [204]. Several planners rely on the latter representation, among which
HS by Haslum and Geffner [262], TPSYS by Garrido [214] or CRICKEY by
Coles et al. [127].

A few planners using the durative action model adopt the plan-space
approach, notably Zeno of Penberthy and Weld [471] which relies on linear
programming techniques, or VHPOP of Younes and Simmons [623] which
uses STN algorithms. Some planners pursue the HTN approach, as the
earlier planners mentioned above, or more recently SHOP2 by Nau et al.
[448] or Siadex by Castillo et al. [109].

Most durative actions temporal planners rely on state-based search tech-
niques. A few are based on temporal logic approaches. Among these are
TALplanner by Doherty and Kvarnstrom [156, 366], a model-checking based
planner by Edelkamp [169], and a SAT-based planner by Huang et al. [289].
Significant effort has been invested in generalizing classical state-space plan-
ning heuristics to the durative action case. The action compression tech-
nique, which basically abstract the durative transition to an instantaneous
one for the purpose of computing a heuristic, is quite popular, for example in
the work of Gerevini and Schubert [224] or Eyerich et al. [185]. Various tem-
poral extensions of the relaxed planning graph technique (Section 2.3.2), as
in Metric RPG of Hoffmann [277], have been proposed, for example, Haslum
and Geffner [262], Long and Fox [395], Coles et al. [127] and Haslum [258].
Sampling over a duration interval with action compression has also been
investigated by Kiesel and Ruml [330].

A few durative action planners can handle hybrid discrete-continuous
change. Some planners address continuous effects through repeated dis-
cretization, for example, UPMurphy of Penna et al. [473]. Linear program-
ming techniques, when the continuous dynamics is assumed to be linear,
have been used since ZENO [471] by several planners. A recent and quite
elaborate example is COLIN of Coles et al. [128]. The Kongming planner
of Li and Williams [381] relies on domain specific dynamic models.

The durative action model led to the design of quite performant planners.
But it usually has a weak notion of concurrency that basically requires
independence between concurrent actions. Interfering effects, as discussed
in Example 4.15, can be addressed by a few of the above mentioned planners,
for example, notably COLIN [128]. Alternatively, interfering effects can be
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addressed with the time-oriented view.
Planning along the time-oriented view was introduced by Allen and

Koomen [16] in a planner based on the interval algebra and plan-space
search Allen [14, 12]. The Time-Map Manager of Dean and McDermott
[145] led to the development of a few planners [141, 75] and several original
ideas related to temporal databases and temporal planning operators.

Planning with chronicles was introduced in IxTeT by Ghallab et al.
[227][228]. The IxTeT kernel is an efficient manager of time point con-
straints of Ghallab and Mounir-Alaoui [229]. IxTeT handles concurrent
interfering actions, exogenous events and goals situated in time. It uses
distance-based heuristics of Garcia and Laborie [212] integrated to abstrac-
tion techniques in plan-space planning. Its performance and scalability were
improved by several other timeline oriented planners using similar represen-
tations. These are notably ParcPlan of El-Kholy and Richard [176] and Li-
atsos and Richard [383], ASPEN of Rabideau et al. [501], PS of Jónsson et al.
[301], IDEA of Muscettola et al. [439], EUROPA of Frank and Jónsson [206],
APSI of Fratini et al. [208], and T-REX of Py, Rajan et al. [498, 503, 504].
Elaborate heuristics, generalizing the reachability and dependency graphs
of state-space planning, have been designed for these representations, for
example, by Bernardini and Smith [58]. A few of the mentioned planners
have been deployed in demanding applications, for example, for controlling
autonomous space systems and underwater vehicles.

An interesting development has been brought by the Action Notation
Modeling Language (ANML) proposed by Smith et al. [545]. ANML is a
representation that combines HTN decomposition methods with the expres-
sivity of the timeline representation, as developed in the temporal refinement
methods of this chapter. FAPE by Dvorak et al. [165] is a first planning and
acting system based on ANML.

Refinement methods reduce the search complexity by providing domain-
specific knowledge, but they do not palliate the need of good heuristics.
Some temporal logic based planners, like TALplan, rely on control rules.
Most of the state-based temporal planners referred to earlier exploit success-
fully the techniques of Section 2.3. The use of classical planning heuristics
has even been an important motivation for the state-oriented view of tempo-
ral planning. These techniques have been extended to plan-space planning
(e.g., in RePop [454] and VHPOP [623]) and further developed for timeline
based planners. There is notably the mutual exclusion technique of Bernar-
dini and Smith [55] and their dependency graph approach [58]. Dependency
graphs record relationship between possible activities in a domain. They
are based on activity transition graphs [56, 57], which are a direct extension
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of the domain transition graphs of state variables [267]. These techniques
have been successfully demonstrated on the EUROPA2 planner.

Finally, let us mention that temporal planning has naturally been as-
sociated with resources handling capabilities. Several of the planners men-
tioned above integrate planning and scheduling functions, in particular with
constraint-based techniques, which where introduced early in IxTeT by La-
borie and Ghallab [370]. Algorithmic issues for the integration of resource
scheduling and optimization in planning attracted numerous contributions
Smith et al. [546], Cesta et al. [112], Laborie [369], Verfaillie et al. [582]. A
global overview of scheduling and resource handling in planning is proposed
by Baptiste et al. [35].

4.6.3 Acting with Temporal Models

Several of the acting representations and systems discussed in Section 3.5.1,
based on procedures, rules, automata, Petri-nets or CSPs, integrates directly
or have been extended with temporal primitives and techniques for handling
explicit time. The PRS system of Ingrand et al. [293] or the RPL language of
McDermott [415] offer some mechanisms for handling real-time “watchdogs”
and delay primitives. More elaborate synchronization constructs have been
developed by Simmons [540] in TCA and TDL [541].

A few of the temporal planners discussed earlier have been integrated
to an actual planning and acting system. This is in particular the case for
timeline oriented planners along an approach akin to that of Section 4.5.1.
For example, Cypress of Wilkins and Myers [605] is the combination of SIPE
for planning and PRS for acting. DS1/RAX of Muscettola et al. [441] imple-
ments a procedure-based acting technique combined with the PS planner.
Casper of Knight et al. [332] is a temporal constraint-based executor for the
ASPEN planner. IxTeT-Exec of Lemai-Chenevier and Ingrand [375] inte-
grates IxTeT and PRS with plan repair and action refinement mechanisms.
T-REX of Rajan and Py [503] follows a distributed approach over a set of
“reactors” sharing timelines. It has been used mostly with the EUROPA
planner. The dispatchability property studied in Muscettola et al. [440] and
[432] requires simplifying the STNs resulting from the above planners in
order to rely on local propagation at acting time. This technique provides
some improvements in the dispatching algorithm but does not handle dy-
namic controllability.

The Reactive Model-based Programming Language (RMPL) of Ingham
et al. [292] follows an approach more akin to that of Section 4.5.2. RMPL
programs are transformed into the Temporal Plan Networks (TPN) repre-
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sentation of Williams and Abramson [606]. TPN extends STN with symbolic
constraints and decision nodes. Planning with a TPN is finding a path in
the explicit network that meets the constraints. Conrad et al. [129] intro-
duce choices in the acting component of RMPL. TPNs with error recovery,
temporal flexibility, and conditional context dependent execution are con-
sidered in Effinger et al. [175]. There, tasks have random variable durations
with probability distributions. A particle-sampling dynamic execution al-
gorithm finds an execution guaranteed to succeed with a given probability.
Santana and Williams [526] studied probabilistic TPNs with the notions of
weak and strong consistency, and proposed techniques to check these prop-
erties. TPNUs of Levine and Williams [380] add the notion of uncertainty
for contingent decisions taken by the environment and other agents. The
acting system adapts the execution to observations and predictions based
on the plan. It has been illustrated with a service robot which observes and
assists a human.

4.7 Exercises

4.1. Specify the primitives stack, unstack and navigate of Example 4.11. For
the latter, assume that navigation between connected waypoints is uncon-
strained.

4.2. For the domain in Example 4.12, define methods for the tasks load and
unload. For the task bring, define additional methods to cover the following
cases:

• the destination pile is at the same dock as the source pile,

• the robot r is already loaded with container c,

• container c is already in its destination pile.

Similarly, define other methods for the task move to cover the cases where
the robot starts from a waypoint or when it is already at destination, and
another method for the task uncover when the container c is at the top of
pile p.

4.3. Augment the domain of Example 4.12 by considering that a pile p can
be attached to a ship and that a crane k on a dock d can unstack containers
from a pile p only when the corresponding ship is docked at d.

4.4. Specify the initial chronicle φ0 for the problem of Example 4.17 and
Figure 4.5.
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4.5. In Example 4.17, develop the steps of TemPlan until reaching a solution
to the planning problem.

4.6. For the domain in Example 4.12, redefine navigate as a task which
refines into the traversal of roads and the crossing to docks. The navigation
between two roads adjacent to a dock d requires crossing d which should
not be occupied during the crossing interval. For example, in Figure 4.5 the
navigation from d4 to d1 requires the traversal of d3 which should be empty
when the robot gets there. Analyze the conflicting assertions that result
from this modification in the first few steps of TemPlan for Example 4.17
and find resolvers for the corresponding flaws.

4.7. Analyse the commonalities and differences between the notion of
threats in Section 2.5 and that of conflicting assertions. Notice that the
former relate actions while the latter are with respect to assertions. Since
a threat is a menace to a causal link, can there be conflicting assertions
without a causal support? If the answer is affirmative, give an example.

4.8. In Example 4.17, implement the modification introduced in Exer-
cise 4.4: consider that piles p’1 and p’2 are not fixed in their respective
docks but attached to two ships that will be docked respectively to d1 and
d2 at two future intervals of time [t1, t1+δ1] and [t2, t2+δ2]. How is modified
the solution found in Exercise 4.5 when these two intervals do not overlap.
What happens when [t1, t1 + δ1] and [t2, t2 + δ2] are overlapping?

4.9. Run algorithm PC on the networks in Figure 4.7. Show that it adds
the constraints r1,3 = [1, 3], r24 = [1, 2] and r45 = [2, 3].

4.10. Specify and implement an incremental version of the PC algorithm;
use it to analyze how the network in Figure 4.7 evolves when are added to
it successively t6, r36 = [5, 8], r56 = [2, 5] then t7, r47 = [3, 6], r67 = [1, 7].

4.11. Run algorithm PC on the networks in Figure 4.8 and Figure 4.9 and
compute all the implicit constraints entailed from those in the networks;
show that both networks are minimal.

4.12. Prove that the minimal network in Figure 4.10 is such that
[b− v, a− u] ⊆ [p, q].

4.13. Consider the minimal network in Figure 4.10 for the case where u ≥ 0
and [b− v, a− u] = ∅. Prove that this network is not dynamically control-
lable.
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4.14. Consider the temporal network associated to the solution of Exer-
cise 4.5: under what condition is it dynamically controllable?

4.15. For all the primitives in Example 4.11, define atemporal acting refine-
ment methods similar to the two given in Example 4.25.

4.16. Run algorithm Dispatch for the solution plan found in Exercise 4.5
assuming that robot r1 is much faster than r2.
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Chapter 5

Deliberation with
Nondeterministic Models

In this chapter we drop the unrealistic assumption of determinism, that is,
the assumption that each action performed in one state leads deterministi-
cally to one state. This apparently simple extension introduces uncertainty
in the model of the domain and requires new approaches to planning and
acting. Deliberation must take into account that actions can lead to a set
of states; plans are no longer sequences of actions, but conditional plans;
solutions may have different strengths. Deliberative acting with nondeter-
ministic models allows us to take into account uncertainty when actions are
performed.

The main motivations for planning and acting with nondeterministic
models are in Section 5.1. The planning problem is formalized in Sec-
tion 5.2. In the subsequent three sections we present some different ap-
proaches to planning with nondeterministic models: And/Or graph search
(Section 5.3), symbolic model checking (Section 5.4), and determinization
techniques (Section 5.5). In Section 5.6, we present techniques that inter-
leave planning and acting. In Section 5.7, we present planning techniques
with refinement methods and nondeterministic models, and in Section 5.8,
we show techniques for deliberative acting with input/output automata.
Comparisons among different approaches and main references are given in
the discussion and historical remarks in Section 5.9. The chapter ends with
a few exercises.
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5.1 Introduction and Motivation

Recall that in deterministic models, the prediction of the effects of an action
is deterministic: only one state is predicted as the result of performing
an action in a state (see Chapter 2, Section 2.1.1, assumption in item 3).
Nondeterministic models predict alternative options: an action when applied
in a state may result in one among several possible states. Formally, γ(s, a)
returns a set of states rather than a single state. The extension allowed
by nondeterministic models is important because it allows for modeling the
uncertainty of the real world.

In some cases, using a deterministic or a nondeterministic model is a
design choice. For instance, in the real world, the execution of an action
may either succeed or fail. Despite this, in many cases, it still makes sense
to model just the so-called nominal case (in which failure does not occur),
monitor execution, detect failure when it occurs, and recover, for example
by replanning or by re-acting with some failure-recovery mechanism. In
these cases, deterministic models can still be a convenient choice. Indeed,
despite the fact that nondeterministic models may have some advantages,
because they allow us to model the world more accurately and to plan for
recovery mechanisms at design time, they have clear disadvantages. Indeed,
taking into account all the different possible outcomes may become much
more complicated, both conceptually and computationally.

In other cases, modeling the world with nondeterminism is instead a
must. Indeed, in certain environments there is no nominal case. And some-
times we need to consider different possible action outcomes during both
planning and acting, independently of the fact that no model is perfect and
the world is seldom completely predicable. For instance, there is no nominal
case in the throw of a dice or in the toss of a coin or in a sensing action of a
robot. There is no nominal case in the method for an online payment if the
choice is left to the user (cash, credit card, or bank transfer). There is no
nominal case in the confirmation given to a Web service by the user. And
if we need to generate a software service that works, we need to consider
equally all possibilities.

Notice that, of course, even nondeterministic models are not perfect
models of the world. Even if we model the six outcomes of the throw of a
dice, the tossed dice might run off the playing board, and end up under the
table. Similarly, a coin may land on its edge, and the operating system of
the hosting of a Web service can break. In all these cases, however, non-
deterministic models are definitely more realistic, and often not avoidable,
independently of the fact that everything can always happen in the world
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and no perfect model exists.

Planning and acting with nondeterministic models is a different and
much more challenging task than the deterministic case:

• The search space is no longer represented as a graph. It becomes
an And/Or graph (see Appendix A) in which each And-branch cor-
responds applying an action that may lead from one state to many
possible states, and each Or-branch corresponds to choosing which ac-
tion to apply in a state. We can choose the action, but we cannot
choose which outcome it will produce.

• Plans cannot be restricted to sequences of actions.1 In the nondeter-
ministic case, we need to generate conditional plans, that is, plans with
conditional control structures that sense the actual action outcome
among the many possible ones, and act accordingly to the information
gathered at execution time.

• The definition of solution plan is not trivial, because solutions of differ-
ent strength can be devised. For instance, a plan may either guarantee
the achievement of a goal or just have some chances of success, or it
may guarantee the achievement of the goal according to some assump-
tions.

As a consequence, in the case of nondeterministic domains the problem
of devising practical algorithms that can deal effectively with the search
space is much harder than in the deterministic case. Planning algorithms
need to analyze not only single paths to find one that leads to the goal, but
all the execution paths of a plan. Keeping track of the different possible
branches of execution typically induces large search spaces.

Online planning and acting is one of the most effective techniques for
dealing with large state spaces. In Chapter 2, we presented the idea of
interleaving planning and acting to deal with large models. This motivation
for online planning and acting is even stronger in the case of nondeterministic
models. Interleaving acting with planning can be used to determine which
of the nondeterministic outcomes has actually taken place.

Last but not least, nondeterministic domains are key models for deliber-
ative acting (see the discussion in Section 1.2.3 and Section 2.6). They are a
proper and natural way to represent operational models that describe how
to perform an action, because operational models have to take into account

1Conformant planning generates sequences of plans in nondeterministic domains. It is,
however, a restricted and specific case.
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possibly different evolutions of the execution of commands. Planning in
nondeterministic domains can thus be a powerful deliberation mechanism.

5.2 The Planning Problem

Planning with nondeterministic models relaxes the assumption that γ(s, a)
returns a single state. Then for every state s and action a, either γ(s, a) = ∅
(i.e., the action is not applicable) or γ(s, a) is the set of states that may result
from the application of a to the state s, that is, γ : S ×A→ 2S .

Following the notation introduced in Chapter 2, Section 2.1.3, an oper-
ator can be represented with multiple effects:

act(z1, z2, . . . , zk)
pre: p1, . . . , pm
eff1: e11, . . .
. . .

effn: e1n, . . .

5.2.1 Planning Domains

A nondeterministic planning domain can be described in terms of a finite
set of states S, a finite set of actions A, and a transition function γ(s, a)
that maps each state s and action a into a set of states:

Definition 5.1. (Planning Domain) A nondeterministic planning do-
main Σ is the tuple (S,A, γ), where S is the finite set of states, A is the
finite set of actions, and γ : S × A → 2S is the state transition function.

An action a ∈ A is applicable in state s ∈ S if and only if γ(s, a) 6= ∅.
Applicable(s) is the set of actions applicable to state s:

Applicable(s) = {a ∈ A | γ(s, a) 6= ∅}

Example 5.2. In Figure 5.1, we show a simple example of nondeterministic
planning domain, inspired by the management facility for a harbor, where
an item (e.g., a container, a car) is unloaded from the ship, stored in some
storage area, possibly moved to transit areas while waiting to be parked,
and delivered to gates where it is loaded on trucks. In this simple example,
we have just one state variable, pos(item), which can range over nine values:
on ship, at harbor, parking1, parking2, transit1, transit2, transit3, gate1, and
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unload

on_ship at_harbor

park

parking2

parking1

transit1

move

transit2

deliver

deliver
move

gate1

gate2

back

back

move

transit3

Figure 5.1: A simple nondeterministic planning domain model.

gate2. For simplicity, we label each state in Figure 5.1 only with the value
of the variable pos(item).

In this example, we have just five actions. Two of them are deterministic,
unload and back, and three are nondeterministic, park, move, and deliver.
Action unload unloads the item from the ship to the harbor, its preconditions
are pos(item) = on ship, and its effects pos(item) ← at harbor. Action back
moves the item back from any position in the harbor to the position pos(item)
= at harbor. To keep the figure simple, in Figure 5.1 we show only two
instances of actions back from the state where pos(item) = parking2 and
the state where pos(item) = gate1, but a back arrow should be drawn from
each state where the position is parking1, parking2, transit1, transit2, transit3,
gate1, and gate2.

A possible description of action park is the following, where eff1, eff2,
and eff3 are the three possible effects of the action:
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park
pre: pos(item) = at harbor
eff1: pos(item)← parking2
eff2: pos(item)← parking1
eff3: pos(item)← transit1

The actions park, move, and deliver are nondeterministic. In the case of
action park, we represent with nondetermism the fact that the storage areas
parking1 and parking2 may be unavailable for storing items, for example,
because they may be closed or full. Whether an area is available or not
cannot be predicted, because there are other actors parking and delivering
items, for example from different ships. However, we assume that it is always
possible either to park the item in one of the two parking areas or to move
it to transit area transit1. The item waits in transit1 until one of the two
parking areas are available, and it can be stored by the action move. Also
in the case of move, we use nondeterminism to represent the fact that we
do not know a priori which one of the two areas may become available.2

From the two parking areas, it is possible to deliver the container and load
them on trucks or to a transit area, from which it is necessary to move the
container into either one of the two parking areas. The deliver action moves
containers from parking1 to one of the two gates where trucks are loaded or
to a transit area from which it is necessary to move the container again to
load trucks in one of the two gates.3 The same action from parking2 may
lead to gate1 or to another transit area.

5.2.2 Plans as Policies

A plan for a nondeterministic domain can be represented as a policy, that is,
a partial4 function π that maps states into actions. Intuitively, if π(s) = a,
it means that we should perform action a in state s.

Definition 5.3. (Policy) Let Σ = (S,A, γ) be a planning domain. Let
S′ ⊆ S. A policy π for a planning domain Σ is a function π : S′ → A such

2In general, if an action’s outcome depends on something that is unknown to the actor,
then it is sometimes useful for the actor to think of the possible outcomes as nondetermin-
istic. As an analogy, we think of random number generators as having nondeterministic
outcomes, even though many of these generators are deterministic.

3Notice that deliver action has two possible effects in one instance and three in another.
This is allowed because the degree of nondeterminism can depend on the state in which
an action is performed.

4That is, there may be states for which it is undefined.
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PerformPolicy(π)
s← observe the current state
while s ∈ Dom(π) do

perform action π(s)
s← observe the current state

Algorithm 5.1: Procedure for performing the actions of a policy.

that, for every s ∈ S′, π(s) ∈ Applicable(s). It follows that Dom(π) = S′.

Example 5.4. Consider the domain of Example 5.2 shown in Figure 5.1.
The following are policies for this planning domain:

π1 : π1(pos(item)=on ship) = unload
π1(pos(item)=at harbor) = park
π1(pos(item)=parking1) = deliver

π2 : π2(pos(item)=on ship) = unload
π2(pos(item)=at harbor) = park
π2(pos(item)=parking1) = deliver
π2(pos(item)=parking2) = back
π2(pos(item)=transit1) = move
π2(pos(item)=transit2) = move
π2(pos(item)=gate1) = back

π3 : π3(pos(item)=on ship) = unload
π3(pos(item)=at harbor) = park
π3(pos(item)=parking1) = deliver
π3(pos(item)=parking2) = deliver
π3(pos(item)=transit1) = move
π3(pos(item)=transit2) = move
π3(pos(item)=transit3) = move

A procedure that performs the actions of a policy consists of observing
the current state s, performing the corresponding action π(s), and repeat-
ing these two steps until the state is no longer in the domain of π (see
Algorithm 5.1).

A remark is in order. A policy is a convenient way to represent plans in
nondeterministic domain models. An alternative is to represent plans with
decision trees or with conditional statements. The expressiveness of policies
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and the one of decision trees are incomparable. On one hand, policies allow
for infinite iterations of the application of actions, which are not allowed by
finite decision trees. On the other hand, decision trees allow for performing
different actions in the same state depending on at which point we are in
the tree, whereas policies always perform the same action in a state. We call
our policies memoryless policies. A policy with memory is a mapping from
a history of states to an action. Policies with memory allow for performing
different actions in the same state, depending on the states visited so far.

5.2.3 Planning Problems and Solutions

In deterministic domains, a plan is a sequence of actions that, when per-
formed from an initial state induces a sequence of states, one for each action
in the plan. A solution to a planning problem in a deterministic domain is a
plan that induces a sequence of states such that the last state is in the set of
goal states. The states reachable from a state s by a sequence of applicable
actions a1, a2, . . . can be defined easily by composing the transition function:
{s} ∪ γ(s, a1) ∪ γ(γ(s, a1), a2) ∪ . . ..

To define a solution to a planning problem in nondeterministic domains,
we need to do something similar, that is to define which states are reached
by a policy π in a planning domain Σ = (S,A, γ). However, we have to take
into account that, in a nondeterministic planning domain, γ(s, a) returns
a set of states, and therefore a plan can result in many possible different
paths, that is, sequences of states that are reached by the policy.

We start by introducing the notion of the set of states reachable from
state s by a policy π:

γ̂(s, π) denotes the transitive closure of γ(s, π(s)), that is, the
set that includes s and all its successors states reachable by π

To check whether a policy reaches some goals, we are interested in the
final states that are reached by the policy π from state s, that is in what we
call the leaves of a policy π from state s:

leaves(s, π) = {s′ | s′ ∈ γ̂(s, π) and s′ 6∈ Dom(π)}

Notice that leaves(s, π) can be empty, that is, there may be no leaves. This
is the case of policies that cycle on the same set of states. If π is the empty
plan, then leaves(s, π) = {s}. We define the reachability graph that connects
the reachable states from state s through a policy π:
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on_ship at_harbor
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Figure 5.2: Reachability graph for policy π1.

Graph(s, π) = {γ̂(s, π), (s′, s′′) | s′ ∈ γ̂(s, π) and s′′ ∈ γ(s′, π(s′))}

We call Γ̂(s) the set of states reachable from a state s.

Example 5.5. Let π1, π2, and π3 be as in Example 5.4. Their leaves from
state pos(item)=on ship are:5

leaves(pos(item)=on ship, π1) = {pos(item)=parking2,
pos(item)=transit1,
pos(item)=gate1,
pos(item)=gate2,
pos(item)=transit2}

leaves(pos(item)=on ship, π2) = {pos(item)=gate2}
leaves(pos(item)=on ship, π3) = {pos(item)=gate1, pos(item)=gate2}

Figures 5.2, 5.3, and 5.4 show the reachability graphs of π1, π2, and π3 from
the state where pos(item)=on ship. Notice also that all states are reachable
from state where pos(item)=on ship.

5In this case, the value on ship of the state variable pos(item) identifies a single state.
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Figure 5.3: Reachability graph for policy π2.

Given these preliminary definitions, we can now introduce formally the
notion of a planning problem and solution in a nondeterministic domain.

Definition 5.6. (Planning Problem) Let Σ = (S,A, γ) be a planning
domain. A planning problem P for Σ is a tuple P = (Σ, s0, Sg), where
s0 ∈ S is the initial state and Sg ⊆ S is the set of goal states.

Notice that we have a single initial state s0 rather than a set of initial
states S0 ⊆ S. A set of initial states represents partially specified initial
conditions, or in other words uncertainty about the initial state. However,
restricting to a single initial state is not a limitation, because a domain with
a set of initial states S0 is equivalent to a domain where we have a single
initial state s0 6∈ S and an additional action ao 6∈ A such that γ(s0, a0) = S0.

We can now define different kinds of solutions to a planning problem.

Definition 5.7. (Solution) Let P = (Σ, s0, Sg) be a planning problem for
a domain Σ = (S,A, γ). Let π be a policy for Σ. Then π is a solution if and
only if leaves(s0, π) ∩ Sg 6= ∅
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Figure 5.4: Reachability graph for policy π3.

Solutions are policies that may lead to a goal. They can achieve the
goal in different ways, with different levels of guarantee, and with differ-
ent strengths. The requirement we impose on a policy to be a solution is
that at least one state of its leaves is a goal state. We are interested in safe
solutions.

Definition 5.8. (Safe Solution) Let P = (Σ, s0, Sg) be a planning prob-
lem for a domain Σ = (S,A, γ). Let π be a solution for Σ. Then π is a safe
solution if and only if ∀s ∈ γ̂(s0, π)(leaves(s, π) ∩ Sg 6= ∅)

Safe solutions are policies in which the goal is reachable from the initial
state. Notice that, in general, they are not policies in which the goal is
reachable from any state of the domain of the policy (Dom(π)), because we
may have a state in Dom(π) that is not the initial state and from which we
do not reach the goal.

Definition 5.9. (Unsafe Solution) Let P = (Σ, s0, Sg) be a planning
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problem for a domain Σ = (S,A, γ). Let π be a solution for Σ. Then π is
an unsafe solution if it is not safe.

Unsafe solutions either have a leaf that is not in the set of goal states or
there exists a reachable state from which it is not possible to reach a leaf
state. It is easy to prove that π is an unsafe solution if and only if ∃s ∈
leaves(s0, π) | s 6∈ Sg ∨ ∃s ∈ γ̂(s0, π) | leaves(s, π) = ∅

Intuitively, unsafe solutions may achieve the goal but are not guaranteed
to do so. If an agent tries to perform the actions dictated by the policy, the
agent may end up at a nongoal state or end up in a “bad cycle” where it is
not possible to go out and reach the goal.

It is important to distinguish between two kinds of safe solutions, cyclic
and acyclic. Acyclic solutions are safe solutions whose reachability graph is
acyclic; all other safe solutions are cyclic.

Definition 5.10. (Cyclic Safe Solution) Let P = (Σ, s0, Sg) be a plan-
ning problem for a domain Σ = (S,A, γ). Let π be a solution for Σ.
Then π is a cyclic safe solution if and only if leaves(s0, π) ⊆ Sg ∧ (∀s ∈
γ̂(s0, π)(leaves(s, π) ∩ Sg 6= ∅) ∧Graph(s0, π) is cyclic.

Cyclic Safe Solutions are safe solutions with cycles.

Definition 5.11. (Acyclic Safe Solution) Let P = (Σ, s0, Sg) be a
planning problem for a domain Σ = (S,A, γ). Let π be a solution for
Σ. Then π is an acyclic safe solution if and only if leaves(s0, π) ⊆
Sg ∧Graph(s0, π) is acyclic.

Acyclic Safe Solutions are safe solutions that are guaranteed to terminate
and to achieve the goal despite nondeterminism. They are guaranteed to
reach the goal in a bounded number of steps, and the bound is the length of
the longest path in Graph(s0, π). This amounts to saying that all the leaves
are goal states and there are no cycles in the reachability graph.

Figure 5.5 depicts in a class diagram the different forms of solutions. Un-
safe Solutions are not of interest, because they do not guarantee to achieve
the goal. However, as we will see in Section 5.5, planning for (possibly
unsafe) solutions can be used by planning algorithms to guide the search
for Safe Solutions. In general, we are interested in safe (cyclic and acyclic)
solutions, because they provide (with different strengths) some assurance
to achieve the goal despite nondeterminism. Acyclic Safe Solutions are the
best because they can really ensure that we get to the goal. Cyclic Safe So-
lutions provide a weaker degree of assurance to achieve the goal: assuming
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Figure 5.5: Different kinds of solutions: class diagram.

that sooner or later execution will get out of possibly infinite loops, they
are guaranteed to achieve the goal. They guarantee that there is always a
possibility to terminate the loop. However, for some applications, this may
be not enough.

Example 5.12. Consider the three policies π1, π2, and π3 in Example 5.4.
Consider the planning problem P with domain Σ the nondeterministic do-
main described in Example 5.2, initial state s0 where pos(item)=on ship,
and goal states Sg = {pos(item)=gate1, pos(item)=gate2}.

All three policies are solutions for the planning problem P ; indeed there
exists at least one leaf state that is in the set of goal states. Policy π1 is
an unsafe solution because there are leaves that do not belong to Sg from
which it is impossible to reach the goal: such leaves are the states where
pos(item)=parking2, or pos(item)=transit1, or pos(item)=transit2.

Policies π2 and π3 are safe solutions. Policy π2 is a safe cyclic solution
because from each state in its graph it is possible to reach a state in the goal
(pos(item)=gate2). Policy π3 is a safe acyclic solution because it is guar-
anteed to reach one of the two gates, pos(item)=gate1 or pos(item)=gate2,
without the danger of getting trapped in cycles.

Notice that for the planning problem P ′ on the same domain, the same
initial state, but with goal Sg = {pos(item)=gate2}, a safe acyclic solution
does not exist, and the safest solution we can find is the safe cyclic solution
π2.

A remark is in order. We require that solutions have some leaf states.
In this way, we do not consider policies that lead to the goal and then loop
inside the set of goal states. One may argue that such policies might be
considered as solutions. However, notice that for any solution of this kind,
there exists a solution according to our definition. It is indeed enough to
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Table 5.1: Solutions: different terminologies in the literature.

our terminology nondeterminism probabilistic

solutions weak solutions -

unsafe solutions - improper solutions

safe solutions strong cyclic solutions proper solutions

cyclic safe solutions - -

acyclic safe solutions strong solutions -

eliminate the states in the policy that lead to the loop inside the set of goal
states.

In the following, we specify the relations among different kinds of solu-
tions.

unsafe solutions ∪ safe solutions = solutions
cyclic safe solutions ∪ acyclic safe solutions = safe solutions
unsafe solutions ∩ safe solutions = ∅
cyclic safe solutions ∩ acyclic safe solutions = ∅

Notice that our terminology here and in Chapter 6 are identical, but
different from the usual terminology in the literature, in which our solutions
and safe solutions are called weak solutions and strong cyclic solutions, re-
spectively. In the literature, every strong solution is also a weak solution,
which can be confusing. In most of the literature on probabilistic planning,
our safe and unsafe solutions are called proper and improper, and there is
no notion that makes a distinction between cyclic safe solutions and acyclic
safe solutions, despite the different strength they provide. We will not also
differentiate cyclic and a cyclic safe solutions in probabilistic planning in
Chapter 6, despite their differences (see discussion in Section 6.7.5). Ta-
ble 5.1 summarizes the corresponding terminology used in planning with
nondeterminism and in probabilistic planning literature.

5.3 And/Or Graph Search

A nondeterministic planning domain can be represented as an And/Or graph
(see Appendix A) in which each Or-branch corresponds to a choice among
the actions that are applicable in a state, and each And-branch corresponds
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Find-Solution (Σ, s0, Sg)
π ← ∅; s← s0; Visited← {s0}
loop

if s ∈ Sg then return π
A′ ← Applicable(s)
if A′ = ∅ then return failure
nondeterministically choose a ∈ A′
nondeterministically choose s′ ∈ γ(s, a) (i)
if s′ ∈ Visited then return failure
π(s)← a; Visited← Visited ∪ {s′}; s← s′

Algorithm 5.2: Planning for solutions by forward search.

to the possible outcomes of the chosen action. In this section, we present
algorithms that search And/Or graphs to find solutions.

5.3.1 Planning by Forward Search

We first present a simple algorithm that finds a solution by searching the
And/Or graph forward from the initial state. Find-Solution (see Algo-
rithm 5.2) is guaranteed to find a solution if it exists. The solution may
be either safe or unsafe. It is a simple modification of forward state-space
search algorithms for deterministic planning domains (see Chapter 2). The
main point related to nondeterminism is in the “progression” line (see line
(i)), where we nondeterministically search for all possible states generated
by γ(s, a).

Find-Solution simply searches the And/Or graph to find a path that
reaches the goal, without keeping track of which states are generated by
which action. In this way, Find-Solution ignores the real complexity of non-
determinism in the domain. It deals with the And-nodes as if they were
Or-nodes, that is, as if it could choose which outcome would be produced
by each action.

Recall that the nondeterministic choices “nondeterministically choose a ∈
A′” and “nondeterministically choose s′ ∈ γ(s, a)” correspond to an abstrac-
tion for ignoring the precise order in which the algorithm tries actions a
among all the applicable actions to state s and alternative states s′ among
the states resulting from performing a in s.

Example 5.13. Consider the planning problem described in Example 5.2.
Let the initial state s0 be pos(item)=on ship, and let the set of goal states
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Find-Safe-Solution (Σ, s0, Sg)
π ← ∅
Frontier← {s0}
for every s ∈ Frontier \ Sg do

Frontier← Frontier \ {s}
if Applicable(s) = ∅ then return failure
nondeterministically choose a ∈ Applicable(s)
π ← π ∪ (s, a)
Frontier← Frontier ∪ (γ(s, a) \Dom(π))
if has-unsafe-loops(π, a,Frontier) then return failure

return π

Algorithm 5.3: Planning for safe solutions by forward search.

Sg be {pos(item)=gate1, pos(item)=gate2}. Find-Solution proceeds forward
from the initial state on ship. It finds initially only one applicable action,
that is, unload. It then expands it into at harbor, one of the possible non-
deterministic choices is s′ = parking1, which gets then expanded to gate2;
π1 (see Example 5.4) is generated in one of the possible nondeterministic
execution traces.

Algorithm 5.3 is a simple algorithm that finds safe solutions. The al-
gorithm performs a forward search and terminates when all the states in
Frontier are goal states. Find-Safe-Solution fails if the last action introduces
a “bad loop”, that is, a state from which no state in Frontier is reachable.
The routine has-unsafe-loops checks whether a “bad loop” is introduced. A
“bad loop” is introduced when the set of states resulting from performing
action a, which are not in the domain of π, will never lead to the frontier:

has-unsafe-loops(π, a,Frontier) iff
∃s ∈ (γ(s, a) ∩Dom(π)) such that γ̂(s, π) ∩ Frontier = ∅.

Algorithm 5.4 is a simple algorithm that finds safe acyclic solutions. The
algorithm is the same as Find-Safe-Solution, but in the failure condition. It
fails if the last action introduces a loop, that is, a state from which the state
itself is reachable by performing the plan:

has-loops(π, a,Frontier) iff
∃s ∈ (γ(s, a) ∩Dom(π)) such that s ∈ γ̂(s, π)
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Find-Acyclic-Solution (Σ, s0, Sg)
π ← ∅
Frontier← {s0}
for every s ∈ Frontier \ Sg do

Frontier← Frontier \ {s}
if Applicable(s) = ∅ then return failure
nondeterministically choose a ∈ Applicable(s)
π ← π ∪ (s, a)
Frontier← Frontier ∪ (γ(s, a) \Dom(π))
if has-loops(π, a,Frontier) then return failure

return π

Algorithm 5.4: Planning for safe acyclic solutions by forward search.

Example 5.14. Consider the planning problem P with do-
main Σ the nondeterministic domain described in Example 5.2,
initial state pos(item)=on ship, and set of goal states Sg as
{pos(item)=gate1, pos(item)=gate2}. Find-Acyclic-Solution starts from
the initial state on ship, for every state s in the frontier expands the frontier
by performing γ(s, a). A successful trace of execution evolves as follows6:

Step0 : on ship
Step1 : at harbor
Step2 : parking2, parking1, transit1
Step3 : transit3, gate1, gate2, transit2
Step4 : gate1, gate2

5.3.2 Planning by MinMax Search

This section introduces a technique that is based on a cost model of actions.
Recall cost models defined in Chapter 2. We assign a cost to each action
that is performed in a state, cost(s, a). Weighting actions with cost can be
useful in some application domains, where, for instance, actions consume
resources or are more or less difficult or expensive to perform.

Algorithm 5.5 uses costs to identify which may be the best direction to
take. It starts from the initial state and selects actions with minimal costs

6For simplicity, in the following we use on ship, at harbor, and so on, as names of states
rather than a state variable notation.
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Find-Acyclic-Solution-by-MinMax (Σ,S0,Sg)
return Compute-worst-case-for-action(S0, Sg, ∞, ∅)

Compute-worst-case-for-action(S, Sg, β, ancestors)
c′ ← −∞
π′ ← ∅
// if S is nonempty, this loop will be executed at least once:
for every s ∈ S

if s ∈ ancestors then
return (π′,∞)

(π,c) ← Choose-best-action(s, Sg, β, ancestors ∪{s})
π′ ← π ∪ π′
c′ ← max(c′, c)
if c′ ≥ β then

break
return (π′, c′)

Algorithm 5.5: Planning for safe acyclic solutions by MinMax Search.

among the ones that are applicable. We are interested in finding a solution
with the minimum accumulated cost, that is, the minimum of the costs of
each action that is selected in the search. Because the domain model is
nondeterministic and γ(s, a) results in different states, we want to minimize
the worst-case accumulated cost, that is, the maximum accumulated cost of
each of the possible states in γ(s, a). This is given by the following recursive
formula:

c(s) =

{
0 if s is a goal,

mina∈Applicable(s)(cost(a) + maxs′∈γ(s,a) c(s
′)) otherwise.

For this reason, the algorithm is said to perform a “MinMax search.” While
performing the search, the costs of actions that are used to expand the next
states are accumulated, and the algorithm checks whether the accumulated
cost becomes too high with respect to alternative selections of different ac-
tions. In this way, the accumulated cost is used to find an upper bound in
the forward iteration.

Find-Acyclic-Solution-by-MinMax (Algorithm 5.5) finds safe acyclic solu-
tions for nondeterministic planning problems in domains that may have
cycles. It returns a pair (π,c), where π is a safe acyclic solution that is
worst-case optimal, that is, the maximum cost of executing π is as low as
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Choose-best-action(s, Sg, β, ancestors)
if s ∈ Sg then

return (∅, 0)
else if Applicable(s) = ∅ then

return (∅, ∞)
else do
c =∞
// this loop will always be executed at least once:
for every a ∈ Applicable(s) do

(π′, c′) ← Compute-worst-case-for-action(γ(s, a), Sg, β, ancestors)
if c > c′ + cost(s, a) then do
c← c′ + cost(s, a)
π(s)← a

β ← min(β, c)
return (π, c)

Algorithm 5.6: The policy with minimal cost over actions.

possible, and c is the maximum cost of executing π.

Find-Acyclic-Solution-by-MinMax implements a depth-first search by min-
imizing the maximum sum of the costs of actions along the search. It al-
ternates recursively between calls to Choose-best-action (Algorithm 5.6) and
Compute-worst-case-for-action. The former calls the latter on the set of states
γ(s, a) resulting from the application of actions a that are applicable to the
current state s, where Compute-worst-case-for-action returns the policy π′

and its corresponding cost c′. Visited states are accumulated in the “an-
cestors” variable. Choose-best-action then updates the cost of π with the
cost of the action (c = c′ + cost(s, a)), and updates the policy with the
selected action in the current state (π = π′ ∪ (s, a)). In the Choose-best-
action procedure, β keeps track of the minimum cost of alternative policies
computed at each iteration, which is compared with the maximum cost com-
puted over paths in π by Compute-worst-case-for-action (see the instruction
c′ = max(c′, c)). If the current children’s maximum cost c′ is greater than
or equal to the current minimum cost β, then the policy π′ gets discarded
and control gets back to Choose-best-action which chooses a different action.

Indeed, while we are considering each state s′ ∈ γ(s, a), the worst-case
cost of a policy that includes an action a is greater than the maximum cost
at each s′ visited so far. We know that elsewhere in the And/Or graph there
exists a policy whose worst case cost is less than β. If the worst-case cost of
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a policy that includes a is greater or equal to β, then we can discard a.
Find-Acyclic-Solution-by-MinMax’s memory requirement is linear in the

length of the longest path from s0 to a goal state, and its running time is
linear in the number of paths from s0 to a goal state.

Find-Acyclic-Solution-by-MinMax ignores the possibility of multiple paths
to the same state. If it comes to a state s again along a different path,
it does exactly the same search below s that it did before. One could use
memoization techniques to store these values rather than recomputing them
– which would produce better running time but would require exponentially
more memory. See Exercise 5.9.

5.4 Symbolic Model Checking Techniques

The conceptually simple extension led by nondeterminism causes a practical
difficulty. Because one action can lead to a set of states rather than a single
state, planning algorithms that search for safe (cyclic and acyclic) solutions
need to analyze all the states that may result from an action. Planning based
on symbolic model checking attempts to overcome the difficulties of planning
in nondeterministic domains by working on a symbolic representation of
sets of states and actions. The underlying idea is based on the following
ingredients:

• Algorithms search the state space by working on sets of states, rather
than single states, and on transitions from sets of states through sets
of actions, rather than working separately on each of the individual
transition.

• Sets of states, as well as sets of transitions, are represented as propo-
sitional formulas, and search through the state space is performed by
logical transformations over propositional formulas

• Specific data structures, Binary Decision Diagrams (BDDs), are used
for the compact representation and effective manipulation of proposi-
tional formulas

Example 5.15. In this example we give a first intuition on how a symbolic
representation of sets of states can be advantageous. Consider the planning
problem P with the nondeterministic domain Σ described in Example 5.2,
the initial state s0 is the state labeled in Figure 5.1 as on ship, and goal
states Sg = {gate1, gate2}. The states of this simple planning domain can
be described by a single state variable indicating the position of the item,
for example, a container. The state variable pos(item) can assume values
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pos(item)=gate1

10

10

0 1

1

pos(item)=gate2

Figure 5.6: BDD for pos(item) = gate1 ∨ pos(item) = gate2

on ship, at harbor, parking1, parking2, transit1, transit2, transit3, gate1, and
gate2.

Now let’s suppose that at each position, the item can be either on the
ground or on a vehicle for transportation. We would have a second variable
loaded, the value of which is either on ground or on vehicle.

Let’s also suppose that we have a variable that indicates whether a con-
tainer is empty, full, or with some items inside. The domain gets to 54
states.

Now, if we want to represent the set of states in which the container is
ready to be loaded onto a truck, this set can be compactly represented by the
formula pos(item) = gate1∨pos(item) = gate2. This is a symbolic, compact
representation of a set of states. Now suppose that further 10 state variables
are part of the domain representation. There may be many states in which
the container is ready to be loaded onto a truck, while their representation
is the same as before: pos(item) = gate1 ∨ pos(item) = gate2.

BDDs provide a way to implement the symbolic representation just in-
troduced. A BDD is a directed acyclic graph (DAG). The terminal nodes
are either “truth” or “falsity” (alternatively indicated with 0 and 1, respec-
tively). The corresponding BDDis in Figure 5.6.

In the rest of this section, we describe the algorithms for planning via
symbolic model checking both as operation on sets of states and as the
corresponding symbolic transformations on formulas.
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5.4.1 Symbolic Representation of Sets of States

A state variable representation, where each variable xi can have a value
vij ∈ Range(xi), can be mapped to an equivalent representation based on
propositional variables. We can represent a state by means of assignments
to propositional variables rather than assignments to state variables: For
each state variable xi and for each value vij ∈ Range(xi), we have a binary
variable that is true if xi = vij , and xi = vik is false for each k 6= j.

In symbolic model checking, a state is represented by means of propo-
sitional variables (that is, state variables that have value either true (T) or
false (F)) that hold in that state. We write P (s) a formula of propositional
variables whose unique satisfying assignment of truth values corresponds to
s. Let xxx be a vector of distinct propositional variables.

This representation naturally extends to any set of states Q ⊆ S. We
associate a set of states with the disjunction of the formulas representing
each of the states.

P (Q) =
∨
s∈Q

P (s).

The satisfying assignments of P (Q) are the assignments representing the
states of Q.

Example 5.16. In Example 5.2, consider the case in which the item (e.g., a
car) that needs to be moved to a parking area may get damaged. Moreover,
the parking area can be either open or closed, and the area can be either
full or have a slot where the item can be stored. We can represent the set
of states of this domain with three propositional variables in xxx:

x1 : status(car) = damaged
x2 : areaavailability = open
x3 : areacapacity= full

The set of states S of the domain has eight states. The single state s1 in
which the item is not damaged, the storage area is open, and there is a slot
available for storage can be represented by the assignment of truth values
to the three proposition variables

x1 ← F
x2 ← T
x3 ← F

or analogously by the truth of the formula

P (s1) = ¬x1 ∧ x2 ∧ ¬x3.
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The four states in which the car is undamaged is represented by the single
variable assignment

x1 ← F

or analogously by the truth of the formula

P (Q) = ¬x1.

The main effectiveness of the symbolic representation is that the cardi-
nality of the represented set is not directly related to the size of the formula.
As a further advantage, the symbolic representation can provide an easy
way to ignore irrelevant information. For instance, in the previous example,
notice that the formula ¬x1, because it does not say anything about the
truth of x2 and x3, represents four states, where the item is not damaged in
all of them. The whole state space S (eight states) can thus be represented
with the propositional formula that is always true, T, while the empty set
can be represented by falsity, F. These simple examples give an intuitive idea
of one of the main characteristics of a symbolic representation of states: the
size of the propositional formula is not directly related to the cardinality of
the set of states it represents. If we have one billion propositional variables
to represent 210

9
states, with a proposition of length one, for example, x,

where x is one of the propositional variables of xxx, we can represent all the
states where x is true.

For these reasons, a symbolic representation can have a dramatic im-
provement over an explicit state representation which enumerates the states
of a state transition system.

Another advantage of the symbolic representation is the natural encoding
of set-theoretic transformations (e.g., union, intersection, complementation)
with propositional connectives over propositional formulas, as follows:

P (Q1 ∪Q2) = P (Q1) ∨ P (Q2)
P (Q1 ∩Q2) = P (Q1) ∧ P (Q2)
P (S −Q) = P (S) ∧ ¬P (Q)

5.4.2 Symbolic Representation of Actions and Transitions

We can use a vector of propositional variables, say yyy, to name actions.
Naming actions with a binary string of yyy bits will allow us to use BDDs
at the implementation level in the next sections. If we have n actions, we
can use dlog ne propositional variables in yyy. For instance, in the previous
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example, we can use variables y1 and y2 in yyy to name actions park, move,
and deliver. We can use for instance the following encoding:

P (park) = ¬y1 ∧ ¬y2 P (move) = y1 ∧ ¬y2 P (deliver) = ¬y1 ∧ y2.

Now we represent symbolically the transition function γ(s). We will call
the states in γ(s) the next states. To represent next states, we need a further
vector of propositional variables, say, xxx′, of the same dimension of xxx. Each
variable x′ ∈ xxx′ is called a next-state variable. We need it because we need
to represent the relation between the old and the new variables. Similarly
to P (s) and P (Q), P ′(s) and P ′(Q) are the formulas representing state s
and the set of states Q using the next state variables in xxx′. A transition is
therefore an assignment to variables in xxx, yyy, and xxx′

Example 5.17. Consider Example 5.16 and Example 5.2. Suppose
the item to be moved is a car. The unloading operation may dam-
age the car, and the parking area may be closed and full,7 We have
therefore some level of nondeterminism. Let x4 and x5 be the proposi-
tional variable for pos(car)=on ship and pos(car)=at harbor. The transition
pos(car)=at harbor ∈ γ(pos(car)=on ship, unload) can be symbolically repre-
sented as8

x4 ∧ (¬y1 ∧ ¬y2) ∧ x′5,

which means that in the next state the car is at the harbor and may or may
not be damaged.

We define now the transition relation R corresponding to the transi-
tion function γ (this will be convenient for the definition of the symbolic
representation of transition relations):

∀s ∈ S, ∀a ∈ A, ∀s′ ∈ S (R(s, a, s′) ⇐⇒ s′ ∈ γ(s, a)).

In the rest of this section, we adopt the following notation:9

• Given a set of states Q, Q(xxx) is the propositional formula representing
the set of states Q in the propositional variables xxx;

• R(xxx,yyy,xxx′) is the propositional formula in the propositional variables
xxx, yyy, and xxx′ representing the transition relation.

7This nondeterminism models the fact that we do not know at planning time whether
the parking area will be available.

8Here we omit the formalization of the invariant that states what does not change.
9Recall that a set of states is represented by a formula in state variables in x.
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We also adopt a QBF-like notation, the logic of Quantified Boolean For-
mulas, a definitional extension of propositional logic in which propositional
variables can be universally and existentially quantified. According to this
notation, we have:

• ∃xQ(xxx) stands for Q(xxx)[x← T] ∨Q(xxx)[x← F], where [x← T] stands
for the substitution of x with T in the formula;

• ∀xQ(xxx) stands for Q(xxx)[x← T] ∧Q(xxx)[x← F].

Let us show how operations on sets of states and actions can be represented
symbolically. Consider the set of all states s′ such that from every state in
Q, s′ is a possible outcome of every action. The result is the set of states
containing any next state s′ that for any state s in Q and for any action a
in A satisfies the relation R(s, a, s′): 10

{s′ ∈ S | ∀s ∈ Q and ∀a ∈ A. R(s, a, s′)}.

Such set can be represented symbolically with the following formula,
which can be represented directly as a BDD:

(∃xxxyyy(R(xxx,yyy,xxx′) ∧Q(xxx)))[x′ ← x].

In this formula, the “and” operation symbolically simulates the effect of the
application of any applicable action in A to any state in Q. The explicit
enumeration of all the possible states and all the possible applications of
actions would exponentially blow up, but symbolically we can compute all
of them in a single step.

Policies are relations between states and actions, and can therefore be
represented symbolically as propositional formulas in the variables xxx and yyy.
In the following, we write such a formula as π(xxx,yyy).

We are now ready to describe the planning algorithms based on symbolic
model checking. In the subsequent sections, we consider an extension of the
definition of planning problem where we allow for a set of initial states rather
than a single initial state.

5.4.3 Planning for Safe Solutions

In Find-Safe-Solution-by-ModelChecking, Algorithm 5.7, univpol is the so-
called “universal policy,” that is, the set of all state-action pairs (s, a) such
that a is applicable in s. Notice that starting from the universal policy may

10The formula is equivalent to
⋃
s∈A,a∈A γ(s, a).
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Find-Safe-Solution-by-ModelChecking(Σ, s0, Sg)
univpol← {(s, a) | s ∈ S and a ∈ Applicable(s) }
π ← SafePlan(univpol, Sg)
if s0 ∈ (Sg ∪Dom(π)) then return π
else return(failure)

SafePlan(π0,Sg)
π ← ∅
π′ ← π0
while π 6= π′ do
π ← π′

π′ ← π′ \ {(s, a) ∈ π′ | γ(s, a) 6⊆ (Sg ∪Dom(π′))} (i)
π′ ← PruneUnconnected(π′, Sg) (ii)

return RemoveNonProgress(π′, Sg) (iii)

Algorithm 5.7: Planning for safe solutions by symbolic model checking.

PruneUnconnected(π,Sg)
Oldπ ← fail
Newπ ← ∅
while Oldπ 6= Newπ do

Oldπ ← Newπ
Newπ ← π ∩ preimgpol(Sg ∪Dom(Newπ))

return Newπ

Algorithm 5.8: PruneUnconnected: Removing unconnected states.

appear unfeasible in practice, because the set of all state-action pairs can
be very large. We should not forget, however, that very large sets of states
can be represented symbolically in a compact way. Indeed, the symbolic
representation of the universal policy is:

univpol = ∃xxx′R(xxx,yyy,xxx′),

which also represents the applicability relation of an action in a state.
Find-Safe-Solution-by-ModelChecking calls the SafePlan routine that re-

fines the universal policy by iteratively eliminating pairs of states and cor-
responding actions. This is done in two steps. First, line (i) removes from
π′ every state-action pair (s, a) for which γ(s, a) includes a nongoal state s′

that has no applicable action in π′. Next, line (ii) removes from π′ every
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state-action pair (s, a) for which π′ contains no path from s to the goal.
This second step is performed by the routine PruneUnconnected (see Algo-
rithm 5.8). PruneUnconnected repeatedly applies the intersection between
the current policy π and the “preimage” policy, that is, preimgpol applied
to the domain of the current policy and the goal states. The preimage pol-
icy, given a set of states Q ⊆ S, returns the policy that has at least one
out-coming state to the given set of states:

preimgpol(Q) = {(s, a) | γ(s, a) ∩Q 6= ∅}.

preimgpol(Q) is represented symbolically as a formula in the current state
variables xxx and the action variables yyy:

preimgpol(Q) = ∃xxx′(R(xxx,yyy,xxx′) ∧Q(xxx′)).

The pruning of outgoing and unconnected states is repeatedly performed
by the while loop in SafePlan until a fixed point is reached. Then in line
(iii), SafePlan removes states and corresponding actions in the policy that
do not lead toward the goal. This is done by calling the RemoveNonProgress
routine (see Algorithm 5.9) that repeatedly performs the pruning in two
steps. First, the preimage policy preπ that leads to the domain of the policy
or to the goal state in computed (“preimage policy” step). Then the states
and actions that lead to the same domain of the preimage policy or to the
goal are pruned away by the PruneStates routine (let Q ⊆ S):

PruneStates(π,Q) = {(s, a) ∈ π | s 6∈ Q}.

The routine PruneStates that eliminates the states and actions that lead to
the same domain of a policy is computed symbolically as follows:

PruneStates(π,Q) = π(xxx,yyy) ∧ ¬Q(xxx)).

SafePlan thus returns the policy π that has been obtained from the universal
policy by removing outgoing, unconnected and nonprogressing actions. Find-
Safe-Solution-by-ModelChecking finally tests whether the set of states in the
returned policy union with the goal states contains all the initial states. If
this is the case, π is a safe solution; otherwise no safe solution exists.

Example 5.18. Let us consider the planning problem on the domain de-
scribed in Example 5.2, initial state s0 where pos(car)=on ship, and goal
states Sg = {pos(car)=gate2}. The “elimination” phase of the algorithm
does not remove any policy from the universal policy. Indeed, the goal
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RemoveNonProgress(π,Sg)
Oldπ ← fail
Newπ ← ∅
while Oldπ 6= Newπ do

preπ ← π ∩ preimgpol(Sg ∪Dom(Newπ))
Oldπ ← Newπ
Newπ ← PruneStates(preπ, Sg ∪Dom(Newπ))

return Newπ

Algorithm 5.9: RemoveNonProgress: Removing states/actions that do not
lead towards the goal.

state is reachable from any state in the domain, and therefore there are no
outgoing actions. As a consequence, function RemoveNonProgress receives
in input the universal policy and refines it, taking only those actions that
may lead to a progress versus the goal. The sequence πi of policies built by
function RemoveNonProgress is as follows (in the following we indicate with
parking1 the state where pos(car)=parking1, etc.):

Step 0 : ∅
Step 1 : π1(parking1) = deliver;π1(transit2) = move
Step 2 : π2(parking1) = deliver;π2(transit2) = move;π2(at harbor) = park;

π2(transit1) = move
Step 3 : π3(parking1) = deliver;π3(transit2) = move;π3(at harbor) = park;

π3(transit1) = move;π3(parking2) = back;π3(transit3) = back;
π3(gate1) = back;π3(on ship) = unload

Step 4 : π3

A remark is in order. Algorithm 5.7 can find either safe cyclic or safe
acyclic solutions. It can be modified such that it looks for a safe acyclic
solution, and only if there is no such solution does it search for a safe cyclic
solution (see Exercise 5.11).

5.4.4 Planning for Safe Acyclic Solutions

Find-Acyclic-Solution-by-ModelChecking (Algorithm 5.10) performs a back-
ward breadth-first search from the goal toward the initial states. It returns
a safe acyclic solution plan π if it exists, otherwise it returns failure. The
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Find-Acyclic-Solution-by-ModelChecking(Σ, S0, Sg)
π0 ← failure
π ← ∅
while (π0 6= π and S0 6⊆ (Sg ∪Dom(π))) do

strongpreπ ← strongpreimgpol(Sg ∪Dom(π))
π0 ← π
π ← π ∪ PruneStates(strongpreπ, Sg ∪Dom(π))

if (S0 ⊆ (Sg ∪Dom(π)))
then return π
else return failure

Algorithm 5.10: Planning for acyclic solutions by symbolic model checking

policy π is constructed iteratively by the while loop. At each iteration step,
the set of states S for which a safe acyclic policy has already been found is
given in input to the routine strongpreimgpol, which returns a policy that
contains the set of pairs (s, a) such that a is applicable in s and such that a
leads to states which are all in Q ⊆ S:

strongpreimgpol(Q) = {(s, a) | a ∈ Applicable(s) and γ(s, a) ⊆ Q}.

The routine strongpreimgpol, which returns a policy that contains the set
of pairs (s, a) such that a is applicable in s and such that a leads to states
which are all in Q ⊆ S:

strongpreimgpol(Q) = ∀xxx′(R(xxx,yyy,xxx′)→ Q(xxx′)) ∧ ∃xxx′R(xxx,yyy,xxx′),

which states that any next state must be inQ and the action represented by yyy
must be applicable. Notice that both preimgpol(Q) and strongpreimgpol(Q)
are computed in one step. Moreover, policies resulting from such computa-
tion may represent an extremely large set of state-action pairs.

The routine PruneStates that eliminates the states and actions that lead
to the same domain of a policy,

PruneStates(π,Q) = {(s, a) ∈ π | s 6∈ Q}

can be represented symbolically very simply by the formula

π(xxx,yyy) ∧ ¬Q(xxx)).

PruneStates removes from strongpreπ the pairs (s, a) such that a solution
is already known. This step is what allows to find the worst-case optimal
solution.
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Example 5.19. Let us consider the planning problem on the domain de-
scribed in Example 5.2, initial set of states S0 = {on ship}, and goal
states Sg = {gate1, gate2}. The sequence πi of policies built by algorithm
Find-Acyclic-Solution-by-ModelChecking is as follows:

π0 : ∅
π1 : π1(transit3) = move;π1(transit2) = move
π2 : π2(transit3) = move;π2(transit2) = move;

π2(parking1) = deliver;π2(parking2) = deliver
π3 : π3(transit3) = move;π3(transit2) = move;

π3(parking1) = deliver;π3(parking2) = deliver;
π3(transit1) = move

π4 : π4(transit3) = move;π4(transit2) = move;
π4(parking1) = deliver;π4(parking2) = deliver;
π4(transit1) = move;π4(at harbor) = park

π5 : π5(transit3) = move;π5(transit2) = move;
π5(parking1) = deliver;π5(parking2) = deliver;
π5(transit1) = move;π5(at harbor) = park;
π5(on ship) = unload

π6 : π5

Notice that at the fifth iteration, PruneStates removes from π5 all the state-
action pairs that move the container back (action back) from states such that
a solution is already known. For instance, π5(parking2) = back, π5(gate1) =
back, and so on.

5.4.5 BDD-based Representation

In the previous section, we showed how the basic building blocks of the
planning algorithm can be represented through operations on propositional
formulas. In this section, we show how specific data structures, Binary
Decision Diagrams (BDDs) , can be used for the compact representation
and effective manipulation of propositional formulas.

A BDD is a directed acyclic graph (DAG). The terminal nodes are either
True or False (alternatively indicated with 0 and 1, respectively). Each
nonterminal node is associated with a boolean variable and with two bdds,
which are called the left and right branches. Figure 5.7 (a) shows a BDD
for the formula (a1 ↔ b1) ∧ (a2 ↔ b2) ∧ (a3 ↔ b3).

Given a BDD, the value corresponding to a given truth assignment to the
variables is determined by traversing the graph from the root to the leaves,
following each branch indicated by the value assigned to the variables. A
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path from the root to a leaf can visit nodes associated with a subset of all
the variables of the BDD. The reached leaf node is labeled with the resulting
truth value. If v is a BDD, its size |v| is the number of its nodes.11 If n is a
node, we will use var(n) to denote the variable indexing node n. BDDs are
a canonical representation of boolean formulas if

• there is a total order < over the set of variables used to label nodes,
such that for any node n and correspondent nonterminal child m, their
variables must be ordered, var(n) < var(m), and

• the BDD contains no subgraphs that are isomorphic to the BDD itself.

The choice of variable ordering may have a dramatic impact on the dimen-
sion of a BDD. For example, Figure 5.7 depicts two BDDs for the same
formula (a1 ↔ b1) ∧ (a2 ↔ b2) ∧ (a3 ↔ b3) obtained with different variable
orderings.12

BDDs can be used to compute the results of applying the usual boolean
operators. Given a BDD that represents a formula, it is possible to transform
it to obtain the BDD representing the negation of the formula. Given two
BDDs representing two formulas, it is possible to combine them to obtain
the BDD representing the conjunction or the disjunction of the two formulas.
Substitution and quantification on boolean formulas can also be performed
as BDD transformations.

5.5 Determinization Techniques

Recent works address the problem of planning in nondeterministic domains
by determinizing the planning domain. Intuitively the idea is to consider
one of the possible many outcomes of a nondeterministic action at a time,
using an efficient classical planning technique to find a plan that works in the
deterministic case. Then different nondeterministic outcomes of an action
are considered and a new plan for that state is computed, and finally the
results are joined in a contingent plan that considers all the possible out-
comes of actions. Of course, it may be that when a partial plan is extended

11Notice that the size can be exponential in the number of variables. In the worst
case, BDDs can be very large. We do not search through the nodes of a BDD, however,
but rather represent compactly (possibly very large) sets of states and work on such a
representation of sets of states.

12A state variable representation can lead to a variable ordering in which closely re-
lated propositions are grouped together, which is critical to good performance of BDD
exploration.
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Figure 5.7: Two BDDs for the formula (a1 ↔ b1) ∧ (a2 ↔ b2) ∧ (a3 ↔ b3).

to consider new outcomes, no solution is possible, and the algorithm must
find an alternative solution with different actions.

5.5.1 Guided Planning for Safe Solutions

Before getting into the details, we show a basic idea underlying determiniza-
tion techniques. Safe solutions can be found by starting to look for (possibly
unsafe) solutions, that is, plans that may achieve the goal but may also be
trapped in states where no action can be executed or in cycles where there
is no possibility of termination. The idea here is that finding possibly un-
safe solutions is much easier than finding safe solutions. Compare indeed
the algorithm for finding solutions Find-Solution and the one for finding
safe solutions Find-Safe-Solution in Section 5.3. Whereas Find-Solution does
not distinguish between And-branches and Or-branches, Find-Safe-Solution
needs to check that there are no unsafe loops, and this is done with the
has-unsafe-loops routine.

Algorithm 5.11 is based on this idea, that is, finding safe solutions by
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Guided-Find-Safe-Solution (Σ,s0,Sg)
if s0 ∈ Sg then return(∅)
if Applicable(s0) = ∅ then return(failure)
π ← ∅
loop
Q← leaves(s0, π) \ Sg
if Q = ∅ then do
π ← π \ {(s, a) ∈ π | s 6∈ γ̂(s0, π)}
return(π)

select arbitrarily s ∈ Q
π′ ← Find-Solution(Σ, s, Sg)
if π′ 6= failure then do
π ← π ∪ {(s, a) ∈ π′ | s 6∈ Dom(π)}

else for every s′ and a such that s ∈ γ(s′, a) do
π ← π \ {(s′, a)}
make a not applicable in s′

Algorithm 5.11: Guided planning for safe solutions.

starting from possibly unsafe solutions that are found by Find-Solution.

Guided-Find-Safe-Solution takes in as input a planning problem in a non-
deterministic domain Σ with initial state s0 and goal states Sg. If a safe
solution exists, it returns the safe solution π.

The algorithm checks first whether there are no applicable actions in s0.
If this is the case, it returns failure.

In the loop, Q is the set of all nongoal leaf states reached by π from the
initial state. If there are no nongoal leaf states, then π is a safe solution.
When we have the solution, we get rid of the part of π whose states are not
reachable from any of the initial state (we say we “clean” the policy).

If there are instead nongoal leaf states reached by π, then we have to go
on with the loop. We select arbitrarily one of the nongoal leaf states, say,
s, and find a (possibly unsafe) solution from initial state s with the routine
Find-Solution, see Algorithm 5.2.

If Find-Solution does not return failure, then π′ is a (possibly unsafe)
solution, and therefore we add to the current policy π all the pairs (s, a) of
the (possibly unsafe) solution π′ that do not have already a state s in π.

If a (possibly unsafe) solution does not exists (the else part of the con-
ditional) this means we are trapped in a loop or a dead end without any
possibility of getting out. According to Definition 5.9, then, this is not a
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safe solution. We therefore get rid from π of all the pairs (s′, a) that lead to
dead-end state s. We implement this by making action a not applicable in
s′.13 In this way, at the next loop iteration, we will not have the possibility
to become stuck in the dead end.

5.5.2 Planning for Safe Solutions by Determinization

The idea underlying the Guided-Find-Safe-Solution algorithm is to use
possibly-unsafe solutions to find safe solutions. Find-Solution returns a path
to the goal by considering only one of the many possible outcomes of an
action. Looking for just one action outcome and finding paths inspires the
idea of determinization. If we replace each action a leading from state s to
n states s1, . . . , sn with n deterministic actions a1, . . . , an, each one leading
to a single state s1, . . . , sn, we obtain a deterministic domain, and we can
use classical efficient planners to find solutions in the nonderministic domain
as sequences of actions in the deterministic domain. We will have then to
transform a sequential plan into a corresponding policy, and to extend it
to consider multiple action outcomes. According to this idea, we define a
determinization of a nondeterministic domain.14

Algorithm 5.12 exploits domain determinization and replaces Find-
Solution in Guided-Find-Safe-Solution with search in a deterministic domain.
Here we use the simple forward search algorithm Forward-search presented
in Chapter 2, but we could use a more sophisticated classical planner, as
long as it is complete (i.e., it finds a solution if it exists). This algorithm
is similar to the first algorithm for planning by determinization proposed in
literature.

Find-Safe-Solution-by-Determinization is like Guided-Find-Safe-Solution,
except for the following steps:

1. The determinization step: We add a determinization step. The
function mk-deterministic returns a determinization of a nondetermin-
istic planning domain.

2. The classical planner step: We apply Forward-search on the deter-

13This operation can be done in different ways, and depends on which kind of repre-
sentation we use for the domain. This operation may not be efficient depending on the
implementation of Σ.

14The operation of transforming each nondeterministic action into a set of deterministic
actions is complicated by the fact that we have to take into account that in different states
the same action can lead to a set of different states. Therefore, if the set of states has
exponential size with respect to the number of state variables, then this operation would
generate exponentially many actions.
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Find-Safe-Solution-by-Determinization (Σ,s0,Sg)
if s0 ∈ Sg then return(∅)
if Applicable(s0) = ∅ then return(failure)
π ← ∅
Σd ← mk-deterministic(Σ)
loop

Q← leaves(s0, π) \ Sg
if Q = ∅ then do
π ← π \ {(s, a) ∈ π | s 6∈ γ̂(s0, π)}
return(π)

select s ∈ Q
p′ ← Forward-search (Σd, s, Sg)
if p′ 6= fail then do
π′ ← Plan2policy(p′, s)
π ← π ∪ {(s, a) ∈ π′ | s 6∈ Dom(π)}

else for every s′ and a such that s ∈ γ(s′, a) do
π ← π \ {(s′, a)}
make the actions in the determinization of a
not applicable in s′

Algorithm 5.12: Planning for safe solutions by determinization.

ministic domain Σd rather than using Find-Solution on the nondeter-
ministic domain Σ. In general, we could apply any (efficient) classical
planner.

3. The plan2policy transformation step: We transform the se-
quential plan p′ found by Forward-search into a policy (see routine
Plan2policy, Algorithm 5.13), where γd(s, a) is the γ of Σd obtained by
the determinization of Σ. The routine det2nondet returns the original
nondeterministic action corresponding to its determinization ai.

4. The action elimination step: We modify the deterministic domain
Σd rather than the nondeterministic domain Σ.

5.6 Online approaches

In Chapter 1 (see Section 1.3.3), we introduced the idea of interleaving plan-
ning and acting. Interleaving is required because planning models are just
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Plan2policy(p = 〈a1, . . . , an〉,s)
π ← ∅
loop for i from 1 to n do
π ← π ∪ (s, det2nondet(ai))
s← γd(s, ai)

return π

Algorithm 5.13: Transformation of a sequential plan into a corresponding
policy.

Figure 5.8: Offline versus run-time search spaces.

approximations, and sensing is required to adapt to a changing environ-
ment. Another motivation is the ability to deal with realistic large domains.
Dealing with large state spaces is even more difficult in the case of nondeter-
ministic domains. The idea is that while offline planners have to find a large
policy exploring a huge state space, if we interleave acting and planning, we
significantly reduce the search space. We need indeed to find a partial pol-
icy, for example, the next few “good” actions, perform all or some of them,
and repeat these two interleaved planning and acting steps from the state
that has been actually reached. This is the great advantage of interleaving
acting and planning: we know exactly which of the many possible states
has been actually reached, and the uncertainty as well as the search space
is significantly reduced.

Intuitively, the difference in search space between planning offline and
interleaving planning and acting is shown in Figure 5.8. In the case of
purely offline planning, uncertainty in the actual next state (and therefore
the number of states to search for) increases exponentially from the initial
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state (the left vertex of the triangle) to the set of possible final states (the
right part of the triangle): the search space is depicted as the large triangle.
In planning and acting, we plan just for a few next steps, then we act and we
know exactly in which state the application of actions results. We repeat the
interleaving of planning and acting until we reach a goal state. The search
space is reduced to the sequence of small triangles depicted in Figure 5.8.

Notice that there is a difference between the search space depicted in
Figure 5.8 and the ones depicted in Figures 1.3 and 1.4, because here we
have uncertainty in the outcome of each action, and the base of each small
triangle represents all the possible outcomes of an action rather than the
different outcomes of the search for each different action in a deterministic
domain.

The selection of “good” actions (i.e., actions that tend to lead to the goal)
can be done with estimations of distances from and reachability conditions
to the goal, like in heuristic search, and by learning step by step after each
application better estimates of the distance.

A critical issue is the possibility of getting trapped in dead ends. In safely
explorable domains (see also Chapter 6), that is, domains where execution
cannot get trapped in situations where there is no longer a path to the goal,
it is possible to devise methods that are complete, i.e., that guarantee to
reach the goal if there exists a solution, and that guarantee the termination
of the planning/acting loop if no solution exists. However, not all domains
are safely explorable, and not all actions are reversible. A navigation robot
can be trapped in a hole where no navigation operation is possible anymore;
a bank transaction is critical and cannot be easily undone. Even worse, the
actor may not easily recognize that it is trapped in a dead end. For instance,
a navigation robot can enter an area where it is possible to navigate but it
is impossible to get out of that area. Despite these problems, planning and
acting methods remain a viable solution to problems that cannot be solved
purely offline.

In this section, we present some basic techniques that can be used to
interleave planning and execution.

5.6.1 Lookahead

The idea underlying lookahead methods is to generate a partial plan to
interleave planning and acting. The Lookahead-Partial-Plan procedure, Al-
gorithm 5.14, interleaves partial planning in line (i) with acting in line (ii).
At each loop, Lookahead searches for a partial plan rooted at s. It returns a
partial plan as a policy π that is partially defined, at least in s. A context-

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


234 Chapter 5

Lookahead-Partial-Plan(Σ, s0, Sg)
s← s0
while s /∈ Sg and Applicable(s) 6= ∅ do
π ←Lookahead(s, θ) (i)
if π = ∅ then return failure
else do

perform partial plan π (ii)
s← observe current state

Algorithm 5.14: Interleaving planning and execution by lookahead.

dependent vector of parameters θ restricts in some way the search for a
solution. Working with a progressively generated policy, defined when and
where it is needed, allows us to deal with large domain models that cannot
be represented a priori and with partial domain knowledge. This approach
combines naturally with a generative definition of Σ. A full specification
of a domain is not necessary to a partial exploration, as discussed in more
detail in Chapter 6.

There are different ways in which the generated plan can be partial and
different ways for interleaving planning and acting. Indeed, the procedure
Lookahead-Partial-Plan is parametric along two dimensions:

The first parametric dimension is in the call to the lookahead planning
step, that is, Lookahead(s, θ). The parameter θ determines the way in which
the generated plan π is partial. For instance, it can be partial because
the lookahead is bounded, that is, the forward search is performed for a
bounded number of steps without reaching the goal. In the simplest case,
Lookahead(s, θ) can look ahead just one step, choose an action a (in this
case π = a), and at the next step perform action a. This is the extreme
case of interleaving in which the actor is as reactive as possible. In general,
however, Lookahead(s, θ) can look ahead for n ≥ 1 steps.15 The greater n is,
the more informed is the choice on the partial plan to execute; the drawback
is that the cost of the lookahead increases. In the extreme case in which the
lookahead reaches the goal from the initial state s0, if performing the found
plan succeeds, then there is no actual interleaving.

Rather than specifying the bound as a number of steps to search, θ can
specify other kinds of bounds for the plan generation phase, for example,
some real-time interruption mechanism corresponding to the planning dead-

15In nondeterministic domains, lookahead for n steps means to generate a branching
tree.
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line and the need to switch to acting.

However, there are other ways in which the generated plan is partial. For
instance, Lookahead can consider a some of the outcomes of a nondetermin-
istic action, that is, only some of its possible outcomes of a nondeterministic
action, and in this way the lookahead procedure can reach the goal. Even
if the goal is reached, the plan is still partial because it is not guaranteed
that the execution will actually go through the considered outcomes of the
actions. In the extreme case, Lookahead can consider just one of the possible
outcomes of an action, look for a possibly unsafe solution to the goal or, in
other words, pretend that the domain model is deterministic. In this case,
the lookahead procedure is not bounded, but the plan is still partial. The
policy π in this case can be reduced to a sequential plan.

It is of course possible to combine the two types of partiality – bounded
lookahead and partial number of outcomes – in any arbitrary way.

The second parametric dimension is in the application of the partial
plan that has been generated, i.e., in the execution of the partial plan π.
Independently of the lookahead, we can still execute π in a partial way.
Suppose, for instance, that we have generated a branching plan of depth n;
we can decide to perform m ≤ n steps.

Two approaches to the design of a Lookahead procedure are presented
next:

• lookahead by determinization, and

• lookahead with a bounded number of steps.

The former approach does not bound the search to a limited number of
steps, but searches for a (possibly unsafe) solution to the goal. At execution
time, it checks whether the reached state corresponds to the one predicted
by the (possibly unsafe) solution. The latter approach bounds the search
to a limited number of steps (in the simplest case, just one step), selects an
action according to some heuristics, memorizes the results, and performs a
value update to learn a better heuristics in possible future searches.

5.6.2 Lookahead by Determinization

Lookahead can be realized by determinizing the domain. FS-Replan (Al-
gorithm 5.15) illustrates a determinization relaxation introduced in Sec-
tion 5.5.2. The idea is to generate a path πd from the current state to a goal
for for all outcomes of the determinized domain Σd using a deterministic
planner – in this case Forward-search, but it could be any efficient determin-
istic planner, as in the case of the offline determinization (Algorithm 5.12).

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


236 Chapter 5

FS-Replan (Σ, s, Sg)
πd ← ∅
while s /∈ Sg and Applicable(s) 6= ∅ do

if πd undefined for s then do
πd ← Plan2policy(Forward-search(Σd, s, Sg), s)
if πd = failure then return failure

perform action πd(s)
s← observe resulting state

Algorithm 5.15: Online determinization planning and acting algorithm.

The actor acts using πd until reaching a state s that is not in the domain
of πd. At that point, a new deterministic plan starting at s is generated.
If the planning domain is safely explorable and because Forward-search is a
complete deterministic planner, then FS-Replan will lead to a goal. If the
domain has dead ends, then FS-Replan is not guaranteed to reach the goal.

Notice the relation between FS-Replan and Lookahead-Partial-Plan. In
the case FS-Replan the parameter θ of Lookahead-Partial-Plan is realized by
the condition checking whether πd is undefined for the current state s. FS-
Replan does not look ahead for only some steps, but until the goal is reached
according to a simplified (i.e., determinized) model of the domain.

5.6.3 Lookahead with a Bounded Number of Steps

MinMax Learning Real Time A* (MinMax LRTA*, Algorithm 5.16) searches
the state space forward from the initial state s0 until in line (i), the termi-
nation checking step, the search reaches the goal or a state that has no
applicable actions. In line (ii), the action selection step, the algorithm looks
for the best worst-case action. This is the action a that produces the small-
est maximum value for h(s′), where h(s′) is the estimated distance from s′

to the goal. In line (iii), the value update step, the algorithm improves the
estimate h(s) using the h-values of s’s children. This step is useful if we
perform multiple runs of the planning and acting routine and we learn from
each run.

MinMax LRTA* is guaranteed to terminate and to generate a solution
only in safely explorable domains. Notice that the termination condition
Applicable(s) 6= ∅ can check only whether we are in a direct dead end , but
in order to check whether we may end up in a indirect dead end we would
need to explore all of the states that are reachable from s.
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MinMax LRTA* (Σ, s0, Sg)
s← s0
while s 6∈ Sg and Applicable(s) 6= ∅ do (i)
a← argmina∈Applicable(s) maxs′∈γ(s,a)h(s′) (ii)

h(s)← max{h(s), 1 + maxs′∈γ(s,a)h(s′)} (iii)

perform action a
s← the current state

Algorithm 5.16: MinMax Learning Real Time A*.

MinMax LRTA* can easily be extended to deal with domains that include
costs of actions. We need only to replace the formula in the value update
step with this: h(s)← max{h(s), c(s, a) + maxs′∈γ(s,a)h(s′)}.

To choose the action a, the algorithm does a lookahead of one step. It
is possible to extend it to look ahead n steps by generating a partial search
tree by searching forward from the current state s. Then we can update
the values in the local search space by assigning at each state the minmax
distance under the assumptions that such values do not overestimate the
correct minmax distance to the goal.

5.7 Refinement Methods with Nondeterministic
Models

In Chapter 3, we introduced a formalism for operational models based on
refinement methods. A method specifies how to accomplish a task (an ab-
stract activity of some kind) by refining it into other activities that are less
abstract. These activities may include other tasks that will need further
refinement. We devised the SeRPE and IRT algorithms to do refinement
planning and choose among different possible refinements in a deterministic
model. We extended the formalism to include goals, which can be further
refined with different refinement methods.

In this section, we use nondeterministic models in refinement methods.
This allows us to model commands and tasks with nondeterministic out-
comes, and to search for safe cyclic or acyclic solutions. We consider tasks
that are specified with programs. Tasks can be iteratively refined in sub-
tasks and goals through programs that contain the usual control constructs,
like constructs for sequences of steps, conditionals, loops, and so on. Plan-
ning algorithms that use deterministic models, such as SeRPE and IRT, can
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simply simulate the execution through such control structures and replace
commands with the corresponding γ, which leads from one state to a single
state. Planning algorithms that use nondeterministic models must instead
take into account that programs might be executed in different states. A
simple simulation starting from one state does not allow us to know ex-
actly in which state the program will be executed. This makes the planning
algorithms much more complicated.

In the following subsections, we first recall the formalism for tasks and
adapt it to nondeterministic models (Section 5.7.1). We then define context-
dependent plans (Section 5.7.2). They are more expressive than policies
because they can take into account the context in which a step of the plan is
executed, and the context can depend of the steps that have been executed
so far. In the subsequent two subsections, we provide a planning algorithm
to generate context dependent plans that achieve tasks. We do this in two
steps. First, we generate automatically search automata from given tasks
(Section 5.7.3). Search automata are used to guide the search for context-
dependent plans. Second, we define the planning algorithm that exploits
the generated planning automata (Section 5.7.4).

5.7.1 Tasks in Refinement Methods

We start from a slightly revised version of the formalism defined in Chap-
ter 3, Section 3.1.2. A refinement method is a task with a body.16 The body
is a program that refines the task into a sequence of subtasks, commands,
and goals. The program contains usual control structures, like sequences,
conditionals, and loops, over tasks, goals, and commands.

In Section 3.1.2 we defined the following kinds of tasks:

• A reachability goal g, that is, a partial state variable assignment
xi = vi, . . . , xk = vk, for each xi, . . . , xk ∈ X, and each vi ∈
Range(xi), . . . , vk ∈ Range(xk). To distinguish between safe cyclic
and safe acyclic solutions (see Definition 5.10 and Definition 5.11, re-
spectively), we now have two kinds of reachability goals:

– achieve-cyclic(g)

– achieve-acyclic(g)

• A command cmd. We model each command in a nondeterministic
domain Σ = (A,S, γ), where γ is nondeterministic: γ : S ×A→ 2S .

16Here we do not have a separate precondition field but use conditional tasks.
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• A sequence of tasks: t1; t2, where t1 and t2 are tasks.

• A conditional task : if p then t1 else t2, where t1 and t2 are tasks and
p is partial variable assignment.

• An iterative task : while p do t, where t is a task and p is partial variable
assignment.

• A test : test p, where p is partial variable assignment.

We also will define another kind of task that is specifically useful when we
plan in nondeterministic domains:

• A failure-handling task :
if t1 fails then t2, where t1 and t2 are tasks.

The failure-handling task if t1 fails then t2 is the basic construct for handling
failure. It expresses a preference to achieve t1 if possible, and to try to
achieve t2 only if t1 is impossible.

5.7.2 Context-Dependent Plans

Policies as defined so far are stationary or memoryless policies, that is, they
always perform the same action in the same state, independently of the
actions that have been previously performed and the states that have been
previously visited. Policies are not enough to represent plans that can satisfy
tasks with programs in the body a refinement methods. Plans should take
into account previously-executed steps. Consider for instance a sequence
of tasks t1; t2, where both t1 and t2 are reachability goals, for example,
t1 = achieve acyclic g1 and t2 = achieve acyclic g2. In this case, we might
need to perform different actions (and execute the different corresponding
commands) in the same state depending on whether the actor is trying to
achieve the first goal in the first task g1 or the second task g2. As a simple
example, consider the case in which a robot has to move to a given location
and has to come back afterward. Similar examples can be given for the
constructs for conditional and iterative tasks, as well for failure-handling
and recovery constructs.

One could address this issue by extending the representation of a state
to include all relevant data, for example, the history of states visited so
far. This might work in theory, but its implementation is not practical. We
take a different approach by introducing the notion of context. A context
specifies which subtask the actor is in the process of satisfying. For instance,
in the previous example, where we have the task t1; t2, then the actor is in a
context while trying to satisfy task t1, and in a different context while trying
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Figure 5.9: An example of nondeterministic planning domain

to satisfy task t2. In this way, actions to be performed can depend not only
on the current state of the domain but also on the “internal state” of the
actor, on its “intention” to satisfy one subtask or another. To represent this
kind of plans, we introduce the notion of context-dependent plan.

Definition 5.20. (Context-dependent Plans) A context-dependent plan
π for a domain Σ = (S,A, γ) is a structure (C, c0, act, ctxt), where:

• C is a set of contexts, representing the internal state of the actor

• c0 is the initial context,

• act : S × C ⇀ A is the action function, and

• ctxt : S × C × S ⇀ C is the context function.

If we are in a state s and in a context c, then act(s, c) returns the action
to be performed by the plan, while ctxt(s, c, s′) associates to each reached
state s′ a new context. The pair (s, c) ∈ S × C defines the state of the
context-dependent plan.

Example 5.21. In Figure 5.9, we have a nondeterministic planning domain
for a navigation robot. Each state si corresponds to a location of the robot
in a building. Some of the actions for moving the robot are nondetermin-
istic. Let us suppose that the robot is initally in state s1, and the task is
achieve-acyclic(s2); achieve-cyclic(s4).
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Figure 5.10: A context-dependent plan.

There is no policy on the set of states S = {s1, s2, s3, s4} that can achieve
such task. The context-dependent plan in Figure 5.10 achieves instead the
task (we write the context-dependent plan in a tabular form to make it
easier to read).

An important remark is in order. One may think that it is enough to
define policies on the domain of pairs state contexts S × C rather than on
the set of states S, and reuse all the algorithms and approach defined so far.
Notice however, that we need to know which are the possible contexts in C,
and this can be done in practice only with a generative approach that, given
a task, constructs the contexts corresponding to the subtasks. This will be
explained in Section 5.7.3.

We need to define now when a context-dependent plan achieves a task.
In the following, we provide just an intuitive idea.

• When t is achieve-cyclic(g) or achieve-acyclic(g), then π satisfies t if
and only if π is equivalent to a safe cyclic solution or a safe acyclic
solution for g, respectively.

• When t is a command cmd, then π achieves t in state (s, c) if and only
if there exists an action a corresponding to cmd that is applicable in
state (s, c). Otherwise, it fails.

• When t is a sequence t1; t2, then π achieves t if and only if π achieves
first t1 and, if t1 is achieved , then π achieves t2. If π achieves t1 and
then it does not achieve t2, then π fails. If π does not achieve t1, then
π fails.

• When t is if p then t1 else t2, then π needs to satisfy t1 if p holds in
(s, c), and it needs to satisfy t2 if p does not hold in (s, c).

• When t is while p do t1, then π must satisfy cyclically t1 while p holds.
Moreover, π should guarantee the termination of the loop.
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• When t is test p, then π must lead to a state (s, c) where p holds.

• When t is if t1 fails then t2, then π must satisfy t1. In the case it fails
(i.e., there is no possibility to satisfy t1), then is must satisfy t2.

5.7.3 Search Automata

In this subsection, we define a mapping from tasks to a class of automata
called Search Automata. In the subsequent subsection (see Section 5.7.4),
we show how search automata can be used to guide the search for context-
dependent plans.

The states of each search automaton correspond to the contexts of the
plan under construction, according to Definition 5.20. Given a task, we
generate the contexts that we need in the context-dependent plan. It is a
generative approach, which allows us determine the set of contexts C. The
transitions from a state (context) to other states (contexts) of each search
automaton define constraints on the states that have to be searched for by
the planning algorithm.

Definition 5.22. (Search Automata) Let S be the set of states of the
planning domain. A search automaton is a tuple (C, c0, T,RB) where:

• C is the set of states of the search automaton.17

• c0 ∈ C is the initial state of the search automaton.

• T (c) = (t1, . . . , tm) is the list of transition for state c ∈ C. Each
transition ti is either

– normal, in which case ti ∈ 2S × (C × {always, some})∗

– immediate, in which case ti ∈ 2S × (C ∪ {succ, fail}).

• RB = {rb1, . . . , rbn}, with rbi ⊆ C is the set of red blocks, states where
the execution cannot stay forever.

A list of transitions T (c) is associated to each state c. Each transition
determines the behavior that should be satisfied if we move from c to T (c).
The order of the list represents the preference among these transitions. It
is important to have such order among transitions because it will allow us

17We intentionally call the set of states of the search automaton C, like the set of
contexts of the context-dependent plans in Definition 5.20. Indeed, the states of the
search automaton correspond to the contexts of the plan that is generated by the algorithm
described in Section 5.7.4.
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to distinguish between “main” tasks that we need to achieve from recovery
tasks we need to achieve only if the main task cannot be achieved.

The transitions of a search automaton are either normal or immediate.
The former transitions correspond to performing an action in the plan. The
latter ones describe updates in the search state, which do not correspond to
performing an action.18

The normal transitions are defined by a condition on the states of the
planning domain and by a list of target search states. Each target search
state is marked either by always or some. Let p be a partial state assignment.
State s satisfies a normal transition (p, ((c′1, k

′
1), . . . , (c

′
n, k
′
n))), with k′i ∈

{always, some}, if it satisfies condition p, and if there is some action a from
s such that:

• all the next states reachable from s when performing action a are
compatible with some of the target search states, and

• for each target search state marked some, there is a compatible next
state.

When a target search state is marked with some, it means that there should
be always at least one next state that satisfies a condition. It is used in the
case of safe cyclic solutions, in which we have to guarantee that from each
state we should reach a given goal.

The immediate transitions are defined by both a condition and by a
target search state. A state satisfies an immediate transition (p, c′) if it
satisfies condition p and if it is compatible with the target state c′. Special
target search states succ and fail are used to represent success and failure:
all states are compatible with success, while no state is compatible with
failure.

The red blocks of a search automaton represent sets of search states
where the execution cannot stay forever. Typically, a red block consists of
the set of search states in which the execution is trying to achieve a given
condition, as in the case of a reachability goal. If an execution persists inside
such a set of search states, then the condition is never reached, which is not
acceptable for a reachability goal. In the search automaton, a red block is
used to represent the fact that any valid execution should eventually leave
these search states.

We now describe the search automata that are automatically constructed

18Immediate transitions resemble ε-transitions of classical automata theory. An ε-
transition allows an automaton to change its state spontaneously, that is without con-
suming an input symbol [286].
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c0 T

fail

T

c1

successp

  p
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Figure 5.11: Search automaton for safe acyclic solutions.

from tasks. Rather than providing the formal definition of the search au-
tomata, we represent them using a graphical notation. We start with the
search automaton for a reachability goal p, that is, a safe solution as de-
fined in Section 5.2.3. We have to distinguish the case of cyclic from acyclic
solutions (see Definitions 5.10 and 5.11, respectively).

Let us start with acyclic solutions (see Figure 5.11). The search au-
tomaton has two search states: c0 (the initial state) and c1. There are two
transitions leaving state c1. The first one, guarded by condition p, is a suc-
cess transition that corresponds to the cases where p holds in the current
domain state. The second transition, guarded by condition ¬p, represents
the case in which p does not hold in the current state, and therefore, to
achieve goal p in a safe acyclic way, we have to ensure that the goal can be
achieved from all the next states. We recall that this is the condition for the
plannig algorithm that will be devised in the next section (Section 5.7.4). We
remark that the second transition is a normal transition because it requires
performing an action in the plan; the first transition, instead, is immediate.
In the diagrams, we distinguish the two kinds of transitions by using thin
arrows for the immediate ones and thick arrows for the normal ones. A do-
main state is compatible with state c1 only if it satisfies in a safe acyclic way
goal p, that is, if condition p holds in the current state (first transition from
c1) or if the goal will be reachable in all the next states (second transition
from c1).

According to the semantics of safe acyclic solutions, it is not possible
for the search to stay in state c1 forever, as this corresponds to the case
in which condition p is never reached. That is, set {c1} is a red block of
the search automaton. In the diagrams, states that are in a red block are
marked in grey. State c0 takes into account that it is not always possible
to ensure that condition p will be eventually reached, and that if this is not
the case, then p cannot be satisfied in a safe acyclic way, and therefore the
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c0 T

fail

T

c1

successp

  p
somec1c0
¬

Figure 5.12: Search automaton for safe cyclic solutions.

search fails. The precedence order among the two transitions from state c0,
represented by the small circular dotted arrow between them, guarantees
that the transition leading to a failure is followed only if it is not possible
to satisfy the constraints of state c1.

We provide now the search automaton for safe cyclic solutions (see Fig-
ure 5.12). The difference with respect to the search automaton for safe
acyclic solutions is in the transition from c1 guarded by condition ¬p. In
this case we do not require that the goal holds from all the next states, but
only from some of them. Therefore, the transition has two possible targets,
namely states c1 (corresponding to the next states were we expect to achieve
the safe cyclic solution for p) and c0 (for the other next states). The seman-
tics of safe cyclic solutions requires that there should be always at least one
next state that satisfies the definition of safe cyclic solution for goal p; that
is, target c1 of the transition is marked by some in the search automaton.
This “non-emptiness” requirement is represented in the diagram with the
mark some on the arrow leading back to c1. The preferred transition from
state c0 is the one that leads to c1. This ensures that the algorithm will try
to find a safe cyclic solution whenever possible.

c0 T

fail

T

c1 success
action = a 

c1c0

Figure 5.13: Search automaton for primitive actions.
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Figure 5.13 shows the simple search automaton for the primitive action
a ∈ A corresponding to a command. The transition from the state c1 guar-
antees that a domain state is acceptable only if the next state is achieved by
performing action a, that is, only if the next state is reachable by performing
action a.

The search automaton for the sequence t1; t2 is shown in Figure 5.14
The initial state of the compound automaton coincides with the initial state
of automaton At1 for t1, and the transitions that leave At1 with success
are redirected to the initial state of At2 , the automaton for t2. The search
automaton for the conditional task if p then t1 else t2 is in Figure 5.15. The
context c0 immediately moves the acting to the initial context of one of the
search automata for the tasks t1 or t2 according to the current domain state,
i.e. whether the property p holds in the current domain state or not.

The search automaton for the while loop while p do t1 is in Figure 5.16.
The context c0 has two immediate transitions guarded by the conditions p
and ¬p. The former leads to the initial context of the automaton for t1, i.e.,
the body of the cycle, and the latter leads to the success of the compound
automaton. The successful transitions of the automaton for t1 return back to
context c0, but the failure transition for t1 falsifies the compound automaton.
The context c0 is marked as a red block. It guaranties that the loop is finite.

Figure 5.17 shows the simple search automaton for test p. All transitions
are immediate, because action performing is not required. The automaton
only checks that the current domain state satisfies formula p.

Figure 5.18 shows the search automaton for the failure-handling con-
struct if t1 fails then t2. The search automaton is defined similarly to that
for sequences t1; t2. The difference is that in this case, the transitions that
leave At1 (the search automaton for t1) with failure are redirected to the
initial state of At2 .

fail

success

At1

At2success

At1

At2

Figure 5.14: Search automaton for the sequence t1; t2.
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succ

At2

succ

c0

p

  p

At1

succ
fail

fail

fail

c0

At1

At2

¬

Figure 5.15: Search automaton for conditional task if p then t1 else t2.

succ

succ

c0 p

  p

At1
fail

fail
c0 At1

¬

Figure 5.16: Search automaton for loop task while p do t1.

5.7.4 Planning Based on Search Automata

As stated in the previous section, the search automata that we have gen-
erated in the previous section are used to guide the search of the planning
algorithm that we present in this section. The algorithm is guaranteed to
find solution plans if a solution exists. It terminates with failure otherwise.
The algorithm works on sets of states. For this reason, it is specially suited
for symbolic model checking techniques (see Section 5.4).

Algorithm 5.17 is the main procedure for generating plan π. It takes in
input a nondeterministic planning domain Σ, a set of initial states S0, and
a task t as defined in Section 5.7.1. It works in three main steps. In the
first step, build automaton constructs the search automaton as defined in
Section 5.7.3. The states in the resulting automaton are the contexts of the
generated context-dependent plan π that is being built (see Definition 5.20),
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succc0
p

  p fail

c0

¬

Figure 5.17: Search automaton for test point test p.

succ

fail

At1

At2fail

fail

succ
At1

At2

Figure 5.18: Search automaton for failure-handling task if t1 fails then t2.

and the transitions represent the possible evolutions of the contexts. In the
second step, compute associated states explores the planning domain and
associates a set of states of the planning domain to each state in the search
automaton. Intuitively, these are the states for which a plan exists from
the given context. In the third step, synthesize-plan constructs a plan by
exploiting the information on the states associated to the context.

Once the search automaton is built by the function build automaton, the
planning algorithm proceeds by associating to each context in the search
automaton a set of states in the planning domain. The association is built
by compute associated states, see Algorithm 5.18. The algorithm starts with
an optimistic association, which assigns all the states in the planning domain
(S is the set in Σ = (S,A, γ)) to each context (line (i)). The algorithm

Plan-with-search-automata(Σ, S0, t)
automaton← build automaton(Σ, S0, t)
AssociatedStates = compute associated states(Σ, S0, t, automaton)
π = synthesize-plan(automaton,AssociatedStates)
return π

Algorithm 5.17: Planning based on search automata
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compute associated states(Σ, S0, t, automaton)
foreach c ∈ automaton.C do assoc(c)← S (i)
Green-Block← {c ∈ C such that ∀rbi ∈ RB c 6∈ rbi} (ii)
Blocks← {Green-Block} ∪RB
while ∃b ∈ Blocks such that a fixed point is not reached do (iii)

if b ∈ RB then for each c ∈ b do assoc(c)← ∅ (iv)
while ∃c ∈ b such that c needs update do (v)

assoc(c)← update-ctxt(automaton, assoc, c) (vi)
return assoc

Algorithm 5.18: Associating states to contexts.

computes the so-called Green-Block of contexts (see line (ii)), which is the
set of contexts that are not contained in any red block (see Section 5.7.3
and Definition 5.22). We need indeed to distinguish contexts in the green
block from those in red blocks because the search should eventually leave a
context in a red block, whereas this is not required for contexts in the green
block.

The association is then iteratively refined. At any iteration of the loop
(lines (iii)–(vi)), a block of context is chosen, and the corresponding asso-
ciations are updated. Those states are removed from the association, from
which the algorithm discovers that the tasks in the context are not satis-
fiable. The algorithm terminates when a fixed point is reached, that is,
whenever no further refinement of the association is possible: in this case,
the while condition at line (iii) evaluates to false for each b ∈ Blocks and the
guard of the while loop fails.

The chosen block of contexts may be either one of the red blocks or the
green block. In case the green block is chosen, the refinement step must
guarantee that all the states associated to the contexts are “safe,” that is,
that they never lead to contexts where the goal can no longer be achieved.
This refinement (lines (v)–(vi)) is obtained by choosing a context in the green
block and by “refreshing” the corresponding set of states (function update-
ctxt). Once a fixed point is reached and all the refresh steps on the contexts
in b do not change the association (i.e., no context in b needs updates), the
loop at lines (v)–(vi) is left, and another block is chosen.

In the case of red blocks, the refinement needs to guarantee not only that
the states in the association are “safe” but also that the goal is eventually
resolved, that is, that the contexts in the red block are eventually left. To
this purpose, the sets of states associated to the red block contexts are
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initially emptied (line (iv)). Then, iteratively, one of the red-block contexts
is chosen, and its association is updated (lines (v))-(vi)). In this way, a least
fixed point is computed for the states associated to the red block.

The core step of compute associated states is function update-ctxt. It
takes in input the search automaton (C, c0, T,RB), the current association
of states assoc, that is, a function assoc : C → 2S , and a context c ∈ C and
returns the new set of states in S to be associated to context c. It is defined
as follows:

update-ctxt(automaton, assoc, c) =
{s ∈ S | ∃trans ∈ T (c) such that s ∈ trans-assoc(automaton, trans, assoc)}.

According to this denition, a state s is compatible with a search state c
if it satisfies the conditions of some transition t from that search state. If
trans = (p, c′) is an immediate transition, then:

trans-assoc(automaton, trans, assoc) = {s ∈ S | s |= p and s ∈ assoc(c′)},

where we assume that assoc(fail) = ∅ and assoc(succ) = S. That is, in the
case of an immediate transition, we require that s satisfies property p and
that it is compatible with the new search state c′ according to the current
association assoc.

If trans = (p, ((c′1, k
′
1), . . . , (c

′
n, k
′
n)) is a normal transition, then:

trans-assoc(automaton, trans, assoc) =
{s ∈ S | s |= p and ∃a ∈ Applicable(s) such that

(s, a) ∈ gen-preimage((assoc(c′1), k
′
1), . . . , (assoc(c

′
n), k′n))}

where:
gen-preimage((S1, k1), . . . , (Sn, kn)) =
{(s, a) | ∃S′1 ⊆ S1 . . . S′k ⊆ Sk such that
γ(s, a) = S′1 ∪ . . . ∪ S′k and
S′i ∩ S′j = ∅ if i 6= j and S′i 6= ∅ if ki = some}

Also in the case of normal transitions, trans-assoc requires that s satisfies
property p. Moreover, it requires that there is some action a such that the
next states γ(s, a) satisfy the following conditions:

• all the next states are compatible with some of the target search states,
according to association assoc; and

• some next state is compatible with each target search state marked as
some.
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These two conditions are enforced by requiring that the state-action pair
(s, a) appears in the generalized preimage of the sets of states assoc(c′i)
associated by assoc to the target search states c′i.

It is now possible to explain in more detail the iterative refinement at
lines (iii)–(vi) in Algorithm 5.18. Recall that in the iterative refinement
loop, the following conditions are enforced:

• (C1) a domain state s is associated to a search state c only if s can
satisfy the condition described by some transition of c;

• (C2) actions from a given state s cannot be performed if they stay
forever inside a red block.

In each step of the iterative refinement, either a search state in the green
block is selected and the corresponding set of domain states is refined ac-
cording to (C1); or a red block is selected and all the sets of domain states
associated to its search states are refined according to (C2). The refinement
algorithm terminates when no further refinement step is possible, that is,
when a fixed point is reached.

Function update-ctxt(automaton, assoc, c) is used in the refinement steps
corresponding to (C1) as well as in the refinement steps corresponding to
(C2). In the former case, the refinement step simply updates assoc(c) to
the value of update-ctxt(automaton, assoc, c). In the latter case, the re-
finement should guarantee that any valid execution eventually leaves the
search states in the selected red block rbi. To this purpose, the empty
set of domain states is initially associated to the search states in the
red block; then, iteratively, one of the search states c ∈ rbi is chosen,
and its association assoc(c) is updated to update-ctxt(automaton, assoc, c).
These updates terminate when a fixed point is reached, that is, when
assoc(c) = update-ctxt(automaton, assoc, c) for each c ∈ rbi. In this way,
a least fixed point is computed, which guarantees that a domain state is
associated to a search state in the red block only if there is a plan from that
domain state that leaves the red block in a finite number of actions.

Finally, extract plan extracts a plan by using the information about the
associated domain states to each search state. Indeed, once a stable associ-
ation assoc from search states to sets of domain states is built for a search
automaton, a plan can be easily obtained. The contexts for the plan cor-
respond to the states of the search automaton. The information necessary
to define functions act and ctxt is implicitly computed during the execution
of the refinement steps. Indeed, function trans-assoc defines the possible
actions a = act(s, c) to be performed in the state-context pair (s, c), namely

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


252 Chapter 5
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Figure 5.19: Nondeterministic model for an open-door method.

the actions that satisfy the constraints of one of the normal transitions of the
search automaton. Moreover, function gen-preimage defines the next acting
context ctxt(s, c, s′) for any possible next state s′ ∈ γ(s, a).

5.8 Acting with Input/Output Automata

In this section we introduce a different kind of nondeterministic model to
represent refinements at the acting level. It is based on the notion of in-
put/output automata and allows us to model refinements with a distributed
approach.

Example 5.23. Consider Example 3.4 of opening a door. For simplicity,
here we consider the case in which the door is not locked. The robot does
not know whether the door can be opened by pulling, pushing or sliding
the door. Moreover, we assume the robot has no reliable way to detect in
advance how the door should be opened. The open-door action is refined in a
single refinement method the model of which is partly shown in Figure 5.19.
For the sake of simplicity, the acting states are simply labeled instead of
giving a full definition of their state variables as in Example 3.4. In states
s2, s4, and s6 the door has been opened by pushing, pulling, and sliding it,
respectively. When in s1, if the robot tries to pull the door but the door is
still closed, we then go to state s3. When in s3, if the robot tries to push
the door but the door is still closed, we then go to state s5. We assume
that if we are in state s6, the door can be opened by sliding it. In this
simple example, we assume that after a failing attempt to open the door the
robot can retry, possibly with different parameters for the commands, such
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as increased forces.

5.8.1 Input/Output Automata

In Example 5.23, we suppose we have a robot that is not able to recognize
(e.g., by artificial vision capabilities) the way to open the door. The robot
therefore tries to open the door by pulling, then by pushing, and finally by
sliding the door. Suppose now that, rather than equipping the robot with
such capability, doors are able to interact with the robot, for example, by
answering to its requests and informing about the way in which they can be
opened.19 In some way, we “distribute the intelligence” in the environment.
The task for the robot becomes much simpler, and it can be described in
the next example.

Example 5.24. In Figure 5.20, the robot gets the door’s type, for exam-
ple, by sending a request to the door, which replies with information about
the way the door can be opened. Notice that differently from the model in
Figure 5.19 for Example 5.23, now we have three different kinds of transi-
tions in the nondeterministic model: commands (grasp, pull, push, slide, and
move), inputs that are received by the robot (pulling, pushing, and sliding),
and outputs that are sent by the robot (door type).

S0 S1 S4

S3

S5

grasp

sliding

move

move

move

door_type

S2

pushingpulling

S9S7

S6

S8

push

pull

slide

Figure 5.20: Input/output automaton for an open-door method.

As introduced informally in Example 5.24, the idea is to specify bodies
of methods as input/output automata, the main feature of which is to model

19Automated doors are widely used, but there can be situations in which using an RFID
stick is preferable to changing the door.
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components that interact with each other through inputs and outputs. This
is the main representational shift with respect to the usual acting/sensing
representation. Input/output automata allow for modeling distributed sys-
tems where each automaton is a component that interacts with other com-
ponents through inputs and outputs. They make it possible to simplify the
design process by abstracting away the details of their internal representa-
tion.

Formally, input/output automata are very similar to state transition
systems described in Chapter 2 and planning domains described in this
chapter, with the following differences. Input/output automata can evolve
to new states by receiving inputs from other automata and sending outputs
to other automata. Moreover, they can evolve with internal transitions
without sending outputs and receiving inputs. Internal transitions represent
commands that are sent to the execution platform,20 as they have been
introduced in the definition of RAE methods in Chapter 3.

Definition 5.25. (Input/Output Automaton) An input/output au-
tomaton is A = (S, S0, I, O,C, γ), where

• S is a finite set of states;

• S0 ⊆ S is the set of possible initial states in which the automaton can
start;

• I is the set of inputs, O is the set of outputs, and C is a set of com-
mands, with I, O, and C disjoint sets;

• γ : S × (I ∪ O ∪ C) → 2S is the nondeterministic21 state transition
function.

The distinction between inputs and outputs is a main characteristics of
input/output automata. The intended meaning is that outputs are under
the full control of the automaton, that is, the automaton can decide when
and which output to send. In contrast, inputs are not under its control. If
and when they are received, which input is received from other automata
cannot be determined by the automaton receiving inputs. An automaton

20In most automata formalizations, the symbol τ is used to denote internal transitions,
which are called τ -transitions. In our representation, internal transitions are triggered by
commands.

21Commands can be modeled with nondeterministic actions (see, e.g., the sense(door)
command in Figure 5.21). One way to “move” the nondeterminism outside of the au-
tomaton is to send an output to another automaton and wait for different kinds of inputs.
However, this does not eliminate the need to reason about nondeterminism because the
automaton does not know a priori which input it will receive.
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can wait for the reception of an input, but whether it will receive it, and
when it will receive it is not under its control.

The automaton can determine when to perform an internal transition,
that is, to execute a command. However, notice that such transition can end
up in different states. This allows us to model the execution of commands
that are sent to the execution platform without knowing a priori the result
of execution.

In simple cases like the one in Figure 5.20, the input/output automaton
can be reduced to a simple nondeterministic state transition system, simply
by replacing the sequences of outputs and inputs with a nondeterministic
action, for instance, get-door-kind that leads to three possible states. In
this case, we can apply any of the techniques described in the previous sec-
tions, either offline or online (e.g., determinization, symbolic model check-
ing, lookahead), to generate a policy or a context-dependent plan π that
acts with deliberation.

The different possible evolutions of an input output automaton can be
represented by its set of possible runs.

Definition 5.26. (Run of input/output automaton) A run of an in-
put/output automaton A = (S, S0, I, O,C, γ) is a sequence s0, a0, s1, a1, . . .
such that s0 ∈ S0, ai ∈ I ∪O ∪ C, and si+1 ∈ γ(si, ai).

A run may be either finite or infinite.

5.8.2 Control Automata

An input/output automaton can behave in different ways depending on the
inputs it receives. For instance, the automaton in Figure 5.20 opens the door
either by pushing, pulling, or sliding the door, on the basis of the input it
receives. Some other system can get the information on how the door can be
opened, for example, a different module of the robot with sensing capabili-
ties, or a software that can access a centralized database with information
about the doors in the building, or, in a truly distributed environment, a
door equipped with the ability to interact with the robot. Such information
must be sent as an input to the input/output automaton of the robot.

The idea therefore is to have a controller or control automaton, that is,
an automaton that interacts with input/output automata by reading their
outputs and sending them inputs in order to control them to reach some
desired states.22 A control automaton Ac for an input/output automaton A

22We cannot control an input/output automaton with a policy because a policy cannot
interact with the automaton.
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sense(door)

Figure 5.21: Input/Output (I/O) automaton to control the robot I/O au-
tomaton.

is an input/output automaton whose inputs are the outputs of A and whose
outputs are the inputs of A. Indeed, Ac controls A by interacting with A,
i.e., by receiving in inputs the outputs of A and sending outputs that are
inputs of A.

Definition 5.27. (Control Automaton) Let A = (S, S0, I, O,C, γ) be
an input/output automaton. A control cutomaton for A is an input/output
automaton Ac = (Sc, S

0
c , O, I, Cc, γc).

Notice that in the definition the inputs I and the outputs O are ex-
changed in the two automata A and Ac.

Example 5.28. Figure 5.21 shows a control automaton for the I/O automa-
ton in Figure 5.20. Notice that the inputs and outputs of the automaton
in Figure 5.21 are the outputs and inputs of the automaton in Figure 5.20,
respectively. The control automaton receives a request about the door type
(input door type), determines the door type with the command sense(door),
and sends the proper input to the controlled automaton. The information
acquisition about the door type can be done in different ways. The nonde-
terministic command sense(door) can activate a module of an “intelligent”
door that replies to requests by the method of the robot, or sense(door) can
be a request to a centralized database that may have a priori the information
about the door, or sense(door) might activate a module of the robot that
has some perception capabilities.
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5.8.3 Automated Synthesis of Control Automata

We can specify the control automata by hand by means of a proper pro-
gramming language. Controllers can be designed and implemented manually
offline once for all. It is interesting, however, to generate control automata
automatically, either offline (at design time) or at run-time. Indeed, such
automated synthesis, when feasible, can provide important advantages. In
realistic cases, the manual specification of controllers can be difficult, time-
consuming, and error prone. Moreover, in most highly dynamic domains,
it is difficult if not impossible to predict all possible cases and implement a
fixed controller that can deal with all of them. Synthesis of controllers at
run-time can provide a way to act with deliberation taking into account the
current situation and context.

In the rest of this section, we formalize the problem of generating a
control automaton that interacts with an input/output automaton A and
satisfies some desired goal, representing the objective the controller has to
reach. We will see that this problem can be solved by planning in nondeter-
ministic domains.

The synthesis problem has two inputs: the automaton A to be controlled
and a goal to be achieved. Indeed the control automaton, independently
of whether it is defined manually or synthesized automatically, is always
thought with a goal in mind. For instance, the automaton in Example 5.28
has been defined with the requirement in mind to open the door in the right
way. In the automaton in Figure 5.20, it means to end up in state s9. Notice
that such automaton just represents the nominal case. If it receives a wrong
input, for example, to pull a door that should be pushed, then the move
command will fail. Consider the following example.

Example 5.29. In Figure 5.22, a method of the robot checks whether it
is close enough to the door (command sensedistance) and sends outputs
accordingly. If it is far, it can receive the input either to wait or to move
(state s3). Let us suppose the goal is to make the automaton reach state
s5. It is clear that a control automaton that receives the input far from the
automaton in Figure 5.22 and sends output wait does not satisfies the goal,
while the one that sends the sequence of outputs move and then grasp does.

Notice that we may have a control automaton that never makes the
controlled automaton reach state s5, or that do it only in one of the two
cases in which the robot is close or far, or that do it in both cases. All of
this resembles the idea of unsafe and safe (cyclic and acyclic) solutions.

The synthesis problem is therefore the problem of generating a control
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Figure 5.22: Input/output automaton for approaching a door.

automaton Ac that interacts with an input/output automaton A to satisfy
some goal g. In this section, we restrict to reachability goals.23 We define
now the automaton describing the behaviors of A when controlled by a
control automaton Ac , that is, the controlled system Ac BA.

Definition 5.30. (Controlled System) Let A = (S, S0, I, O,C, γ) be
an input/output automaton. Let Ac = (Sc, S

0
c , , O, I, Cc, γc) be a control

automaton for A. Let s, s′ ∈ S, sc, s
′
c ∈ Sc, c ∈ C, and cc ∈ Cc. The

controlled system Ac B A, describing the behavior of A when controlled by
Ac, is defined as: Ac BA = (Sc × S, S0

c × S0, I, O,CB, γB), where:

• 〈s′c, s〉 ∈ γB(〈sc, s〉, cc) if s′c ∈ γc(sc, cc),
• 〈sc, s′〉 ∈ γB(〈sc, s〉, c) if s′ ∈ γ(s, c),

• for any i ∈ I from Ac to A,
〈s′c, s′〉 ∈ γB(〈sc, s〉, i) if s′c ∈ γc(sc, i) and s′ ∈ γ(s, i),

• for any o ∈ O from A to Ac,
〈s′c, s′〉 ∈ γB(〈sc, s〉, o) if s′c ∈ γc(sc, o) and s′ ∈ γ(s, o).

The set of states of the controlled system are obtained by the Cartesian
product of the states of A and those of Ac. In Definition 5.30, the first two

23Along the lines described in Chapter 2, goal g is a partial variable assignment to state
variables xi = vi, . . . , xk = vk, for each xi, . . . , xk ∈ X, with each of them having values
in their range: vi ∈ Range(xi), . . . , vk ∈ Range(xk).
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items specify that the states of the controlled system evolve according to the
internal evolutions due to the execution of both commands of Ac (first item)
and of commands of A (second item). The third and fourth items regard
the evolutions that depend on inputs and outputs. In this case, the state of
the controlled system 〈sc, s〉 evolves by taking into account the evolutions
of both A and Ac.

A remark is in order. We need to rule out controllers that can get
trapped in deadlocks. In other words, we need to rule out the case in
which an automaton sends outputs that the other automaton is not able
to receive. If an automaton sends an output, then the other automaton
must be able to consume it, either immediately or after executing internal
commands that lead to a state where the input is consumed. In other words,
an automaton A in a state s must be able to receive as one of its inputs
i ∈ I the output o′ ∈ O′ of another automaton A′, or for all the possible
executions of commands c ∈ C of automaton A, there exists a successor of
s where o′ can be received as an input i.

Given this notion, we define intuitively the notion of a deadlock-free con-
troller for a controlled input/output automaton. It is a control automaton
such that all of its outputs can be received by the controlled automaton,
and vice versa, all the outputs of the controlled automaton can be received
by the controller.24

Informally, the synthesis problem is the problem of generating a control
automaton Ac such that the controlled system AcBA satisfies a goal g, that
is, we have to synthesize Ac that interacts with A by making A reach some
desired state. In other words, a control automaton Ac is a solution for a
goal g if its every run of the controlled system Ac B A ends up in a state
where g holds.

Definition 5.31. (Satisfiability). Let g be a partial state variable as-
signment xi = vi, . . . , xk = vk, for each xi, . . . , xk ∈ X, and each vi ∈
Range(xi), . . . , vk ∈ Range(xk). Let A be an input/output automaton. A
satisfies g, denoted with A |= g, if

• there exists no infinite run25 of A, and

• every final state s of A satisfies g.

We can now define when a control automaton is a solution for an in-
put/output automaton with respect to a goal, that is, when it controls the
automaton satisfying our desired requirement.

24See Exercise 5.12.
25See Definition 5.26 for the definition of run of an automaton
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Definition 5.32. (Solution Control Automaton). A control automa-
ton Ac is a solution for the goal g and an input/output automaton A, if the
controlled system AcBA |= g and Ac is a deadlock-free controller for A.

5.8.4 Synthesis of Control Automata by Planning

In the following, we discuss informally how the problem of the automated
synthesis of a controller can be solved by planning with nondeterministic
domain models.

Consider the automaton in Figure 5.22. We want to generate a controller
Ac with the goal that the controlled automaton A reaches state s5. In order
to map the synthesis problem to a planning problem, we must consider
the fact that A models a domain that may be only partially observable by
Ac. That is, at execution time, Ac generally has no way to find out what
A’s current state is,26 For instance, if A is the input/output automaton for
approaching the door in Figure 5.22, a controller Ac that interacts with A
has no access to the values of A’s internal variables, and can only deduce
their values from the messages it receives. Ac cannot know whether or not A
has executed the command sensedistance in Figure 5.22, that is, whether A
is still in state s0 (the state before executing the command) or in one of s1 or
s2, the two states after the command has been executed. This uncertainty
disappears only when one of the two outputs (far or close) is sent by A and
received by the controller Ac.

We take into account this uncertainty by considering evolutions of the
controlled system AcBA in terms of sets of states rather than states, each of
them containing all the states where the controlled system could be. We have
therefore to deal with sets of states rather than single states. This is a way
to deal with partial observability while still making use of algorithms that
work in fully observable domains (see the discussion and historical remark
section of this chapter, Section 5.9).

The initial set of states is updated whenever A performs an observable
input or output transition. If B ⊆ S is the current set of states and an
action io ∈ I ∪O is observed, then the new set B′ = evolve(B, io) is defined
as follows: s ∈ evolve(B, io) if and only if, there is some state s′ reachable
from B by performing a sequence of commands, such that s ∈ γ(s′, io). That
is, in defining evolve(B, io), we first consider every evolution of states in B

26There might be applications in which the controller Ac might have access to the state
of the controlled automaton A. However, in general, the advantage of a representation
based on input/output automata is to hide or abstract away the details of the internal
operations.
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Figure 5.23: Abstracted system for the I/O automaton in Figure 5.22.

by the commands in C, and then, from every state reachable in this way,
their evolution caused by io.

Under the assumption that the execution of commands terminate, that
is, that commands cannot be trapped in loops, we can define an Abstracted
System whose states are sets of states of the automaton and whose evolutions
are over sets of states.

Definition 5.33. (Abstracted System) Let A = (S, S0, I, O,C, γ)
be an automaton. The corresponding abstracted system is ΣB =
(SB, S

0
B, I, O, γB), where:

• SB are the sets of states of A reachable from the set of possible initial
states S0,

• S0
B = {S0},

• if evolve(B, a) = B′ 6= ∅ for some a ∈ I ∪O, then B′ ∈ γB(B, a).

An abstracted system is an input/output automaton with a single initial
state and no commands. To define a synthesis problem in terms of a plan-
ning problem in nondeterministic domains, we need to transform an au-
tomaton A = (S, S0, I, O,C, γ) into a nondeterministic domain D. To do
this transformation, we first transform the automaton into its corresponding
abstracted system. This is necessary to handle partial observability and ap-
ply the plan generation algorithms we have defined in this chapter for fully
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observable nondeterministic domain models.

Example 5.34. In Figure 5.23, we show the abstracted system for the
controlled automaton in Figure 5.22. States s0, s1, and s2 generate the
set of states B1 = {s0, s1, s2} because there is no way for the controller
to distinguish them until it receives either input far or input close by the
controlled automaton. We have B3 = {s3}, B4 = {s4}, and B5 = {s5}.

Given the generated abstracted system, output actions of the controlled
automaton are those that cause nondeterminism. We therefore move output
actions from transitions into the states of the domain and replace output
transitions with nondeterministic internal transitions.

Example 5.35. In Figure 5.24, we show the nondeterministic planning do-
main for the automaton in Figure 5.23. We have moved the output far
in state B3 and the output close in state B4, and transformed the two
(deterministic) output transitions into one nondeterministic internal tran-
sition. Now we have a nondeterministic planning domain as defined in
Section 5.2: Σ = (S,A, γ), with states S = {B1, B3, B4, B5}, and actions
A = {farclose,wait,move, grasp}, where farclose is nondeterministic. The
policy

π(B1) = farclose
π(B3) = move
π(B4) = grasp

is a safe acyclic solution for the planning problem P = (Σ, B1, B5), where B1

is the initial state and B5 is the goal state. From π we can easily construct
the control automaton Ac that controls A in Figure 5.22 and satisfies the
reachability goal s5.

The synthesis problem can thus be solved by generating a nondeter-
ministic domain and by planning for a safe, possibly acyclic, solution (see
Definitions 5.8 and 5.11) by generating a policy π that is guaranteed to reach
the goal independently of the outcomes of nondeterministic actions that are
due to commands and output actions of automata A.

This means that we can automate the synthesis by using algorithms that
we have illustrated in this chapter for planning with nondeterministic do-
main models and that can find safe (acyclic) solutions, for example, planning
with And/Or search (see Section 5.3) planning by symbolic model checking
(see Section 5.4), and planning by determinization (see Section 5.5).
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Figure 5.24: Nondeterministic planning domain for the I/O automaton in
Figure 5.22.

5.8.5 Acting by Interacting with Multiple Automata

In the previous section, we did not exploit the real advantage of the dis-
tributed and asynchronous nature of input/output automata. Indeed, Ex-
ample 5.24 may include two input/output automata, one for the method
of the robot and one for the door. The two automata interact by send-
ing/receiving inputs/outputs, and this interaction must be controlled at the
acting level. The main characteristic of a model based on input/output au-
tomata is that a complex model can be obtained as the “composition” of
much simpler components, thus providing the following advantages:

• the ability to simplify the design process, starting from simple compo-
nents whose composition defines a model of a complex system;

• the ability to model distributed domains naturally, that is, domains
where we have different components with their own behaviors;

• the ability to model naturally dynamic environments when different
components join or leave the environment;

• the composition of different components can be localized, that is, each
component can get composed only with the components that it needs
to interact with, thus simplifying significantly the design task, and

• for each component, we can specify how other components need to
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Figure 5.25: Robot and door interacting input/output automata.

interact with the component itself, abstracting away the details of
their internal operations.

We continue with our example of opening a door, but we reduce the
tasks that can be performed by the robot while we enrich the autonomy
capabilities of the doors. Consider indeed two active devices that interact
with the environment, a navigation robot able to move but without any
manipulation capabilities, and an active door, which is able to open and
close itself on request. This scenario is presented in Example 5.36

Example 5.36. In Figure 5.25, the door and the robot are modeled as two
input/output automata. The door receives a request to open (the input
I-open). It then activates its engines to open (the command cmd-open). The
command may either succeed or fail, and the door sends outputs accordingly
(O-succes-open or O-fail-open). If the command succeeds, then the door waits
for two possible inputs, one indicating that the door can be closed (because,
e.g., the robot passed successfully), that is, the input I-done, or that there
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Figure 5.26: A controller for the robot and door input/output automata.

is a problem and the door should stop with failure, that is, I-cancel. The
robot has a similar input/output automaton: it waits for an input to move
(I-move), then it moves (cmd-move). If the operation succeeds, then it waits
for an input stating either that everything is fine (I-done) and it can stop
(cmd-stop) or that a failure from the environment occurred (I-cancel).

Notice that with this model, the robot and any other actor in the en-
vironment do not even need to know whether the door is a sliding door
or a door that can be opened by pulling/pushing, because this is hidden
in the command cmd-open of the door input/output automaton. This ab-
straction mechanism is one of the advantages of a model based on multiple
input/output automata.

Synthesis of Controllers of Multiple Automata

Given a model with two or more input/output automata, we generalize
the idea presented for controlling a single automaton, that is, synthesize a
controller, represented by a plan π (see Definition 5.20) that interacts with
the different input/output automata and satisfies some goal. Consider the
following example.

Example 5.37. Figure 5.26 shows an input/output automaton representing
a controller that makes the robot and the door interact in a proper way. It
requests that the door open, and if the request succeeds, it then requests
the robot to move. If the moving operation also succeeds, it then asks the
door and the robot to finish the job, that is, the robot should stop and the
door should close.

In the rest of this section, we formalize the problem of generating a
controller represented by a plan π that interacts with a set of input/output
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automata A1, . . . , An and satisfies some desired goal. The problem has two
inputs:

• A finite set of automata A1, . . . , An. This set can be dynamic and can
be determined at run-time. It can be a representation of the current
methods for the tasks to be performed.

• A requirement g that is defined as a partial state variable assignment
in the acting state space of each automaton Ai: xi = vi, . . . , xk = vk,
for each xi, . . . , xk ∈ X, and each vi ∈ Range(xi), . . . , vk ∈ Range(xk).
The requirement can be either given at design time, or it can be gen-
erated at run time (see Section 7.2)

Informally, we want to generate a controller Ac that interacts with
A1, . . . , An in such a way to make the automata A1, . . . , An to reach some
states where the requirement g is satisfied. We introduce first the product
of the automata A1, . . . , An:

A‖ = A1‖ . . . ‖An
Such product is a representation of all the possible evolutions of automata
A1, . . . , An, without any control by Ac.

We formally define the product of two automata A1 and A2, which mod-
els the fact that the two automata may evolve independently. In the fol-
lowing definition, we assume that the two automata do not send messages
to each other, that is, the inputs of A1 cannot be outputs of A2 and vice
versa. This is a reasonable assumption in our case, where we suppose that
each available automaton A1, . . . , An interacts only with the controller Ac
that we have to generate. The assumption can, however, be dropped by
modifying in a suitable way the definition of product.

Definition 5.38. (Product of Input/Output Automata) Let A1 =
(S1, S

0
1 , I1, O1, C1, γ1) and A2 = (S2, S

0
2 , I2, O2, C2, γ2) be two automata with

(I1 ∪O1 ∪C1)∩ (I1 ∪O1 ∪C1) = ∅. The product of A1 and A2 is A1‖A2 =
(S, S0, I1 ∪ I2, O1 ∪O2, C1 ∪ C2, γ), where:

• S = S1 × S2,
• S0 = S0

1 × S0
2 ,

• 〈s′1, s2〉 ∈ γ(〈s1, s2〉, a) if γ1(s1, a) = s′1, and

• 〈s1, s′2〉 ∈ γ(〈s1, s2〉, a) if γ2(s2, a) = s′2

The automaton A‖ = A1‖ . . . ‖An represents all the possible ways in which
automata A1, . . . , An can evolve without any control. We can therefore de-
fine the automaton describing the behaviors of A‖ when controlled by a

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


Section 5.9 267

controller Ac that interacts with A1, . . . , An, that is, the controlled system
AcBA‖, simply by recasting the definition of controlled system (see Defini-
tion 5.30) by replacing the single automaton A with A‖. We can therefore
apply all the considerations, definitions, and algorithms that we have dis-
cussed for the case of a single automaton.

5.9 Discussion and Historical Remarks

5.9.1 Comparison among Different Approachess

The main advantage of determinization techniques with respect to other ap-
proaches is the possibility of exploiting fast algorithms for finding solutions
that are not guaranteed to achieve the goal but just may lead to the goal,
that is, unsafe solutions. Indeed, finding an unsafe solution in Σ can be
done by finding a sequential plan in Σd. Then the sequence of actions can
be easily transformed into a policy. Fast classical planners can then be used
to find efficiently a solution which is unsafe for the nondeterministic model.
Determinization techniques tend to work effectively when nondeterminism is
limited and localized, whereas their performances can decrease when nonde-
terminism is high (many possible different outcomes of several actions) and
in the case nondeterminism cannot be easily reconducted to exceptions of
the nominal case. For these reasons, several techniques have been proposed
to improve the performances when there is a high level of nondeterminisms,
from conjunctive abstraction (a technique to compress states in a similar way
to symbolic model checking) to techniques that exploit state relevance (see
Section 5.9.2). With such improvements, determinization techniques have
been proven to be competitive with, and in certain cases to outperform,
both techniques based on And/Or search and techniques based on symbolic
model checking. Finally, determinization techniques have mainly focused
until now on safe cyclic planning and extensions to safe acyclic planning.

The basic idea underlying symbolic model checking techniques is to work
on sets. Routines for symbolic model checking work on sets of states and on
transitions from sets of states through sets of actions, rather than on single
states and single state transitions. Also policies are computed and managed
as sets of state-action pairs.

The symbolic model checking approach is indeed advantageous when we
have a high degree of nondeterminism, that is, the set of initial states is large
and several actions have many possibly different outcomes. Indeed, in these
cases, dealing with a large set of initial states or a large set of outcomes of an
action may have even a simpler and more compact symbolic representation
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than a small set. The symbolic approach may instead be outperformed by
other techniques, for example, determinization techniques, when the degree
of uncertainty is lower, for example, in the initial state or in the action
outcomes.

Online approaches are effective techniques to deal with large state spaces
and highly dynamic environments. In non-safely explorable domains, both
MinMax LRTA* and FS-Replan can be trapped in (indirect) dead ends and
are not guaranteed to terminate. The work in [63] describes how to gener-
ate a partial plan and interleave planning and acting in partially observable
nondeterministic domains by symbolic model checking. Even though it is
in general impossible to guarantee that a goal state will be reached, such
approach guarantees that the planning/acting loop always terminates: ei-
ther the goal is reached or it is recognized that a state has been reached
from which there is no chance to find a safe acyclic solution, and the loop
terminates.

5.9.2 Historical Remarks

Nondeterministic domain models are considered unavoidable in several ar-
eas of research. Some examples include computer-aided verification, model
checking, control theory, and game theory.

For planning in nondeterministic domains, domains, some important
characteristics of the domain include:

• The degree of observability: null observability (which is called con-
formant planning), and either full or partial observability (the case of
contingent or conditional planning).

• the kind of goals: reachability goals, and (temporally) extended goals.

Various techniques have been devised to deal with these domain character-
istics. The idea of planning in nondeterministic domains was first addressed
in the 1980s. The first attempts to deal with nondeterminism were based
on some pioneering work on conditional planning by Warren [596], Peot
and Smith [474], Pryor and Collins [496]. This work was based on exten-
sions to plan-space planning by extending classical planning operators (see
Section 2.7.1) to have several mutually exclusive sets of outcomes.

More recently, techniques that were originally devised for classical plan-
ning in deterministic domains have been extended to deal with nondeter-
ministic domains. Planning graph techniques [74] have been extended to
deal with conformant planning [548] and some limited form of partial ob-
servability [600]. Planning as satisfiability [322] has been extended to deal
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with nondeterministic domains in [108, 107, 193, 234].
Different approaches have addressed the problem of planning with non-

deterministic models in a theorem proving setting, such as techniques based
on situation calculus [198] and the Golog Language [378, 417], which have
also been devised for the conformant planning problem. Planning based on
Quantified Boolean Formulas (QBF) (see Section 5.4.2) has addressed the
problem of conformant planning and contingent planning under partial ob-
servability [511, 514, 513]. According to this approach, a bounded planning
problem, that is, a planning problem where the search is restricted to plans
of maximum length n, is reformulated as a QBF formula. QBF formulas
are not encoded with BDDs as in Section 5.4, instead a QBF solver is used
to generate a plan. This approach can tackle several different conditional
planning problems. In QBF planning, like in planning as satisfiability, it is
impossible to decide the nonexistence of a solution plan.

The idea of planning by using explicit state model checking techniques
has been around since the work by Kabanza [304] and SimPlan, a planner
that addresses the problem of planning under full observability for tempo-
rally extended goals expressed in (an extension of) Linear Temporal Logic
(LTL) [178]. The idea of planning as model checking was first introduced
in [117, 236]. Planning for safe acyclic solutions was first proposed in [123],
and planning for safe cyclic solutions was first proposed in [122] and then
revised in [136]. A full formal account and an extensive experimental evalu-
ation of the symbolic model checking approach has been presented in [121].
The framework has been extended to deal with partial observability [61]
and with extended goals [484, 482, 135]. [531] extended the approach to
deal with preferences. All the results described in the works cited have been
implemented in the Model Based Planner (MBP) [59].

There have been various proposals along this line. The work by Jensen
and Veloso [297] exploits the idea of planning via symbolic model checking
as a starting point for the work on the UMOP planner. Jensen and Veloso
have extended the framework to deal with contingent events in their proposal
for adversarial planning [299]. They have also provided a novel algorithm for
strong (safe acyclic) and strong cyclic (safe cyclic) planning which performs
heuristic based guided OBDD-based search for nondeterministic domains
[298]. Kissmann et al. [331] proposed a symbolic planner based on BDDs
for safe cyclic and acyclic solutions. The planner is based on a translation
of the nondeterministic planning problem into a two-player game, where
actions can be selected by the planner and by the environment. The Yoyo
planner [362, 363] does hierarchical planning in nondeterministic domains
by combining an HTN-based mechanism for constraining the search and a
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Binary Decision Diagram (BDD) representation for reasoning about sets of
states and state transitions.

BDDs have also been exploited in classical planners (see [570] for one of
the first reports about BDD-based planners for classical planning in deter-
ministic domains). Among them, MIPS encodes PDDL planning problems
into BDDs, see [170, 171] and showed remarkable results in the AIPS’00
planning competition for deterministic planning domains as well as in the
ICAPS’14 planning competition [173]. More recently, techniques based on
BDDs have proved very competitive for classical planning, see, for example,
[168, 172]. For a recent survey, see [174]. The performance of planners that
make use of BDDs may depend heavily on the choice of variable ordering
(see Section 5.4.5). A state-variable representation can be of help in the
choice of the variable ordering, mainly for two reasons: it can reduce the
number of variables required in the BDD encoding and can lead to a variable
ordering where closely related propositions are grouped together, which is
critical to good performance of BDD exploration.

Other approaches are related to model checking techniques. Bacchus and
Kabanza [28] use explicit-state model checking to embed control strategies
expressed in LTL in TLPlan. The work of Robert Goldman and David
Musliner [240, 239, 241] presents a method where model checking with timed
automata is used to verify that generated plans meet timing constraints.

Recent work on planning for cyclic safe solutions in fully observable non-
deterministic domains (FOND) has focused on determinization techniques.
This approach was first proposed in [364] with the NDP planner. A com-
plete formal account and extensive experimental evaluation is presented in
[9]. The new planner NDP2 finds cyclic safe solutions (strong-cyclic solu-
tions) by using a classical planner (FF). NDP2 makes use of a procedure
that rewrites the original planning problem to an abstract planning problem,
thus improving performances. NDP2 is compared with the MBP planner.
The work in [9] shows how the performances of the two planners depend on
the amount of nondeterminism in the planning domain, how the NPD2 can
use effectively its abstraction mechanisms, and whether the domain contains
dead ends.

A lot of interesting work has been proposed along the lines of NDP. The
work in [405] proposes a planner based on the And/Or search algorithm
LAO* and the pattern database heuristics to guide LAO* toward goal states.
In [209], the FIP planner builds on the idea of NDP and shows how such
technique can solve all of the problems presented in the international plan-
ning competition in 2008. Furthermore, FIP improves its performance by
avoiding reexploration of states that have been already encountered during
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the search (this idea is called state reuse). The work in [436], implemented in
the PRP planner, devises a technique to focus on relevant aspects of states
for generating safe cyclic solutions. Such technique manages to improve sig-
nificantly the performance of the planner. Another study [435] extends the
work to conditional effects.

In [506, 139], the synthesis of controllers from a set of components is
accomplished by planning for safe acyclic solutions through model checking
techniques. The work in [507] combines symbolic model-checking techniques
and forward heuristic search.

Bonet and Geffner [81, 82, 85] have introduced the idea of planning in
belief space (i.e., the space of sets of states) using heuristic forward search.
Brafman and Hoffman [96] address the conformant planning problem by us-
ing SAT to reason about the effects of an action sequence and heuristic search
based on FF relaxation techniques [280]. They extend the technique to deal
with contingent planning in [279]. Partially observable contingent planning
is further addressed in [399], a work that interleaves conformant planning
with sensing actions and uses a landmark-based heuristic for selecting the
next sensing action, together with a projection method that uses classical
planning to solve the intermediate conformant planning problems. Another
work [89] studies the complexity of belief tracking for planning with sensing
both in the case of deterministic actions and uncertainty in the initial state
as well as in the case of nondeterminstic actions.

A notable work on interleaving planning and execution in nondetermin-
istic domains is presented in [344, 343, 342]. These authors propose different
techniques based on real-time heuristic search. Such algorithms are based on
distance heuristics in the search space. [342] proposes the MinMax Learning
Real Time A* presented in this chapter (see Algorithm 5.16): the learning
mechanism can be amortized over several planning runs. On one hand,
these techniques allow for dealing with large planning domains that cannot
be addressed by offline algorithms. On the other hand, they work on the
assumption of “safely explorable” domains, that is, domains that do not
contain dead ends.

FS-Replan can be the basis for extensions in probabilistic planning that
take into account probability distributions, see Chapter 6, algorithm RFF.
Vice versa, some algorithms devised for probabilistic planning can be used in
nondeterministic domains without taking into account the probabilistic dis-
tribution. This is the case of algorithms based on sparse sampling lookahead
(see Chapter 6, algorithm SLATE).

The work in [63] proposes a different technique based on symbolic model
checking for partially observable domains, which guarantees termination in
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non-safely-explorable domains, still not guaranteeing to reach the goal in
the unlucky case a dead end is reached. The FS-Replan Algorithm presented
in this chapter is based on the FF-Replan algorithm presented in [619].

The work in [532] focuses on fully observable domains and shows a tech-
nique that is able to interleave planning and execution in a very general and
efficient way by using symbolic model checking techniques and by expressing
goals that contain procedural statements (executable actions and plans) and
declarative goals (formulas over state variables).

The techniques presented in this chapter for planning with input/output
automata are based on the work on planning with asynchronous processes,
which have has been first proposed in [486] and then formalized and exten-
sively evaluated in [64]. Such techniques have been extended to deal with
service oriented applications in [101], and the related work on adaptation
inspired by a Harbor Operation Management (HOM) facility for the sea
port of Bremen, Germany, originally presented in [76, 101]. Techniques for
planning in nondeterministic domain models have been used to interleave
reasoning about processes and ontology reasoning [483].

The technique for the synthesis of controllers presented in this chapter
shares some ideas with work on the automata-based synthesis of controllers
(see, e.g., [488, 489, 490, 576, 324, 358, 359, 575]).

In Section 5.8.4 we dealt with the problem of planning under partial ob-
servability by encoding in different states the different possible values of vari-
ables that cannot be observed. Work in planning under partial observability
has been done in the framework of planning via symbolic model checking
[62, 63, 60], real-time heuristic search [342, 344], and heuristic search [399].

5.10 Exercises

5.1. Can all (memoryless) policies be written as contingent plans, that is,
plans with conditional tests? Vice versa? Explain the answer with some
examples.

5.2. Consider Figure 5.27.

(a) Give an example of an unsafe solution π1, a cyclic safe solution π2 and
an acyclic safe solution π3 to the problem of moving from s1 to s5, if
one exists. Draw their reachability graphs, circling the leaves.

(b) Suppose the initial state was s2 instead of s1. Are π1, π2, and π3
solutions? If so, what kinds?
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Figure 5.27: A nondeterministic state-transition system.

5.3. Prove that a policy π is an unsafe solution iff ∃s ∈ leaves(s0, π) | s 6∈
Sg ∨ ∃s ∈ γ̂(s0, π) | leaves(s, π) = ∅

5.4. Consider Definition 5.10 and Definition 5.11. Write definitions of safe
cyclic and acyclic solutions that reach the goal and then continue looping in-
side the set of goal states, and definitions of solutions that traverse infinitely
often the set of goal states. More formally, write definitions of safe cyclic
and acyclic solutions π such that PerformPolicy(π) (see the acting procedure
in Algorithm 5.1) reaches the goal and then loops forever with the condi-
tion that PerformPolicy(π) is guaranteed to loop inside the set of goal states.
Write the same definition but with the condition that PerformPolicy(π) is
guaranteed to traverse the set of goal states infinitely many often.

5.5. Provide a definition of a “worst-case optimal” safe acyclic solution,
that is, a solution that results in a path with the minimal longest distance
from the goal. Rewrite algorithms for finding safe acyclic solutions (see
Algorithm 5.4) by replacing the nondeterministic choice and guaranteeing
that the solution is worst-case optimal.

5.6. Write a deterministic algorithm for Find-Safe-Solution and Find-Acyclic-
Solution, see Algorithm 5.3 and Algorithm 5.4.

5.7. Figure 5.28 is a domain model for a washing problem. To make the do-
main nondeterministic, suppose we assume that sometimes the start action
may either succeed or fail. If it fails, it will not change the state. The run
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Objects: B = Items ∪ Machines ∪ Booleans ∪ Statuses ∪ Availability 
Items = {dishes, clothes},  
Machines = {dw,cw} (i.e., dishwasher and clothes washer),  
Booleans = {T, F},               
Statuses = {ready, filling, running},  
Availability = {free, inuse} 
 

State variables (where i ∈ Items and m ∈ Machines): 
clean(i) ∈ Booleans,  status(m) ∈ Statuses,  water ∈ Availability 
 

Initial state and goal: 
s0 = {clean(dishes)=F, clean(clothes)=F, loc(dishes)=dw, loc(clothes)=cw, 	

		status(dw)=ready, status(cw)=ready, water=free} 
g = {clean(dishes)=T, clean(clothes)=T} 
 

Action templates (where i ∈ Items and m ∈ Machines): 
run(m) 

Pre: status(m)=filling	
Eff: status(m)=running, water=free	

finish(m,i) 
Pre: status(m)=running,	loc(i)=m 
Eff: status(m)=ready, clean(i)=T	

start(m) 
Pre: status(m)=ready, water=free	
Eff: status(m)=filling, water=inuse	

Figure 5.28: A planning domain in which there are two devices that use
water: a washing machine and a dishwasher. Because of water pressure
problems, only one device can use water at a time.

and finish actions are guaranteed to succeed. Also, say that the set of goal
states Sg are all the states where {clean(clothes)=T, clean(dishes)=T}
are satisfied.

(a) Draw the state-transition system. (Hint: It can be rather large. To
make it easier to draw, do not give names to the states, and use ab-
breviated names for actions.)

(b) Trace the execution of Find-Solution on this problem by drawing the
And/Or search tree. The nondeterministic choices are left to the
reader.

(c) Do the same for Find-Safe-Solution.

(d) Suppose A and Ad represent the set of actions in the nondeterministic
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model and the determinized model, respectively. Compute |A| and
|Ad|.

(e) Write down a plan πd from the initial state to a goal state using the
determinized model.

(f) Let us suppose that πd is returned by the first call to Forward-search
in FS-Replan. Furthermore, suppose that the second start action in πd
fails during execution.27 Explain what FS-Replan does at this point.

5.8. Prove that an acyclic safe solution π to the problem P = (Σ, s0, Sg)
satisfies the condition

(∀s ∈ γ̂(s0, π)(leaves(s, π) ∩ Sg 6= ∅)) ⇐⇒ leaves(s0, π) ⊆ Sg.

5.9. Notice that Find-Acyclic-Solution-by-MinMax ignores the possibility of
multiple paths to the same state. If it comes to a state s again along a
different path, it does exactly the same search below s that it did before.
Modify Find-Acyclic-Solution-by-MinMax such that it avoids reperforming the
same search in already visited states by storing remembering the already
visited states and storing the obtained solutions.

5.10. Determinization techniques rely on a transformation of nondetermin-
istic actions into a sets of deterministic actions. Write a definition of a
procedure to transform a nondeterministic domain into a deterministic one.
Notice that this operation is complicated by the fact that we have to take
into account that in different states, the same action can lead to a set of
different states. Therefore, if the set of states has exponential size with re-
spect to the number of state variables, then this operation would generate
exponentially many actions.

5.11. The algorithm for planning for safe solutions by symbolic model check-
ing presented in this chapter (see Algorithm 5.7) can find either safe cyclic
or safe acyclic solutions. Modify the algorithm such that it finds a safe
acyclic solution, and only if one does not exist, does it search for a safe
cyclic solution.

5.12. Consider the definition of controlled system: Definition 5.30. A con-
trol automaton Ac may be not adequate to control an automaton A‖. In-
deed, we need to guarantee that, whenever Ac sends an output, A‖ is able
to receive it as an input, and vice versa. A controller that satisfies such
condition is called a deadlock-free controller. Provide a formal definition of

27There should be two start actions, one each for dishwasher and clothes washer. Assume
that the second one fails.
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a deadlock-free controller. Suggestion: see the paper [486] where automata
are defined without commands but with τ -actions.
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Chapter 6

Deliberation with
Probabilistic Models

In this chapter, we explore various approaches for using probabilistic mod-
els to handle the uncertainty and nondeterminism in planning and acting
problems. These approaches are mostly based on dynamic programming
optimization methods for Markov decision processes. We explain the basic
principles and develop heuristic search algorithms for stochastic shortest-
path problems. We also propose several sampling algorithms for online
probabilistic planning and discuss how to augment with probabilistic mod-
els refinement methods for acting. The chapter also discusses the critical
issue of specifying a domain with probabilistic models.

Our motivations for using probabilistic models, and our main assump-
tions, are briefly introduced next. Section 6.2 defines stochastic shortest-
path problems and basic approaches for solving them. Different heuristic
search algorithms for these problems are presented and analyzed in Sec-
tion 6.3. Online probabilistic planning approaches are covered in Section 6.4.
Refinement methods for acting with probabilistic models are presented in
Section 6.5. Sections 6.6 and 6.7 are devoted to factored representations and
domain modeling issues with probabilistic models, respectively. The main
references are given in the discussion and historical remarks Section 6.8.
The chapter ends with exercises.

6.1 Introduction

Some of the motivations for deliberation with probabilistic models are sim-
ilar to those introduced in Chapter 5 for addressing nondeterminism: the
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future is never entirely predictable, models are necessarily incomplete, and,
even in predictable environments, complete deterministic models are often
too complex and costly to develop. In addition, probabilistic planning con-
siders that the possible outcomes of an action are not equally likely. Some-
times, one is able to estimate the likelihood of each outcome, relying for
example on statistics of past observations. Probabilistic planning addresses
those cases in which it is desirable to seek plans optimized with respect to
the estimated likelihood of the effects of their actions.

The usual formal model of probabilistic planning is that of Markov de-
cision processes (MDPs). An MDP is a nondeterministic state-transition
system together with a probability distribution and a cost distribution. The
probability distribution defines how likely it is to get to a state s′ when an
action a is performed in a state s.

A probabilistic state-transition system is said to be Markovian if the
probability distribution of the next state depends only on the current state
and not on the sequence of states that preceded it. Moreover, the system
is said to be stationary when the probability distributions remain invariant
over time. Markovian and stationary properties are not intrinsic features
of the world but are properties of its model. It is possible to take into
account dependence on the past within a Markovian description by defining
a “state” that includes the current configuration of the world, as well as
some information about how the system has reached that configuration.
For example, if the past two values of a state variable xt are significant for
characterizing future states, one extends the description of the “current”
state with two additional state variables xt−1 and xt−2. One may also add
ad hoc state variables to handle dependence on time within a stationary
model.

We restrict ourselves to stationary Markovian systems. We focus this
chapter on stochastic shortest-path problems (SSPs). SSPs generalize the
familiar shortest-path problems in graphs to probabilistic And/Or graphs.
SSPs are quite natural for expressing probabilistic planning problems. They
are also more general than MDP models.

6.2 Stochastic Shortest-Path Problems

This section introduces the main definitions, concepts and techniques needed
for addressing probabilistic planning and acting problems.
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6.2.1 Main Definitions

Definition 6.1. A probabilistic planning domain is a tuple
Σ = (S,A, γ,Pr, cost) where:

• S and A are finite sets of states and actions, respectively;

• γ : S × A → 2S is the state transition function; it corresponds to the
following stationary Markovian probability distribution;

• Pr(s′|s, a) is the probability of reaching s′ ∈ γ(s, a) when action a takes
place in s; it is such that Pr(s′|s, a) 6= 0 if and only if s′ ∈ γ(s, a); and

• cost : S × A → R+ is a cost function: cost(s, a) is the cost of a in
s.

We follow the notation introduced in Section 5.2.3:1

• A policy is a function π : S′ → A, with S′ ⊆ S, such that for every
s ∈ S′, π(s) ∈ Applicable(s). Thus Dom(π) = S′.

• γ̂(s, π) is the set composed of s and all its descendants reachable by
π, that is, the transitive closure of γ with π.

• Graph(s, π) is the graph induced by π whose nodes are the set of states
γ̂(s, π). It is a cyclic graph rooted at s.

• leaves(s, π) is the set of tip states in this graph, that is, states in γ̂(s, π)
that are not in the domain of π, and hence have no successors with π.

Definition 6.2. A stochastic shortest-path (SSP) problem for the planning
domain Σ is a triple (Σ, s0, Sg), where s0 ∈ S is the initial state and Sg ⊆ S
is a set of goal states.

Definition 6.3. A solution to the SSP problem (Σ, s0, Sg) is a policy
π : S′ → A such that s0 ∈ S′ and leaves(s0, π) ∩ Sg 6= ∅. The solution
is said to be closed if and only if every state reachable from s0 by π is
either in the domain of π, is a goal or has no applicable actions, that is,
∀s ∈ γ̂(s0, π), (s ∈ Dom(π)) ∨ (s ∈ Sg) ∨Applicable(s) = ∅.

In other words, a closed solution π must provide applicable actions, if
there are any, to s0 and to its all descendants reachable by π, and have at
least one path in Graph(s0, π) that reaches a goal state. Note that π is a
partial function, not necessarily defined everywhere in S (Dom(π) ⊆ S).
We are chiefly interested in closed partial policies, which are defined over

1To remain consistent with Chapter 5, we depart slightly from the classical definitions
and notations of the MDP planning literature; differences are discussed in Section 6.8.
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the entire γ̂(s0, π), except at goal states and states that have no applicable
action. As usual in planning, goals are considered to be terminal states
requiring no further action.

Example 6.4. Here is a simple example, inspired from casino coin ma-
chines called one-armed bandits. This domain has three state variables
x, y, and z, ranging over the set {a, b, c}. The domain has nine states:
{x = a, y = a, z = a} . . . {x = c, y = c, z = c}, which are abbreviated as
S = {(aaa), (aab), . . . , (ccc)}. There are three actions: pull left, pull right,
and pull both arms simultaneously, denoted respectively Left, Right, and
Both. If the three state variables are distinct, then the three actions are
applicable. If x 6= y = z, only Left is applicable. If x = y 6= z, only Right
is applicable. If x = z 6= y, only Both is applicable. Finally, when the three
variables are equal no action is applicable. Here is a possible specification
of Left (each outcome is prefixed by its corresponding probability):

Left:
pre: (x 6= y)
eff: (13): {x← a}

(13): {x← b}
(13): {x← c}

Similarly, when applicable, Right randomly changes z; Both randomly
changes y. We assume these changes to be uniformly distributed. Fig-
ure 6.1 gives part of the state space of this domain corresponding to the
problem of going from s0 = (abc) to a goal state in Sg = {(bbb), (ccc)}. Note
that every action in this domain may possibly leave the state unchanged,
that is, ∀s, a, s ∈ γ(s, a). Note also that the state space of this domain is
not fully connected: once two variables are made equal, there is no action
to change them. Consequently, states (acb), (bac), (bca), (cab) and (cba) are
not reachable from (abc).

A solution to the problem in Figure 6.2 is, for instance,

π(abc) = Left, π(bbc) = π(bba) = Right, π(cbc) = π(cac) = Both.

Here, π is defined over Dom(π) = {s0, (bbc), (cbc), (bba), (cac)}, and
γ̂(s0, π) = Dom(π) ∪ Sg. Figure 6.2 gives the Graph(s0, π) for that solu-
tion.

6.2.2 Safe and Unsafe Policies

Let π be a solution to the problem (Σ, s0, Sg). For the rest of this chapter
we require all solutions to be closed. Algorithm 6.1 is a simple procedure
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2

(abc)

(bbc) (cbc) (aac)(acc) (aba) (abb)

(bba) (cac)

(ccc) (aaa)

(aab)(bcc) (aca) (cbb)

(bbb)

Left
Both

Right

Right

Right

Right

Right

Left

Left

Left

Left

Both

Both

Both

Both

Figure 6.1: Part of the state space for the problem in Example 6.4.

4

(abc)

(bbc) (cbc)

(bba) (cac)

(ccc)(bbb)

Left

Right

Right

Both

Both

Figure 6.2: A safe solution for Example 6.4 and its Graph(s0, π).
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for acting with a policy π, by performing in each state s the action given by
π(s) until reaching a goal or a state that has no applicable action.2

Run-Policy(Σ, s0, Sg, π)
s← s0
while s /∈ Sg and Applicable(s) 6= ∅ do

perform action π(s)
s← observe resulting state

Algorithm 6.1: A simple procedure to run a policy.

Let σ = 〈s0, s1, . . . , sh〉 be a sequence of states followed by this procedure
in some run of policy π that reaches a goal, that is, sh ∈ Sg. σ is called a
history ; it is a path in Graph(s0, π) from s0 to Sg. For a given π there can be
an exponential number of such histories. The cost of σ is the total sum of the
cost of actions along the history σ, that is: cost(σ) =

∑h−1
i=0 cost(si, π(si)).

The probability of following the history σ is Pr(σ) =
∏h−1
i=0 Pr(si+1|si, π(si)).

Note that σ may not be a simple path: it may contain loops, that is, sj = si
for some j > i. But because actions are nondeterministic, a loop does
not necessarily prevent the procedure from eventually reaching a goal: the
action π(si) that led to an already visited state may get out of the loop when
executed again at step j. However, a solution policy may also get trapped
forever in a loop, or it may reach a nongoal leaf. Hence Run-Policy may not
terminate and reach a goal. Planning algorithms for SSPs will preferably
seek solutions that offer some guarantee of reaching a goal.

Example 6.5. For the policy in Figure 6.2, the history
σ = 〈s0, (cbc), (cac), (cbc), (cbc), (ccc)〉 reaches eventually a goal despite
visiting the same state three times.

Let Prl(Sg|s, π) be the probability of reaching a goal from a state s
by following policy π for up to l steps: Prl(Sg|s, π) =

∑
σ Pr(σ), over

all σ ∈ {〈s, s1, . . . , sh〉 | si+1 ∈ γ(si, π(si)), sh ∈ Sg, h ≤ l}. Let
Pr(Sg|s, π) = liml→∞ Prl(Sg|s, π). With this notation, it follows that:

• if π is a solution to the problem (Σ, s0, Sg) then Pr(Sg|s0, π) > 0; and

• a goal is reachable from a state s with policy π if and only if
Pr(Sg|s, π) > 0.

2Section 6.5 further details how to “perform action π(s)” in probabilistic models.
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Definition 6.6. A solution π to the SSP problem (Σ, s0, Sg) is said to be
safe if and only if Pr(Sg|s0, π) = 1. If 0 < Pr(Sg|s0, π) < 1 then policy π is
an unsafe solution.3

A policy π is safe if and only if ∀s ∈ γ̂(s0, π) there is a path from
s to a goal. With a safe policy, procedure Run-Policy(Σ, s0, Sg, π) always
reaches a goal.4 However, the number of steps needed to reach the goal is
not bounded a priori. Such a bound would require a safe acyclic policy (see
Section 6.7.5). With an unsafe policy, Run-Policy may or may not terminate;
if it does terminate, it may reach either a goal or a state with no applicable
action.

It is useful to extend the concept of safe solutions from policies to states:

Definition 6.7. A state s is safe if and only if ∃π such that Pr(Sg|s, π) = 1;
s is unsafe if and only if ∀π 0 < Pr(Sg|s, π) < 1; s is a dead end if and only
if ∀π Pr(Sg|s, π) = 0. An SSP problem (Σ, s0, Sg) is said to be safe when s0
is safe.

A state s is safe if and only if there exists a policy π such that for every
s′ ∈ γ̂(s, π) there is a path from s′ to a goal. Note that policy π is a safe
solution of (Σ, s0, Sg) if and only if ∀s ∈ γ̂(s0, π), s is safe. Conversely,
s is unsafe if and only if it has a dead end descendant for every policy:
∀π ∃s′ ∈ γ̂(s, π) s′ is a dead end. If a state s is a dead end, then there is no
solution to the problem (Σ, s, Sg).

A state that has no applicable action is a dead end, but so is a state
from which every policy is trapped forever in a loop or leads only to other
dead ends. The former are called explicit dead ends; the latter are implicit
dead ends.

Example 6.8. In Figure 6.1, the state (aaa) is an explicit dead end, the
states (aac), (aab), (aba), and (aca) are implicit dead ends, the states (bbb)
and (ccc) are goals, and all of the other states are safe. Any policy starting
in the safe state s0 with either action Both or Right is unsafe because it leads
to dead ends. The policy given in Figure 6.2 is safe.

Explicit dead ends are easy to detect: in such a state, Run-
Policy(Σ, s0, Sg, π) finds that Applicable(s) = ∅ and terminates unsuccess-
fully. Implicit dead ends create difficulties for many algorithms, as we discuss
later. Figure 6.3 summarizes the four types of states with respect to goal
reachability.

3The literature often refers to safe and unsafe solutions as proper and improper solu-
tions. Here we keep the terminology introduced in Chapter 5.

4In this chapter, “always” is synonymous to a probability of occurrence equal to one.
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(Σ,s,Sg) has a solution
Yes No

Applicable(s)=∅
Yes No

∃𝜋 that always reaches a goal
Yes No

safe unsafe explicit dead-ends is: implicit dead-end

Figure 6.3: Partition of the set of states with respect to solutions.

A domain has no dead end if and only if every state in S is safe. A domain
has no reachable dead end if and only if every state reachable from s0 by
any policy is safe. These desirable cases are difficult to detect in advance.
A problem has a safe solution when the domain dead ends are avoidable:
there is a π such that γ̂(s0, π) avoids dead ends. Example 6.5 illustrates
a domain where dead ends are avoidable. Planning algorithms will seek to
avoid dead ends, searching for safe solutions. If the domain has at least one
unavoidable dead end reachable from s0, then s0 is unsafe. In that case,
one may accept an unsafe solution whose probability of reaching a goal is
maximal. The trade-off between cost and probability of reaching the goal is
discussed in Section 6.7.3.

In summary, an SSP problem (Σ, s0, Sg) can be such that (i) it has a
solution, possibly unsafe; (ii) it has a safe solution, its possible dead ends
are avoidable; (iii) it has no reachable dead end; or (iv) it has no dead
end. These four cases are in increasing order of restriction. We’ll start by
assuming to be in the most restricted case and relax it afterwards.

6.2.3 Optimality Principle of Dynamic Programming

As mentioned in the introduction, probabilistic planning is generally an op-
timization process. Planning algorithms search for a plan that is optimal
with respect to some optimization criteria for the probability and cost pa-
rameters of the problem. Let us discuss the usual optimization criteria and
the building blocks of this optimization process. Throughout this section,
we restrict ourselves to SSP problems without dead ends.

Let V π : Dom(π) → R+ be a value function giving the expected sum
of the cost of the actions obtained by following a safe solution π (which
necessarily exists, given our assumption) from a state s to a goal:
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V π(s) = E[
∑
i

cost(si, π(si))], (6.1)

where the expected value is over all histories σ ∈ {〈s, s1 . . . , sh〉 | si+1 ∈
γ(si, π(si)), sh ∈ Sg}.

V π(s) is the expected cost for running the procedure Run-
Policy(Σ, s, Sg, π) from s until termination. It is the total cost of following
a history σ from s to Sg, averaged over all such histories in Graph(s, π):

V π(s) =
∑
σ

Pr(σ) cost(σ), (6.2)

where cost(σ) =
∑

i cost(si, π(si)) and Pr(σ) =
∏
i Pr(si+1|si, π(si)).

The number of steps needed to reach a goal with a safe solution is not
bounded a priori. Consequently, the expected sum in Equation 6.1 is over
an unbounded number of terms. However, because π is safe, then the prob-
ability of reaching a goal is 1, hence V π(s) is necessarily finite. Note that
when π is unsafe the expected sum of action costs until reaching a goal is
not well-defined: on a history σ on which Run-Policy(Σ, s, Sg, π) does not
terminate, the sum in Equation 6.2 grows to infinity.

It is possible to prove that V π(s) is given by the following recursive
equation (see Exercise 6.2):

V π(s) =

{
0 if s ∈ Sg,
cost(s, π(s)) +

∑
s′∈γ(s,π(s)) Pr(s′|s, π(s))V π(s′) otherwise.

(6.3)
The value function V π plays a critical role in solving SSPs: it makes

it possible to rank policies according to their expected total cost, to use
optimization techniques for seeking a safe optimal policy, and, as we will see
later, to heuristically focus the search on a part of the search space.

A policy π′ dominates a policy π if and only if V π′(s) ≤ V π(s) for every
state for which both π and π′ are defined. An optimal policy is a policy
π∗ that dominates all other policies. It has a minimal expected cost over
all possible policies: V ∗(s) = minπ V

π(s). Under our assumption of prob-
abilistic planning in a domain without dead ends, π∗ exists and is unique.

The optimality principle extends Equation 6.3 to compute V ∗:

V ∗(s) =

{
0 if s ∈ Sg,
mina{cost(s, a) +

∑
s′∈γ(s,a) Pr(s′|s, a)V ∗(s′)} otherwise.

(6.4)
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The optimal policy π∗ is easily derived from V ∗:

π∗(s) = argmina{cost(s, a) +
∑

s′∈γ(s,a)

Pr(s′|s, a)V ∗(s′)}. (6.5)

Let π be an arbitrary safe solution, and V π be as defined in Equation 6.3.
Let us define:

Qπ(s, a) = cost(s, a) +
∑

s′∈γ(s,a)

Pr(s′|s, a)V π(s′). (6.6)

Qπ(s, a) is called the cost-to-go: it is the sum of the immediate cost of a
in s plus the following expected cost of the successors in γ(s, a), as estimated
by V π.

Given a policy π, we can compute the corresponding V π from which
we define a greedy policy π′, which chooses in each state the action that
minimizes the cost-to-go, as estimated by V π:

π′(s) = argmina{Qπ(s, a)}. (6.7)

In case of ties in the preceding minimum relation, we assume that π′ keeps
the value of π, that is, when mina{Qπ(s, a)} = V π(s) then π′(s) = π(s).

Proposition 6.9. When π is a safe solution, then policy π′ from Equa-
tion 6.7 is safe and dominates π, that is: ∀s V π′(s) ≤ V π(s). Further, if π
is not optimal, then there is at least one state s for which V π′(s) < V π(s).

Starting with an initial safe policy, we can repeatedly apply Proposi-
tion 6.9 to keep improving from one policy to the next. This process con-
verges because there is a finite number of distinct policies and each iteration
brings a strict improvement in at least one state, unless already optimal.
This is implemented in algorithm Policy Iteration, detailed next.

6.2.4 Policy Iteration

Policy Iteration (PI, Algorithm 6.2), starts with an initial policy π0, for
example, π0(s) = argmina{cost(s, a)}. It iterates over improvements of the
current policy. At each iteration, it computes the value function V π(s) for
the current π in every state s (step (i)). It then improves π with the greedy
policy for the newly found V π (step (ii)). Possible ties in argmin are broken
by giving preference to the current π. The algorithm stops when reaching a
fixed point where π remains unchanged over two iterations.
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PI(Σ, π0)
π ← π0
loop until reaching a fixed point

compute {V π(s) | s ∈ S} (i)
for every s ∈ S \ Sg do
π(s)← argmina{cost(s, a) +

∑
s′∈γ(s,a) Pr(s′|s, a)V π(s′)} (ii)

Algorithm 6.2: Policy Iteration algorithm.

There are two ways of computing V π for current π. The direct method
is to solve Equation 6.3 considered over the entire S as a system of n linear
equations, where n = |S|, the n unknown variables being the values of V π(s).
There is a solution to this n linear equations if and only if the current π
is safe. The value function V π for the current π can be computed using
classical linear calculs methods, such as Gaussian elimination.

The second method for finding V π is iterative. It consist in computing
the following series of value functions:

Vi(s) = cost(s, π(s)) +
∑

s′∈γ(s,π(s))

Pr(s′|s, π(s))Vi−1(s
′). (6.8)

It can be shown that, for any initial V0, if π is safe, then this series converges
asymptotically to a fixed point equal to V π. In practice, one stops when
maxs |Vi(s)−Vi−1(s)| is small enough; Vi is then taken as an estimate of V π

(more about this in the next section).

Algorithm PI, when initialized with a safe policy, strictly improves in each
iteration the current policy over the previous one, until reaching π∗. In a do-
main that has no dead ends, there exists a safe π0. All successive policies are
also safe and monotonically decreasing for the dominance relation order. In
other words, if the successive policies defined by PI are π0, π1, . . . , πk, . . . , π

∗

then ∀s V ∗(s) ≤ . . . ≤ V πk(s) ≤ . . . ≤ V π1(s) ≤ V π0(s). Because there is a
finite number of distinct policies, algorithm PI with a safe π0 converges to
an optimal policy in a finite number of iterations.

The requirement that π0 is safe is easily met for domains without dead
ends. However, this strong assumption is difficult to meet in practice. It
makes PI difficult to generalize to domains with dead ends. Algorithm Value
Iteration, detailed next, also makes this assumption, but it can be general-
ized with heuristic search techniques to handle dead ends; it is often more
efficient in practice than PI.
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6.2.5 Value Iteration

Earlier, we defined Qπ and the greedy policy π′ with respect to the value
function V π of a policy π. However, the same equations 6.6 and 6.7 can
be applied to any value function V : S → R+. This gives a cost-to-go
QV (s, a) = cost(s, a) +

∑
s′∈γ(s,a) Pr(s′|s, a)V (s′) and a greedy policy for V ,

π(s) = argmina{QV (s, a)}.5 From V , a new value function can be computed
with the following equation:

V ′(s) = min
a
{cost(s, a) +

∑
s′∈γ(s,a)

Pr(s′|s, a)V (s′)}. (6.9)

V ′ is the minimum cost-to-go in s when the value of the successors is
estimated by V . Dynamic programming consists in applying Equation 6.9
repeatedly, using V ′ as an estimate for computing another cost-to-go QV

′

and another value function mina{QV
′
(s, a)}. This is implemented in the

algorithm Value Iteration (Algorithm 6.3).

VI starts with an arbitrary heuristic function V0, which estimates the
expected cost of reaching a goal from s. An easily computed heuristic is, for
example, V0(s) = 0 when s ∈ Sg, and V0(s) = mina{cost(s, a)} otherwise.
The algorithm iterates over improvements of the current value function by
performing repeated updates using Equation 6.9. An update at an iteration
propagates to V ′(s) changes in V (s′) from the previous iteration for the
successors s′ ∈ γ(s, a). This is pursued until a fixed point is reached. A
fixed point is a full iteration over S where V ′(s) remains identical to V (s)
for all s. The returned solution π is the greedy policy for the final V .

VI(Σ, V0)
V ← V0
loop until until reaching a fixed point

for every s ∈ S \ Sg do
V ′(s)← mina{cost(s, a) +

∑
s′∈γ(s,a) Pr(s′|s, a)V (s′)}

V ← V ′

π(s)← argmina{cost(s, a) +
∑

s′∈γ(s,a) Pr(s′|s, a)V (s′)}

Algorithm 6.3: Synchronous Value Iteration algorithm. V0 is implemented
as a function, computed once in every state; V , V ′ and π are lookup tables.

5The greedy policy for V is sometimes denoted πV . In the remainder of this chapter,
we simply denote π the greedy policy for the current V , unless otherwise specified.
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Algorithm 6.3 is the synchronous version of Value Iteration. It imple-
ments a stage-by-stage sequence of updates where the updates at an iteration
are based on values of V from the previous iteration.

An alternative is the asynchronous Value Iteration (Algorithm 6.4).
There, V (s) stands for the current value function for s at some stage of
the algorithm. It is initialized as V0 then repeatedly updated. An update of
V (s) takes into account values of successors of s and may affect the ancestors
of s within that same iteration over S. In the pseudocode, a local update
step in s is performed by the Bellman-Update procedure (Algorithm 6.5),
which iterates over a ∈ Applicable(s) to compute Q(s, a) and its minimum
as V (s). Several algorithms in this chapter use Bellman-Update. Through-
out this chapter, we assume that ties in argmina{Q(s, a)}, if any, are broken
in favor of the previous value of π(s) and in a systematic way (for example,
lexical order of action names).

VI(Σ, V0)
V ← V0
loop until reaching a fixed point

for every s ∈ S \ Sg do
Bellman-Update(s)

Algorithm 6.4: Asynchronous Value Iteration algorithm.

Bellman-Update(s)
for every a ∈ Applicable(s) do
Q(s, a)← cost(s, a) +

∑
s′∈γ(s,a) Pr(s′|s, a)V (s′)

V (s)← mina{Q(s, a)}
π(s)← argmina{Q(s, a)}

Algorithm 6.5: The Bellman update procedure computes V (s) as in Equa-
tion 6.9, and π(s) as the greedy policy for V . Q can be implemented as a
local data structure, π and V as internal data structures of algorithms using
this procedure.

At any point of Value Iteration, either synchronous or asynchronous,
an update of a state makes its ancestors no longer meeting the equation
V (s) = mina{cost(s, a) +

∑
s′∈γ(s,a) Pr(s′|s, a)V (s′)}. A change in V (s′), for

any successor s′ of s (including when s is its own successor), requires an
update of s. This is pursued until a fixed point is reached.
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The termination condition of the outer loop of VI checks that such a fixed
point has been reached, that is, a full iteration over S without a change in
V . At the fixed point, every state s meets Equation 6.3, that is: ∀s V (s) =
V π(s) for current π(s).

In previous section, we emphasized that because there is a finite number
of policies, it make sense to stop PI when the fixed point is reached. Here,
there is an infinite number of value functions; the precise fixed point is
an asymptotic limit. Hence, VI stops when a fixed point is approximately
reached, within some acceptable margin of error. This can be assessed by the
amount of change in the value of V (s) during its update in Bellman-Update.
This amplitude of change is called the residual of a state:

Definition 6.10. The residual of a state s with respect to V is
residual(s) = |V (s) − mina{cost(s, a) +

∑
s′∈γ(s,a) Pr(s′|s, a)V (s′)}|. The

global residual over S is residual = maxs∈S{residual(s)}.

At each iteration of VI, residual(s) is computed before each update with
respect to the values of V at the previous iteration. The termination con-
dition of VI with a margin of error set to a small parameter η > 0 is:
residual ≤ η. Note, however, that with such a termination condition, the
value of V (s) at the last iteration is not identical to V π(s) for current π(s),
as illustrated next.

4

s0
a

b

.2

s1 b

g
10

100
100

Figure 6.4: A very simple domain.

Example 6.11. Consider the very simple domain in Figure 6.4. Σ has
three states, s0, s1, and the goal g, and two actions a and b. Action a leads
in one step to g with probability p; it loops back on s0 with probability
1 − p. Action b is deterministic. Assume cost(a) = 10, cost(b) = 100 and
p = .2. Σ has two solutions, denoted πa and πb. Their values are:
V πa(s0) = cost(a)

∑
i=0,∞(1− p)i = cost(a)

p = 50 and
V πb(s0) = 2× cost(b) = 200. Hence π∗ = πa.
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Let us run VI (say, the synchronous version) on this simple domain as-
suming V0(s) = 0 in every state. After the first iteration V1(s0) = 10 and
V1(s1) = 100. In the following iterations, Vi(s0) = 10 + .8 × Vi−1(s0), and
Vi(s1) remains unchanged. The successive values of V in s0 are: 18, 24.4,
29.52, 33.62, 36.89, 39.51, 41.61, 43.29, 44.63, 45.71, 46.56, and so on, which
converges asymptotically to 50.

With η = 10−4, VI stops after 53 iterations with solution πa and V (s0) =
49.9996. With η = 10−3, 10−2 and 10−1, termination is reached after 43,
32, and 22 iterations, respectively. With a larger value of η, say, η = 5,
termination is reached after just 5 iterations with V (s0) = 33.62 (at this
point: residual(s0) = 33.62− 29.52 < η). Note that at termination V (s0) 6=
V πa(s0) for the found solution πa. We’ll see next how to bound the difference
V π(s0)− V (s0).

Properties of Bellman updates. The iterative dynamic programming
updates corresponding to Equation 6.9 have several interesting properties,
which are conveniently stated with the following notation. Let (BV ) be
a value function corresponding to a Bellman update of V over S, that is,
∀s (BV )(s) = mina{QV (s, a)}. Successive updates are denoted as: (BkV ) =
(B(Bk−1V )), with (B0V ) = V .

Proposition 6.12. For any two value functions V1 and V2 such that
∀s V1(s) ≤ V2(s), we have: ∀s (BkV1)(s) ≤ (BkV2)(s) for k = 1, 2, . . ..

In particular, if a function V0 is such that V0(s) ≤ (BV0)(s), then a
series of Bellman updates is monotonically non decreasing, in other words:
∀s V0(s) ≤ (BV0)(s) ≤ . . . ≤ (BkV0)(s) ≤ (Bk+1V0)(s) ≤ . . ..

Proposition 6.13. In a domain without dead end, the series of Bellman
updates starting at any value function V0 converges asymptoticaly to the
optimal cost function V ∗, that is, ∀s limk→∞(BkV0)(s) = V ∗(s).

Convergence and complexity of VI. For an SSP problem without dead
ends and for any value function V0, VI terminates. Each inner loop iteration
runs in time O(|A| × |S|) (assuming |γ(s, a)| to be upper bounded by some
constant), and the number of iterations required to reach the termination
condition residual ≤ η is finite and can be bounded under some appropriate
assumptions.

Proposition 6.14. For and SSP problem without dead ends, VI reaches the
termination condition residual ≤ η in a finite number of iterations.
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Regardless of the value function V0, VI converges asymptotically to the
optimum:

Proposition 6.15. At termination of VI with residual ≤ η in an SSP prob-
lem without dead ends, the value V is such that ∀s ∈ S limη→0 V (s) = V ∗(s).

More precisely, it is possible to prove that at termination with V and π
(the greedy policy for V ), the following bound holds:

∀s |V (s)− V ∗(s)| ≤ η ×max{Φ∗(s),Φπ(s)}, (6.10)

where Φ∗(s) and Φπ(s) are the expected number of steps to reach a goal
from s by following π∗ and π respectively. However, this bound is difficult
to compute in the general case.

More interesting properties can be established when VI uses a heuristic
function V0 that is admissible or monotone.

Definition 6.16. V0 is an admissible heuristic function if and only if
∀s V0(s) ≤ V ∗(s). V0 is a monotone heuristic function if and only if
∀s V0(s) ≤ mina{Q(s, a)}.

Proposition 6.17. If V0 is an admissible heuristic function, then at any
iteration of VI, the value function V remains admissible. At termination
with residual ≤ η, the found value V and policy π meet the following bounds:
∀s V (s) ≤ V ∗(s) ≤ V (s)+η×Φπ(s) and V (s) ≤ V π(s) ≤ V (s)+η×Φπ(s).

Given π, Φπ(s0), the expected number of steps to reach a goal from s0
following π is computed by solving the n linear equations:

Φπ(s) =

{
0 if s ∈ g,
1 +

∑
s′∈γ(s,π(s)) Pr(s′|s, π(s))Φπ(s′) otherwise.

(6.11)

Note the similarity between Equation 6.3 and Equation 6.11: the expected
number of steps to a goal is simply V π with unit costs. Note also that the
bound η × Φπ(s0) can be arbitrarily large.

VI does not guarantee a solution whose difference with the optimum is
bounded in advance. This difference is bounded a posteriori. The bounds in
Proposition 6.17 entail 0 ≤ V π(s)−V ∗(s) ≤ V π(s)−V (s) ≤ η×Φπ(s). How-
ever, a guaranteed approximation procedure is easily defined using VI with
an admissible heuristic. Such a procedure is illustrated in Algorithm 6.6.

Procedure GAP with an admissible heuristic returns a solution π guar-
anteed to be within ε of the optimum, that is, V π(s0) − V ∗(s0) ≤ ε. It
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GAP(V0, ε)
V ← V0; initialize η > 0 arbitrarily
loop

run VI(Σ, V )
compute Φπ(s0) for the found solution π
if η × Φπ(s0) ≤ ε then return
else η ← min{ε/Φπ(s0), η/2}

Algorithm 6.6: A guaranteed approximation procedure for VI.

repeatedly runs VI (with V from the previous iteration) using decreasing
value of η until the desired bound ε is reached. GAP underlines the distinct
role of η, the margin of error for the fixed point, and ε the upper bound of
the difference to the optimum.

Example 6.18. Going back to the simple domain in Example 6.11, assume
we want a solution no further than ε = .1 from the optimum. Starting with
η = 5, VI finds the solution πa after 5 iterations. Equation 6.11 for solution
πa gives Φπa(s0) = 5. VI is called again with the previous V and η = .02; it
stops after 23 iterations with the same solution and V (s0) = 49.938. This
solution is within at most .1 of π∗. Note that V (s0) is also guaranteed to be
within .1 of V πa(s0).

At termination of VI, V π(s0) for the found solution π is unknown. It
is bounded with: V (s0) ≤ V π(s0) ≤ V (s0) + η × Φπ(s0). It is possible to
compute V π, as explained in Section 6.2.4, either by solving Equation 6.3 as
a system of the n linear equations or by repeated updates as in Equation 6.8
until the residual is less than an accepted margin.

Finally, when the heuristic function is both admissible and monotone,
then the number of iterations needed to reach termination is easily bounded.
Indeed, when V0 is monotone, then V0 ≤ (BV0) by definition, hence the
remark following Proposition 6.12 applies. V (s) cannot decrease throughout
Bellman updates, and it remains monotone. Each iteration of VI increases
the value of V (s) for some s by at least η, and does not decrease V for any
state. This entails the following bound on the number of iterations:

Proposition 6.19. The number of iterations needed by VI to reach the ter-
mination condition residual ≤ η with an admissible and monotone heuristic
is bounded by 1/η

∑
S [V ∗(s)− V0(s)].

In summary, VI performs a bounded number of iterations, each of poly-
nomial complexity in |S|. VI looks as a quite efficient and scalable planning
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algorithm. Unfortunately, the state space in planning is exponential in the
size of the input data: |S| in the order of mk, where k is the number of
ground state variables and m is the size of their range. Practical considera-
tions are further discussed in Section 6.7.6.
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Figure 6.5: Connectivity graph of a simple environment.

Example 6.20. Consider a robot servicing an environment that has six lo-
cations l0, l1, . . . , l5, which are connected as defined by the undirected graph
of Figure 6.5. Traversing an edge has a cost and a nondeterministic out-
come: the tentative traversal of a temporarily busy road has no effect. For
example, when in location l0 the robot takes the action move(l0, l1); with a
probability .5 the action brings the robot to l1, but if the road is busy the
robot remains in l0; in both cases the action costs 2. Edges are labelled by
their traversal cost and probability of success.

In a realistic application, the robot would know (for example, from sen-
sors in the environment) when an edge is busy and for how long. Let us
assume that the robot knows about a busy edge only when trying to tra-
verse it; a trial gives no information about the possible outcome of the next
trial. Finding an optimal policy for traversing between two locations can be
modeled as a simple SSP that has as many states as locations. A state for
a location l has as many actions as outgoing edges from l; each action has
two possible outcomes: reaching the adjacent edge or staying in l.
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Table 6.1: V (l) after the first three and last three iterations of VI on the
domain of Figure 6.5.

iteration l0 l1 l2 l3 l4

1 2.00 2.00 2.00 3.60 5.00

2 4.00 4.00 5.28 5.92 7.50

3 6.00 7.00 7.79 8.78 8.75

10 19.52 21.86 21.16 19.76 9.99

11 19.75 22.18 21.93 19.88 10.00

12 19.87 22.34 22.29 19.94 10.00

Let us run Value Iteration on this simple domain for going from l0 to
l5. With V0 = 0 and η = .5, VI terminates after 12 iterations (see Table 6.1
which gives V (l) for the first three and last three iterations). It finds the
following policy: π(l0)=move(l0, l4), π(l4)=move(l4, l5), π(l1)=move(l0, l4),
π(l2)=move(l0, l4), π(l3)=move(l0, l4). π corresponds to the path 〈l0, l4, l5〉.
Its cost is V π(l0) = 20, which is easily computed from V π(l4) = 5/.5 and
V π(l0) = (5 + .5 × V π(l4))/.5. Note that at termination V (l0) = 19.87 6=
V π(l0). The residual after iteration 12 is 22.29− 21.93 = .36 < η.

Let us change the cost of the edge (l0, l4) to 10. The cost of the previous
policy is now 30; it is no longer optimal. VI terminates (with the same η)
after 13 iterations with a policy corresponding to the path 〈l0, l1, l3, l5〉; its
cost is 26.5.

VI versus PI. The reader has noticed the formal similarities between VI
and PI: the two algorithms rely on repeated updates until reaching a fixed
point. Their differences are worth being underlined:

• PI approaches V ∗ from above, while VI approaches the optimum from
below. Hence the importance of starting with an admissible heuristic
for the latter. PI does not require a heuristic but a safe initial π0.
However, heuristics, when available, can bring a significant efficiency
gain.

• PI computes V π for the current and final solution π, while VI relies on
an approximate V of the value V π of the greedy policy π.

• PI reaches exactly its fixed point while a margin of error has to be set
for VI, allowing for the flexibility illustrated in procedure GAP.
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Note, however, that when PI relies on the iterative method of Equation 6.8
for computing V π the two algorithms can be quite close.

Extensions of VI. Algorithm VI allows for several improvements and
optimizations, such as ordering S according to a dynamic priority scheme,
or partitioning S into acyclic components. The latter point is motivated by
the fact that VI can be made to converge with just one outer loop iteration
on acyclic And/Or graphs.

A variant of VI, called Backward Value Iteration, focuses VI by per-
forming updates in reverse order, starting from the set of goal states, and
updating only along the current greedy policy (instead of a Bellman update
over all applicable actions). A symmetrical variant, Forward Value Itera-
tion, performs the outer loop iteration on subsets of S, starting from s0 and
its immediate successors, then their successors, and so on.

More generally, asynchronous VI does not need to update all states at
each iteration. It can be specified as follows: pick up a state s and update
it. As long as the pick up is fair, that is, no state is left indefinitely non
updated, the algorithm converges to the optimum. This opens the way to
an important extension of VI for domains that have safe solutions but also
dead ends. For that, two main issues need to be tackled:

• do not require termination with a fixed point for every state in S
because this is needed only for the safe states in γ̂(s0, π) and because
there may not be a fixed point for unsafe states; and

• make sure that the values V (s) for unsafe states keep growing strictly
such as to drive the search towards safe policies.

These issues are developed next with heuristic search algorithms.

6.3 Heuristic Search Algorithms

Heuristic search algorithms exploit the guidance of an initial value function
V0 to focus an SSP planning problem on a small part of the search space.
Before getting in the specifics of a few algorithms, let us explain their com-
monalities on the basis of the following search schema.

6.3.1 A General Heuristic Search Schema

The main idea of heuristic search algorithms is to explore a focused part of
the search space and to perform Bellman updates within this focused part,
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instead of over the entire S. This explored part of the search space starts
with {s0} and is incrementally expanded. Let the Envelope be the set of
states that have been generated at some point by a search algorithm. The
Envelope is partitioned into:

(i) goal states, for which V (s) = 0,

(ii) fringe states, whose successors are still unknown; for a fringe state
π(s) is not yet defined and V (s) = V0(s),

(iii) interior states, whose successors are already in the Envelope.

Expanding a fringe state s means finding its successors and defining
Q(s, a) = cost(s, a) +

∑
s′∈γ(s,a) Pr(s′|s, a)V (s′), V (s) = mina{Q(s, a)}, and

the greedy policy for current V , which is π(s) = argmina{Q(s, a)}. Updat-
ing an interior state s means performing a Bellman update on s. When a
descendant s′ of s gets expanded or updated, V (s′) changes, which makes
V (s) no longer equal to mina{Q(s, a)} and requires updating s.

Let us define the useful notions of open and solved states with respect
to η, a given margin of error.

Definition 6.21. A state s ∈ Envelope is open when s is either a fringe or
an interior state such that residual(s) = |V (s)−mina{Q(s, a)}| > η.

Definition 6.22. A state s ∈ Envelope is solved when the current γ̂(s, π)
has no open state; in other words, s is solved when ∀s′ ∈ γ̂(s, π) either
s′ ∈ Sg or residual(s′) ≤ η.

Recall that γ̂(s, π) includes s and the states in the Envelope reachable
from s by current π. It defines Graph(s, π), the current solution graph
starting from s. Throughout Section 6.3, π is the greedy policy for current
V ; it changes after an update. Hence γ̂(s, π) and Graph(s, π) are defined
dynamically.

Most heuristic search algorithms use the preceding notions and are based
on different instantiations of a general schema called Find&Revise (Algo-
rithm 6.7), which repeatedly performs a Find step followed by a Revise
step.

The Find step is a traversal of the current γ̂(s0, π) for finding and choos-
ing an open state s. This Find step has to be systematic: no state in γ̂(s0, π)
should be left open forever without being chosen for revision.

The Revise step updates an interior state whose residual > η or expands
a fringe state. Revising a state can change current π and hence γ̂(s0, π).
At any point, either a state s is open, or s has an open descendant (whose
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Find&Revise(Σ, s0, Sg, V0)
until s0 is solved do

choose an open state s in γ̂(s0, π) (i) Find
expand or update s (ii) Revise

Algorithm 6.7: Find&Revise schema. The specifics of the Find and the
Revise steps depend on the particular algorithm instantiating this schema.

revision will later make s open), or s is solved. In the latter case, γ̂(s, π)
does not change anymore.

Find&Revise iterates until s0 is solved, that is, there is no open state in
γ̂(s0, π). With an admissible heuristic function, Find&Revise converges to a
solution which is asymptotically optimal with respect to η. More precisely,
if the SSP problem has no dead ends, and if V0 is an admissible heuristic,
then Find&Revise with a systematic Find step has the following properties,
inherited from VI:

• the algorithm terminates with a safe solution,

• V (s) remains admissible for all states in the Envelope,

• the returned solution is asymptotically optimal with respect to η; its
difference with V ∗ is bounded by: V ∗(s0)−V (s0) ≤ η×Φπ(s0), where
Φπ is given by Equation 6.11, and

• if V0 is admissible and monotone then the number of iterations is
bounded by 1/η

∑
S [V ∗(s)− V0(s)].

Dealing with dead ends. As discussed earlier, Dynamic Programing
algorithms are limited to domains without dead ends, whereas heuristic
search algorithms can overcome this limitation. First, only reachable dead
ends can be of concern to an algorithm focused on the part of the state
space reachable from s0. Further, it is possible to show that all the preceding
properties of Find&Revise still hold for domains with safe solutions that have
reachable dead ends, implicit or explicit, as long as for every dead end s,
V (s) grows indefinitely over successive updates. Let us explain why this is
the case:

• Assume that V grows indefinitely for dead ends, then ∀s unsafe and
∀π, V π(s) also grows indefinitely; this is entailed from Definition 6.7
because an unsafe state has at least a dead end descendant for any
policy and because all costs are strictly positive.
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• With a systematic Find, successive Bellman updates will make at some
point: V (s′) < V (s′′) for two sibling states where s′ is safe and s′′

unsafe. Consequently, if s is safe, the minimization mina{Q(s, a)} will
rule out unsafe policies.

• Finally, Find&Revise does not iterate over the entire state space but
only over the current γ̂(s0, π). Because we are assuming s0 to be safe,
γ̂(s0, π) will contain at some point only safe states over which the
convergence to a goal is granted.

Consider a domain with a safe solution that has implicit dead ends but
no explicit dead end, that is, ∀s Applicable(s) 6= ∅. There, a dead end is
a state from which every action leads to an infinite loop never reaching a
goal. In such a domain, Equation 6.1 ensures that V (s) will grow indefinitely
when s is a dead end. Indeed, V (s) is the expected sum of strictly positive
costs over sequences of successors of s that grow to infinite length without
reaching a goal.

For a domain with explicit dead ends, such as Example 6.4, our pre-
vious definition makes V possibly undefined at unsafe states. We can ex-
tend the definition by adding a third clause in Equation 6.3, stating simply:
V (s) = ∞ if Applicable(s) = ∅. Alternatively, we can keep all the defini-
tions as introduced so far and extend the specification of a domain with a
dummy action, adeadend, applicable only in states that have no other appli-
cable action; adeadend is such as γ(s, adeadend) = {s} and cost(s, adeadend) =
constant> 0. This straightforward trick brings us back to the case of solely
implicit dead ends: V (s) grows unbounded when s is a dead end.

Note that these considerations about dead ends do not apply to algo-
rithm VI, which iterates over the entire set S, hence cannot converge with
unsafe states because there is no fixed point for implicit dead ends (reachable
or not). Heuristic search algorithms implementing a Find&Revise schema can
find a near-optimal partial policy by focusing on γ̂(s0, π), which contains
only safe states when s0 is safe.

Find&Revise opens a number of design choices for the instantiation of
the Find and the Revise steps and for other practical implementation issues
regarding the possible memorization of the envelope and other needed data
structure. Find&Revise can be instantiated in different ways, for example:

• with a best-first search, as in algorithms AO∗, LAO∗, and their exten-
sions (Section 6.3.2);

• with a depth-first and iterative deepening search, as in HDP, LDFS,
and their extensions (Sections 6.3.3 and 6.3.4); and
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• with a stochastic simulation search, as in RTDP, LRTDP, and their
extensions (Section 6.4.3).

These algorithms inherit the preceding properties Find&Revise. They
have additional characteristics, adapted to different application features. In
the remainder of this chapter, we present some of them, assuming to have
SSP problems where s0 is safe and V0 is admissible.

6.3.2 Best-First Search

In deterministic planning, best-first search is illustrated with the A∗ algo-
rithm for finding optimal paths in graphs. In SSPs, best-first search relies
on a generalization of A∗ for finding optimal graphs in And/Or graphs. This
generalization corresponds to two algorithms: AO∗ and LAO∗. AO∗ is limited
to acyclic And/Or graphs, while LAO∗ handles cyclic search spaces. Both
algorithms iterate over two steps, which will be detailed shortly:

(i) traverse γ̂(s0, π), the current best solution graph, starting at s0; find
a fringe state s ∈ γ̂(s0, π); expand s; and

(ii) update the search space starting from s.

The main difference between the two algorithms is in step (ii). When the
search space is acyclic, AO∗ is able to update the search space in a bottom-up
stage-by-stage process focused on the current best policy. When the search
space and the solution graph can be cyclic, LAO∗ has to combine best-first
search with a Dynamic Programming update.

AO∗ (Σ, s0, g, V0)
Envelope ← {s0}
while γ̂(s0, π) has fringe states do

traverse γ̂(s0, π) and select a fringe state s ∈ γ̂(s0, π) (i)
for all a ∈ Applicable(s) and s′ ∈ γ(s, a) do

if s′ is not already in Envelope then do
add s′ to Envelope
V (s′)← V0(s

′)
AO-Update(s) (ii)

Algorithm 6.8: AO∗, best-first search algorithm for acyclic domains. Re-
placing step (ii) by a call to LAO-Update(s) gives LAO∗.

Starting at s0, each iteration of AO∗ (Algorithm 6.8) extracts the current
best solution graph by doing a forward traversal along current π. In each
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branch, the traversal stops when it reaches a goal or a fringe state. The
selection of which fringe state to expand is arbitrary. This choice does
not change the convergence properties of the algorithm but may affect its
efficiency. The expansion of a state s changes generally V (s). This requires
updating s and all its ancestors in the envelope

AO-Update(s)
Z ← {s}
while Z 6= ∅ do

select s ∈ Z such that Z ∩ γ̂(s, π) = {s}
remove s from Z
Bellman-Update(s)
Z ← Z ∪ {s′ ∈ Envelope | s ∈ γ(s′, π(s′))}

Algorithm 6.9: Bottom-up update for AO∗.

AO-Update (Algorithm 6.9) implements this update in a bottom-up
stage-by-stage procedure, from the current state s up to s0. The set of
states that need to be updated consists of all ancestors of s from which s is
reachable along current π. Note that this set is not strictly included in cur-
rent γ̂(s0, π). It is generated incrementally as the set Z of predecessors of s
along current π. Bellman update is applied to each state in Z whose descen-
dants along current π are not in Z. Because the search space is acyclic, this
implies that the update of a state takes into account all its known updated
descendants, and has to be performed just once. The update of s redefines
π(s) and V (s). The predecessors of s along π are added to Z.

A few additional steps are needed in this pseudocode for handling dead
ends. The dummy action adeadend, discussed earlier, introduces cycles; this is
not what we want here. In the acyclic case, the only dead ends are explicit,
that is, states not in Sg with no applicable action. This is directly detected
when such a state is selected as a fringe for expansion; that state is labelled
as a dead end. In AO-Update, for a state s that has a dead end successor in
γ(s, π(s)), the action corresponding to π(s) is removed from Applicable(s);
if s has no other applicable action then s is in turn labeled a dead end,
otherwise Bellman-Update(s) is performed, which redefines π(s).

AO∗ on an acyclic search space terminates with a solution. When V0 is
admissible, V (s) remains admissible; at termination the found solution π is
optimal and V (s0) is its cost. We finally note that an efficient implementa-
tion of AO∗ may require a few incremental bookkeeping and simplifications.
One consists in changing Z after the update of s only if V (s) has changed.
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Another is to label solved states to avoid revisiting them. Because the space
is acyclic, a state s is solved if it is either a goal or if all the successors of s
in γ(s, π(s)) after an update are solved.
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Figure 6.6: Example of an acyclic search space.

Example 6.23. Consider the domain in Figure 6.6, which has 17 states, s0
to s16 and three actions a, b, and c. Connectors are labeled by the action
name and cost; we assume uniform probability distributions. Let us take
V0(s) = mina{cost(s, a)} and Sg = {s12, s15, s16}.

AO∗ terminates after 10 iterations, which are summarized in Table 6.2.
In the first iteration, V (s0) = min{5 + 2+4

2 , 19 + 15, 12 + 5+9
2 } = 8. In the

second iteration, V (s1) = min{7.5, 24.5, 7}; the update changes V (s0), but
not π(s0). Similarly after s2 is expanded. When s6 is expanded, the updates
changes π(s2), π(s1), and π(s0). The latter changes again successively after
s3, s4, and s9 are expanded π(s0) = c. π(s2) changes after s11 then s13 are
expanded. After the last iteration, the update π(s0) = π(s1) = π(s2) =
π(s5) = π(s11) = a and π(s4) = b; the corresponding solution graph has no
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Table 6.2: Iterations of AO∗ on the example of Figure 6.6: expanded state,
sequence of updated states, value, and policy in s0 after the update.

s V (s) π(s) Updated states π(s2) π(s1) π(s0) V (s0)

s0 8 a a 8

s1 7 c s0 c a 10.5

s2 9 b s0 b c a 13

s6 25 a s2, s1, s0 a a c 19

s3 11.5 b s0 a a a 21.75

s4 6 b s1, s0 a a c 22.25

s9 21.5 a s3, s0 a a a 22.5

s5 7 a s1, s0 a a a 23.5

s11 10 a s4, s5, s2, s1, s0 b a a 25.75

s13 47.5 a s6, s2, s1, s0 a a a 26.25

fringe state; its cost is V (s0) = 26.25.

Only 10 states in this domain are expanded: the interior states s7, s8, s10,
and s14 are not expanded. The algorithm performs in total 31 Bellman
updates. In comparison, Value Iteration terminates after five iterations
corresponding to 5 × 17 calls to Bellman-Update. With a more informed
heuristic, the search would have been more focused (see Section 6.3.5 and
Section 6.3.5).

Let us now discuss best first search for a cyclic search space, for which
updates cannot be based on a bottom-up stage-by-stage procedure. LAO∗

handle this general case. It corresponds to Algorithm 6.8 where step (ii) is
replaced by a call to LAO-Update(s). The latter (Algorithm 6.10) performs
a VI-like series of repeated updates that are limited to the states on which
the expansion of s may have an effect. This is the set Z of s and all its
ancestors along current π. Again, Z is not limited to γ̂(s0, π).

LAO-Update is akin to an asyncronous VI focused by current π. However,
an update may change current π, which may introduce new fringe states.
Consequently, the termination condition of LAO-Update is the following:
either an update introduces new fringe states in γ̂(s0, π) or the residual ≤ η
over all updated states.

The preceding pseudo-code terminates with a solution but no guarantee
of its optimality. However, if the heuristic V0 is admissible, then the bounds
of Proposition 6.17 apply. A procedure such as GAP (Algorithm 6.6) can be
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LAO-Update(s)
Z ← {s} ∪ {s′ ∈ Envelope | s ∈ γ̂(s′, π)}
iterate until termination condition
∀s ∈ Z do

Bellman-Update(s)

Algorithm 6.10: A “VI-like” update for LAO∗.

used to find a solution with a guaranteed approximation.

Explicit dead ends can be handled with the dummy action adeadend and
the management of loops. If the current π is unsafe then the updates will
necessarily change that current policy, as discussed in the previous section.
When there is no dead end, it is possible to implement LAO-Update using a
Policy Iteration procedure, but this was not found as efficient as the VI-like
procedure presented here.

LAO∗ is an instance of the Find&Revise schema (see Exercise 6.10). On
an SSP problem with a safe solution and an admissible heuristic V0, LAO∗

is guaranteed to terminate and to return a safe and asymptotically optimal
solution.

The main heuristic function for driving LAO∗ is V0 (see Section 6.3.5).
Several additional heuristics have been proposed for selecting a fringe state
in current γ̂(s0, π) to be expanded. Examples include choosing the fringe
state whose estimated probability of being reached from s0 is the highest, or
the one with the lowest V (s). These secondary heuristics do not change the
efficiency of LAO∗ significantly. A strategy of delayed updates and multiple
expansions was found to be more effective. The idea here is to expand in
each iteration several fringe states in γ̂(s0, π) before calling LAO-Update on
the union of their predecessors in γ̂(s0, π). Indeed, an expansion is a much
simpler step than an update by LAO-Update. It is beneficial to perform
updates less frequently and on more expanded solution graphs.

A variant of LAO∗ (Algorithm 6.11) takes this idea to the extreme. It
expands all fringe states and updates all states met in a post-order traver-
sal of current γ̂(s0, π) (the traversal marks states already visited to avoid
getting into a loop). It then calls VI on γ̂(s0, π) with the termination con-
dition discussed earlier. The while loop is pursued unless VI terminates
with residual ≤ η. Again, a procedure like GAP is needed to provided a
guaranteed approximation.

Like AO∗, LAO∗ can be improved by labelling solved states. This will be
illustrated next with depth-first search.
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ILAO∗ (Σ, s0, g, V0)
Envelope ← {s0}
while γ̂(s0, π) has fringe states do

for each s visited in a depth-first post-order traversal of γ̂(s0, π) do
unless s has already been visited in this traversal do

if s is a fringe then expand s
Bellman-Update(s)

perform VI on γ̂(s0, π) until termination condition

Algorithm 6.11: ILAO∗, a variant of LAO∗, a best-first search algorithm for
cyclic domains.

6.3.3 Depth-First Search

A direct instance of the Find&Revise schema is given by the HDP algorithm
(for Heuristic Dynamic Programming). HDP performs the Find step by a
depth-first traversal of the current solution graph γ̂(s0, π) until finding an
open state, which is then revised. Furthermore, HDP uses this depth-first
traversal for finding and labeling solved states: if s is solved, the entire graph
γ̂(s, π) is solved and does not need to be searched anymore.

The identification of solved states relies on the notion of strongly con-
nected components of a graph. HDP uses an adapted version of Tarjan’s algo-
rithm for detecting these components (see Appendix B and Algorithm B.1).
The graph of interest here is γ̂(s0, π). Let C be a strongly connected com-
ponent of this graph. Let us define a component C as being solved when
every state s ∈ C is solved.

Proposition 6.24. A strongly connected component C of the current graph
γ̂(s0, π) is solved if and only if C has no open state and every other compo-
nent C ′ reachable from a state in C is solved.

Proof. The proof follows from the fact that the strongly connected com-
ponents of a graph define a partition of its vertices into a DAG (see Ap-
pendix B). If C meets the conditions of the proposition, then ∀s ∈ C γ̂(s, π)
has no open state, hence s is solved.

HDP (Algorithm 6.12) is indirectly recursive through a call to Solved-
SCC, a slightly modified version of Tarjan’s algorithm. HDP labels goal
states and stops at any solved state. It updates an open state, or it calls
Solved-SCC on a state s whose residual ≤ η to check whether this state and
its descendant in the current solution graph are solved and to label them.
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HDP(s)
if s ∈ Sg then label s solved
if s is solved then return false
else if (residual(s) > η) ∨ Solved-SCC(s, false) then do

Bellman-Update(s)
return true

Algorithm 6.12: A heuristic depth-first search algorithm for SSPs.

Note that the disjunction produces a recursive call only when its first clause
is false. HDP and Solved-SCC returns a binary value that is true if and only
if s or one of its descendants has been updated.

Procedure Solved-SCC (Algorithm 6.13) finds strongly connected com-
ponents and labels them as solved if they meet the conditions of Proposi-
tion 6.24. It is very close to Tarjan’s algorithm. It has a second argument
that stands for a binary flag, true when s or one of its descendant has been
updated. Its differences with the original algorithm are the following. In
step (i) the recursion is through calls to HDP, while maintaining the updated
flag. In step (ii), the test for a strongly connected component is performed
only if no update took place below s. When the conjunction holds, then
s and all states below s in the depth-first traversal tree make a strongly
connected component C and are not open. Further, all strongly connected
components reachable from these states have already been labeled as solved.
Hence, states in C are solved (see details in Appendix B).

Procedure HDP is repeatedly called on s0 until it returns false, that is,
until s0 is solved. Appropriate reinitialization of the data structures needed
by Tarjan algorithm (i← 0, stack← ∅ and index undefined for states in the
Envelope) have to be performed before each call to HDP(s0). Finally, for
the sake of simplicity, this pseudocode does not differentiate a fringe state
from other open states: expansion of fringe states (over all its successors for
all applicable actions) is simply performed in HDP as an update step.

HDP inherits of the properties of Find&Revise: with an admissible heuris-
tic V0, it converges asymptotically with η to the optimal solution; when V0
is also monotone, its complexity is bounded by 1/η

∑
S [V ∗(s)− V0(s)].

6.3.4 Iterative Deepening Search

While best-first search for SSPs relied on a generalization of A∗ to And/Or
graphs, iterative deepening search relies on an extension of the IDA∗ algo-
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Solved-SCC(s, updated)
index(s)←low(s)← i
i← i+ 1
push(s,stack)
for all s′ ∈ γ(s, π(s)) do

if index(s′) is undefined than do
updated← HDP(s′) ∨ updated (i)
low(s)← min{low(s), low(s′}

else if s′ is in stack then low(s)← min{low(s), low(s′}
if (¬ updated) ∧ (index(s)=low(s)) then do (ii)

repeat
s′ ← pop(stack)
label s′ solved

until s′ = s
return updated

Algorithm 6.13: Procedure for labelling strongly connected components.

rithm.

IDA∗ (Iterative Deepening A∗) proceeds by repeated depth-first, heuris-
tically guided explorations of a deterministic search space. Each iteration
goes deeper than the previous one and, possibly, improves the heuristic esti-
mates. Iterations are pursued until finding an optimal path. The extension
of IDA∗ to And/Or graphs is called LDFS; it also performs repeated depth-
first traversals where each traversal defines a graph instead of a path.

We first present a simpler version of LDFS called LDFSa (Algo-
rithm 6.14), which handles only acyclic SSPs. LDFSa does a recursive depth-
first traversal of the current γ̂(s0, π). A traversal expands fringe states, up-
dates open states, and labels as solved states that do not, and will not in
the future, require updating. LDFSa(s0) is called repeatedly until it returns
s0 as solved.

In an acyclic SSP, a state s is solved when either it is a goal or when its
residual(s) ≤ η and all its successors in γ(s, π) are solved. This is expressed
in line (ii) for the current action a of iteration (i).

Iteration (i) skips actions that do not meet the preceding inequality.
It proceeds recursively on successor states for an action a that meets this
inequality. If these recursions returns false for all the successors in γ(s, a),
then updated=false at the end of the inner loop (iii); iteration (i) stops
and s is labeled as solved. If no action in s meets inequality (ii) or if the
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LDFSa(s)
if s ∈ Sg then label s solved
if s is solved return true
updated ← true
iterate over a ∈ Applicable(s) and while (updated) (i)

if |V (s)− [cost(s, a) +
∑

s′∈γ(s,a) Pr(s′|s, a)V (s′)]| ≤ η then do (ii)

updated ← false
for each s′ ∈ γ(s, a) do (iii)

updated← LDFSa(s
′) ∨ updated

if updated then Bellman-Update(s)
else do
π(s)← a
label s solved

return updated

Algorithm 6.14: Algorithm LDFSa.

recursion returns true on some descendant, then s is updated. This update
is propagated back in the sequence of recursive calls through the returned
value of updated. This leads to updating the predecessors of s, improving
their values V (s).

Due to the test on the updated flag, (i) does not run over all applicable
actions; hence LDFSa performs partial expansions of fringe states. However,
when a state is updated, all its applicable actions have been tried in (i).
Furthermore, the updates are also back-propagated partially, only within
the current solution graph. Finally, states labeled as solved will not be
explored in future traversals.

LDFS extends LDFSa to SSPs with cyclic safe solutions. This is done by
handling cycles in a depth-first traversal, as seen in HDP. Cycles are tested
along each depth-first traversal by checking that no state is visited twice.
Recognizing solved states for cyclic solutions is performed by integrating
to LDFS a book-keeping mechanism similar to the Solved-SCC procedure
presented in the previous section. This integration is, however, less direct
than with HDP.

Let us outline how LDFS compares to HDP. A recursion in HDP proceeds
along a single action, which is π(s), the current best one. LDFS examines
all a ∈ Applicable(s) until it finds an action a that meets the condition (ii)
of Algorithm 6.14, and such that there is no s′ ∈ γ(s, a), which is updated
in a recursive call. At this point, updated=false: iteration (i) stops. If no
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such action exists, then residual(s) > η and both procedures LDFS and HDP
perform a normal Bellman-update. Partial empirical tests show that LDFS
is generally, but not systematically, faster than HDP.

LDFS is an instance of the Find&Revise schema. It inherits its conver-
gence and complexity properties, including the bound on the number of
trials when used with an admissible and monotone heuristic.

6.3.5 Heuristics and Search Control

As for all search problems, heuristics play a critical role in scaling up prob-
abilistic planning algorithms. Domain-specific heuristics and control knowl-
edge draw from a priori information that is not explicit in the formal rep-
resentation of the domain. For example, in a stochastic navigation problem
where traversal properties of the map are uncertain (for example, as in the
Canadian Traveller Problem [457]), the usual Euclidian distance can pro-
vide a lower bound of the cost from a state to the goal. Domain-specific
heuristics can be very informative, but it can be difficult to acquire them
from domain experts, estimate their parameters, and prove their properties.
Domain-independent heuristics do not require additional knowledge specifi-
cation but are often less informative. A good strategy is to combine both,
relying more and more on domain-specific heuristics when they can be ac-
quired and tuned. Let us discuss here a few domain-independent heuristics
and how to make use of a priori control knowledge.

Heuristics. A straightforward simplification of Equation 6.4 gives:

V0(s) =

{
0 if s ∈ g,
mina{cost(s, a)} otherwise.

V0 is admissible and monotone. When |Applicable(s)| and |γ(s, a)| are small,
one may perform a Bellman update in s and use the following function V1
instead of V0:

V1(s) =

{
0 if s ∈ g,
mina{cost(s, a) +

∑
s′∈γ(s,a) Pr(s′|s, a)V0(s

′)} otherwise.

V1 is admissible and monotone. So is the simpler variant heuristic
V ′1(s) = mina{cost(s, a) + mins′∈γ(s,a) V0(s

′)} for non-goal states, because
mins′∈γ(s,a) V0(s

′) ≤
∑

s′∈γ(s,a) Pr(s′|s, a)V0(s
′).

More informed heuristics rely on a relaxation of the search space. A
widely used relaxation is the so-called determinization, which transforms
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each probabilistic action into a few deterministic ones (as seen in Sec-
tion 5.5).

We can map a nondeterministic domain Σ = (S,A, γ) into a deterministic
one Σd = (S,Ad, γd) with the following property: ∀s ∈ S, a ∈ A, s′ ∈ γ(s, a),
∃a′ ∈ Ad with s′ = γd(s, a

′) and cost(s, a′) = cost(s, a). In other words,
Σd contains a deterministic action for each nondeterministic outcome of an
action in Σ. This is the all-outcomes determinization, as opposed to the
most-probable outcomes determinization. In the latter, Ad contains deter-
ministic actions only for states s′ ∈ γ(s, a) such that Pr(s′|s, a) is above
some threshold. For SSPs in factorized representation, it is straightforward
to obtain Σd from Σ.

Let h∗(s) be the cost of an optimal path from s to a goal in the all-
outcomes determinization Σd, with h∗(s) =∞ when s is a dead end, implicit
or explicit. It is simple to prove that h∗ is an admissible and monotone
heuristic for Σ. But h∗ can be computationally expensive, in particular for
detecting implicit dead ends. Fortunately, heuristics for Σd are also useful
for Σ.

Proposition 6.25. Every admissible heuristic for Σd is admissible for Σ.

Proof. Let σ = 〈s, s1, . . . , sg〉 be an optimal path in Σd from s to a goal; its
cost is h∗(s). Clearly σ is also a possible sequence of state in Σ from s to
a goal with a non null probability. No other such a history has a strictly
lower cost than h∗(s). Hence, h∗(s) is a lower bound on V ∗(s), the expected
optimal cost over all such histories. Let h(s) be any admissible heuristics
for Σd: h(s) ≤ h∗(s) ≤ V ∗(s).

Hence, the techniques discussed in Section 2.3 for defining admissible
heuristics, such as hmax, are applicable in probabilistic domains. Further,
informative but non admissible heuristics in deterministic domains, such
as hadd, have also been found informative in probabilistic domains when
transposed from Σd to Σ.

Control knowledge in probabilistic planning. The idea here is to ex-
press a domain specific knowledge, which allows us to focus the search in
each state s on a subset of applicable actions in s. Let us denote this subset:
Focus(s,K) ⊆ Applicable(s), where K is the control knowledge applicable
in s. Convenient approaches allow to compute K incrementally, for exam-
ple, with a function Progress such that K′ ← Progress(s, a,K). In control
formula methods, K is a set of control formula, Focus(s,K) are the appli-
cable actions that meet these formula, and Progress allows to compute the
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Focus for a successor of s and a. In HTN, K is the current task network,
Focus(s,K) are first primitive actions in totally ordered decompositions of K,
and Progress(s, a,K) is the next step in the decomposition of K. A forward
search deterministic planning algorithm embeds one of these approaches to
focus the possible choices of the next action, hence reducing its branching
factor.

Two ingredients are needed to transpose these approaches to probabilis-
tic planning: (i) a forward-search algorithm, and (ii) a representation and
techniques for computing Focus(s,K) and Progress(s, a,K) for nondetermin-
istic actions. The latter can be obtained from Σd, the determinized version
of a domain. Regarding the former, we already mentioned a Forward Value
Iteration variant of VI; most instances of the Find&Revise schema, including
best-first and depth-first, perform a forward search. These control methods
can even be applied to online and anytime lookahead algorithms discussed
in the next section. They can be very powerful in speeding up a search,
but they evidently reduce its convergence (for example, to safe and optimal
solution) with respect to the actions that remain in the Focus subset.

6.4 Online Probabilistic Approaches

In probabilistic domains, as in many other cases, the methodology of finding
a complete plan then acting according to that plan is often not feasible
nor desirable. It is not feasible for complexity reasons in large domains,
that is, a few dozens ground state variables. Even with good heuristics,
algorithms seen in Section 6.3 cannot always address large domains, unless
the designer is able to carefully engineer and decompose the domain. Even
memorizing a safe policy as a table lookup in a large domain is by itself
challenging to current techniques (that is, decision diagrams and symbolic
representations). However, a large policy contains necessarily many states
that have a very low a priori probability of being reached, for example, lower
than the probability of unexpected events not modeled in Σ. These highly
improbable states may not justify being searched, unless they are highly
critical. They can be further explored if they are reached or become likely
to be reached while acting.

Furthermore, even when heuristic planning techniques do scale up, acting
is usually time-constrained. A trade-off between the quality of a solution
and its computing time if often desirable, for example, there is no need to
improve the quality of an approximate solution if the cost of finding this
improvement exceeds its benefits. Such a trade-off can be achieved with
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an online anytime algorithm that computes a rough solution quickly and
improves it when given more time.

Finally, the domain model is seldom precise and complete enough to
allow for reliable long-term plans. Shorter lookaheads with progressive re-
assessments of the context are often more robust. This is often implemented
in a receding horizon scheme, which consists in planning for h steps towards
the goal, performing one or a few actions according to the found plan, then
replanning further.

This section presents a few techniques that perform online lookaheads
and permit to interleave planning and acting in probabilistic domains. These
techniques are based on a general schema, discussed next.

6.4.1 Lookahead Methods

Lookahead methods allow an actor to progressively elaborate its delibera-
tion while acting, using a procedure such as Run-Lookahead, Algorithm 6.15.
Instead of using an a priori defined policy, this procedure calls a bounded
lookahead planning step. Procedure Lookahead searches for a partial plan
rooted at s. It computes partially π, at least in s, and returns the corre-
sponding action. A context-dependent vector of parameters θ gives bounds
for the lookahead search. For example, θ may specify the depth of the looka-
head, its maximum processing time, or a real-time interruption mechanism
corresponding to an acting deadline. The simple pseudo-code below can be
extended when Lookahead fails by retrying with another θ.

Run-Lookahead(Σ, s0, Sg)
s← s0
while s /∈ Sg and Applicable(s) 6= ∅ do
a←Lookahead(s, θ)
if a = failure then return failure
else do

perform action a
s← observe resulting state

Algorithm 6.15: Acting with the guidance of lookahead search.

Generative model. The comparison of Run-Lookahead with Run-Policy
(Algorithm 6.1) shows that their sole difference is in the substitution of π(s)
in the latter by a call to Lookahead in the former. Both require in general
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further refinement to apply an action (see Section 6.5). Working with a
progressively generated policy, defined when and where it is needed, makes
it possible to address the concerns mentioned earlier of interleaving planning
and acting, while dealing with complexity and partial domain knowledge.

Further, a full definition of γ(s, a) for all a ∈ Applicable(s) is not nec-
essary to a partial exploration. Several partial exploration techniques rely
on sampling methods. They search only one or a few random outcomes in
γ(s, a) over a few actions in Applicable(s).

Definition 6.26. A generative sampling model of a domain
Σ = (S,A, γ,Pr, cost) is a stochastic function, denoted Sample: S ×A→ S,
where Sample(s, a) is a state s′ randomly drawn in γ(s, a) according to the
distribution Pr(s′|s, a).

In addition to s′, Sample may also return the cost of the transition from s
to s′. A planning algorithm interfaced with such a Sample function does not
need a priori estimates of the probability and cost distributions of a domain
Σ. A domain simulator is generally the way to implement the function
Sample.

Approaches and properties of Lookahead. One possible option is to
memorize the search space explored progressively: each call to Lookahead
relies on knowledge acquired from previous calls; its outcome augments this
knowledge. As an alternatie to this memory-based approach, a memoryless
strategy would start with a fresh look at the domain in each call to Looka-
head. The choice between the two options depends on how stationary the
domain is, how often an actor may reuse its past knowledge, how easy it is
to maintain this knowledge, and how this can help improve the behavior.

The advantages of partial lookahead come naturally with a drawback,
which is the lack of a guarantee on the optimality and safety of the solution.
Indeed, it is not possible in general to choose π(s) with a bounded lookahead
while being sure that it is optimal, and, if the domain has dead ends, that
there is no dead end descendant in γ̂(s, π). Finding whether a state s is
unsafe may require in the worst case a full exploration of the search space
starting at s. In the bounded lookahead approach, optimality and safety are
replaced by a requirement of bounds on the distance to the optimum and
on the probability of reaching the goal. In the memory-based approaches,
one may also seek asymptotic convergence to safe and/or optimal solutions.

Three approaches to the design of a Lookahead procedure are presented
next:
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• domain determinization and replanning with deterministic search,

• stochastic simulation, and

• sparse sampling and Monte Carlo planning techniques.

The last two approaches are interfaced with a generative sampling model
of Σ using a Sample function: they do not need a priori specification of
probability and cost distributions. The third one is also memoryless; it is
typically used in a receding horizon scheme. However, many algorithms
implementing these approaches can be used for offline planning as well as in
the online interleaved planning and acting framework presented here: their
control parameters allow for a continuum from the computation of a greedy
policy computed at each state to a full exploration and definition of π(s0).

6.4.2 Lookahead with Deterministic Search

In Section 5.6.2, we introduced FS-Replan, a lookahead algorithm using re-
peated deterministic planning. The approach simply generates a path πd
from the current state to a goal for the all-outcomes determinized domain
using some deterministic planner, then it acts using πd until reaching a state
s that is not in the domain of πd. At that point FS-Replan generates a new
deterministic plan starting at s.

This approach can also be applied to probabilistic domains. Note, how-
ever, that FS-Replan does not cope adequately with dead ends: even if the
deterministic planner is complete and finds a path to the goal when there
is one, executing that path may lead along a nondeterministic branch to an
unsafe state.

RFF (Algorithm 6.16) relies, as FS-Replan does, on a deterministic plan-
ner, called Det-Plan, to find in Σd an acyclic path from a state to a goal.
Procedure Det-Plan returns such a path as a policy. RFF improves over
FS-Replan by memorizing previously generated deterministic paths and ex-
tending them for states that have a high reachability probability. RFF can be
used as an offline planner as well as an online Lookahead procedure, possibly
with additional control parameters.

RRF initializes the policy π with the pairs (state, action) corresponding
to a deterministic plan from s0 to a goal, then it extends π. It looks for a
fringe state along a nondeterministic branch of that policy, that is, a state
s reachable from s0 with current π that is not a goal and for which π is
undefined. If the probability of reaching s is above some threshold θ, RFF
extends π with another deterministic path from s to a goal or to another
state already in the domain of π. The set of additional goals given to Det-
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RFF(Σ, s0, Sg, θ)
π ← Det-Plan(Σd, s0, Sg)
while ∃s ∈ γ̂(s0, π) such that

s /∈ Sg ∧ π(s) is undefined ∧Pr(s|s0, π) ≥ θ then do
π ← π ∪ Det-Plan(Σd, s, Sg ∪ Targets(π, s))

Algorithm 6.16: A determinization planning algorithm.

Plan, denoted Targets(π, s), can be the already computed Dom(π) or any
subset of it. If the entire Dom(π) is too large, the overhead of using it in
Det-Plan can be larger than the benefit of reusing paths already planned in
π. A trade-off reduces Targets(π, s) to k states already in the domain of π.
These can be taken randomly in Dom(π) or chosen according to some easily
computed criterion.

Computing Pr(s|s0, π) can be time-consuming (a search and a sum over
all paths from s0 to s with π). This probability can be estimated by sam-
pling. A number of paths starting at s0 following π are sampled; this allows
estimation of the frequency of reaching non-goal states that are not in the
domain of π. RFF terminates when this frequency is lower than θ.

Algorithm 6.16 requires (as FS-Replan does) a domain without reachable
dead ends. However, RFF can be extended to domains with avoidable dead
ends, that is, where s0 is safe. This is achieved by introducing a backtrack
point in a state s which is either an explicit deadend or for which Det-
Plan fails. That state is marked as unsafe; a new search starting from its
predecessor s′ is attempted to change π(s′) and avoid the previously failed
action.

RFF algorithm does not attempt to find an optimal or near optimal
solution. However, the offline version of RFF finds a probabilistically safe
solution, in the sense that the probability of reaching a state not in the
domain of π, either safe or unsafe, is upper bounded by θ.

6.4.3 Stochastic Simulation Techniques

The techniques in this section use a generative sampling model of the domain
Σ through a function Sample. The idea is to run simulated walks from s0 to
a goal along best current actions by sampling one outcome for each action.
Algorithms implementing this idea are inspired from LRTA∗ [350]. They can
be implemented as offline planners as well as online Lookahead procedures.

One such algorithm, called RTDP, runs a series of simulated trials start-
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ing at s0. A trial performs a Bellman update on the current state, then
it proceeds to a randomly selected successor state along the current action
π(s), that is, from s to some random s′ ∈ γ(s, π(s)). A trial finishes when
reaching a goal. The series of trials is pursued until either the residual
condition is met, which reveals near convergence, as in Find&Revise, or the
amount of time for planning is over. At that point, the best action in s0 is
returned. With these assumptions RTDP is an anytime algorithm.

If a goal is reachable from every state in the search space and if the
heuristic V0 is admissible then every trial reaches a goal in a finite number
of steps and improves the values of the visited states over the previous values.
Hence, RTDP converges asymptotically to V ∗, but not in a bounded number
of trials. Note that these assumptions are stronger than the existence of a
safe policy.

LRTDP(Σ, s0, g, V0)
until s0 is solved or planning time is over do

LRTDP-Trial(s0)

LRTDP-Trial(s)
visited← empty stack
while s is unsolved do

push(s, visited)
Bellman-Update(s)
s← Sample(s, π(s))

s←pop(visited)
while Check-Solved(s) is true and visited is not empty do
s←pop(visited)

Algorithm 6.17: Algorithm LRTDP.

Algorithm 6.17, LRTDP (for Labelled RTDP), improves over RTDP by
explicitly checking and labeling solved states. LRTDP avoids visiting solved
states twice. It calls LTRDP-Trial(s0) repeatedly until planning time is over
or s0 is solved. A trial is a simulated walk along current best actions, which
stops when reaching a solved state. A state s visited along a trial is pushed
in a stack visited; when needed, it is expanded and Bellman updated. The
trial is pursued on a randomly generated successor of s: the procedure
Sample(s, a) returns a state in γ(s, π(s)) randomly drawn according to the
distribution Pr(s′|s, π(s)).

The states visited along a trial are checked in LIFO order using the pro-
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Check-Solved(s)
flag ← true
open← closed← empty stack
if s is unsolved then push(s, open)
while open is not empty do
s← pop(open)
push(s, closed)
if |V (s)−Q(s, π(s))| > η then flag ← false
else for all s′ ∈ γ(s, π(s)) do

if s′ is unsolved and s′ /∈ open ∪ closed
then push(s′, open)

if flag= true then do
for all s′ ∈ closed label s′ as solved (i)

else do
while closed is not empty do
s← pop(closed)
Bellman-Update(s)

return flag

Algorithm 6.18: Procedure to check and label solve states for LRTDP.

cedure Check-Solved (Algorithm 6.18) to label them as solved or to update
them. Check-Solved(s) searches through γ̂(s, π) looking for a state whose
residual is greater than the error margin η. If it does not find such a state
(flag = true), then there is no open state in γ̂(s, π). In that case it labels as
solved s and its descendants in γ̂(s, π) (kept in the closed list). Otherwise,
there are open states in γ̂(s, π). The procedure does not explore further
down the successors of an open state (the residual of which is larger than
η), but it continues on its siblings.

When all the descendants of s whose residual is less or equal to η have
been examined (in that case open = ∅), the procedure tests the resulting
flag. If s is not yet solved (that is, flag = false), a Bellman update is
performed on all states collected in closed. Cycles in the Envelope are taken
care of (with the test s′ /∈ open ∪ closed): the search is not pursued down
on successor states that have already been met. The complexity of Check-
Solved(s) is linear in the size of the Envelope, which may be exponential in
the size of the problem description.

Note that by definition, goal states are solved; hence the test “s is un-
solved” in the two preceding procedures checks the explicit labeling per-
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formed by Check-Solved (labeling step) as well as the goal condition.

If a goal is reachable from every state and V0 is admissible, then LRTDP-
Trial always terminates in a finite number of steps. Furthermore, if the
heuristic V0 is admissible and monotone, then the successive values of V
with Bellmann updates are nondecreasing. Under these assumptions, each
call to Check-Solved(s) either labels s as solved or increases the value of some
of its successors by at least η while decreasing the value of none. This leads
to the same complexity bound as VI:

Proposition 6.27. LRTDP with an admissible and monotone heuristic on
a problem where a goal is reachable from every state converges in a number
of trials bounded by 1/η

∑
S [V ∗(s)− V0(s)].

This bound is mainly of theoretical interest. Of more practical value is
the anytime property of LRTDP: the algorithm produces a good solution that
it can improve if given more time or in successive calls in Run-Lookahead.
Because Sample returns states according to their probability distribution,
the algorithm converges on (that is, solves) frequent states faster than on
less probable ones. As an offline planner (that is, repeated trials until s0
is solved), its practical performances are comparable to those of the other
heuristic algorithms presented earlier.

6.4.4 Sparse Sampling and Monte Carlo Search

This section also relies on a generative sampling model of the domain Σ
through a function Sample. The stochastic simulation approach of the pre-
vious section can be extended and used in many ways, in particular with
the bounded walks and sampling strategies discussed here.

Let π0 be an arbitrary policy that is used at initialization, for
example, π0(s) is the greedy policy, locally computed when needed,
π0(s) = argminaQ

V0(s, a) for some heuristic V0. If the actor has no time
for planning, then π0(s) is the default action. If it can afford some looka-
head, then an easy way of improving π0 in s is the following.

Monte Carlo Rollout. Let us use the Sample procedure to simulate a
bounded walk of h steps whose first step is an action a and the remaining
h − 1 steps follow the initial policy π0. Let σhπ0(s, a) = 〈s, s1, s2, . . . , sh〉
be the sequence of states visited during this walk, with s1 ∈ γ(s, a) and
si+1 ∈ γ(si, π0(si)). This history σhπ0(s, a) is called a rollout for a in s with
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π0. The sum of the costs of this rollout is:

Qhπ0(s, a) = cost(s, a) + V0(sh) +

h−1∑
i=1

cost(si, π0(si)) , over si in σhπ0(s, a).

Let us perform a rollout for every action applicable in s, as depicted in
Figure 6.7(a), and let us define a new policy:

π(s) = argminaQ
h
π0(s, a).

The simple argument used for Proposition 6.9 applies here: policy π domi-
nates the base policy π0.

The multiple rollout approach performs k similar simulated walks of
h steps for each action a applicable in s. (see Figure 6.7(b)). It then
averages their costs to assess Qhπ0(s, a). This approach is probabilistically
approximately correct, that is, it provides a probabilistically safe solution
(not guaranteed to be safe) whose distance to the optimum is bounded. It
requires a number of calls to Sample equal to |Applicable(s)| × k × h.
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s
a1 ai
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sh1 sh1

Qh(s,a1) Qh(s,ai)
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… …
k k

…
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(b)

Figure 6.7: (a) Single Monte Carlo rollout; (b) Multiple rollout.

Sparse Sampling. The sparse sampling technique performs bounded
multiple rollouts in s and in each of its descendants reached by these rollouts.
It is illustrated by the procedure SLATE (Algorithm 6.19).

SLATE builds recursively a tree in which nodes are states; arcs corre-
spond to transitions to successor states, which are randomly sampled. Two
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parameters h and k bound the tree, respectively in depth and sampling width
(see Figure 6.8). At depth h, a leaf of the tree gets as a value a heuristic
estimate given by V0. In an interior state s and for each action a applicable
in s, k successors are randomly sampled. The average of their estimated
values is used to compute recursively the cost-to-go Q(a, s). The minimum
over all actions in Applicable(s) gives π(s) and V (s), as in Bellman-Update.

SLATE(s, h, k)
if h = 0 then return V0(s)
if s ∈ Sg then return 0
for each a ∈ Applicable(s) do

samples ← ∅
repeat k times

samples← samples ∪ Sample(Σ, s, a)
Q(s, a)← cost(s, a) + 1

k

∑
s′∈samples SLATE(s′, h− 1, k)

π(s)← argmina{Q(s, a)}
return Q(s, π(s))

Algorithm 6.19: Sampling lookahead Tree to Estimate.

Assuming that a goal is reachable from every state, SLATE has the fol-
lowing properties:

• It defines a near-optimal policy: the difference |V (s) − V ∗(s)| can be
bounded as a function of h and k.

• It runs in a worst-case complexity independent of |S|, in O((αk)h),
where α = max |Applicable(s)|.
• As a Monte Carlo rollout, it does not require probability distribution

parameters: calls to Sample(Σ, s, a) return states in γ(s, a) distributed
according the Pr(s′|s, a), which allows to estimate Q(s, a).

Note the differences between SLATE and the multiple rollouts approach:
the latter is polynomial in h, but its approximation is probabilistic. SLATE
provides a guaranteed approximation, but it is exponential in h. More pre-
cisely, SLATE returns a solution whose distance to the optimal policy is
upper bounded |V (s)− V ∗(s)| < ε ; it runs in O(εlogε).

A few improvements can be brought to this procedure. One may reduce
the sampling rate with the depth of the state: the deeper is a state, the
less influence it has on the cost-to-go of the root. Further, samples can
implemented as a set with counters on its elements such as to perform a
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s
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…
s1.k si.k

depth h…

Figure 6.8: Sparse sampling tree of procedure SLATE.

single recursive call on a successor s′ of s that is sampled more than once.
Note that the sampling width k can be chosen independently of |γ(s, a)|.
However, when k > |γ(s, a)|, further simplifications can be introduced, in
particular for deterministic actions. Finally, it is easy to refine SLATE into
an anytime algorithm: an iterative deepening scheme with caching increases
the horizon h until acting time (see Exercise 6.16).

UCT and Monte Carlo Tree Search. SLATE has an important limi-
tation: it has no sampling strategy. All actions in Applicable(s) are looped
through and explored in the same way. A sampling strategy would allow
to further explore a promising action and would prune out rapidly inferior
options, but no action should be left untried. A sampling strategy seeks a
trade-off between the number of times an action a has been sampled in s and
the value Q(s, a). This trade-off is used to guarantee with high probability
an approximate solution while minimizing the search.

UCT, Algorithm 6.20, is a Monte Carlo Tree Search technique that builds
up such a sampling strategy. Like SLATE, UCT expands, to a bounded depth,
a tree rooted at the current node. However, it develops this tree in a non-
uniform way. At an interior node of the tree in a state s, it selects a trial
action ã with the strategy described subsequently. It samples a successor
s′ of s along ã. It estimates the value of s′, and it uses this estimate to
update Q(s, ã); it also updates the predecessors of s up to the root node,
by averaging over all previously sampled successors in γ(s, ã), as is done in
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UCT(s, h)
if s ∈ Sg then return 0
if h = 0 then return V0(s)
if s /∈ Envelope then do

add s to Envelope
n(s)← 0
for all a ∈ Applicable(s) do
Q(s, a)← 0; n(s, a)← 0

Untried← {a ∈ Applicable(s) | n(s, a) = 0}
if Untried 6= ∅ then ã← Choose(Untried)

else ã← argmina∈Applicable(s){Q(s, a)− C × [log(n(s))/n(s, a)]
1
2 }

s′ ← Sample(Σ, s, ã)
cost-rollout← cost(s, ã) + UCT(s′, h− 1)
Q(s, ã)← [n(s, ã)×Q(s, ã) + cost-rollout]/(1 + n(s, ã))
n(s)← n(s) + 1
n(s, ã)← n(s, ã) + 1
return cost-rollout

Algorithm 6.20: A recursive UCT procedure.

SLATE. The estimate of s′ is done by a recursive call to UCT on s′ with the
cumulative cost of the rollout below s′.

UCT is called repeatedly on a current state s until time has run out.
When this happens, the solution policy in s is given, as in other algorithms,
by π(s) = argminaQ(s, a). This process is repeated on the state observed
after performing the action π(s). UCT can be stopped anytime.

The strategy for selecting trial actions is a trade-off between actions
that need further exploration and actions that appear as promising. A trial
action ã in a state s is selected as follows:

• If there is an action that has not been tried in s, then Choose(Untried)
chooses ã as any such action;

• if all actions have been tried in s, then the trial action is given by
ã← argmina{Q(s, a)−C× [log(n(s))/n(s, a)]1/2}, where n(s, a) is the
number of time a has been sampled in s, n(s) is the total number of
samples in that state, and C > 0 is a constant.

The constant C fixes the relative weight of exploration of less sampled
actions (when C is high) to exploitation of promising actions (C low). Its
empirical tuning significantly affects the performance of UCT.
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It was shown that the preceding selection strategy minimizes the number
of times a suboptimal action is sampled. UCT can also be proved to converge
asymptotically to the optimal solution.

All approaches described in this Section 6.4.4 can be implemented as
memoryless procedures (in the sense discussed in Section 6.4.1). They are
typically used in a receding horizon Run-Lookahead schema. This simplifies
the implementation of the planner, in particular when the lookahead bounds
are not uniform and have to be adapted to the context. This has another
important advantage that we have not discussed up to now: the capability
to generate non-stationary policies, possibly stochastic. Indeed, an actor
may find it desirable to apply a different action on its second visit to s than
on its first. For finite horizon problems in particular, non-stationary policies
can be shown to outperform stationary ones.

6.5 Acting with Probabilistic Models

The considerations discussed earlier (Sections 3.4, 4.5 and 5.7) apply also to
probabilistic domains. In some applications, it is possible to act deliberately
using procedures Run-Policy or Run-Lookahead by relying on a synthesized
policy generated offline or with the online techniques we just saw. However,
in most cases, the step “perform action a” in these procedures is not a
primitive command; it requires further context dependent deliberation and
refinement. In other applications, there is no planning per se (the plan is
given, or planning impossible); all the deliberation is at the acting level,
possibly with probabilistic models.

6.5.1 Using Deterministic Methods to Refine Policy Steps

Here we assume that the actor has a policy (a priori defined, or synthesized
offline or online), and that the actor’s refinement models are deterministic
at the acting level. This makes sense when planning has to consider various
probabilistic contingencies and events, but acting in each given context is
based on the specifics of that context, as observed at acting time, and on
deterministic models.

Acting in this case can rely on the techniques developed in Chapter 3.
Deterministic refinement methods can be expressed, as seen earlier, and used
by an engine such as RAE to refine each action π(s) into the commands ap-
propriate for the current context. The lookahead for the choice of refinement
methods is also deterministic and based on a procedure such as SeRPE.
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A few extensions to deterministic methods for acting can be desirable
when combined with probabilistic models for planning. Among these, in
particular, are the following:

• Acting according to the equivalent of a stochastic policy when needed.
For example, when a refined action π(s) is performed and leads back
to the state s, this action may be performed again with a different
refinement. It may even make sense to switch in s to some action
other than π(s).

• Specifying in methods ways to monitor the transition from s to a state
in γ(s, π(s)): because γ is not deterministic, it may not be obvious to
decide when current action π(s) has terminated and which state in
γ(s, π(s)) is its outcome.

Note, however, that the preceding features in deterministic refinement meth-
ods can be desirable for acting even when planning does not use probabilistic
models.

6.5.2 Acting with Probabilistic Methods

Here we consider the more interesting case in which acting relies on prob-
abilistic models. As underlined earlier, sensing-actuation loops and retrials
are very common at the acting level (see Example 3.4). The refinement
methods introduced earlier embed mechanisms for expressing rich control
structures to adapt acting to the diversity of the environment. Probabilistic
models can be even more convenient for addressing this need, in particular
when coupled with learning techniques to acquire the models.

It is natural to combine refinement methods with probabilistic models.
We defined a refinement method as a triple m = (role, precondition, body).
Here, we specify the body of a method as an SSP problem for a probabilis-
tic model Σ = (S,A, γ,Pr, cost), where A is the set of commands for that
specific methods and S is the acting state space. Refining an action with a
probabilistic method m reduces to two problems:

(i) finding a policy π rooted at the current acting state ξ and

(ii) running π with procedures Run-Policy or Run-Lookahead.

Clearly (i) is a planning problem to which the techniques seen earlier
in this chapter are applicable. Here, S is the acting space, and A is the
command space. For problem (ii), the step “perform action π(s)” in Run-
Policy or Run-Lookahead is replaced by “trigger command π(s),” which is
directly executable by the execution platform.
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If the probability and cost distributions can be acquired offline and are
stable, and if the computational time remains compatible with acting con-
straints, planning algorithms of Section 6.3 can be used to compute an opti-
mal or near optimal policy. However, these conditions will not often be met.
The online lookahead techniques of Section 6.4 are usually more adapted to
acting with probabilistic models. This is particularly the case when a gener-
ative sampling model can be designed. Sampling techniques of the previous
section, when combined with informed heuristics V0, are able to drive effi-
ciently lookahead techniques. A Sample stochastic function basically allows
one to run, to a controlled depth, several simulations for choosing the next
best command to pursue the refinement of an action.

Example 6.28. Consider Example 3.4 of opening a door. We can specify
the corresponding action with a single refinement method, the model of
which is partly pictured in Figure 6.9. For the sake of simplicity, the acting
states are simply labeled instead of a full definition of their state variables,
as described in Example 3.4. For example, s2 corresponds to the case in
which a door is closed; in s3, it is cracked; locked and blocked are two failure
cases, while open is the goal state. Furthermore, the figure does not give all
applicable actions in a state, for example, there are several grasps in s2 and
s3 (left or right hand, on “T” shaped or spherical handle) and several turns
in s4. Parameter values are also not shown.

16

s0

open

move s1 s2

s3

s4 s5

s6 s7

blocked

locked
monitor

grasp

turn pull

pull

grasp

move

Figure 6.9: Probabilistic model for an open-door method.

Recall that an acting engine not only has to refine actions into commands
but also to react to events. Probabilistic models and techniques are also
relevant when the role of a method is an event instead of a task. Probabilistic
methods can be convenient for specifying reactions to unexpected events.
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A natural extension of sampling techniques to guide a refinement acting
engine is in reinforcement learning approaches (see Section 7.3). These have
been found more useful and feasible at the low level of acting in focused
situations then at the level of learning abstract complex tasks. They can be
adapted for learning acting refinement methods.

6.6 Representations of Probabilistic Models

The modeling stage of a domain is always critical, in particular with prob-
abilistic models. It requires good representations. The extreme case is a
“flat” representation of an SSP using a single state variable s that ranges
over S. Such a representation requires the explicit definition of the entire
state space, a requirement that is rarely feasible. Structured representations
are exponentially more compact. They allow for the implicit definition of the
ingredients of a domain through a collection of objects, parametrized state
variables, and operators, together with a dense specification of probability
and cost distributions, policies, and value function.

6.6.1 Probabilistic Precondition-Effect Operators

Probabilistic precondition-effect operators are a direct extension of deter-
ministic precondition-effect operators where the set γ(s, a) and the distribu-
tion Pr(s′|s, a) are explicitly given as possible effects of planning operators,
the instances of which are ground actions. Let us illustrate this representa-
tion through a few instances of a domain with increasingly more elaborate
examples.

Example 6.29. Consider a simple service robot domain, called PAMp, with
one robot rbt and four locations {pier1, pier2, exit1, exit2}. At each loca-
tion, there are containers of different types. The robot can move between
locations; it can take a container from a location and put it in a location.
The motion is deterministic, and the four locations are pairwise adjacent.
Actions take and put are constrained by the activity in the corresponding lo-
cation: if it is busy, these actions fail to achieve their intended effect and do
nothing. A location becomes or ceases to be busy randomly with probability
p. We model this as an exogenous event, switch(l), that switches the busy
attribute of location l. We assume at this stage to have a full knowledge of
the state of the world. This simple domain is modeled with the following
state variables:

• loc(r) ∈ {pier1, pier2, exit1, exit2}: location of robot r;
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• ctrs(l, τ) ∈ {0, 1, . . . , k}: number of containers in location l of some
type τ ; we assume τ ∈ {red,blue};
• load(r) ∈ {red, blue, empty}: type of the container on robot r if any;

and

• busy(l) ∈ Boolen.

A typical problem in PAMp is to move red containers from any of the piers
to exit1 and blue ones to exit2.

Even a domain as simple as PAMp can have a huge state space (up to
4 × 8k+1 × 3 × 42, that is, 1.6 × 1012 for k = 10), forbidding an explicit
enumeration or a drawing such as Figure 6.1. An adequate specification of
the actions in the previous example has to take into account their effects
as well as the effects of concurrent exogenous events. Indeed, recall that
nondeterminism accounts for the possible outcomes of an action a when the
world is static, but also for events that may happen in the world while a
is taking place and have an impact on the effects of a. Hence, γ(s, a) rep-
resents the set of possible states corresponding to the joint effects of a and
concurrent exogenous events. When the |γ(s, a)| are not too loarge, prob-
abilistic precondition-effect operators, illustrated next, can be a convenient
representation.

Example 6.30. In PAMp the deterministic effect of action move has to
be combined with the effects of events switch(l) in any of the four loca-
tions. These random events are assumed to be independent. Hence in total
|γ(s,move)| = 24. Action move can be written as follow:

move(r : Robots; l,m, l1, l2, l3, l4 : Locations)
pre : loc(r) = l, l1 6= l2 6= l3 6= l4
eff : p0 : loc(r)← m

p1 : loc(r)← m, busy(l1)← ¬busy(l1)
p2 : loc(r)← m, busy(l1)← ¬busy(l1), busy(l2)← ¬busy(l2)
p3 : loc(r)← m, busy(l1)← ¬busy(l1), busy(l2)← ¬busy(l2),

busy(l3)← ¬busy(l3)
p4 : loc(r)← m, busy(l1)← ¬busy(l1), busy(l2)← ¬busy(l2),

busy(l3)← ¬busy(l3), busy(l4)← ¬busy(l4)

pi is the probability that i switch events occur, for i = 0 to 4, that is,
p0 = (1−p)4, p1 = p×(1−p)3, p2 = p2×(1−p)2, p3 = p3×(1−p), and p4 = p4.
Note that there are four possible instances with probability p1, six instances
with p2 and four instances to p3, giving: p0+4×p1+6×p2+4×p3+p4 = 1.
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The take action is similarly specified: when the robot location l is not
busy and contains at least one container of the requested type c, then take
may either lead to a state where l is busy with no other effect, or it may
achieve its effects of a container of type τ being loaded and ctrs(l,c) being
reduced by one. For each of these two cases, additional switch events may
occur in any of the three other locations. This is similar for action Put (see
Exercises 6.17 and 6.18).

To summarize, the probabilistic precondition-effect operators have pre-
conditions and effects, as the deterministic operators, but they have as many
alternative sets of effects as possible outcomes. Each alternative effect field is
specified with a probability value, which can be a function of the operator’s
parameters.

6.6.2 Dynamic Bayesian Networks

Parameterized probabilistic precondition-effect operators can be quite ex-
pressive, but they require going through all the alternative joint effects of
an action and possible exogenous events and computing their probability. In
many cases, it is not easy to factor out a large γ(s, a) into a few alternative
effects, as illustrated earlier. This representation quickly meets its limits.

Example 6.31. PAMq is a more realistic version of the PAMp domain. It
takes into account the arrival of containers of different types in one of the
two piers and their departure from one of the two exit locations, but it
ignores the ship unloading and truck loading operations. The arrival and
departure of containers and their types are considered as exogenous events.
Locations have a maximum capacity of K containers of each type, K being
a constant parameter. When an exit location reaches its maximum capacity
for some type then the robot cannot put additional containers of that type.
When a pier is full, no arrival event of the corresponding type is possible. In
addition to the move, take, and put actions and the switch event seen earlier,
we now have two additional events:

• arrival(l): at each state transition, if a pier l is not full and the robot is
not at l then one container may arrive at l with probability q; further,
60% of arrivals in pier1 are red containers, and 80% are blue in pier2;

• departure(l) : if the robot is not at an exit location l and there are
containers there, then there is a probability q′ that a container may
depart from l; only red containers depart from exit1 and only blue ones
depart from exit2.
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A typical task for the robot in domain PAMq is to move all red containers
to exit1 and all blue ones to exit2.

With only three exogenous events as in PAMq, the joint effects of ac-
tion and events become complex: the size and intricacy of γ(s, a) reaches
a point where the specification of precondition-effect operators is not easy
(see Exercise 6.19). Bayesian networks is the appropriate representation for
expressing conditional distributions on random variables. It offers power-
ful techniques for reasoning on these distributions. A Bayesian network is
a convenient way for specifying a joint probability function to a collection
of random variables. It is a DAG where nodes are the random variables
associated to a priori or conditional probability distributions. An edge be-
tween two random variables x and y expresses a conditional probability
dependance of y with respect to x. Dynamic Bayesian networks (DBNs) ex-
tend the static representation to handle different stages in time of the same
variables. They are particularly convenient in our case for expressing proba-
bilistic state transitions from s to γ(s, a), with a focus on the state variables
relevant for the action a and the events that may take place concurrently
with a. This is illustrated in the following example.

busy(l) busy’(l)

load(r) load’(r)

ctrs(l1,𝜏1) ctrs’(l1,𝜏1)

ctrs(l2,𝜏2) ctrs’(l2,𝜏2)

busy(l)
T
F

Prob[busy’(l)=T]
1-p
p

loc(r)

ctrs(l,𝜏) ctrs’(l,𝜏)

Figure 6.10: A DBN for action take in the domain PAMq.

Example 6.32. Figure 6.10 represents the DBN characterizing action take
in PAMq domain. It shows the state variables that condition or are affected
by take and the events switch, arrival and departure. If x is a state variable of
state s, we denote x′ that same state variable in s′ ∈ γ(s, a). Here, we extend
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slightly the ground representation with parameterized random variables, for
example, busy(l) is a Boolean random variable true when location l is busy.
Note that variable loc(r) conditions take but is not affected by the action
and events: it appears only in the left side of the DBN.

A DBN specifies conditional probability tables that give the distribution
over the values of a variable as a function of the values of its predecessors.
Figure 6.10 illustrates such a table for the simple case of variable busy(l)
that has a single predecessor. Note that p in this table varies in general
with l.

When a variable in a DBN has m ground predecessors that range over
k values, the conditional probability table is of size km. This can quickly
become a bottleneck for the specification of a DBN. Fortunately, in well-
structured domains, conditional probably tables can be given in a factorized
form as decision trees. These decision trees are also convenient for express-
ing constraints between instances of the parametrized state variables in the
network.

Prob[ctrs’(l1,𝜏1)= ctrs(l1,𝜏1)+1]

ctrs(l1,𝜏1)

K < K
loc(r)

l1 ≠ l1

𝜏1

l1

pier2pier1
𝜏1

bluered
bluered

0

0

.09 .06 .03 .12

(a)

Prob[ctrs’(l2,𝜏2)= ctrs(l2,𝜏2)-1]

ctrs(l2,𝜏2)
0 >0

loc(r)
l2 ≠ l2

𝜏1

l2

exit2exit1
𝜏1

bluered
bluered

0

0

0 .15 .15 0

(b)

Prob[ctrs’(l,𝜏)= ctrs(l,𝜏)-1]

ctrs(l,𝜏)
0 >0

loc(r)
≠l l

0

0 load(r)

empty≠empty
busy(l)

T F

busy’(l)
T F

0

0

0 .95

(c)

Figure 6.11: Conditional probability trees for the ctrs state variables for
the action take combined with the possible events switch, arrival, and depar-
ture: (a) accounts for the arrival of a container at a pier location, (b) for
a departure at an exit location, and (c) for a container being taken by the
robot.

Example 6.33. Figure 6.11 gives the conditional probabilities for the ctrs
variables in the DBN of Figure 6.10. The leaves of each tree give the proba-
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bility that the number of containers of some type at some location increases
or decreases by one container (the probability that this number remains un-
changed is the complement to 1). To simplify the picture, we take p = .05
and q = q′ = .15. Tree (a) accounts for the possible arrival of a container
of some type at a pier location: if the location is full (ctrs(l1, τ1) =K) or
if the robot is in that location (loc(r) = l1), then no container arrival is
possible, otherwise there is a probability of .15 × .6 for the arrival of a red
container at pier1, and so on. Similarly, tree (b) accounts for the departure
of a container at an exit location. Tree (c) gives the proper effect of action
take: the probability that ctrs changes is conditioned by the five ancestor
variables of that node in the DBN.

In Example 6.31, the interactions between exogenous events and actions
are quite simple: events are independent and have almost no interference
with the robot actions. In applications with more complex probabilistic
interferences between the effects of actions and possible events, the DBN
representation is especially needed. It is also convenient for the modeling of
sensing actions, where sensor models must be used to relate sensed features
to values of state variables.

busy(l) busy’(l)

load(r) load’(r)

pos(c) pos’(c)

hue(c)

loc(r)

ctrs(l) ctrs’(l)

Figure 6.12: DBN for action take in domain PAMo.

Example 6.34. Consider PAMo, a variant of the previous domain where
the robot does not have full knowledge of the state of the world. It still
knows the exact number of containers in each location, but it does not know
their types. However, it has a perceive action: when the robot is sensing
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Figure 6.13: (a) Conditional probability table for the type of a container
given its observed feature; (b) conditional probability trees for load’(r)=red.

a container c, perceive(c) gives the value of an observable feature, denoted
hue(c), which is conditionally dependent on the container’s type. To model
this domain, we keep the state variables loc(r), load(r), and busy(l) as earlier;
ctrs(l) is now the total number of containers in l. We further introduce the
following variables:

• type(c) ∈ {red, blue}: type of container c,

• pos(c) ∈ {pier1, pier2, exit1, exit2, rbt}: location of container c, and

• hue(c) ∈{a, b, c, d, unknown}: the observed feature of c.

Action perceive(c) can be modeled as requiring the robot to be at the same
location as c and hue(c) to be unknown; its effect is to change the value of
hue(c) to a, b, c, or d. Furthermore, the sensor model gives a conditional
probability table of type(c) given hue(c) (Figure 6.13(a)). Action take(r, l, c)
is now conditioned by two additional variables pos(c), which should be iden-
tical to loc(r), and hue(c) that should be not unknown. Figure 6.12 gives a
DBN for that action. A conditional probability tree for Prob[load’(r)=red]
is in Figure 6.13(b). It takes into account the probability of the location
becoming busy (.95), as well as the probability of looking at a red container
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when its observed feature has some value. Prob[load’(r)=blue] is the com-
plement to one of the numbers in the last four leaves; it is equal to zero in
the other leaves where Prob[load’(r)=empty]=1.

The previous example illustrates two important representation issues:

• An observed feature informs probabilistically about the value of a non-
observable variable. A non-observable variable (type(c) in the exam-
ple) is replaced by a state variable that can be observed (here hue(c))
and to which the probabilistic planning and acting models and tech-
niques apply normally.

• The effects of a sensing action can be required (for example, the pre-
condition that hue(c) 6= unknown) and planned for, as with any other
state transformation action.

6.7 Domain Modeling and Practical Issues

Factored representations, such as those of the previous section, augment the
expressiveness but do not reduce the difficulties of modeling a probabilis-
tic domain. Numerous design choices remain open. Some of them require
alternative models or extensions to the SSP model discussed so far.

This section briefly surveys some of the issues involved in designing and
structuring probabilistic domains with the SSP and alternative models. It
discusses some practical considerations for solving them with the techniques
previously introduced.

6.7.1 Sources of Nondeterminism

The sources of nondeterminism that one chooses to model in Σ are a critical
issue. The usual consideration of nominal effects versus erroneous effects
of an action might not be the most relevant in practice. For example, the
classical benchmark of navigating in a grid or a topological model of an en-
vironment where a move action can lead to other nodes than the intended
ones is often unrealistic: it does not take into account the necessary recur-
sive refinement of each action into lower level steps until reaching closed-loop
controlled motion and localization. Further, very rare events, such as com-
ponent failures leading to non-modeled effects, have to be dealt with using
specific approaches such as diagnosis and recovery.

Most important sources of nondeterminism are observation actions and
exogenous events. Observations related to a particular state variable x
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can be modeled as actions applicable in some states and associated with
a priori and conditional distributions over possible values of x (for exam-
ple, Prob[type|hue] in Example 6.34). Observation actions that inform on
x change the distribution of its values. Conditional distributions of state
variables given observations can be obtained from probabilistic models of
sensors.

Exogenous events and the proper dynamics of the environment are of-
ten difficult to model deterministically as predictable events. When their
possible effects interfere weakly with those of deliberate actions, events can
also be modeled as probability distributions over possible effects. For ex-
ample, when a container arrives while the robot is going somewhere, this
may change the rest of its plan, but it does not always interfere with its
navigation. A closed road might affect the navigation. It is possible to
model events as random variables whose values affect the outcome of an
action. The DBN representation of actions can handle that directly (see
Example 6.31). Conditional expressions have to be added to the proba-
bilistic precondition-effect representation to take into account a posteriori
probabilities given the observed events.

6.7.2 Sparse Probabilistic Domains

In some applications, nondeterminism is naturally limited to parts of the
domain. This is the case, for example, when most of the environment is
known but a few areas are partially unknown, or when only observation and
information-gathering actions are nondeterministic, while all other actions
have a unique predictable outcomes. In these cases, it is worthwhile to
combine deterministic models with probabilistic ones.

Incremental-compression-and-search(Σ, s0, Sg)
while there is an unsolved state s in current γ̂(s0, π)

search for an optimal path from s to a goal
until a nondeterministic action a

compress this path to a single nondeterministic step π(s)← a
revise with Bellman-Update

Algorithm 6.21: Compression framework for sparse probabilistic domains.

A possible approach for planning with deterministic and nondetermin-
istic actions can be the following. Assume that while planning from a
current state s to a goal, the algorithm finds at some point a sequence
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〈(s, a1), (s2, a2), . . . , (sk−1, ak−1), (sk, a)〉 such that actions a1 through ak−1
are deterministic, but a is nondeterministic. It is possible to compress this
sequence to a single nondeterministic step (s, a), the cost of which is the sum
of cost of the k steps and the outcome γ(s, a) of which is the outcome of
the last step. This idea can be implemented as sketched in Algorithm 6.21.
Its advantage is to focus the costly processing on a small part of the search
space.

The notion of sparse probabilistic domains can be extended further to
cases in which |γ(s, a)| < k and Applicable(s) < m for some small con-
stants k and m. Sampling techniques such as the SLATE procedure (Algo-
rithm 6.19) are particularly useful in these cases.

6.7.3 Goals and Objectives

Models of probabilistic domains other than the SSP model discussed so far
can be more adapted to a given application. Let us briefly discuss few of
them.

Process-oriented problems. In this class of problems, there is no goal.
The objective of the actor is to optimize its behavior over an infinite horizon.
This is meaningful for applications related to the control of a process, for
example, a robot in charge of keeping an office space clean and tidy, or
a system maintaining a power supply unit in best functioning condition.
A solution for a process-oriented problem is an optimal policy that runs
“forever,” that is, as long as this policy does not prescribe an emergency
stop action or does not reach a failure state.

Process-oriented problems are often addressed by considering the criteria
of the expected sum of amortized cost over an infinite horizon: Equation 6.1
is changed into V π(s0) = E[

∑∞
i=0 δ

i × cost(si, π(si))] where 0 < δ < 1.
Mathematically, the amortization factor is needed for the convergence of
this sum. However, it is less obvious to justify and pickup a value for δ from
the specifics of an application. The literature often refers to a comparison
with financial applications in which costs are amortized over some horizon.
But this rather shallow metaphor does not give a convincing rational for
amortized cost, beyond the convenience of summing over an infinite horizon.
Often, the average cost per step is a more relevant criteria.

Dynamic programming techniques (Section 6.2) work well for process-
oriented problems when the state space remains of a size small enough to be
enumerated. For larger problems, one has either to use online receding hori-
zon techniques (Section 6.4) or to decompose and hierarchize the problem
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into smaller tractable sub-problems, as discussed in the next section.

Goal-oriented problems. This is the class of problems studied in this
chapter where goals are given explicitly. One may address these problems
using either a satisficing approach, or an optimizing approach with different
criteria than the one considered so far.

A possible satisficing approach can be obtained as a particular case of
optimizing with unit costs: one minimizes the expected distance to the goal,
which usually leads to good heuristics for finding it.

Instead of the expected sum of the cost of actions leading to a goal, an
alternative objective function is the average cost per step. More interesting
is the criterion that maximizes the probability of reaching a goal, a very
meaningful concern in practice. With such a criterion, further discussed
susequently, one does not need to assume before hand the existence of a safe
policy becausee one optimizes over the entire set of policies.

Finally, let us mention that goal-oriented problem are sometime specified
with a set of possible initial states. This case can be handled by adding a
conventional s0 with a single applicable action leading to any of the real
initial states of the problem.

Other optimization criteria. In addition to action costs, one can be in-
terested in taking into account rewards for reaching particular states. In the
simplest case in which rewards replaces costs, one switches from a minimiza-
tion problem to a maximization problem. The more general case is equiva-
lent to considering the cost as a function f(s, a, s′) of three arguments: the
origin state s, the action in s, and the destination state s′. A straightforward
approximation consists in taking cost(s, a) =

∑
s′∈γ(s,a) Pr(s′|s, a)f(s, a, s′).

The main issue with a general cost model is to accept cost ranging over
R, instead of R+, as assumed so far. SSP problems with costs over R are
often addressed with an additional assumption: V (s) is infinite for every
unsafe state s. As seen earlier, this property is granted with strictly positive
costs, but it is difficult to grant it when designing a domain with real costs.
One has to check that every cycle not containing a goal has positive cost.
The Find&Revise schema and other heuristic search algorithms have to be
extended to properly handle dead ends involving loops with negative or null
costs. This was done for the Generalized SSP (GSSP) model Kolobov et al.
[348]. For process-oriented problems, dynamic programming works with
amortized cost over R, again for domains of manageable size.
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Maximizing the probability of reaching a goal. In many applications,
one is more concerned about the probability of reaching a goal than about
the expected cost of a policy. This is particularly the case when s0 is unsafe.

One way of addressing this criteria is to take a reward maximization ap-
proach in which every transition (s, a) has a reward of 0 except of transitions
leading to a goal, which have a reward of 1. In such a model, the expected
value of a policy π is exactly the probability Pr(Sg|s0, π) of reaching a goal
from s0 by following π. Dynamic programming techniques can be used to
find a policy π∗ maximizing this criteria. The Find&Revise extension for the
GSSP model, referred to earlier, can handle this criteria without iterating
over the entire state space. The Stochastic safest and shortest-path prob-
lems (S3P) of Teichteil-Königsbuch [565] go further by considering a dual
optimization criterion: among policies that have a maximal probability of
reaching a goal, find one whose expected cost to the goal is minimal (only
goal-reaching paths are taken into account in this expected cost).

In some applications, a low-cost solution with an acceptable probability
of reaching the goal can be preferred to a high cost and high probability
policy. Approaches may either look for acceptable trade-offs or optimize
over all policies above some probability threshold.

6.7.4 Domain Decomposition and Hierarchization

The expressiveness of factored representations for probabilistic problems al-
lows for a dense specification of a domain that corresponds to a huge state
space, often not directly tractable with available techniques. Ideally a do-
main may exhibit enough structure allowing to reduce it to tractable subdo-
mains. Modeling a domain using factored representation can be very helpful
in exhibiting this structure of the problem. Two related principles for ex-
ploiting the structure of a domain are abstraction and decomposition. Let
us briefly introduce some approaches.

Abstraction methods. Abstraction consists in defining a partition of S
into clusters. A cluster is a subset of states that are close enough to be
considered indistinguishable with respect to some characteristics, such as to
be processed jointly as a single abstract state, for example, they may be
attributed the same value of V (s) or π(s). The original problem is solved
with respect to abstract states that are these clusters, the solution of which
is then possibly refined within each abstract state. Abstraction is the com-
plement of refinement.
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A popular form of abstraction is based on focusing a cluster on some
relevant state variables and ignoring the other variables, considered as less
relevant. The conditional probability trees in Section 6.6.2 illustrate the
idea: the state variables that are not part of any tree are non relevant.
Often the irrelevant variables at one stage can be important at some other
stage of the problem: the abstraction is not uniform. Furthermore, one
may have to resort to approximation to find enough structure in a problem:
variables that affect slightly the decision-making process (for example, V (s))
are abstracted away.

Another abstraction approach extends model minimization techniques
for computing minimal models of finite-state machines.6 One starts with
an a priori partition of S into clusters, for example, subset of states having
(approximately) the same V0. A cluster is split when its states have different
probability transitions to states in the same or other clusters. When all
clusters are homogenous with respect to state transitions, then the problem
consisting of these clusters, considered as abstract states, is equivalent to
the original problem. The effort in model reduction is paid off by solving
a smaller problem. This is particularly the case when the clusters and the
value function are represented in a factored form, as state variable formulas
(see the references and discussion in Section 6.8.6).

Symbolic algorithms (as in Section 5.4) develop this idea further with the
use of algebraic decision diagrams (ADD). An ADD generalizes a decision
tree to a rooted acyclic graph whose nodes are state variables, branches are
possible values of the corresponding variables, and leaves are sets of states.
An ADD represents a function whose values label its leaves. For example,
an ADD can encode the function V (s) in which all the states corresponding
to a leaf have the same value. Similarly, one can represent Pr(s′|s, a) and
cost(s, a) as ADDs. When the structure of the problem can be mapped into
compressed ADDs — a condition not easily satisfied — then fast operations
on ADDs allow to perform efficiently Belmann updates on the entire S, or on
the relevant part of it. Symbolic VI and Symbolic LAO∗ make use of ADDs,
together with approximation techniques, to efficiently solve well-structured
problems.

Decomposition methods. The idea is to decompose the original problem
into independent or loosely coupled subproblems that are solved indepen-
dently. Their solutions are recomposed together to get the solution of the

6For any given finite state machine M , there is a machine M ′, minimal in the number
of states, which is equivalent to M , that is, recognizes the same language.
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global problem. For example, serial decomposition addresses the original
task as a sequence of subtasks whose solutions will be sequentially run.

The notion of closed subsets of states is convenient for decomposing a
domain. C ⊆ S is closed if there is no transition from a state in C to a
state outside of C. It is a maximal closed subset if it does not have a proper
subset that is also closed. For process-oriented problems, an optimal policy
can be constructed independently for each maximal closed subset without
bothering with the rest of the domain. A maximal closed subset C can be
viewed as an independent subprocess. Once reached, the system stays in
this subprocess forever. C can be collapsed to a single absorbing state, at
which point, other closed subsets can be found.

The kernel decomposition method implements this idea with more flexi-
bility. The set S is decomposed into blocks, with possible transitions between
blocks through a few states for each block. These states permitting block
transitions are called the kernel of the domain. Starting with some initial
V0 for the kernel states, optimal policies are computed independently for
each block, allowing one to update the values of the kernel and iterate until
updates are negligible.

Finally, let us mention that abstraction and decomposition are also used
for computing heuristics and control knowledge to guide or focus a global
search. There is a large overlap between abstraction or decomposition meth-
ods and the techniques discussed in Section 6.3.5.

6.7.5 Probabilistic Versus Nondeterministic Approaches

In Chapter 5 and Chapter 6, we studied two types of nondeterministic mod-
els, with and without probabilities. These models have several similarities
but also differences. Let us discuss which of the two approaches to choose
when faced with a practical problem where nondeterminism requires mod-
eling and can be expressed explicitly.

An obvious remark is that probabilistic models without costs and prob-
ability parameters correspond to nondeterministic models. These parame-
ters enrich the description of a domain and allow for choosing a solution
according to some optimization criterion. However, estimating costs and
probabilities adds a significant burden to the modeling step. There are do-
mains in which modeling transitions with costs and probabilities is difficult
in practice, for example, when not enough statistical data are available.
Probabilistic approaches may also lead a modeler to hide qualitative prefer-
ences and constraints through arbitrary quantitative measures.
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But there is more to it than just adding or removing parameters from
one model to get the other, as illustrated in the following example.

Example 6.35. Consider the simplistic domain in Figure 6.14 that has two
policies πa and πb. πa(s0) = a; a leads to a goal with probability p in one
step, or it loops back on s0. πb starts with action b which has a few possible
outcomes, all of them lead to a goal after several steps without loops, that
is, Graph(s0, πb) is acyclic, all its leaves are goal states and its paths to goals
are of length ≤ k. Both πa and πb are safe policies; πa is cyclic, whereas πb is
acyclic. The value of πa is Va = cost(a)

∑
i=0,∞(1− p)i = cost(a)

p . The value
Vb of πb is the weighted sum of the cost of the paths of Graph(s0, πb).

3

s0
a

b

p

Figure 6.14: A simple domain for comparing features of probabilistic and
nondeterministic models.

In this example, the probabilistic approach compares Va to Vb and
chooses the policy with the minimum expected cost. If cost(a)/p < Vb,
then πa is preferred to πb, because πb is a more expensive solution in av-
erage. However, πb is preferable in the worst case because it guarantees
reaching a goal in a bounded number of steps.

The nondeterministic approach does not handle probabilities and ex-
pected costs, but it distinguishes qualitatively acyclic from cyclic solutions.
There are applications in which an acyclic solution like πb is clearly prefer-
able whatever the values of the parameters are. This is particularly the case
when these parameters are unknown or difficult to estimate. This is also the
case for safety critical applications in which worst case is more meaningful
than average cost.

Finally, nondeterministic approaches may potentially scale up better
than probabilistic ones, because the former allow for a higher level of fac-
torization, for example, with an efficient use of symbolic representations.

To summarize, probabilistic approaches require parameters but are able
to make fine choices on the basis of average case considerations; they allow
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choosing among unsafe solutions when optimizing the probability to reach a
goal. Nondeterministic approaches do not need parameters and their costly
estimation step, they select solutions according to a qualitative criteria, and
they may scale up better.

6.7.6 Practical Considerations

Several considerations have to be taken into account for using the algorithms
presented in this chapter and their variants, among which:

• the size of S,

• the possible existence of dead ends,

• the accuracy of the probability and cost parameters,

• the amortization trade-off between the use of an approximate solution
and the computational cost of its improvement, and

• the degree of nondeterminism of the domain.

The parameters of a model are always estimated with some margin of
error. There is no need to seek an exact optimal solution with respect to
imprecise parameters. An approximate solution whose degree of optimality
matches the accuracy of the cost and probability parameters is sufficient.

The amortization trade-off takes into account how many times a subop-
timal solution will be used for acting. It compares the corresponding loss in
the cost of actions to the cost of further refining a suboptimal solution. For
example, in a receding horizon approach in which π is used just once and
recomputed at every stage, a suboptimal solution is often sufficient, whereas
for a process-oriented problem the same policy is used for a long time and
may require careful optimization.

The degree of nondeterminism can be appreciated by the size of |γ(s, a)|
and how overlapping are the sets γ(s, a), over applicable actions in s. In
sparse probabilistic planning problems, γ(s, a) is a small set. Possibly, most
actions are deterministic but of a few that have a couple of nondeterministic
outcomes, as discussed in Section 6.7.2. Other algorithms such as Busoniu
et al. [103] are adapted to sparse probabilistic problems.

When S is of a small enough size to be entirely explicited and maintained
in the memory of the planning computer (typically on the order of few
mega states), then VI is an easily implemented and practical algorithm.
For reasonably small values of η (in the order of 10−3), often VI converges
in a few dozen iterations and is more efficient than PI. Depending on the
amortization trade-off, the user may not even bother to compute Φπ and
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rely on a heuristic value of the error parameter η. There are even cases in
which VI may be used online, for example, on a receding horizon schema:
for |S| in the order of few thousands states, the running time of VI is on
the order of a few milliseconds. This may happen in small domains and in
well-engineered state spaces.

Most planning problems do not allow for an explicit enumeration of their
entire state space. Realistically, a few dozen parametrized state variables,
that is, a few hundred ground state variables, may be needed for modeling
a realistic domain. The corresponding state space is on the order of dk,
where k is the number of ground state variables and d is the size of their
domain. In many practical cases k is so large (that is, a few hundred) that
iterating over S is not feasible. Options in such a case are to use focused
search algorithms that explore a small part of the search space as seen in
Section 6.3, to refine the model, to decompose the planning problem into
feasible subproblems, and to use domain configurable control knowledge to
reduce sharply the branching factor of a problem and allow for a significant
scaling up, as discussed in Section 6.3.5.

6.8 Discussion and Historical Remarks

6.8.1 Foundations

Sequential decision making under uncertainty benefits from a long line of
work in mathematics, starting with Andrei Markov in the 19th century,
who initiated the theory of stochastic processes, now called Markov pro-
cesses. The field developed extensively in the early 1960s with contribu-
tions from control theory, operations research and computer science. The
book Dynamic Programming by Bellman [50] opened the way to numerous
developments, detailed into influential monographs, for example, Derman
[151], Bertsekas [65], Puterman [497] and Bertsekas and Tsitsiklis [66].

Many of the early developments were focused on process-oriented prob-
lems (Section 6.7.3). Goal-oriented problems were also defined quite early:
the analysis of Bertsekas and Tsitsiklis [67], who coined the name SSP,
traces back their origin to Eaton and Zadeh [166]. However, their develop-
ment is in many aspects more recent and remains active within the artificial
intelligence and automated planning communities, as illustrated with nu-
merous articles and books, for example, Buffet and Sigaud [102], Mausam
and Kolobov [407].
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6.8.2 SSP Models

The Markov Decision Process (MDP) class of problems grew up into a pro-
fusion of extended models and special cases, notably SSP and POMDP.7 We
focused this chapter on the SSP model for two reasons: (i) it is a simple and
quite natural model for goal-oriented probabilistic planning problems, and
(ii) it is more general than the MDP model. Regarding the latter point,
Bertsekas [65] demonstrates that the SSP model includes as special cases
the discounted infinite horizon as well as the finite horizon MDP models.
The propositions in Section 6.2 are also demonstrated in this book.

SSPs are defined in the literature with a few variations related to how
the so-called connectivity assumption and the positive cycle assumption are
expressed. The first is defined either by assuming that every state is safe or
that s0 is safe. This amounts to requiring either that there is no dead end
in the domain or that existing dead ends are avoidable with a safe policy
starting at s0. The second assumption is equivalent to requiring that every
cycle not containing the goal has positive costs. These two assumptions
should preferably be expressed as conditions that are easily testable at the
specification stage of the domain. For example, demanding that every unsafe
policy has infinite cost is less restrictive than constraining all costs to be
positive, but it is also less easy to verify.

A more general approach is to allow for real costs and use algorithms able
to check and avoid dead ends, as in the amortized-cost approach of Teichteil-
Königsbuch et al. [568], or in the GSSP model of Kolobov et al. [348]. This
model accounts for maximizing the probability of reaching the goal, which
is an important criterion, also addressed by other means in Puterman [497]
and Teichteil-Königsbuch et al. [567]. The approaches of Kolobov et al. [347]
and Teichteil-Königsbuch [565] for the S3P model goes one step further with
a dual optimization criterion combining a search for a minimal cost policy
among policies with the maximum probability of reaching a goal.

6.8.3 Partially Observable Models

The model of Partially Observable Markov Decision Process (POMDP) pro-
vides an important generalization regarding the epistemic condition of an
actor, that is, what it knows about the state it is in. The SSP and MDP

7 Plus many other models, for example, SMDP, MOMDP, CoMDP, MMDP, SIMDP,
MDPIP, HMDP, HDMDP, GSSP, S3P, DSSP, POSB-MDP, NEG-MDP, MAXPROB-MDP
MDP-IP, TiMDP, CPTP, Dec-MDP, Dec-SIMDP, Dec-POMDP, MPOMDP, POIPSG,
and COM-MTDP.
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models assume that after each state transition the actor knows which state s
it has reached; it then proceeds with the action π(s) appropriate for s. The
POMDP model considers that the actor does not know its current state, but
it knows about the value of some observation variable o. It also has a proba-
bility distribution Pr(o|s, a) of observing o after running action a in s. This
gives it a probability distribution of possible states it might be in, called
the current actor’s belief : b(s|a, o). It has been demonstrated by Ȧström
[25] that the last observation o does not summarize the past execution, but
the last belief does. Hence, a POMDP planning problem can be addressed
as an MDP problem in the belief space. One starts with an initial belief b0
(distribution for initial states) and computes a policy that gives for every
belief point b an action π(b), leading to a goal also expressed in the belief
space.

Several approaches generalizing Dynamic Programming or Heuristic
Search methods to POMDPs have been proposed, for example, Kaelbling
et al. [305] and Smith and Simmons [552]. Policy search methods for
parametrized POMDPs policies are studied in Ng and Jordan [453]. Approx-
imate methods that focuses Bellman updates on a few belief points (called
point-based methods) are surveyed in Shani et al. [530]; they are compared
to an extension of RTDP in Bonet and Geffner [87]. Online algorithms for
POMDPs are surveyed in Ross et al. [516]. A Monto Carlo sampling ap-
proach is proposed by Silver and Veness [538]. Several interesting POMDP
applications have been developed, for example in robotics by Pineau et al.
[480], Foka and Trahanias [201] and Guez and Pineau [250]. However, the
POMDP developer faces several difficulties, among which:

• Tremendous complexity: a discretized belief point corresponds to a
subset of states; hence the belief space is in O(2|S|). Because |S|
is already exponential in the number of state variables, sophisticated
algorithms and heuristics do not scale up very far. Significant modeling
effort is required for decomposing a domain into small loosely coupled
problems amenable to a solution. For example, the approach of Pineau
et al. [480], even though it is applied to a small state space (less than
600 states), requires a clever hierarchization technique to achieve a
solution.

• A strong assumption (not always highlighted in the POMDP litera-
ture): a policy from beliefs to actions requires the action π(b) to be
applicable in every state s compatible with a belief b. It is not always
the case that the intersection of Applicable(s) for every s compatible
with b is meaningful. Sometimes, one would like to be able to choose
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an action that is feasible in a subset of π(b) on the basis of states like-
lihood, for example, as in the assumption-based planning for partially
observable nondeterministic domains of Albore and Bertoli [7].

• The partial observability model of POMDP is quite restrictive and
often unrealistic. It should be called the invisible state MDP model
because it does not consider any part of s as being observable. An actor
that distinguishes between invisible and observable state variables and
dynamically decomposes the latter into visible and hidden variables
(as discussed in Section 1.3.2) should handle them differently in its
deliberation, in particular to reduce the uncertainty about the states it
will face during its planed course of action. Such a partial observability
approach is pursued for example with the MOMDP models of Ong
et al. [463] and Araya-Lopez et al. [23], which consider that the set of
states is the Cartesian product of a set of visible states and a set of
hidden ones.

• Finally, observability issues requires a specific handling of observation
actions. One does not observe at every step all observable variables.
One observes only what is relevant for the current stage of the task
at hand; irrelevant unknown variables are ignored. Further, it is not
a single observation step; it can be a succession of observations until
reducing the uncertainty to a level consistent with what’s at stake.
These observation actions have a cost and need to be planned for.
This is for example illustrated in the HiPPo systems of Sridharan
et al. [555] for a robotics manipulation task.

6.8.4 Other Extended MDP Models

So far, we referred to probabilistic models with timeless state transitions.
Many applications require explicit time, durations, concurrency, and syn-
chronization concepts. A simple MDP extension adds time in the state rep-
resentation, for example, time as an additional state variable. In this direct
extension, timeless MDP techniques can be used to handle actions with de-
terministic durations and goals with deadlines, but this model cannot handle
concurrent actions. The Semi-Markov Decision Process (SMDP) model of
Howard [288] and Forestier and Varaiya [202] extends this simple temporal
MDP model with probabilistic integer durations. The Time-dependent MDP
(TiMDP) model of Boyan and Littman [95] considers distribution of contin-
uous relative or absolute time durations. Concurrent MDPs of Mausam and
Weld [410] extend the timeless MDP model to handle concurrent steps of
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unit duration, where each transition is a subset of actions. The Generalized
SMDP model of Younes and Simmons [624] combines semi-Markov mod-
els with concurrency and asynchronous events. Algorithms for these models
have been proposed by several authors, notably Mausam and Weld [408], Lit-
tle et al. [388] and Mausam and Weld [409]. It is interesting to note that
SMDPs provide a foundation to reinforcement learning approaches of Parr
and Russell [465], Andre and Russell [21], Marthi et al. [404] and Fernández
and Veloso [192].

Another important extension is related to continuous and hybrid state
space and action space. The hybrid state space combines discrete and con-
tinuous state variables (see Section 7.4). The latter have been addressed
with severable discretization techniques such as adaptive approximation by
Munos and Moore [437], piecewise constant or linear approximation by Feng
et al. [188], and parametric function approximation by Liu and Koenig [390]
and Kveton et al. [368]. Linear Programming approaches for hybrid state
spaces have been proposed by several authors, for example, Guestrin et al.
[248]. Heuristic search techniques have been extended to hybrid cases, for
example, the HAO∗ algorithm of Meuleau et al. [420].

Finally, there are several extensions of the stationary and deterministic
policy models on which we focused this chapter. A stochastic policy maps
states into probability distributions over actions. A non-stationary policy
evolve with time, that is, it is a mapping of state and time into either ac-
tions when it is deterministic, or into probability distributions over actions
when the policy is both stochastic and non-stationary. In some cases, such
as in finite horizon problems, a non-stationary policy can be better than a
stationary one, for example, π(s) is not the same action when visiting s the
first time then on the nth visit. However, extending the state representa-
tion (with variables representing the context) is often easier than handling
general non-stationary stochastic models, for which fewer algorithms and
computational results are known (for example, [527]).

6.8.5 Algorithms and Heuristics

The Dynamic Programming foundations and main algorithms go back to the
early work already cited of Bellman, Bertsekas, Putermann, and Tsitsiklis.
More recent studies disclosed additional properties of the VI algorithm, for
example, Bonet [80] for complexity results with positive costs and lower
bound heuristics, and Hansen [253] for sub-optimality bounds. Several ex-
tension and improved VI algorithms have been proposed, for example, with
a prioritized control in Andre et al. [20], with a focus mechanism in Ferguson
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and Stentz [191], McMahan and Gordon [418] and Wingate and Seppi [609],
or with a backward order of updates from goals back along a greedy policy
in Dai and Hansen [134].

Policy Search methods (not the be confused with Policy Iteration algo-
rithm) deal with parametrized policies πθ and perform a local search in the
parameter space of θ (for example, gradient descent). The survey of Deisen-
roth et al. [148] covers in particular their use for continuous space domains
and reinforcement learning problems.

Hansen and Zilberstein [254] developed the LAO∗ algorithm as an ex-
tension of AO∗ of Nilsson [460]. The Find&Revise schema was proposed
by Bonet and Geffner [83], who also developed several instantiation of this
schema into heuristic search algorithms such as HDP [83], LRTDP [84] and
LDFS [86]. A few other heuristic algorithms are presented in their recent
textbook [217, chap. 6 & 7]. RTDP has been introduced by Barto et al.
[46]. The domain-configurable control technique presented in Section 6.3.5
was developed by Kuter and Nau [361].

The FF-Replan planner has been developed by Yoon et al. [619] in the
context of the International Planning Competition. A critical analysis of
its replanning technique appears in Little and Thiébaux [389] together with
a characterization of “probabilistically interesting problems.” These prob-
lems have dead ends and safe solutions. To take the latter into account,
Yoon et al. [620] proposed an online receding horizon planner, called FF-
Hindsight, which relies on estimates through averaging and sampling over
possible determinizations with a fixed lookahead. The RFF algorithm has
been proposed by Teichteil-Königsbuch et al. [566]; it has been generalized
to hybrid MDPs with continuous state variables [564].

The SLATE procedure is due to Kearns et al. [325]. UCT was proposed
by Kocsis and Szepesvári [339]. An AO∗ version of it is described in Bonet
and Geffner [88]. UCT is based on Monte Carlo Tree Search techniques that
were developed with success for games such as Go by Gelly and Silver [219].
UCT was implemented into a few MDP planners such as PROST by Keller
and Eyerich [327]. An extension of UCT addressing POMDPs is studied by
Silver and Veness [538].

Several authors have exploited determinization techniques in probabilis-
tic planning, for example, Boutilier et al. [92] for pruning unnecessary Bell-
man update, Karabaev and Skvortsova [313] for performing Graphplan like
reachabilitiy analysis, Bonet and Geffner [85] for computing heuristics for
the mGPT planner, and Teichteil-Königsbuch et al. [568] also for computing
heuristics. Proposition 6.25 is demonstrated in the latter reference.

For many planners, implicit dead ends can lead to inefficiency or even
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to non termination (for example, as in RTDP and LRTDP). Dead ends
can be detected, but unreliably, through heuristics. They are more safely
avoided through the unbounded growth of the value function V , as in
Find&Revise instances and other variants, for example, Kolobov and Weld
[349] and Teichteil-Königsbuch et al. [568], but this can be quite expensive.
Kolobov et al. [346] propose an explanation-based learning technique to ac-
quire clauses that soundly characterizes dead ends. These clauses are easily
detected when states are represented as conjunction of literals. They are
found through a bottom-up greedy search and further tested to avoid false
positives. This technique can be usefully integrated into the generalized
Find&Revise schema proposed for the GSSP model of Kolobov et al. [348].

6.8.6 Factored and Hierarchical MDPs

The survey of Boutilier et al. [93] presents a comprehensive overview of
factored representations in probabilistic planning and analysis of their re-
spective merits and problems. The probabilistic operators representation is
a direct extension of the deterministic and nondeterministic operators; it
is used in particular in the PPDDL language of Younes and Littman [621].
Bayesian Networks are extensively covered in the textbook of Koller and
Friedman [345]. Their use for representing actions has been introduced in
Dean and Kanazawa [143]. The RDDL language of Sanner [525] is a com-
pact representation integrating DBNs and influence diagrams. Dynamic
programming techniques for factored MDPs are studied by Boutilier et al.
[94]. Guestrin et al. [249] developed elaborate approximation techniques for
MDPs represented with DBNs. Their use of approximate value function
represented as a linear combination of basis functions on a small subset of
the domain variables demonstrates impressive scalability.

Symbolic techniques with binary and algebraic decision diagrams have
also been used in probabilistic planning, for example, Hoey et al. [275] devel-
oped a symbolic VI algorithm in the SPUDD planner, Feng et al. [190] used
these techniques in an RDTP algorithm, Feng and Hansen [189] proposed
a symbolic LAO∗, and Mausam et al. [406] extended the nondeterministic
MBP planner to MDPs.

Several algorithms have been proposed to take advantage of the struc-
ture of a probabilistic planning problem. This is the case, for example, for
hierarchical MDPs of the HiAO∗ algorithm of Meuleau and Brafman [421].
Different methods can be used to hierarchize a domain, for example, the
methods of Givan et al. [237]. The model minimization techniques have
been studied in Dean et al. [142]. A kernel decomposition approach has
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been developed in Dean and Lin [144]. Hauskrecht et al. [263] propose ap-
proximate solutions to large MDPs with macro actions, that is, local policies
defined in particular regions of the state space. The approach of Barry et al.
[42] and their DetH∗ algorithm [43] clusters a state space into aggregates of
closely connected states, then it uses a combination of determinization at
the higher level and VI at the lower level of a hierarchical MDP.

Sparse probabilistic domains have been studied in particular by Busoniu
et al. [103] and Likhachev et al. [386]. The path compression technique of
Algorithm 6.21 is detailed in the latter reference.

6.9 Exercises

6.1. In the domain of Example 6.4, consider a policy π such that π(s0) =
Both. Is π a safe policy when s0 is either (acb), (bca) or (cba)? Is it safe
when s0 is (bac) or (cab)?

6.2. Prove that the recursive Equation 6.3 follows from the definition of
V π(s) in Equation 6.1.

6.3. Prove that a policy π∗ that meets Equation 6.5 is optimal.

6.4. Consider the domain Σ in Example 6.4.

(a) Extend Σ with a fourth action denoted All, which is applicable only
in the state (aaa) and flips randomly the three variables at once. Does
the corresponding state space have dead ends ? If not, run algorithm VI
on this example, assuming uniform cost and probability distributions.

(b) Extend Σ by having the three state variables range over {1, 2, . . . ,m},
such that actions Left, Right, and Both are as defined initially; action
All is applicable only to a state of the form (i, i, i) where i is even; it
flips randomly the three variables. Assume s0 = (1, 2, 3) and goals are
of the form (i, i, i) where i is odd. Run VI on this extended example
and analyze its performance with respect to m.

6.5. Run algorithm PI on the problem of Figure 6.15 starting from the
following policy: π0(s1) = π0(s2) = a, π0(s3) = b, π0(s4) = c.

(a) Compute V π0(s) for the four non-goal states.

(b) What is the greedy policy of V π0?

(c) Iterate on the above two steps until reaching a fixed point.
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Figure 6.15: An SSP problem with five states and four actions a, b, c, and d;
only action a is nondeterministic, with the probabilities shown in the figure;
the cost of a and b is 1, the cost of c and d is 100; the initial state is s1; the
goal is s5.

6.6. Run VI on the problem of Figure 6.15 with η = .5 and the following
heuristics:

(a) V0(s) = 0 in every state.

(b) V0(s1) = V0(s2) = 1 and V0(s) = 100 for the two other states.

6.7. In the problem of Figure 6.15, add a self loop as a nondeterministic
effect for actions b, c, and d; that is, add s in γ(s, a) for these three ac-
tions wherever applicable. Assume that the corresponding distributions are
uniform. Solve the two previous exercises on this modified problem.

6.8. Run AO∗ on the domain of Figure 6.6 with the heuristics V1 of Sec-
tion 6.3.5.

6.9. Modify the domain of Figure 6.6 by making the state s12 an explicit
dead end instead of a goal; run AO∗ with the heuristics V0 and V1 of Sec-
tion 6.3.5.

6.10. Prove that algorithm LAO∗ is an instance of the Find&Revise schema.

6.11. Modify the domain of Figure 6.6 by changing γ(s9, a) = {s3, s8} and
making the state s15 an explicit dead end instead of a goal. Run LAO∗ and
ILAO∗ on this problem and compare their computation steps.
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6.12. Run FF-Replan on the problem of Figure 6.15, using a Forward-Search
algorithm that always returns the least-cost path to a goal state. What is
the probability that FF-Replan will reach the goal?

6.13. Run RFF on the problem of Figure 6.15 with θ = 0.7. Suppose the Det-
Plan subroutine calls the same Forward-Search algorithm as in the previous
exercise, and turns the plan into a policy. What is π after one iteration of
the while loop?

6.14. Prove that algorithm FF-Replan (Section 6.4.2) is complete when
using a complete Det-Plan deterministic planner.

6.15. Run Algorithm 6.21 on the problem of Figure 6.15; compare with the
computations of RFF on the same problem.

6.16. Specify the SLATE procedure (Algorithm 6.19) as an anytime algo-
rithm implementing an incremental backup at each increase of the depth h.
Implement and test on a few domains.

6.17. Write the probabilistic precondition-effect operators for the take and
put actions of the domain PAMp (Example 6.30). How many ground actions
are there is this domain?

6.18. Implement and run algorithm VI for a few problem instances of the
domain PAMp. Up to how many containers does your implementation scales
up?

6.19. For the domain in Example 6.31, analyze the interactions between the
arrival, departure, and switch events with the action take and put. Compute
the sets γ(s, take) and γ(s, put) for different states s.

6.20. Analyze a generalized PAMq domain where the arrival and departure
of containers can take place even in the robot location. Define conditional
probability trees for the variable ctrs.
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Other Deliberation Functions

As discussed in Section 1.3, there is more to deliberation than planning and
acting. This point is particularly clear in robotics, as shown in the survey by
Ingrand and Ghallab [294].1 Here, we briefly cover a few deliberation func-
tions, other than planning and acting, that may be needed by an actor. We
discuss in Section 7.1 deliberation on sensing tasks: how to model them and
control them to recognize the state of the world and detect objects, events,
and activities in the environment that are relevant to the actor, for and
while performing its own actions. Section 7.2 is about monitoring and goal
reasoning, that is, detecting and interpreting discrepancies between predic-
tions and observations, anticipating what needs be monitored, controlling
monitoring actions, and assessing the relevance of commitments and goals
from observed evolutions, failures, and opportunities. Learning and model
acquisition techniques in planning and acting are surveyed in Section 7.3; we
cover in particular reinforcement learning and learning from demonstration
approaches.

This chapter surveys also approaches for handling hybrid models that
have continuous and discrete components (Section 7.4), which are needed in
domains where part of the dynamics is naturally expressed with continuous
differential equations. We finally devote Section 7.5 to representations for
expressing ontologies, which can be essential for modeling a domain; we
discuss their use in planning and acting.

1The material of some sections in this chapter is based on that survey.
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7.1 Perceiving

Deliberation is mostly needed for an actor facing a diversity of situations
in an open environment. Such an actor generally has partial knowledge
about the initial state of world and its possible evolution. It needs to be
able to perceive what is relevant for its activity and to deliberate about its
perception, while acting and perceiving.

Reasoning on perception leads to several problems, among which for
example those of:

• Reliability: how reliable are sensing and information gathering ac-
tions? What verification and confirmation steps are needed to confirm
that the sensed value of a state variable is correct? How to assess the
distribution of values if uncertainty is explicitly modeled?

• Observability: how to acquire information about non observable state
variables from the observable ones? How to balance costly observations
with approximate estimates?

• Persistence: How long can one assume that a state variable keeps its
previous value as long as new observations do no contradict it?

Furthermore, there are numerous additional sensing problems for a physical
actor to reason on and determine how to handle its sensors (how and where
to use a sensor, how to process and qualify given data), as well as to perform
information-gathering actions through communication with and query of in-
formation sources. Handling sensors changes perception reasoning problems
considerably.

The details of these problems are beyond the scope of this short overview
section. In the following, we’ll mention a few approaches to (i) planning and
acting with information gathering actions, (ii) planning sensing actions, (iii)
anchoring and signal-to-symbol matching problems, and (iv) recognizing
plans and situations.

7.1.1 Planning and Acting with Information Gathering

As already discussed, the closed-world assumption (that is, the assumption
that facts not explicitly stated are false)2 is too restrictive. A deliberative
actor lives in an open world. It has to handle partially specified instances
of a domain (for example, as seen with timelines) and extend its knowledge
when needed. In particular it needs the following capabilities:

2Alternatively, facts not entailed from explicit statements are assumed to be false.
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• Plan with respect to domain objects and properties that are unknown
when planning starts but that can be discovered at acting time through
planned information-gathering actions. New facts resulting from these
actions will be used to further refine the rest of the plan.

• Query databases for facts the actor needs specifically to address a given
planning problem and query knowledge bases for additional models of
its environment that are relevant to the task at hand.

Planning with information gathering is studied by several authors using
conditional planning approaches, as in the PKS system of Petrick and Bac-
chus [476]. The continual planning approach of Brenner and Nebel [97] in
MAPL postpones part of the planning process. It introduces information-
gathering actions which will later allow development of the missing parts
of the plan. The planner uses assertions that abstract actions to be refined
after information-gathering. The approach is well adapted to dynamic en-
vironments where planning for subgoals that depend on yet unknown states
can be delayed until the required information is available through properly
planned information gathering actions.

Acquiring additional data and models at planning time is inspired from
semantic Web functionalities. For example, the ObjectEval system of
Samadi et al. [521] acquires from the Web statistics about possible loca-
tions of objects of different classes. It uses them in a utility function for
finding and delivering objects in an office environment. Other approaches
use Description Logic (DL), a fragment of first-order logic, to handle state-
ments about objects, properties, relations, and their instances with inference
algorithms for querying large stores of data and models over the Web [27].
Most implementations rely on OWL, the standard Web Ontology Language.
OWL handles an open-world representation where facts can be true, false,
or unknown. This point is further developed in Section 7.5.3.

7.1.2 Planning to Perceive

An information-gathering action may not be a directly executable command.
It may require using sensor models to decide where to put a sensor, how to
use it, and how to best acquire the needed information. Planning to perceive
is concerned with integrating the selection of viewpoints and sensor modal-
ities to the other activities of an actor. It is very important in robotics. It
relies on extensive work on the sensor placement problem, which is usually
addressed as a search for the next best viewpoint for solving specific sens-
ing tasks, such as modeling an environment or recognizing an object. An
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illustration is given in the approach of Laporte and Arbel [372].

The integrated sensor placement and task planning problem is sometimes
addressed with POMDPs, for example, by Pineau et al. [481] and Prentice
and Roy [495]. The HiPPo system of Sridharan et al. [555] offers a good
illustration of sensor placement for the recognition of objects on a table, as
typically required in a manipulation task. A hierarchical POMDP technique
is used to have a computationally tractable problem, although limited in
perception tasks and domain sized (a few regions of interest).

An alternative and more scalable approach for synthesizing an observa-
tion plan within a navigation task is proposed in Velez et al. [578]. This work
seeks to detect and map objects of interest while reaching a destination. It
uses a Bayesian approach that correlates measurements from subsequent ob-
servations to improve object detection; detours are weighed against motion
cost to produce robust observation plans using a receding horizon sampling
scheme. The approach was tested in an indoor environment for recognizing
doors and windows.

7.1.3 Symbol Anchoring

Deliberation reasons about objects in the environment through their sym-
bolic attributes and through relations linking these symbols. Observing
handles perceptual data and signals. It is essential that the abstract de-
scription of the former and the data of the latter agree when referring to
the same reality. Anchoring is the problem of creating and maintaining
over time a correspondence between symbols and sensor data that refer to
the same physical object. It can be seen as a particular case of the sym-
bol grounding problem, which deals with broad categories, for example, any
“door” as opposed to, say, door-2.

Coradeschi and Saffiotti [130] propose achieving anchoring by establish-
ing and keeping a link called an anchor between the perceptual system and
the symbol system, together with a signature that estimates some of the
attributes of the object it refers to. The anchor is based on a model that
relates relations and attributes to perceptual features and their values.

Establishing an anchor corresponds to a pattern recognition problem,
where the challenge is to handle the uncertainty of sensor data and the
ambiguity of models, a challenge dealt with, for example, by maintaining
multiple hypotheses. Karlsson et al. [315], for example, handle ambiguous
anchors with a conditional planner, called PTL, exploring a space of belief
states, representing the incomplete and uncertain knowledge due to partial
matching between symbolic properties and observed perceptual features.
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The approach distinguishes between definite symbolic descriptions, which
are matched with a single object, and indefinite descriptions. Actions have
causal effects that change object properties. Observations can change the
partition of a belief state into several new hypotheses.

Anchoring raises additional problems, such as which anchors to establish,
and when and how. Anchors are needed in principle for all objects relevant
to the actor’s activity. Often, these objects cannot be defined extensionally
(by specifying a list of objects). They must be defined by their properties in
a context-dependent way. Object recognition is required not only to label
specifically queried objects, but also to create new anchors relevant to the
task.

Tracking anchors is another issue, i.e., taking into account object prop-
erties that persist across time or evolve in a predictable way. Predictions
are needed to check that new observations are consistent with the anchor
and that the updated anchor still satisfies the object’s properties. Finally
reacquiring an anchor when an object is re-observed after some time is a
mixture of finding and tracking; if the object moves, it can be quite complex
to account consistently for its behavior.

The DyKnow system of Heintz et al. [265] illustrates several of the pre-
ceding capabilities. It offers a comprehensive perception reasoning architec-
ture integrating different sources of information, with hybrid symbolic and
numeric data at different levels of abstraction, with bottom-up and top-
down processing, managing uncertainty, and reasoning on explicit models of
its content. It has been integrated with the planning, acting, and monitor-
ing system of Doherty et al. [158] and demonstrated for the control of UAV
rescue and traffic surveillance missions. In the latter, a typical anchoring
task consists of recognizing a particular vehicle, tracking its motion despite
occlusions, and re-establishing the anchor when the vehicle reappears (for
example, after a period in a tunnel).

7.1.4 Event and Situation Recognition

The dynamics of the environment is an essential source of information for an
actor, as we just saw in the anchor tracking and re-acquiring problems. It
needs to be interpreted: what an observed sequence of changes means, what
can be predicted next from past evolutions. These issues are essential for
interacting with other actors, to understand their intensions and behavior,
for example, for tutoring a robot to perform complex tasks (Argall et al.
[24]), or in surveillance applications (Hongeng et al. [284] and Fusier et al.
[210]).
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The survey of Krüger et al. [355] covers an extensive list of contributions
to action and plan recognition. These deal with (i) human action recog-
nition, (ii) general activity recognition, and (iii) plan recognition. The
former two types of processing provide input to the latter. Most surveyed
approaches rely on signal processing and plan recognition techniques. The
former use filtering approaches, Markov Chains, and Hidden Markov Mod-
els (HMM, for example, Rabiner and Juang [502]). They have been suc-
cessfully applied to movement tracking and gesture recognition by Wu and
Huang [612] and Moeslund et al. [426]. The latter rely on the deterministic
planning approaches of Kautz and Allen [320], Ramirez and Geffner [505],
or the probabilistic approach of Geib and Goldman [218], as well as the
parsing techniques of Pynadath and Wellman [499].

Most plan recognition approaches assume as input a sequence of symbolic
actions. This assumption is hard to meet in practice. Usually actions are
sensed through their effects on the environment. The recognition of actions
from their effects depends strongly on the plan level. Decomposing the
problem into recognizing actions then recognizing plans from these actions
is fragile. More robust approaches have to start from the observation of
changes.

Chronicle recognition techniques can be relevant to this problem. As
defined in Chapter 4, a chronicle is a model for a collection of possible sce-
narios. It describes classes of events, persistence assertions, non-occurrence
assertions, and temporal constraints. A ground instance of a chronicle can
be formalized as a nondeterministic timed automata. Beyond planning oper-
ators, chronicles can be used to describe situations and plans and recognize
their occurrences from observations. The approach proposed by Ghallab
[226] and Dousson et al. [162] is able to monitor a stream of observed events
and recognize, on the fly, instances of modeled chronicles that match this
stream. The recognition is efficiently performed by maintaining incremen-
tally a tree of hypotheses for each partially recognized chronicle instance.
These trees are updated or pruned as new events are observed or time ad-
vances. It has been demonstrated in robotics surveillance tasks. Recent
development by Dousson and Le Maigat [163] have introduced hierarchiza-
tion and the focus on rare events

The chronicle approach offers an interesting link between planning and
observing. The SAM system of Pecora et al. [468] is a good illustration
of such a link in the development of a system providing assistance to an
elderly person. It uses a chronicle-like representation (timelines with interval
algebra) offering online recognition, planning, and execution with multiple
hypotheses tracking over weeks.
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7.2 Monitoring and Goal Reasoning

We argued in Chapter 1 that acting deliberately requires predicting contin-
ually what may come next. In open, variable, and dynamic environments,
an actor should not be confident that its predictions are always going to
occur. Performing actions in a blind open-loop manner would be brittle and
lead frequently to failure. A deliberative actor needs a closed-loop feedback,
allowing it to correct its actions when there is a discrepancy between its
predictions and its observations. This is the role of monitoring.

More precisely, monitoring is in charge of (i) detecting discrepancies
between predictions and observations, (ii) diagnosing their possible causes,
and (iii) taking first recovery actions.

Monitoring has a broad scope, ranging from monitoring the low-level
execution platform to the high-level reasoning on the appropriate goals for
pursuing the actor’s objectives and mission. Indeed, discrepancies between
predictions and observations can be caused by platform errors and failures,
for example, malfunctioning sensors or actuators or buggy commands. They
can also be produced by unexpected events and environment contingencies
that make the chosen refinement of current action or the chosen plan inap-
propriate. Finally, the actor has to keep its goals in perspective and monitor
that they remain not only feasible but also relevant. In the remainder of
this section, we discuss successively these three levels of monitoring.

7.2.1 Platform Monitoring

A physical actor has necessarily to monitor its platform and adapt its ac-
tions to the functioning status of its sensory-motor capabilities.3 Low-level
monitoring may be needed even when the execution platform is solely com-
putational. One may argue that this monitoring is a platform dependent
issue, which is not a component of deliberate acting. This is in part true.
However, we already saw that deliberation has to rely on models of the ac-
tor’s platform, including when the platform evolves. Further, deliberation
techniques can be very relevant for performing platform monitoring func-
tions. Let us briefly survey a few approaches.

The techniques for monitoring physical sensory-motor platforms often
rely on signal filtering and parameter identification methods for fault detec-
tion and identification, and statistical and pattern recognition methods for

3This level of monitoring is sometime referred to as fault detection, identification and
recovery (FDIR).
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diagnosis (see the survey of Pettersson [477]). More of interest to delibera-
tion are the model-based diagnosis techniques. These usually take as input a
triple (System description, Components, Observation) where the first term is
a model of the platform, the second a finite list of its components, the third
is an assertion inconsistent with the model expressing the observed fault.
The diagnosis task is to find a minimum subset of components whose pos-
sible failure explains the observation. The recent framework of Baier et al.
[32] formulates a model-based diagnosis problem as a planning problem with
information gathering and reasoning on change.

Model-based techniques are well illustrated in a comprehensive monitor-
ing, diagnosis, and recovery system called Livingstone for an earth obser-
vation spacecraft developed by Muscettola et al. [441] and Bernard:2000wy.
Livingstone relies on the approach of qualitative model-based diagnosis of
Williams and Nayak [607]. The spacecraft is modeled as a collection of com-
ponents, for example, thrust valves. Each component is described by a graph
whose nodes correspond to normal functioning states or to failure states of
that component, for example, a valve is closed, open, or stuck. Edges are
either nominal transition commands or exogenous transition failures. The
latter are labeled by transition probabilities; the former are associated with
transition costs and preconditions of the commands. A node is associated
with a set of finite domain constraints describing the component’s proper-
ties in that state, for example, when the valve is closed, inflow = 0 and
outflow = 0. The dynamics of each component is constrained such that, at
any time, exactly one nominal transition is enabled but zero or more fail-
ure transitions are possible. Models of all components are compositionally
assembled into a system where concurrent transitions compatible with the
constraints and preconditions may take place. The entire model is com-
piled into a temporal propositional logic formula, which is queried through
a specific solver (with a truth-maintenance and a conflict-directed best-first
search). Two query modes are used: (i) diagnosis, which finds the most
likely transitions consistent with the observation, and (ii) recovery, which
finds the least cost commands that restore the system into a nominal state.
This monitoring system is well integrated with the spacecraft acting system.
It computes a focused sequence of recovery commands that meets additional
constraints specified by the acting system.

Livingstone and other similar model-based diagnosis systems are focused
on the monitoring on the execution platform itself.4 Monitoring the actor’s
interactions with a dynamic environment (for example, in searching for an

4They can be qualified as proprioceptive monitoring approaches.
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object and bringing it to a user) requires other techniques, which are dis-
cussed next.

7.2.2 Action and Plan Monitoring

Monitoring the causal structure of a plan. The synthesis of a plan
provides a collection of actions, organized as a sequence, a partial order, a
chronicle, or a policy. It also provides an important information for mon-
itoring the progress of the plan, which is the causal structure of the plan.
Basically, this causal structure says which effects of an action a are predicted
to support which preconditions of an action a′, constrained to come after a.

We have already discussed the causal structure of a plan in previous
chapters, through the notion of causal links in a partial plan (Definition 2.30
in Section 2.5), or the notion of causally supported assertions in a timeline
(Definition 4.9 in Section 4.2). Let us briefly discuss its use for monitoring
in the simple case of sequential plans.

Let π = 〈a1, . . . , ai, . . . , ak〉 be a sequential plan to be monitored for
achieving a goal g. Let us use the regression of a goal through an action
(see Equation 2.14) to define the sequence of intermediate goals associated
with π as:

G = 〈g0, g1, . . . , gi, . . . , gk+1〉, with

gi = γ−1(gi+1, ai) for 1 ≤ i ≤ k, gk+1 = g, and g0 = ∅.

In other words, action ak can be performed in a state s and achieves g
only if s supports gk. Similarly, the subsequence 〈ak−1, ak〉 can be performed
in a state s′ and achieves g only if s′ supports gk−1. The entire plan π is
applicable and achieves g only in a state that supports g1.

G is easily defined from π and can be used to monitor the progress of
π with the simple procedure in Algorithm 7.1. This procedure searches
G in reverse order, looking for the first gi, which is supported by current
state. It then performs action ai. The goal is achieved when the current
state supports gk+1 = g. If the only supported intermediate goal is g0 = ∅
(trivially supported by every state), then the plan π has failed.

Note that the procedure Progress-Plan does not follow π sequentially. It
“jumps” to the action closest to the goal that allow to progress toward g.
It may also go back and repeat several times previously performed actions
until the effects required by an intermediate goal are achieved.
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Progress-Plan(π,G)
loop
ξ ← observed current state
i← maxj{0 ≤ j ≤ k + 1 | ξ supports gj}
if i = k + 1 then return success
if i = 0 then return failure
else perform action ai

Algorithm 7.1: A simple monitoring of the progression of a plan

Example 7.1. Consider a service robot for which a planner produces
the following sequential plan: π = 〈move(door), open(door), move(table),
pickup(tray), move(sink), putdown(tray, sink), pickup(medic), move(chest),
putdown(medic,chest) 〉. π says to move to door and open it because the
robot cannot open it while holding the tray. When starting this plan the
robot may observe that, despite its initial model of the environment, the
door is already open. Progress-Plan would skip the first two actions and pro-
ceed with the move(table). Later on, after picking up the medic if the robot
observes that it gripper is empty, it would repeat the pickup action.

The intermediate goals in the sequence G are not independent. They
can be organized such as to reduce the computational effort for finding the
largest i such that ξ support gi. The corresponding data structure is a
tabular representation of a causal graph called a triangle table. It has been
proposed together with the preceding procedure by Fikes [196] in Planex, an
early monitoring and execution system associated with the Strips planner.

Progress-Plan alone is limited and remains at an abstract and simple level
of monitoring. It has to be augmented with the monitoring of the commands
refining the actions in π, with diagnosis of possible problems (that is, why
the state observed after performing ai does not support gi+1) and the control
of repeated actions on the basis of this diagnosis (for example, when does it
make sense to repeat a pickup action).

Monitoring the invariants of a plan. An invariant of a state transition
system is a condition that holds in every state of the system. For a planning
problem (Σ, s0, g), an invariant characterizes the set of reachable states of
the problem. A state that violates the invariant cannot be reached from
s0 with the actions described in Σ. In other words, if ϕ is an invariant of
(Σ, s0, g), then for any plan π and any state s ∈ γ̂(s0, π), s supports ϕ.
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Going back to Example 7.1, if the robot has no action to lock or unlock the
door, and if the door is initially unlocked, then door-status(door)=unlocked
is an invariant of this domain. Note that the world invariant qualifies here
a particular model of the world, not the world itself; monitoring violation of
the invariant allows to detect discrepancies with respect to that model.

Invariants of a planning problem can be synthesized automatically, as
shown for example by Kelleher and Cohn [326] or Rintanen [512]. Several
authors have used invariants to speed up planning algorithms, for example,
Fox and Long [203]. However, at the acting level, we know that the as-
sumption of a static environment does not hold: there can be other state
transitions than those due to the actor’s actions. For example, the door of
Example 7.1 may become locked, this violating a plan that requires opening
that door. The actor has to monitor that the current state supports the
invariants relevant to its plan.

However, the invariants of a planning problem are often not sufficient for
the purpose of monitoring. Many of the invariants entailed from (Σ, s0, g)
express syntactical dependencies between the variables of the problem, for
example, a locked door is necessarily closed; it cannot be open.5 Often,
an actor has to monitor specific conditions that express the appropriate
context in which its activity can be performed. For example, the robot has
to monitor the status of its battery: if the charge level is below a threshold,
than at most τ units of time are available in normal functioning before
plugging at a recharge station. Such conditions cannot be deduced from the
specification of (Σ, s0, g); they have to be expressed specifically as monitoring
rules.

A simple approach, proposed by Fraser et al. [207], considers an extended
planning problem as a tuple (Σ, s0, g, ϕ), where ϕ is a condition, expressed
formally in the same way as the preconditions of actions. Condition ϕ is
a requirement for planning: π is a solution to the problem if every state
s ∈ γ̂(s0, π) supports ϕ. It is also a requirement for acting: the actor has
to monitor at acting time that every state observed while performing a plan
π supports ϕ. A violation of this condition, due to any exogenous event or
malfunction, means a failure of the plan. It allows quite early detection of
infeasible goals or actions, even if the following actions in the plan appear
to be applicable and produce their expected effects.

Several authors have developed elaborate versions of the preceding idea
with monitoring rules, in some logical or temporal formalism, associated to

5The use of multivalued state variables reduces these dependencies, when compared
with the use of predicates, but it does not eliminate them.
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sensing and recovery actions together with efficient incremental evaluation
algorithms at acting time. For example, the approach of Fichtner et al.
[195] relies on the fluent calculus of Sandewall [523] with actions described
by normal and abnormal preconditions. The former are the usual precondi-
tions; the latter are assumed away by the planner as default; they are used
as a possible explanation of a failure. For example, delivery of an object
to a person may fail with abnormal preconditions of the object being lost
or the person not being traceable. Abnormal effects are similarly specified.
Discrepancies between expectations and observations are handled by a pri-
oritized nonmonotonic default logic and entail that default assumptions no
longer hold. These explanations are ranked using relative likelihood, when
available. The system is able to handle incomplete world models and ob-
servation updates received while acting or on demand from the monitoring
system through specific sensory actions.

Ben Lamine and Kabanza [51] propose an interesting variant where Lin-
ear Temporal Logic formulas are used to express goals as well as correctness
statements and execution progress conditions. A trace of the execution,
observed and predicted at planning time, is incrementally checked for sat-
isfied and violated LTL formulas. For that, a delayed formula progression
technique evaluates at each state the set of pending formulas; it returns the
set of formulas that has to be satisfied by any remaining trace. The same
technique is used both for planning (with additional precondition-effect op-
erators and some search mechanism) and for monitoring.

The approach of Bouguerra et al. [91] uses domain knowledge expressed
in description logic to derive expectations of the effects of actions in a plan
to be monitored during execution. A first-order query language allows on-
line matching of these expectations against observations. The parameters
of action refer to world objects that have derived properties. These prop-
erties are checked to be either consistent or inconsistent with observations.
Their consistency may be undetermined, triggering observation actions. An
interesting extension handles flexible monitoring with probabilistic models,
akin to Bayesian belief update. It relies on probabilistic plans with nonde-
terministic actions as well as on probabilistic sensing models.

Finally, let us mentioned the comprehensive approach of Doherty et al.
[158], which relies on a Temporal Action Logics formalism of Kvarnström
and Doherty [366], for specifying operators and domain knowledge. Formal
specifications of global constraints and dependencies, together with planning
operators and control rules, are used by the planner to control and prune
the search. Monitoring formulas are generated from the descriptive models
of planning operators (preconditions, effects, and temporal constraints) and
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from the complete synthesized plan, for example, constraints on the persis-
tence of causal links. This automated synthesis of monitoring formulas is
not systematic but selective, on the basis of hand-programmed conditions
of what needs to be monitored and what does not. Additional monitoring
formulas are also specified by the designer in the same expressive temporal
logic formalism. For example, a UAV (the application domain of Doherty
et al. [158]) should have its winch retracted when its speed is above a given
threshold; it can exceed its continuous maximum power by a factor of η for
up to τ units of time if this is followed by normal power usage for a period
of at least τ ′. The system produces plans with concurrent and durative
actions together with conditions to be monitored during execution. These
conditions are evaluated online using formula progression techniques. When
actions do not achieve their desired results, or when some other conditions
fail, recovery via a plan repair phase is triggered.

Integrating monitoring with operational models of actions. The
previous examples of monitoring rules for a UAV express conditions on the
normal functioning of the execution platform and its environment; they allow
detection of deviations from the required specifications. Such a detection
is naturally integrated to operational models of actions with the refinement
methods introduced earlier. Furthermore, detections of a malfunction or a
deviation may trigger events to which are associated refinement methods for
taking first corrective actions specific to the context.

Most of the acting systems discussed in Section 3.5.1, such as PRS, RAP,
or TCA, have been used for action refinement and reaction to events as
well as for monitoring. Most implementations using these systems integrate
specific methods or part of such methods, to handle monitoring functions.

Refinement methods introduced in Chapter 3 are adequate for expressing
monitoring activities; RAE procedure can be used for triggering observation
and commands required for monitoring.

7.2.3 Goal Reasoning

A deliberative actor has to keep its goals in perspective to make sure that
they remain feasible and relevant to its long-term objectives or mission.
When needed, it has to synthesize alternate goals. Goal reasoning is a mon-
itoring function at the highest level; it continuously checks for unexpected
events that may interfere with current goals.

Goal reasoning has been deployed in a few experiments. Let us men-
tion briefly some of them. The Mission Manager in the DS1 spacecraft
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experiment of Muscettola et al. [441] and Bernard et al. [53] offers a goal
reasoning capability. It analyses the progress of the mission and determines
which goals should be satisfied for the next planning window (one to two
weeks). The selected goals are passed to the planner, together with con-
straints that need to be satisfied at waypoints identified by the Mission
Manager (for example, the amount of energy left in the batteries should be
above a threshold at the end of the planning phase).

There is an analogous manager in the CPEF system of Myers [442],
used in the simulation of operational deployments; this manager provides
appropriate goals to the planner and controls the generation of plans. For
a similar class of applications, the ARTUE system of Molineaux et al. [429]
detects discrepancies when executing a plan. It generates an explanation,
possibly produces a new goal, and manages possible conflict between goals
currently under consideration. It uses decision theory techniques to decide
which goal to choose. The approach proposes an original explanation system,
which uses Assumption-based Truth Maintenance techniques to find the
possible explanation of the observed facts. In Powell et al. [494], the authors
extend ARTUE with a facility for teaching the system new goal selection
rules.

Another example is the Plan Management Agent of Pollack and Horty
[492] for handling personal calendars and workflow systems. This system
addresses the following functions:

• Commitment management: commits to a plan already produced, and
avoids new plans that conflict with the existing ones.

• Alternative assessment: decides which of the possible alternative goals
and plans should be kept or discarded.

• Plan control: decides when and how to generate a plan.

• Coordination with other agents: takes into account others’ commit-
ments and the cost of decisions involving their plans.

That system relies on temporal and causal reasoning. It is able to plan with
partial commitments that can be further refined later.

Finally let us mention a class of approaches, called Goal Driven Auton-
omy (GDA) for reasoning about possibly conflicting goals and synthesizing
new ones. These approaches are surveyed by Hawes [264] and Vattam et al.
[577]. The former surveys a number of architectures supporting goal reason-
ing in intelligent systems. The latter reviews more than 80 contributions on
various techniques for goal monitoring, goal formulation, and goal manage-
ment, organized within a comprehensive goal reasoning analysis framework.
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7.3 Learning and Model Acquisition

Recall that methods for automated planning and acting rely on two types of
action models: operational and descriptive. The acquisition of these models,
as for any other kind of models to be used automatically, is a challenging
bottleneck. Machine learning techniques, especially statistical techniques,
have progressed significantly. Some of these techniques are relevant for the
acquisition of planning and acting models, in particular learning operational
models of actions. Indeed, operational models are at a lower level, more
detailed, and often more domain-specific than descriptive models. They are
more difficult to specify by hand.

Consequently, this section is mostly devoted to learning operational mod-
els for acting. We briefly introduce and survey methods for reinforcement
learning (Section 7.3.1) and learning from demonstration (Section 7.3.2). A
short discussion of approaches for learning descriptive models and domain
specific heuristics for planning concludes the section.

7.3.1 Reinforcement Learning

Reinforcement learning methods aim at improving the performance of an
actor by direct interaction with the world. They are based on statistics of
trials and errors on past experiences. The actor learns how to perform a task
by maximizing the long-term perceived benefit of its actions. There is no
teacher providing examples of good behaviors in certain situations or advice
about how to choose actions. The only feedback given to the actor at each
step is a scalar: the reward associated with the action it has performed.
As long as the actor has not tried all feasible actions in all encountered
situations, it will not be sure that it uses the best ones. Reinforcement
learning has to solve the compromise of exploration versus exploitation: the
actor must make the most of what it already knows to maximize the benefit
of its actions for the task at hand; to find the best actions, it must explore
options it does not know enough about.

To introduce our notations, consider the elementary case in which a
single action a ∈ {a1, . . . , an} is sufficient to perform the task at hand. Let
ri(a) > 0 be the reward received after running action a at the ith time. We
can estimate the quality Q(a) of action a that has been executed ka times
by its average reward:

Q(a) =

{
q0 if ka = 0,
1
ka

∑ka
i=1 ri(a) othersise.

(7.1)
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An equivalent formulation maintains Q by incremental updates:

Q(a)← Q(a) + α[rka(a)−Q(a)],with α =
1

ka
. (7.2)

When ka → ∞ for all a, the choice of the action that maximizes the
reward is given by argmaxa{Q(a)}. However, as long as the exploration of
alternatives has not been sufficient, the actor must try actions other than
the estimated best one, according to various heuristics. We can define a
function Selecta{Q(a)} that favors the current best action and allows for
exploring alternatives by various methods such as:

• choose action argmaxa{Q(a)} with probability (1− ε) and a randomly
drawn action other argmaxa{Q(a)} with probability ε, where ε is de-
creasing with experience; and

• choose an action according to a probabilistic sampling distribution, for
example, with Boltzmann sampling, according to a probability distri-

bution given by e
Q(a)
τ , where τ is decreasing with experience.

When the environment is stationary, the update of Q(a) in Equation 7.2
after performing action a becomes increasingly weak with big ka. If the
environment is not stationary, we can keep α < 1 constant. Note also that
the initialization value q0 fosters exploration if q0 is high with respect to
other rewards. For example, if q0 = rmax, the maximum reward, never-tried
actions will be systemically preferred.

With these basics notions, let us now consider the interesting case where
the task at hand requires a sequence of several actions, each interfering with
the following ones, influencing the overall success and the sum of rewards.
The framework generally used is that of Markov decision processes, as seen
in Chapter 6. The actor seeks to learn an optimal policy that maximizes
the expected sum of rewards.

One approach is to learn the MDP model and then to apply the planning
techniques seen earlier (with rewards instead of costs, and maximization in-
stead of minimization) to find the optimal policy and then use it. Learning a
model means collecting enough statistics through an exploratory phase to es-
timate the probability distributions Pr(s′|s, a) and the rewards r(s, a). This
direct approach requires a costly exploratory phase to acquire the model. It
is often better to start performing the task at hand, given what is known,
while continuing to learn, that is, to combine the two phases of acquiring a
model and finding the best action for the current model.

The Q-learning algorithm, Algorithm 7.2, meets this objective while
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Q-learning
loop
a← Selecta{Q(s, a)}
apply action a
observe resulting reward r(s, a) and next state s′

Q(s, a)← Q(s, a) + α[r(s, a) + maxa′{Q(s′, a′)} −Q(s, a)] (i)
s← s′

until termination condition

Algorithm 7.2: Q-learning, a reinforcement learning algorithm.

avoiding the need to build the MDP model explicitly. Using the notations
introduced in the previous chapter, Equation 6.6 can be reformulated as:

Q(s, a) = r(s, a) +
∑

s′∈γ(s,a)

P (s′|s, a) max
a′
{Q(s′, a′)}.

The basic idea of Q-learning is to perform an incremental update of Q(s, a),
similar to Equation 7.2. This update (ligne (i) in the algorithm) does not
use the unknown probability parameters of the model, but the value of Q in
a successor state s′, as observed in current step of the trial.

Q-learning is called for each trial of the task at hand. The termination
condition is the achievement of the task or a failure of the trial. Values of
Q(s, a) are initialized arbitrarily; they are global variables characterizing the
task. The function Selecta{Q(s, a)} favors argmaxa{Q(s, a)} while allowing
for the exploration of non maximal action with a frequency decreasing with
experience. The parameter α ∈ [0, 1] is set empirically. When α is close to 1,
Q follows the last observed values by weighting down previous experiences of
a in s; when it is close to zero, previous experiences count more and Q does
not change much; α can be set as decreasing with the number of instances
(s, a) encountered.

It is possible to prove under reasonable assumptions the asymptotic con-
vergence of Q-learning algorithm to optimal policies. In practice, however,
this convergence is very slow in the number of trials. For physical actions,
experiments are much more costly than the computational complexity. Sim-
ulated experiments can be a critical component in the implementation of a
reinforcement learning approach.

There are several variants of the Q-learning algorithm. One of them,
known as SARSA (for State, Action, Reward, State, Action), takes into ac-
count a sequence of two steps (s, a, s′, a′) before updating the estimated qual-
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ity of a in s by Q(s, a)← Q(s, a) + α[R(s, a) +Q(s′, a′)−Q(s, a)]. Other
algorithms proceed by updating the value function V (s) rather then the
function Q(s, a). Updates are performed over triplet (s, a, s′) in a simi-
lar way: V (s)← V (s) + α[r(s, a) + V (s′)− V (s)]. This algorithm, called
TD(0), is generalized as the TD(λ) algorithm, which performs updates over
all states, with a weighting depending on the frequency of meeting each
state.

Another approach, illustrated by the DYNA algorithm, combines learn-
ing with planning. One maintains and updates estimates of the probability
and reward parameters Pr(s′|s, a) and r(s, a). At each step of a trial two
updates are performed taking into account new estimates: a Q-learning up-
date at current s and a, and a Value-Iteration type of update for other
(state, action) pairs chosen randomly or according to some priority rule.
Here, experience allows estimation of the model and the current policy. The
estimated model in turn allows the improvement of the policy. Each step
is more computationally expensive than in Q-Learning, but the convergence
occurs more rapidly in the number of trials.

The preceding approaches lack an important property in learning: the
capability to generalize. When reaching a state s that has not been met
before, an actor should be able to draw from its past experience with other
states “similar” in some sense to s. The extension of Q-learning to continuous
state and action spaces allows very naturally for such a property: when using
a metric space, it is reasonable to assume that nearby states, according to
the metric of the space, have close estimate values V (s) or Q(s, a), and
hence, can benefit from similar actions.

The parametric version of Q-learning implements such an approach. Here
S and A are represented as two vectors of continuous state and control
variables. Let θ = (θ1, . . . , θn) be a vector of parameters. We assume
that Q(s, a) can be approximated parametrically as a function Qθ(s, a)
parametrized by θ. An a priori class of functions is taken, for example,
linear functions of state and control variables. Learning amounts to esti-
mating the parameters θ of this model. Q-Learning is as described earlier,
except that the update (i) does not change values in a table but the pa-
rameters of Qθ(s, a). The process generally involves minimizing the mean
squared error of Q with respect to Q∗; the latter is estimated at each itera-
tion by the last observed update. The gradient algorithm gives the following
formulation:

θ ← θ + α[r(s, a) + max
a′
{Qθ(s′, a′)} −Qθ(s, a)]

∂Qθ(s, a)

∂θ
. (7.3)
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This expression replaces (i) in Q-learning for each parameter θi. A similar
formulation can be obtained for the estimate of Vθ in variant of Q-learning.

The parametric version of reinforcement learning has been more success-
ful than the discrete version. It has been used with success in robotics,
in demonstrations such as stabilizing an inverse pendulum, and in playing
darts and simple ball games [475].

One of the main problem of reinforcement learning (continuous or dis-
crete) is in the definition rewards. Indeed, the previous algorithms indicates,
rather improperly, “observe reward r(s, a).” Rewards are seldom observ-
able, even when the states are. One must provide the means to estimate
the rewards from what is observable. Sometimes a function r(s, a) is easy
to specify, for example, the deviation from equilibrium for a stabilization
task, or the deviation from the target for a tracking task. But often this is
difficult. For example, it is unclear what can be the rewards of primitive
actions in the tasks of driving a car, or cooking an elaborate recipe.

This difficulty leads to the inverse reinforcement learning problem [3].
It can be formulated as follows: given the optimal policy provided by a
teacher in a few demonstrations, what is the corresponding reward function
that generates this policy.

In the unrealistic ideal case of an explicit finite MDP where π∗(s) is
known everywhere, Q(s, a) is easily expressed as a function of the unknown
values of r(s, a); we want Q(s, a) to be maximal for a = π∗(s). This formu-
lation is under-specified: it has many solutions that are of not much interest.
It can be extended with an additional criterion, for example, maximize the
expression:

∑
s[Q(s, π∗(s))−maxa6=π∗(s)Q(s, a)], that is, the distance to the

next best action. The problem can be solved by linear programming.

The formulation makes sense in parametric approaches in which the
teacher’s demonstrations can be generalized. One defines rewards as a
parametrized function rθ(s, a) of state and control variables (for example,
a linear function) and seeks to estimate its parameters by requiring that it
meets the teacher’s actions in demonstrated states. This estimation prob-
lem is solved by a combination of quadratic programming (an additional
criterion is also needed) and dynamic programming.

As the reader has certainly noticed, inverse reinforcement learning is
akin to learning from demonstration, discussed next.
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7.3.2 Learning from Demonstrations, Advice and Partial
Programs

As underlined earlier, the definition of reward functions necessary to rein-
forcement learning is far from obvious. Moreover, it is rare to have a fully
observable Markov state space, as demanded in the MDP formulation. It
is possible to make a state space Markovian, but this requires significant
engineering and adds generally unobservable components. The complexity
of learning and planning techniques in partially observable MDP is pro-
hibitive. Moreover, the experimental complexity in number of trials is much
more expensive than the computational complexity. Reinforcement learning
requires a very large number of experiments to converge. Finally, it is com-
mon that the task to learn cannot be treated as a simple sequence of pairs
(state, action); it requires a plan or a control structure, such as repeating
subsequences of actions until a certain condition is reached. For these rea-
sons, learning from demonstration is a good alternative when the actor can
benefit from the demonstrations of a teacher.

In learning from demonstration, a teacher gives to the actor the appro-
priate actions in well-chosen settings. This allows the teacher to control
the learning process and gradually focus learning on the most difficult part
of the task. The learner generalizes from the teacher demonstrations and
learns the required behavior, for example, as a policy in simple cases, or as
a mapping from sensory states to elaborate plans in the general case.

Learning from demonstration involves an important issue related to the
form of the teacher’s demonstrations. These may range from specifications in
a formal representation or a programming language adapted to the learner,
to actual actions of the teacher in the environment using the teacher’s own
sensory-motor capabilities that the learner observes through its proper plat-
form.

Learning from specifications. The former case can be set in the MDP
framework. In passive imitation, for example, the teacher provides its
demonstrations as a set of sequences {σ1, . . . , σm}, each sequence σ =
〈s1, a1, s2, a2, . . .〉 encodes an actual demonstration of the teacher perform-
ing an instance of the task to learn. The learner synthesizes a policy on
the basis of these demonstrations and from additional interactions with the
environment with cost and/or reward feedback. In active imitation, the
learner is further able to query the teacher, when needed, about what to
do in some state s, that is, what is the desirable value of π(s). Each query
has a cost that needs to be taken into account in the overall learning pro-
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cess. In a variant, called advice taking, the learner can query which of two
sequences σi or σj the teacher recommends as the best. Here the learner
has to synthesize (that is, to plan) the most informative sequences for its
learning process, given the cost of queries. Research in these issues is active
(for example, [608, 303]), but so far has been applied mostly in academic
benchmarks such as those of the Reinforcement Learning Competition (for
example, balance a vertical pole or maintain equilibrium on a bicycle).6

The partial programming framework offers a quite powerful approach for
learning from specifications. The formulation is more general than the above
imitation approaches. It relies on Semi-Markov Decision Processes (SMDP,
see Section 6.8.4) and hierarchical nondeterministic finite-state machines.
The latter are specified by the teacher as partial programs, with the usual
programming constructs augmented with open choice steps, where the best
actions remain to be learned. These specifications constrain the class of
policies that can be learned using an extended SMDP Q-learning technique.
The partial programming framework can yield to a significant speed-up in
the number of experiments with respect to unguided reinforcement learning,
as demonstrated in benchmark problems (for example, the “taxi” domain
of [153] with navigation in a grid to mimic loading and unloading randomly
distributed passengers to their destinations). Few partial programming lan-
guages and systems have been proposed (for example, Alisp [21, 465] or
A2BL [542]) and demonstrated in simulations and video games. The frame-
work seems to be well adapted to the partial specification of acting methods,
where operational models are further acquired through learning.

Learning from the teacher’s own actions. When the demonstrations
take place as actual actions of the teacher in the environment, using the
teacher’s own sensory-motor capabilities, complex additional issues arise.
To learn, the actor must establish a double mapping:

• a sensory mapping to interpret the observed demonstrations of the
teacher, and

• an actuation mapping to transpose the demonstrated actions to its
own capabilities.

This double mapping is difficult. It often limits learning from demonstration
and requires the teacher to use some pedagogy, that is, to understand at a
low level how the learner might be able to follow the teacher demonstrations
and to map them into its capabilities. Imagine, for example, teaching a

6http://rlcompetition.org
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robot how to open various types of doors, or how to cook an elaborate
recipe. Teaching would be more successful if the demonstrations are limited
to elementary grasping and manipulation actions close to those feasible by
the robot (and avoid actions such as tasting that the robot cannot perform).

Most of the work on learning from a teacher’s actions has tried to avoid
the issues of understanding and transposing the demonstrations. For exam-
ple in robotics, quite often the demonstrations take place, through various
means, in the robot’s sensory-motor space. This form of learning through
teleoperation, where the teacher acts directly in the actuators and propri-
oceptive sensor spaces of the robot, is quite successful (see [537, 475] and
the survey of [24]), including for quite complex tasks such as helicopter
acrobatics [2, 125].

A more ambitious approach would take into account at a higher level
the need to understand and transpose the teacher’s demonstrations. Learn-
ing should aim at acquiring a mapping from particular sensory states
to plans. These can be obtained by plan recognition methods (for
example,[218, 499, 505]). The learner than develops its own plans, taking
into account its specific capabilities, to achieve the effects of the teacher’s
demonstrations. Developments along similar approaches are being investi-
gated (for example, [455, 518]). They cover potentially a more general class
of behaviors that can be demonstrated by the teacher and acquired by the
learner (for example, iterative actions). They also allow for extended gen-
eralization because they foster acquisition of basic principles and rely on
the learner’s planning capabilities. They are finally more natural and easier
for the teacher, because the teacher’s actions are interpreted in terms of
their intended effects on the environment rather than in a sequence of their
low-level commands.

7.3.3 Acquiring Descriptive Models and Heuristics

The acquisition of descriptive models of actions has naturally been addressed
as a knowledge engineering issue. A few early planners developed into rich
environments supporting the designer or the end-user for producing and
maintaining complex plans. Good examples of these environments are O-
Plan2 [562] and SIPE-2 [602, 603]. There is today an active community
that organizes regular workshops, called Knowledge Engineering for Plan-
ning and Scheduling (KEPS), and a competition (ICKEPS). It has devel-
oped knowledge engineering methods and tools supporting, for example, the
specification of requirements (e.g., with UML-type approaches); the model-
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ing and reuse of planning knowledge; the analysis, graphic representation,
and verification of a domain; or the metrics analysis and interactive mod-
ification of synthesized plans. Two recent surveys of the field [574, 529]
list about a dozen software environments for knowledge engineering in plan-
ning. Many of these environments are devoted to classical planning, relying
on the PDDL language and its extensions (for example, itSIMPLE [573] or
VIZ [590]). A few tools have been proposed for planning with HTN ap-
proaches (for example, GIPO [543] or JABBAH [243]) or timeline-oriented
approaches (for example, EUROPA [37] or KEEN [54]). Knowledge engi-
neering for nondeterministic or probabilistic models, or for the integration
of operational models and acting methods remains to be developed.

Many machine learning techniques have been proposed in planning. The
surveys of [628, 300] analyze a wide spectrum of approaches ranging from
decision trees, inductive logic, and explanation-based learning, to classifica-
tion methods, Bayesien learning, and neural nets. These techniques have
been used to learn domain-specific heuristics [618, 614, 159], control knowl-
edge and macro actions [452, 126, 116]. For example, the approach of de la
Rosa and McIlraith [140] relies on inductive logic programming techniques
to learn from training examples useful state variables and domain specific
control rules in Linear Temporal Logic to guide a forward search state-space
planner such as TLPlan [28]. Learning techniques have also been used to
improve the quality of plans with respect to cost, success rate [398, 558],
or user’s preferences [17]. Learning planning operators and domain models
from plan examples and solution traces has been addressed with logic-based
techniques, for example, in classical planning [617, 594, 627] and HTN plan-
ning [626, 283]. Learning probabilistic planning operators with techniques
complementary to those of Section 7.3.1 has also been investigated, for ex-
ample, in [462, 466].

7.4 Hybrid Models

In Section 1.2.3, we mentioned the need to consider discontinuities in the
interaction of an actor with the environment (for example, the different
phases in a grasp action), as well the need for modeling continuous evolutions
within each phase (for example, the motion of a robot arm while turning
a door handle). Discontinuous transitions between different phases can be
modeled using discrete state variables, while continuous evolutions within
each phase can be modeled with continuous variables. Models with both
discrete and continuous variables are called hybrid models.
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Consider, for instance, a bouncing ball, teh dynamics of which can be
modeled with two phases, falling down and jumping up, with a clear dis-
continuity in the speed of the ball. A walking robot is another example; its
movement at each half step is a continuous evolution. A thermostat can be
modeled with a simple hybrid model, which evolves between a heating and a
cooling phase, and controls the continuous increasing/decreasing tempera-
ture of the environment. Similarly, an airplane controller can switch among
different phases with different continuous behaviors (e.g., taxiing, taking
off, landing, and cruising) and their required controls. In each phase, its dy-
namic can be represented with the continuous laws of flight dynamics. Most
complex systems, like intelligent cruise control in cars or aircraft autopilot
systems can be properly modeled with hybrid models too.

In hybrid models, discrete state variables describe how a system switches
from one phase to another, while continuous state variables describe the
system dynamics within a given discrete phase. Discrete state variable evo-
lutions can be modeled, for example, by finite state automata, while con-
tinuous variable evolutions can be modeled by differential equations. The
switching between discrete phases is usually determined by some conditions
on the value of continuous variables in the current phase.

In the rest of this section, we first provide a brief introduction to hybrid
automata, that is, a way to formalize hybrid models (Section 7.4.1); we
then introduce hybrid automata with inputs and outputs (Section 7.4.2),
a representation that provides the ability to do planning and acting with
hybrid models. We then review some current techniques for planning and
acting with hybrid models: planning as model checking (Section 7.4.3) and
flow tubes (Section 7.4.4). We conclude the section with a note about how
planning and acting with hybrid models can be approximated by discretizing
continuous variables (Section 7.4.5).

7.4.1 Hybrid Automata

In this section, we provide a brief introduction to hybrid automata, a kind
of formal models for hybrid systems. A hybrid automaton is a formal model
with both discrete and continuous variables. The definition that follows is
partly taken and adapted from [274].

Definition 7.2. (Hybrid Automaton) A hybrid automaton is a tuple
H = (X,G, Init, Inv, F low, Jump), where

• X = {x1, . . . , xn} is a finite set of continuous variables w.r.t. time,
ranging over real values (each xi ∈ R). Ẋ is the set {ẋ1, . . . , ẋn}
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where ẋi stands for the first derivative of xi w.r.t. time.

• G is a finite directed graph (V,E), called the Control Graph. Each
vi ∈ V is called a Control Mode, each eij = (vi, vj) ∈ E is called a
Control Switch.

• Init(vi) ⊆ Rn is a set of initial values of X for each control mode
vi ∈ V . It is a condition over the variables in X.

• Inv(vi) ⊆ Rn is an invariant for each control mode vi ∈ V . It is a
condition over the variables in X.

• Flow(vi) represents the continuous change of variables in X for each
control mode vi ∈ V . It is a condition over the variables in X and Ẋ.

• Jump(eij) represents the guard that triggers a control switch eij =
(vi, vj). It is a condition over X; when it is satisfied, it switches the
control from mode vi to mode vj

A control automatonH has a finite set of control modes V and can switch
from one control mode to another one according to the control switches in E.
The control graph G = (V,E) is the discrete component of the control au-
tomaton H. In each control mode vi, continuous change is modeled through
the evolution of continuous variables in X. The invariant Inv(vi) states a
condition over variables in X that is satisfied whenever H is in control mode
vi. Flow(vi) describes how continuous variables change while H is in control
mode vi. Jump(eij = (vi, vj)) is a condition over the continuous variables
that determines when the control mode should switch from vi to vj .

7

off

Ṫ = -0.1T
T   18

T < 19 

T > 21 

on

Ṫ = 5 -0.1T
T    22

Figure 7.1: Hybrid automaton for a thermostat.

Example 7.3. A thermostat can be modeled with the hybrid automaton
in Figure 7.1. It has a single variable T representing the temperature: X =
{T}. The thermostat can be in two control modes, heater on or heater off.

7This interpretation of a guard is different from usual interpretations in planning [77].
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G = {V,E}, where V = {on, off}, E = {(on, off), (off, on)}. We suppose that
initially the heater is off and the temperature is 20 Celsius: Init(off) , T =
20. The heater remains off if the temperature is above 18 degrees Celsius:
Inv(off) , T ≥ 18. When the heater is off, the temperature falls according
to the flow condition Flow(off) , Ṫ = −0.1T . The heater may turn on as
soon as the temperature falls below 19 degrees: Jump((off, on)) , T < 19.
Because Inv(off) , T ≥ 18, at the latest the heater will go on when the
temperature falls to 18 degrees. When the heater is on, the temperature
rises according to Flow(on) , Ṫ = 5 − 0.1T . The heater continues to heat
while the temperature is below 22 degrees Celsius: Inv(on) , T ≤ 22. It
turns off when the temperature is higher than 21 degrees: Jump((on, off)) ,
T > 21.

The intended meaning of the Jump condition is that the switch takes
place nondeterministically for any value that satisfies the control switch
condition Jump. For instance, suppose that the variable x changes value
in a control mode vi by starting from a negative value and by increasing
monotonically, and suppose that the control switch Jump((vi, vj)) is x ≥ 0.
The switch can happen when x has any positive value, and not necessarily
when x = 0. However, we should notice that the actual condition for the
switch is determined both by the control switch condition Jump((vi, vj))
and by the inviariant condition Inv(vi). For instance, if Inv(vi) is x ≤ 1,
then the switch will take place nondeterministically when x satisfies the
condition 0 ≤ x < 1, that is, at the latest when x rises to value 1. We
can easily impose a deterministic switch, for instance, in our example, with
Jump((vi, vj)) = 0, or with Jump((vi, vj)) ≥ 0 and Inv(vi) < 0.

Example 7.4. In this example, we consider an automatic battery charging
station that has to charge two plants, depending on whether the level of the
battery of each plant gets below two threshold values, l1 and l2 for the two
plants p1 and p2, respectively. We suppose that the charging system charges
at a constant rate e, for only one plant at a time; it can switch from one to
the other instantaneously. We suppose that plant p1 and p2 consume energy
with rate e1 and e2, respectively. The objective of the charging station is to
keep the charge of each plant above the threshold values. The corresponding
hybrid automaton is depicted in Figure 7.2.

The level of the each plant battery charges is described by two continuous
variables: X = {c1, c2}, for each plant p1 and p2, respectively. The charging
station can be on two control modes, charging one plant or the other. G =
{V,E}, where V = {p1, p2}, E = {(p1, p2), (p2, p1)}. We suppose that
initially the station is charging plant p1, and both plants have charges above
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p1
ċ1 = e - e1

ċ2 = - e2

c2   l2

c2    l2

c1    l1

p2
ċ2 = e – e2

ċ1 = - e1

c1   l1

Figure 7.2: A charging station for two plants.

their threshold: Init(p1) , c1 ≥ l1 and c2 ≥ l2 . While charging one of
the two plants, the charge of the other one should be above the threshold:
Inv(p1) , c2 ≥ l2 and Inv(p2) , c1 ≥ l1. While a plant is charged at rate
e, its charge level increases linearly by e, but we have to take into account
that it also consumes energy at its rate (the plant is supposed to work while
it is charged). We also have to take into account that the other plant is
consuming energy at its own rate: Flow(p1) , ċ1 = e − e1 and ċ2 = −e2,
while Flow(p2) , ċ2 = e− e2 and ċ1 = −e1. The station switches from one
mode to another when the opposite battery gets below its own threshold:
Jump((p1, p2)) , c2 ≤ l2 and Jump((p2, p1)) , c1 ≤ l1.

The behaviour of the systems described in this section can be formalized
as hybrid automata. As intuitively described in the previous examples, such
behavior results in continuous change (flows) and discrete change (jumps).
Hybrid automata are specifically suited for the verification of hybrid mod-
els. Different verification tasks have been studied, such as the reachability
problem, that is, whether a set of states can be reached from an initial set of
states, a basic task for the verification of safety and liveness requirements.
In general, these verification tasks are undecidable. See [274] for a formal
account including complexity results about the verification of properties of
hybrid automata.

7.4.2 Input/Output Hybrid Automata

To show how an actor can do planning and acting with hybrid models, we
introduce input/output (I/O) hybrid automata, that is, hybrid automata
where discrete and continuous variables are distinguished into input and
output variables, and input variables are distinguished into controllable and
uncontrollable variables.

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


Section 7.4 379

To define I/O hybrid automata, let us first notice that the discrete com-
ponent of an hybrid automaton can be described with discrete state vari-
ables. The set of control modes V (see Definition 7.2) can be represented
with a set of discrete variables Y = {y1, . . . , ym} ranging over discrete values.
Each complete assignment to variables y1, . . . , ym corresponds to a control
mode vi ∈ V . This is similar to a state variable representation of a set of
states in Section 2.1.2.

Given the two sets X and Y of continuous and discrete variables, the
definition of an I/O hybrid automaton extends Definition 7.2 by distin-
guishing (discrete and continuous) input variables from output variables:
X = Xin∪Xout and Y = Yin∪Yout, where Xin∩Xout = ∅ and Yin∩Yout = ∅.

Moreover, discrete and continuous input variables are distinguished into
controllable and uncontrollable variables: Xin = Xc

in ∪Xu
in and Yin = Y c

in ∪
Y u
in, where Xc

in ∩Xu
in = ∅ and Y c

in ∩ Y u
in = ∅.

The idea is that a component of an actor can interact with a system mod-
eled as an I/O hybrid automaton by determining the discrete/continuous
controllable input variables of the system. The actor can perceive its sta-
tus through the discrete/continuous output variables of the system. An
actor can therefore assign values to the controllable inputs, whereas this is
not possible for uncontrollable variables, the value of which is determined
by the environment. Uncontrollable variables obey to dynamics that can-
not typically be modeled. They can represent external forces, the result of
exogenous events, actions of other agents, or noise in sensing the external
environment.

In a conceptual model of an actor (see Figure 1.1), commands change
the values of discrete and continuous controllable input variables, while per-
cepts affect discrete and continuous output variables. The model can evolve
through changes in both controllable and uncontrollable variables. The ac-
tor can be seen as a reactive systems that iteratively perceives the output
variables in Xout and Yout and reacts by determining the value of controllable
input variables in Xc

in and Y c
in.

An actor can plan for and perform actions that change the control mode
of the hybrid automaton by assigning values to (some of) the variables in Y c

in

and in Xc
in. We might represent actions that change the values of discrete

variables in Y c
in with purely discrete models, like those presented in previous

chapters. For instance, planning to determine the control mode of the hybrid
system could be done with a planning domain Σ = (S,A, γ), where states in
S correspond to control modes in V represented with discrete variables in
Y , and γ can be the transition function of deterministic models (Chapter 2),
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nondeterministic models (Chapter 5), or probabilistic models (Chapter 6).8

However, the actor must take into account that the model allows for con-
tinuous variables X, like in the acting part of the hierarchical representation
of Chapter 3. The actor needs also to determine which are the continuous
variables in input to the system modeled with an hybrid automaton, i.e, the
variables in Xc

in. Moreover, the actor has to deal with (discrete and con-
tinuous) uncontrollable variables, which may determine an uncontrollable
switch of the control mode, that is, Y u and Xu. The effects of uncontrol-
lable discrete variables in Y u can be modeled with nondeterministic domain
models as in Chapter 5.

For all the reasons mentioned so far, planning and acting with hybrid
models is much more complex than with purely discrete models.9

Example 7.5. Consider Example 7.4. The two control modes p1 and p2
can be represented by a discrete controllable input variable: Y c

in = {p}, that
can range over two values p1 and p2. Let us now modify the example: the
charging station, rather than charging the plants at a constant rate e, can
choose to charge plants at different rates between zero and a maximum rate
emax. This can be modeled with a continuous controllable input variable
x whose value is in R and in the interval (0, emax]: Ẋc

in = {e}. Moreover,
the two plants consume energy at a rate that depends on the load of tasks
that they have to perform, and this load is not under the actor’s control:
we have therefore two continuous uncontrollable input variables e1 and e2:
Xu
in = {e1, e2}. Finally, the current charge of the two plants can be perceived

by the actor: Xout = {c1, c2}. The goal is to keep the charge of each plant
above the two threshold values l1 for plant p1 and l2 for plant p2.

Let us now briefly introduce some techniques for planning and acting
with hybrid models.

7.4.3 Planning as Model Checking

The idea is to use existing model checkers for hybrid automata (see, for
example, [274]) to do planning with hybrid models in the case of reach-
ability goals. A goal in a hybrid model is defined as a condition on the
continuous variables in X and as a subset of the set of control modes V (see
Definition 7.2).

8If not all the variables in Y are observable in all situations, then we may need tech-
niques that deal with partial observability; see Chapter 5.

9Even model checking is in general undecidable with hybrid models.
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In hybrid model checking it is possible to represent a hybrid planning
domain by encoding actions that have effects over discrete and continuous
variables. For instance, we can have an additional state variable that repre-
sents the action that is performed (see, for example, [78]). Given a goal, we
can define its complement, that is, the set of control modes that are not in
the set of control modes of the goal and the negation of the goal conditions
on the continuous state variables in X. We can then search exhaustively
(by model checking) whether the complement of the goal is satisfied. This
amounts to verifying what in model checking literature is called a safety
property, that is, verifying whether the complement of the goal is always
satisfied. A safety property can be expressed in temporal logic, for example,
LTL or CTL, extended with conditions over continuous variables, see [274].
If the property is satisfied, then no plan that satisfies the original hybrid
planning problem exists. If the property is not satisfied, it means that there
is a plan. In this latter case, model checkers return an error trace, called
a counter example, which in our case is a solution plan that reaches our
original goal.

This approach reduces the planning problem to a verification problem.
Two problems must, however, be taken into account. First, in general,
reachability is not decidable with hybrid automata. Indeed, the number of
possible values of continuous variables can be infinite, and the condition
over continuous variables and their derivatives can be of any kind. There
are classes of hybrid automata that are decidable. One of them is rectan-
gular hybrid automata [274]. A hybrid automaton is rectangular if the flow
conditions are independent of the control modes and the variables are pair-
wise independent.10 In each control mode of a rectangular automaton, the
first derivative of each variable is given a range of possible values, and that
range does not change with control switches. With each control switch of a
rectangular automaton, the value of each variable is either left unchanged,
or changed nondeterministically to a new value within a given range of pos-
sibilities. The behaviors of the variables are decoupled because the ranges
of possible values and derivative values for one variable cannot depend on
the value or derivative value of another variable.

The second problem we have to take into account is the following. If we
have nondeterminism in the switch mode, then the solution is not guaranteed
to be a safe (cyclic or acyclic) solution, according to Definition 5.8. If we
assume that all discrete and continuous transitions are deterministic, then
the problem reduces to find a sequential plan.

10This is a rather strong requirement.
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One example along this direction is the work in [78, 77], whose idea is
to start from a language for describing planning domains with both discrete
and continuous variables, to give semantics in terms of hybrid automata
and then apply existing model checkers to find a solution. [78, 77] start
from the PDDL+ planning language [205]. PDDL+ allows for the definition
of models with discrete and continuous variables. Continuous dynamics is
modeled through processes and exogenous events, which model dynamics
that are initiated by the environment.

In PDDL+, the discrete component of an hybrid system is described
by a set of propositions, while the continuous component is modeled with
a vector of real variables. Discrete transitions are described through pre-
conditions and effects. Preconditions are conjunctions of propositions and
numeric constraints over the continuous variables. Events are represented
with preconditions that, when fired, trigger the event. Processes are active
as long as their preconditions are true and describe the continuous change
of continuous variables. PDDL+ allows for durative actions that have pre-
conditions and effects as conjunctions on propositional variables as well as
constraints on continuous variable; they have preconditions that should hold
when the action starts, during its execution, and at the end of the action.

PDDL+ planning domains have therefore some similarities with hybrid
automata. [78, 77] exploit the close relationship of the PDDL+ semantics
with hybrid automata. They provide a semantics of PDDL+ in terms of
hybrid automata, even if PDDL+ assumptions raise some semantic issues.
Among them, the PDDL+ “ε-separation assumption” states that no two
actions are allowed to simultaneously occur if they update common variables
(mutex actions). Plans have to meet the ε-separation condition, that is,
interfering actions must be separated by at least a time interval of length ε.
Indeed this problem is related to the PDDL2.1 model of temporal problems
[204], whose model of durative actions does not allow for concurrency unless
ε-separation is assumed.

A further difference between PDDL+ and hybrid automata is the se-
mantics of events. A number of assumptions is made about events and pro-
cesses, but the most relevant difference with hybrid automata is that events
and processes start as soon as their preconditions become satisfied, while
in hybrid automata transitions might happen at any time when the Jump
condition is satisfied and the invariants are not satisfied (see Section 7.4.1).

In [78], a first translation from PDDL+ to hybrid automata is defined
which does not take into account the different semantics of events. Because
transitions are allowed to happen at any time when a condition is satisfied,
then the model checker may not find a plan in the case in which a plan does
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exist with the restricted PDDL+ semantics, that is, with events that are
triggered as soon as preconditions are true. For this reason, the approach is
not complete, that is, it may not find a plan when a plan does exist. Such
approach can instead be used to prove the non existence of a plan. The
approach is complete when there are no events.

In [77], the authors propose an exact translation of PDDL+ into hybrid
automata that mimics the semantics of PDDL+ events. The translation
guarantees that traces in the obtained hybrid automata correspond to se-
quential plans in the original planning domain in the case of linear hybrid
automata and can handle hybrid automata with affine dynamics with an
over-approximation that can be made arbitrarily precise.

7.4.4 Flow Tubes

Flow tubes represent a set of trajectories of continuous variables with com-
mon characteristics that connect two regions. The underlying idea is that a
flow tube is a bounding envelope of different possible evolutions of one or a
few continuous variable that obey some constraints. Flow tubes can repre-
sent the preconditions and the effects of actions over continuous variables.
They can be used to do planning with hybrid models. Let us illustrate the
intuitive idea of flow tubes with a simple example.

t

x

x(t1)min

x(t1)max

x(t2)min

x(t2)max

t1 t2

Figure 7.3: A linear flow tube.

Example 7.6. Figure 7.3 shows a simple flow tube for a continuous variable
x that evolves over time t. The intended meaning of the flow tube is that
if the value of variable x is in [x(t1)min, x(t1)max] at time t1, then it is
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predicted that the value of x at time t2 will be in [x(t2)min, x(t2)max], and
that x between these two time points will remain in the drawn trapezium.

The interval of initial possible values [x(t1)min, x(t1)max] of x is called the
initial region, and interval [x(t2)min, x(t2)max] is the final region. The flow
tube depicted in Figure 7.3 connects the initial region [x(t1)min, x(t1)max]
to the final region [x(t2)min, x(t2)max].

The idea is that an action a can modify the continuous variable x ac-
cording to the law described by the flow tube. We can express preconditions
of action a with regions of continuous variables (interval of values of x in
our example) where the action is applicable, and postconditions with the
resulting final region in a given duration (for example, after the interval
t2 − t1 in our example).

Figure 7.3 shows a simple linear flow tube that can be represented with
a linear equation in the variables x and ẋ, assuming that ẋ is constant.

x(t2)min = x(t1)min + ẋ(t2 − t1)
x(t2)max = x(t1)max + ẋ(t2 − t1)

Conditions Init, Inv, and Flow of hybrid automata (Definition 7.2) could
be used to represent flow tubes. For instance, let us suppose that in a node
vi variable x can evolve as described by the flow tube in Figure 7.3. We
have that Init(vi) is a condition that contraints the values of x between
x(t1)min and x(t1)max; Flow(vi) and Inv(vi) should represent the bundle
of lines from any x with value between x(t1)min and x(t1)max to a point
between x(t2)min and x(t2)max. Flow(vi) and Inv(vi) should constrain the
bundle to remain in the flow tube envelop.

Flow tubes can be more complex than the one shown in Figure 7.3, like
that in the next example.

Example 7.7. Figure 7.4 shows a flow tube of two variables x1 and x2,
which evolve over time t. The intended meaning of the flow tube is that if
the value of variables x1 and x2 at time t1 is in ellipse e1, then it is predicted
that the value of x1 and x2 at time t2 will be in ellipse e2, and that x1 and
x2 between these two time points will remain in the drawn envelope.

The most notable example of planning with hybrid models based on flow
tube is the work in [381]. The idea is based on the notion of a hybrid planning
graph: a planning graph [74] is used to represent the effects of actions over
discrete variables, while flow tubes are used to represent the effects over
continuous variables. Hybrid planning graphs are encoded as an extension
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t

x1

x2

e1
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Figure 7.4: A flow tube.

of mixed integer programming (linear/nonlinear), which represents discrete
elements with logic prositions.

The planning domain is described through a set of hybrid actions, each
of which has preconditions, effects, continuous evolution dynamics, and a
duration. Preconditions can be continuous or discrete. A continuous pre-
condition is a conjunction of (in)equalities over state variables, and a discrete
precondition is a conjunction of propositions. Effects are both discrete facts,
represented by a conjunction of propositions, and the continuous effect of
the action.

Initial 
region of 
feasible 
states

Region corresponding to 
continuous precondition 
of A

Initial region of 
flow-tube 

A

States reachable after A

Region corresponding to 
continuous precondition 
of B

B

Figure 7.5: Planning with flow tubes.

Conceptually, the difference with respect to planning in discrete state
transition system is that instead of looking for a path in a graph, planning
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searches for a path through connected flow tubes (see Figure 7.5). Flow
tubes are connected by finding an intersection between the final region of
a flow tube (the effects of an actions over continuous variables) and the
preconditions of a subsequent action (represented as well as a region of
the flow tube). Connection conditions guarantee that all valid plans are
included in the graph. However, the condition is not sound, meaning that
not all plans in the graph are valid. A further step encodes the hybrid flow
graph as a mixed integer program, which makes sure that the output plan
is valid and optimal.

In the case of complex flow tubes that cannot be represented with lin-
ear equations, various approximation methods can be used. Hofmann and
Williams [282] use a polyhedral approximation, which approximates the
tubes as slices of polyhedra for each time step. Kurzhanskiy and Varaiya
[360] use an ellipsoidal calculus for approximation that has proven highly
efficient. The work of Li and Williams [381] makes use of and extends plan-
ning graphs with flow tubes. However, we believe the work is especially
interesting because the ideas underlying flow tubes could be used in general
with any state-space planner.

7.4.5 Discretization Techniques

Discretization techniques discretize the continuous variables of the hybrid
model, and apply techniques suited to discrete models, like those described
in the rest of this book. However, finding a suitable discretization is an
important and critical issue: it can affect the plan generation speed, the
precision of the solution and, sometimes even more critical, its correctness;
that is, a plan that achieves a goal in the discretized model may not achieve
a goal in the corresponding hybrid model.

A discretized problem is an approximation of the original problem, and it
can of course induce errors. When continuous variables are discretized, while
the system evolves, their real value can be different from what is foreseen.
It is possible to prove that, given an error threshold, there always exists a
discretization that allows to generate solution plans, which when mapped to
the original hybrid model, have an approximation error below that thresh-
old. It is possible to use a fixed discretization or to generate approximate
solutions and then to perform a validation step to understand whether the
approximate solution is acceptable and, in case it is not, to reiterate the pro-
cess by refining the discretization. This process is similar to the guaranteed
approximation procedure GAP for Value Iteration (Algorithm 6.6).

Löhr et al. [391] adopt a discretization approach. A temporal numeric
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planning task is defined with a set of state variables, which is partitioned
into discrete and continuous state variables. The initial state is given by an
assignment over all variables and the set of goal states is defined by a partial
state assignment. Durative actions are represented with preconditions and
effects over both continuous and discrete state variables. Preconditions and
effects of durative actions specify conditions before, during, and after the
action duration. An action is represented with a triple (C,E, δ), where C is
a condition, E are the effects, and δ is the duration of a. A condition C is
a triple of partial variable assignments over discrete variables, representing
the start conditions before the action, the persistent conditions during the
action, and the end conditions after action. E is a tuple with start effects
and end effects, δ represents the duration of the action. The start and the
end effects are finite sets of conditional effects (c, e). The effects condition
c is again a triple of start, persistent, and end conditions, and e is an effect
that assigns a value to a continuous variable. This approach handles time
with the durative action model of PDDL2.1 [205] (see the discussion in
Section 4.6).

For solving the generated planning tasks, the approach described in [391]
makes use of the Temporal Fast Downward planner (TFD) [186]. While in
[391] the assumption is that the estimated state is the actual state, [392] ex-
tends the approach to uncertain state information thus providing the ability
to deal with noisy sensors and imperfect actuators.

The work of Della Penna et al. [149] proposes an iterative discretization
approach based on explicit-state model checking techniques for the gener-
ation of universal plans. The idea is to start with a coarse discretization,
and refine the discretization until the discretized solution is valid against
the hybrid model according to a desired error threshold. The planner, UP-
Murphy, asks the user for the definition of a discretization granularity. It
then creates the discretized model and performs a breadth-first reachability
analysis. The idea is to use a model checker to perform an exhaustive search
for a sequence of states leading to a goal state and collect all the sequences
instead of the first one. This approach allows UPMurphy to generate uni-
versal plans. To apply explicit model checking on a finite number of states,
UPMurphy fixes a finite temporal horizon that requires each plan to reach
the goal in at most a given number of actions.

The approach can lead to a state explosion in the case a coarse discretiza-
tion is required.
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7.5 Ontologies for Planning and Acting

Research in automated planning and research in ontologies and related se-
mantic representations have been pursued along distinct and separated re-
search agenda. Despite this, there are several important intersection, and
connections among them.

Ontologies can be used to describe the elements of a planning domain,
that is, relations among objects of a planning domain, but also relations
among actions, tasks, plans, and goals. Description Logic (DL) is a well
studied family of approaches devised for such reasoning.

In the rest of this section, we first provide a brief and informal introduc-
tion to ontologies and DL (Section 7.5.1). We then discuss their relations
and possible usage for planning and acting (Section 7.5.2). We finally con-
clude with a discussion on the need for research in semantic mapping in
hierarchical representations for planning and acting (Section 7.5.4).

7.5.1 Ontologies and Description Logic

An ontology is informally defined as “an explicit specification of a conceptu-
alization” [247], where a “conceptualization” is a definition of concepts, their
relationships and properties. This definition is used as an abstract model of
some aspects of the world. Concepts are typically classes, individuals (that
is, members of a class), attributes (for example, properties of classes and
members of classes), and relationships (for example, relations among class
members). The definitions of concepts provide a semantics description, that
is, information about their meaning, including constraints they must obey.
Ontologies are an “explicit specification” in the sense that the model should
be specified in some formal unambiguous language, making it processable
in an automated way by a computer. An ontology consists of:

• A set C of concepts (or class) and a set R of binary relations.

• A hierarchy H in which concepts and relations are hierarchically re-
lated by a subsumption relation v (a partial ordering): if c1 and c2
are concepts, then c1 v c2 means that c1 is a subclass of c2. Similarly
for relations: r1 v r2 means that relation r1 is a subclass of relation
r2. Members of a subclass inherit the properties of their parent class.

• A set A of ontology axioms that describe and provide constraints over
concepts and relations.

For instance, in Example 2.3, we have robots that are subclasses of
vehicles, containers that are subclasses of objects that can be transported,
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and so on.
Description Logic (DL) [27] is a family of formal knowledge represen-

tation languages suited for representing ontologies and for reasoning about
them. The DL family languages differ in expressivity and computational
complexity of the reasoning algorithms for each language. In general, a
DL language can express definitions of classes and relations (see also [232]
for a brief introduction to DL). Class definitions can include disjunction
and negation as well as constraints on the relations to other classes. A
relation between a class (its domain) and another class (its range) can be
constrained in cardinality and type. A class can be defined as a subclass of
another class. Similarly, relations can also be given definitions and there-
fore have subclasses as well. Class partitions can be defined by specifying a
set of subclasses that represent the partitions and can be exhaustive if all
instances of the class belong to some partition and disjoint if there is no
overlap in the subclasses. A class can be denoted as a primitive class and
not given a definition, and in that case, their subclasses and instances must
be explicitly indicated.

Description logic reasoning systems use these definitions to automati-
cally organize class descriptions in a taxonomic hierarchy and automatically
classify instances into classes whose definitions are satisfied by the features
of the instance. Specifically, description logic reasoners provide the following
main mechanisms:

• class subsumption, where a class c1 subsumes another class c2 if its
definition includes a superset of the instances included in c2;

• instance recognition, where an instance belongs to a class if the in-
stances features (roles and role values) satisfy the definition of the
class;

• consistency checking, that is, mechanisms to detect inconsistent defi-
nitions; and

• inheritance inference, that is, the automated inheritances of properties
by members of subclasses.

7.5.2 Ontologies and Planning

A first obvious use of ontologies for planning is for the description of objects
in the planning domain. A planning domain model describes how actions
change the state of the world, and this is done through state variables that
change values. Each state variable represents a specific object of the domain
and has an intended semantics. In the examples of this book, we refer to
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objects such as robots, rooms, doors, containers, and cars. A representation
of a planning domain should take into account relations (for example, hi-
erarchical relations) among different classes of objects, and their instances.
For instance, it is clear in Example 3.4 that sliding door, pushing door, and
pulling door are subclasses of the door class. This use of ontologies is a
way to represent rigid relations (see Section 2.1.2). Ontologies can represent
such relations among (classes of) objects of the domain, on which reasoning
(for example, with DL) can be an important component for solving planning
problems.

Reasoning can be performed using ontologies that describe the objects
of the planning domain, but also ontologies about actions, tasks, plans, and
goals. For instance, DL subsumption mechanism can be used to automati-
cally infer class-subclass subsumption relations as well as classify instances
into classes based on their definitions. DL descriptions of domain objects,
actions, plans, and goals, as well as DL reasoning capabilities can be ex-
ploited during plan generation, plan recognition, or plan evaluation. As
clearly described in the survey paper by Gil [232], some of the reasoning
capabilities of DL have been investigated within the Knowledge Representa-
tion and Reasoning community, but they have not been incorporated within
state of the art planning algorithms. In [232], four main uses of description
logic are advocated, namely ontologies about:

• objects, to reason about different types objects in the domain;

• actions, to reason about action types at different levels of abstraction;

• plans, to reason about plan subsumption; and

• goals, to reason about relations among different goals.

7.5.3 Planning and Acting Based on Description Logic

There has actually been work using ontologies and DL in planning, starting
from [137], which exploits the correspondence between dynamic logic and
description logic to represent actions, including sensing actions. Moreover,
planning and ontologies have been used in several approaches to composi-
tion of semantic Web services, most of them based on the Web Ontology
Language (OWL), and OWL-S (OWL for Services), which is a language for
implementing the DL formalism (see, for example, [544, 365, 417, 554]). The
basic idea of all these approaches is to use planning over domains that are
described with ontology-based languages. A different approach is proposed
in [483], where the idea is instead to keep separate and to use different
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formalisms for the description of actions and the ontological descriptions of
objects, and to link them through semantic annotations. This approach pro-
vides the ability to exploit simple reasoning mechanisms at the ontological
level, integrated with effective reasoning mechanisms for planning for Web
services.

DL and other knowledge representation techniques have also been inte-
grated with planning techniques and applied to the field of robotics (see, for
example, [138]), including the work based in GOLOG [379, 377]. A recent
approach along this line is proposed by Hartanto and Hertzberg [257], where
the planning domain as well as HTN planning concepts are represented in
DL. Resoning in DL is then used to generate concise versions of each indi-
vidual planning problem for the HTN planner, where irrelevant aspects are
filtered away. On the basis of this idea, the work in [26] deals in some way
with the problem of planning and acting by adapting plans to changes in the
environment. This work is a preliminary proposal toward the objective to
build actors that can recover from failures both during planning and execu-
tion by finding alternative objects to be used in their plans to achieve their
goals and by taking advantage of opportunities that can arise at run-time.
This is done by using the concept of “functional affordance,” which describes
in DL what an object is used for. The notion of “conceptual space” is used
to measure the similarity among different objects that, through the descrip-
tion of their affordances, can be used in place of unavailable objects during
both planning and acting. For instance, in case a plan fails because of a
missing object, the actor can reason (possibly at run-time) about possible
substitutes and thus recover from failure. State variable types are modeled
as classes in an ontology, and OWL-based reasoning mechanisms can be
used to infer affordance properties on the hierarchical classes of objects. For
instance, in our Example 3.4, the class “sliding door” would inherit every
affordance property by the superclass “door,” for example, the property that
it is used for moving from one room to another one. In [26], the authors also
propose learning new functional affordances of objects through experience.

The Open Robot Ontology (ORO) system of Lemaignan et al. [376] had
a broader motivation than improving the performance of a planner; it aimed
at extending the robot’s knowledge base. ORO is built with the same OWL
representation and reasoner as the previous systems. It offers queries and
updates of a knowledge base about the environment.

The RoboEarth and KnowRob projects [592, 569] aim at allowing actors
having different platforms to share and reuse knowledge over the network
for the purpose of performing new tasks. An OWL open source library
stores shared models of objects, environments (for example, maps and object
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locations), and descriptive models of actions together with their relations
and properties in a general ontology. Each actor is able to query and update
this database and adapt its models.

7.5.4 Semantic Mapping for Hierarchical Representations

Ontology reasoning, and in general reasoning about the semantics of different
objects, actions, tasks, and goals, is an important topic of research for plan-
ning and acting. In the hierarchical representation described in Chapter 3,
intuitively, tasks are refined from one level to a lower, more detailed level.
Such representation is based on the idea that at different levels we have dif-
ferent and possibly heterogeneous representations of objects (through pos-
sibly different kinds of state variables), actions, and tasks. Therefore the
semantics of objects, actions, and tasks should be given considering the re-
lations between different levels, that is, a mapping of state variables, actions,
and tasks from one level to another one.

State variables and actions at one level should be mapped to state vari-
ables and actions at a different level. In most cases, the mapping from a
level to a lower more detailed level is a one-to-many mapping. Consider the
case of state variables. A value of a state variable corresponds to possibly
many different values of a state variable at a lower - more detailed level. For
example, the position of a robot defined by the state variable pos(r) ranges
over a set of locations such as room1, corridor, and room2. It is mapped at
the path planning level to coordinates (x, y, θ) in local reference frames of
room1, corridor, and room2. On the other way around, the mapping from
the value of a state variable to a higher level should be many to one, and
therefore a value at the lower level should correspond to just one value at
the higher level. Therefore the “mapping down” of values from higher levels
to lower levels is a nondeterministic mapping, because it can result in many
possible different values, while the “mapping up” is deterministic.

In the examples just mentioned, we have a state variable with some
values that are mapped down to a state variable with more possible values.
Further, at a lower level we may need more state variables. For example,
we may need to add at a lower level a variable about the configuration of
the robot gripper. In this case, not only do we have a one-to-many mapping
over values of variables, but we may have variables at a lower level that do
not have a mapping up at a higher level.

Similar considerations arise for the mapping of actions from one level to
another. In Example 3.4, the open-door action is refined to several different
actions at a lower level, and such actions can be combined in different ways:
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Figure 7.6: Open door: semantic mapping of state variables and actions.

move-close, grasp, turn, and so on. Even in this case, the “mapping down”
is nondeterministic, while the mapping up is deterministic. These ideas are
depicted in Figure 7.6 as an example related to open-door.

Finally, we should recall that, even if the hypothesis that mapping down
is nondeterministic and mapping up is deterministic is reasonable in several
cases, this may not be always true. At a higher level, we can consider
parameters that are not considered at a lower level. As a simple example,
consider the case in which at the level of the topological map we may add
information about dangerous, or crowded rooms, where the robot should
avoid to pass through. Some of the variables at the higher levels do not
need to be mapped at the lower levels.
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Concluding Remarks

In this book, we have studied computational reasoning principles and mech-
anisms to support choosing and performing actions. Here are some obser-
vations about the current status of work on those topics.

Extensive work has been done on automated planning, ranging from
classical planning techniques to extended approaches dealing with tempo-
ral, hierarchical, nondeterministic, and probabilistic models. The field has
progressed tremendously, and a strong community of scientists is continually
producing new results, technology, and tools.

Issues related to acting have also attracted much attention, and the state
of the art is broad and rich, but it is quite fragmented. The relationships
among different approaches have not yet been studied in depth, and a uni-
fying and formal account of acting is not available in the same way as it is
in the field of automated planning.

Furthermore, the problems of how to generate plans and how to perform
synthesized actions have been mainly studied separately, and a better un-
derstanding is needed of the relationships between planning and acting. One
of the usual assumptions in research on planning is that actions are directly
executable, and this assumption is used even in the work on interleaving
online planning and execution. In most cases, however, acting cannot be
reduced to the direct execution of atomic commands that have been chosen
by a planner. Significant deliberation is needed for an actor to perform what
is planned.

In this book, we have addressed the state of the art from a unifying
perspective. We have presented techniques for doing planning with deter-
ministic, hierarchical, temporal, nondeterministic, and probabilistic models
and have discussed approaches for reacting to events and refining actions
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into executable commands. In doing this, we have distinguished between
two kinds of models:

• Descriptive models of actions specify the actor’s “know what.” They
describe which state or set of possible states may result from perform-
ing an action. They are used by the actor to reason about which
actions may achieve its objectives.

• Operational models of actions specify the actor’s “know how.” They
describe how to perform an action, that is, what commands to execute
in the current context and how to organize them in order to achieve
the action’s intended effects. The actor relies on operational models
to perform the actions that it has decided to perform.

While planning techniques use descriptive models, deliberation for act-
ing needs operational models. These models go beyond the descriptive
preconditions-and-effects representation; they organize action refinement
within rich control structures. We have proposed refinement methods as
a first step toward the integration of planning and acting for acting effec-
tively in the real world.

Significant research is needed regarding this integration. First, deliber-
ation may use various planning techniques, including a flexible mix of gen-
eral purpose and domain-dependent techniques. Second, deliberative acting
may be done in different yet well-integrated state and actions spaces. Re-
lations and mappings among such heterogeneous representations should be
addressed systematically. Third, although we distinguished in each chapter
between the part dedicated to planning and the one dedicated to acting,
and between descriptive models and operational models, realistic applica-
tions most often need a flexible mix of planning and acting.

Finally, other deliberation functions – monitoring, reasoning about goals,
reasoning about sensing and information-gathering actions, learning and
acquiring deliberation models while acting, reasoning with semantics and
ontology based representations, reasoning with hybrid models – are only
briefly covered in the last chapter. They should be tightly integrated with
planning and acting techniques.

The take-home message from this book is twofold. Extensive work has
been done on planning and acting. The work on their integration is promis-
ing and strongly motivated, but still fragmented. This book has attempted
to cover a relevant part of it in a unified view. Many research problems in
automated deliberation remain open. We hope the reader will find this book
helpful for addressing them.
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Search Algorithms

This appendix provides background information about several of the search
algorithms used in this book. These are nondeterministic state-space search
(Section A.1) and And/Or search (Section A.2).

A.1 Nondeterministic State-Space Search

Many of the planning algorithms in this book have been presented as non-
deterministic search algorithms and can be described as instances of Algo-
rithm A.1, Nondeterministic-Search. In most implementations of these algo-
rithms, line (iii) corresponds to trying several members of R sequentially in
a trial-and-error fashion. The “nondeterministically choose” command is an
abstraction that lets us ignore the precise order in which those values are
tried. This enables us to discuss properties that are shared by a wide variety
of algorithms that search the same space of partial solutions, even though
those algorithms may visit different nodes of that space in different orders.

There are several theoretical models of nondeterministic choice that are
more-or-less equivalent mathematically [213, 464, 131]. The one that is most
relevant for our purposes is the nondeterministic Turing machine model,
which works roughly as follows.

Let ψ(P ) be a process produced by calling Nondeterministic-Search on
a search problem P . Whenever this process reaches line (iii), it replaces
ψ(P ) with |R| copies of ψ(P ) running in parallel: one copy for each r ∈
R. Each process corresponds to a different execution trace of ψ(P ), and
each execution trace follows one of the paths in ψ(P )’s search tree (see
Figure A.1). Each execution trace that terminates will either return failure
or return a purported answer to P .
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Nondeterministic-Search(P ) // iterative version
π ← an initial partial solution for P
while π is not a solution for P do (i)
R← {candidate refinements of π} (ii)
if R = ∅ then return failure
nondeterministically choose r ∈ R (iii)
π ← refine(π, r)

return π

Nondeterministic-Search(P, π) // recursive version
if π is a solution for P then return π (i)
R← {candidate refinements of π} (ii)
if R = ∅ then return failure
nondeterministically choose r ∈ R (iii)
π ← refine(π, r)
return Nondeterministic-Search(P, π)

Algorithm A.1: Equivalent iterative and recursive versions of a generic non-
deterministic search algorithm. The arguments include the search problem
P and (in the recursive version) a partial solution π, the initial value of
which should be the empty plan.
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Figure A.1: Search tree for Nondeterministic-Search. Each branch represents
one of the possible refinements.
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Deterministic-Search(P )
π ← initial partial solution
Π← {π}
while Π 6= ∅ do

select π ∈ Π (i)
remove π from Π
if π is a solution for P then return π
R← {candidate refinements for π}
for every r ∈ R do
π ← refine(π, r)
add π′ to Π

return failure

Algorithm A.2: A deterministic counterpart to Nondeterministic-Search. De-
pending on how π is selected in line (i), the algorithm can do a depth-first
search, breadth-first search, or best-first search.

Two desirable properties for a search algorithm ψ are soundness and
completeness, which are defined as follows:

• ψ is sound over a set of search problems P if for every P ∈ P and
every execution trace of ψ(P ), if the trace terminates and returns a
value π 6= failure, then π is a solution for P . This will happen if the
solution test in line (i) is sound.

• ψ is complete over P if for every P ∈ P, if P is solvable then at least
one execution trace of ψ(P ) will return a solution for P . This will
happen if each set of candidate refinements in line (ii) are complete,
that is, if it includes all of the possible refinements for π.

In deterministic implementations of nondeterministic search, the nonde-
terministic choice is replaced with a way to decide which nodes of the search
tree to visit, and in what order. The simplest case is depth-first backtrack-
ing, which we can get from the recursive version of Nondeterministic-Search
by making a nearly trivial modification: change the nondeterministic choice
to a loop over the elements of R. For this reason, the nondeterministic
choice points in nondeterministic search algorithms are sometimes called
backtracking points.

Deterministic-Search, Algorithm A.2, is a general deterministic search al-
gorithm. Depending on the node-selection strategy, that is, the technique for
selecting π in line (i), we can get a depth-first search, breadth-first search, or
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a best-first search. Furthermore, by making some modifications to the pseu-
docode, we can get a greedy search, A* search, branch-and-bound search,
or iterative-deepening search (see Chapter 2 for some examples).

Earlier we said that Nondeterministic-Search is sound and complete if its
solution test is sound and its sets of candidate refinements are complete (i.e.,
each set includes all of the possible refinements). Under the same conditions,
Deterministic-Search is sound, but whether it is complete depends on the
node-selection strategy. For example, with breadth-first node selection it will
be complete, but not with depth-first node selection unless the search space
is finite. Although completeness is a desirable property, other considerations
can often be more important: for example, the memory requirement usually
is exponentially larger for a breadth-first search than for a depth-first search.

π2

P21 P22

P

r1 r2

π1

P11 P12

π112

P1121 P1122
. . .

r111

π111

P1111 P1112
. . .

r112

Or-nodes:

Or-node:

And-nodes:

And-nodes:

. . . . . . . . . . . .

. . . . . .. . .
. . .

. . . . . .

. . .

Figure A.2: And/Or search tree. Or-nodes correspond to calls to Or-Branch
in Figure A.2, and the edges below each or-node correspond to members of
R. And-nodes correspond to calls to And-Branch, and the edges below each
and-node correspond to subproblems of π.
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A.2 And/Or Search

In addition to choosing among alternative refinements, some search al-
gorithms involve decomposing a problem P into a set of subproblems
P1, . . . , Pn whose solutions will provide a solution for P . Such algorithms
can be described as instances of a nondeterministic And-Or-Search algorithm,
Algorithm A.3. The search space for this algorithm is an And/Or tree such
as that in Figure A.2.

And-Or-Search(P )
return Or-Branch(P )

Or-Branch(P )
R← {candidate refinements for P}
if R = ∅ then return failure
nondeterministically choose r ∈ R (i)
π ← refine(P, r)
return And-Branch(P, π)

And-Branch(P, π)
if π is a solution for P then return π
{P1, . . . , Pn} ← {unsolved subproblems in π}
for every Pi ∈ {P1, . . . , Pn} do (ii)
πi ← Or-Branch(Pi)
if πi = failure then return failure

if π1, . . . , πn are not compatible then return failure
incorporate π1, . . . , πn into π
return π

Algorithm A.3: A generic nondeterministic And/Or search algorithm.

We will not include a deterministic version of And-Or-Search here be-
cause the details are somewhat complicated and generally depend on the
nature of the problem domain. One of the complications arises from the
fact that unlike line (i) of And-Or-Search, line (ii) is not a backtracking
point. The subproblems P1, . . . , Pn must all be solved to solve P , and not
every combination of solutions will be compatible. For example, if P1 and
P2 are “find a container c and bring it to location l” and “put all of the
books at location l into c,” a solution to P1 is useful for solving P2 only if
the container c is large enough to contain all of the books.
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Strongly Connected
Components of a Graph

Let G = (V,E) be a directed graph. A strongly connected component of
G is a subset C of V such that every vertex of C is reachable from every
other vertex of C. The relation ∼ on vertices can be defined as follows:
v ∼ v′ iff either v = v′ or v is reachable from v′ and v′ is reachable from v.
It is an equivalence relation on V . It partitions V into equivalence classes,
each being a strongly connected component of G. Furthermore, the set of
strongly connected components of G is a directed acyclic graph that has an
edge from C to C ′ when there is a vertex in C ′ reachable from a vertex in
C.

Tarjan’s algorithm [560] finds in a single depth-first traversal of G its
strongly connected components. Each vertex is visited just once. Hence the
traversal organizes G as a spanning forest. Some subtrees of this forest are
the strongly connected components ofG. During the traversal, the algorithm
associates two integers to each new vertex v it meets:

• index(v): the order in which v is met in the traversal, and

• low(v) = min{index(v′)|v′ reachable from v}

It is shown that index(v)=low(v) if and only if v and all its successors in a
traversal subtree are a strongly connected component of G.

This is implemented in Algorithm B.1 as a recursive procedure with a
stack mechanism. At the end of a recursion on a vertex v, if the condi-
tion index(v)=low(v) holds, then v and all the vertices above v in the stack
(i.e., those below v in the depth-first traversal tree) constitute a strongly
connected component of G.
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Tarjan(v)
index(v)←low(v)← i
i← i+ 1
push(v,stack)
for all v′ adjacent to v do

if index(v′) is undefined than do
Tarjan(v′)
low(v)← min{low(v), low(v′}

else if v′ is in stack then low(v)← min{low(v), low(v′}
if index(v)=low(v) then do

start a new component C ← ∅
repeat
w ← pop(stack) ; C ← C ∪ {w}

until w = v

Algorithm B.1: Tarjan’s algorithm for finding strongly connected compo-
nents of a graph.

With the appropriate initialization (i ← 0, stack ← ∅ and index unde-
fined everywhere), Tarjan(v) is called once for every v ∈ V such that index(v)
is undefined. The algorithm run in 0(|V | + |E|). It finds all the strongly
connected components of G in the reverse order of the topological sort of
the DAG formed by the components, that is, if (C,C ′) is an edge of this
DAG, then C ′ will be found before C.
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[25] Ȧström, K. J. (1965). Optimal control of Markov decision processes with
incomplete state estimation. J. Math. Analysis and Applications, 10:174–205.

Authors’ manuscript. Published by Cambridge University Press. Do not distribute.

http://cambridge.org/9781107037274


Bibliography 405

[26] Awaad, I., Kraetzschmar, G. K., and Hertzberg, J. (2014). Finding ways to
get the job done: An affordance-based approach. In Proc. ICAPS.

[27] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider,
P., editors (2003). The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge Univ. Press.

[28] Bacchus, F. and Kabanza, F. (2000). Using temporal logics to express search
control knowledge for planning. Artificial Intelligence, 116(1-2):123–191.
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[300] Jiménez, S., de La Rosa, T., Fernández, S., Fernández, F., and Borrajo, D.
(2012). A review of machine learning for automated planning. The Knowledge
Engg. Review, 27(4):433–467.

[301] Jónsson, A. K., Morris, P. H., Muscettola, N., Rajan, K., and Smith, B. D.
(2000). Planning in interplanetary space: Theory and practice. In AIPS, pages
177–186.

[302] Jonsson, P., Drakengren, T., and Bäckström, C. (1999). Computational com-
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