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UTOMATED PLANNING AND 
scheduling technology-we’ll call it auto- 
mated planning systems, for the sake of 
brevity-is applicable to a wide spectrum of 
spaceflight missions, from those with lim- 
ited onboard computational capabilities, such 
as Lunar Prospector, to those with highly 
sophisticated software, such as Cassini In all 
cases, the goal is for the rmssion scientist to 
command the spacecraft directly, with no 
need for mission operations specialists to 
perform routine activities. 

Routine use of automated planning sys- 
tems for both ground and onboard operations 
can greatly benefit spacecraft missions in 
several ways. 

Reduced costs. Automated planning sys- 
tems all but eliminate the need for the mis- 
sion operation’s team to manually gener- 
ate command sequences, dramatically 
reducing costs. Accordmg to one esbmate, 
automated commands can reduce the cost 
of mission operations by as much as 60% 
(excluding data analysis).l Our recent 
experiences support these projections. For 
example, using the Dcaps automated plan- 
ning system to command the Data-Chaser 
shuttle payload reduced commanding- 
related rmssion operations effort by 80% 
compared to manual sequence generation? 

AUTOMTED PLANNING AND SCHEDULING TECHNOLOGY 
ENABLES A NEW CLASS OF AUTONOMOUS SPACECRAFT THE 

AUTHORS DISCUSS THE BENEFITS OF THIS TECHNOLOGY AND 
OFFER A N  OJXERVZEW OF ITS USE AT NASA. 

Increased responsiveness. With planning- 
systems technology, a goal-based space- 
craft can more readily perform oppor- 
tunistic science. When an unexpected 
opportunity occurs (such as a supernova 
or solar phenomena), the spacecraft can 
immediately perform appropriate mea- 
surements rather than wait until the 
ground operations team detects the event 
and uplinks commands to the spacecraft. 
Increased interactivity. A goal-based au- 
tonomous spacecraft can facilitate inter- 
active science. A self-commanding space- 
craft can perform high-level science 
requests, such as “Perform an interfer- 
ometry sweep with priority 5.” A direct 
connection and faster feedback between 
scientist and spacecraft create a new 
model for scientific discovery in space. 
Increased productivity. Automated- 
planning-systems technology has the 
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potential to increase science return. It 
does this by producing operations plans 
that better optimize the use of scarce sci- 
ence resources. For example, the Dcaps 
planning system increased science re- 
turn by 40% over manually generated 
sequencesS2 

0 Simplified self-monitoring. Planning- 
systems technology simplifies self- 
monitoring, onboard fault-management, 
and spacecraft-health tasks. Because the 
spacecraft can respond directly without 
waiting for ground communication, it 
can cover a greater range of faults. 

In this article, we describe our use of sym- 
bolic AI in planning systems, provide an 
overview of the spacecraft-operations do- 
main, and discuss several past, ongoing, and 
future deployments of planning-systems 
technology at NASA. 
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Planning systems and 
symbolic AI 

We use symbolic AI techniques to solve 
space-operations planning and scheduling 
problems because its declarative representa- 
tions allow for explanation and introspection 
of produced plans. 

Design constraints. Using symbolic AI com- 
mits us to two design constraints. The first is 
that we must use a declarative model to rep- 
resent spacecraft and mission constraints, 
including explicit models of spacecraft sub- 
system modes and resource capacity. Sec- 
ond, symbolic AI performs search to find 
solutions. In the spacecraft-operations do- 
main, solutions are defined as a projected 
evolution of actions and states that begins in 
the current state and satisfies goals posed to 
the system. 

Given these constraints, the planning sys- 
tem works as follows. The planning system 
addresses one flaw at a time from its list of 
current flaws in the plan, such as unachieved 
top-level goals proposed to the planning sys- 
tem, unachieved conditions required by de- 
sired states or activities in the plan, or, in 
some cases, oversubscribed resources. It 
begins by categorizing the flaw type, then 
changes the plan until the flaw is resolved. 
Next, it updates the plan database, which 
reflects the plan’s projected evolution of 
states and resources. The planning system 
then recomputes the current flaw list. This 
process repeats until the planning system 
produces a flawless plan. 

Some search methods, such as refinement 
search, can generate a dead end in which no 
existing, legal changes will resolve a flaw. 
The planning system must then backtrack 
and alter a previous choice. Other search 
methods, such as iterative repair, achieve a 
similar effect by applying a step that undoes 
a previous decision. 

Language expressiveness. Given the exist- 
ing design constraints, the expressiveness of 
the language used to represent the spacecraft, 
the mission constraints, and the plan is a crit- 
ical choice. For example, some representa- 

between state variables or resources, while 
others do not. Some representations permit 
partial constraints on state or activity para- 
meters or timings, while others fix activity 
and state timings to precise values. 

tions allow complex functional dependencies 
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An expressive representation is advanta- 
geous because it describes complex behav- 
iors compactly. For example, a plan might 
use an explicit representation of timing con- 
straints between events, from which it can 
deduce flexible time windows for each event. 
The plan-execution system can exploit this 
intrinsic flexibility to tolerate timing fluctu- 
ations and some unexpected events. 

Expressive representation also allows prob- 
lem solving at more abstract levels, with each 
decision corresponding to a larger set of 
spacecraft behaviors. More abstract problem 
solving means that fewer decisions must be 
made; this can yield a large (possibly expo- 
nential) increase in speed. 

However, the added power of expressive- 

&;: 
AUTOMTED PLANNING SYS- 
TEMS CAN LEAD TO MORE 
EFFICIENT USE OF SPACECRAFT 
RESOURCES TO ACHIEVE SCI- 
ENCE GOALS, FOR LESS THAN 
THE COST OF IMPROPWG 
SPACECRAFT DESIGN. 

ness can be costly. As a language’s expres- 
sive power increases, so does the cost of 
determining a plan’s correctness. In general, 
to determine whether a plan will execute cor- 
rectly, values must be assigned consistently 
to all plan variables. When the plan includes 
more and more general classes of constraints, 
finding such a value assignment can be com- 
putationally expensive. Although researchers 
have done considerable work in assessing the 
impact of plan representation on computa- 
tional efficiency, their work has focused on 
classical plan representations, such as no met- 
ric time, aggregate resources, or functional 
dependencies among plan variables. Rao 
Kambhampati’s recent paper provides a start- 
ing point for investigating this body of work.3 

The best balance between expressiveness 
and problem-solver performance varies ac- 
cording to the application; finding the most 

research. 
Within our planning-systems framework, 

we have not yet addressed issues of repre- 
senting and reasoning about plan quality and 
optimization. As with most domains, plan- 

effective balance remains an area of active 

ning systems for spacecraft operations have 
both hard constraints, which a plan must sat- 
isfy, and soft constraints or preferences, 
which a planning system must optimize. We 
are investigating how to represent, reason 
about, and optimize these soft constraints. 

The spacecraft-operations 
domain 

Spacecraft mission operations presents a 
number of unique challenges and opportuni- 
ties for planning systems. 

Knowledge integration. In our domain, the 
planning system must integrate knowledge 
from a wide range of sources. Because many 
spacecraft-operations constraints involve spe- 
cialized reasoning that is difficult to represent 
in planning languages, the planning system 
must often integrate external constraints and 
knowledge (see the sidebar, “Further reading,” 
for more on this). For example, many space- 
craft activities require that specific spacecraft 
parts point at specific objects, such as when a 
science observation requires an instrument to 
point at an asteroid or when downlinking data 
requires the high-gain antenna to point at 
earth. To determine which pointing require- 
ments are possible, when they are possible, 
and how much time it takes to turn requires 
significant amounts of geometric reasoning. 
Thus, the planning system must be able to 
communicate with special reasoning algo- 
rithms and incorporate the results. 

Resource constraints. Building spacecraft 
capable of flying hundreds of millions of 
miles in extreme environmental conditions is 
extremely difficult and expensive. For exam- 
ple, to generate more power onboard, a space- 
craft requires either larger solar panels (to cre- 
ate more solar power) or a larger nuclear 
power unit (to create more nuclear power). 
Both of these options significantly increase 
the spacecraft’s weight and volume, dramat- 
ically increasing the mission’s cost. As a 
result of such situations, spacecraft resources 
are scarce and in high demand. Automated 
planning systems can lead to more efficient 
use of spacecraft resources to achieve science 

improving spacecraft design. Clearly, it can 
add considerable value to a mission. 

goals, and it can do so for less than the cost of 

Reliability. Space-exploration missions can 
cost upwards of several hundred million 
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dollars. Because an incorrect command se- 
quence could damage or destroy the space- 
craft, reliability is crucial. To avoid failure, 
planning-systems development requires for- 
mal verification methods for the problem 
solver and planning model, as well as exten- 
sive and rigorous testing of the planning sys- 
tem under most plan-generation conditions. 

Multiphase use. A planning system is valu- 
able in multiple phases of a mission lifecycle. 
In preliminary mission planning, which be- 
gins years before a launch, systems engineers 
can use the planning system to approximate 
models of spacecraft resource use and sci- 
ence return to assess different hardware con- 
figurations, launch trajectories, and science- 
gathering strategies. As launch approaches, 

the planning system can help refine the 
spacecraft, operations, and science models, 
and update plans accordingly. After launch, 
during the actual primary-mission lifetime, 
the planning system can generate spacecraft- 
operations plans. If a mission is extended, the 
planning system can help minimize the oper- 
ations staff required to perform continuing 
science goals. 

NASA’s planning systems 
pro jet t s 

Our work has been part of a larger effort 
at NASA to extend and deploy automated-plan- 
ning technology for spacecraft command. Fol- 
lowing is an overview of three such systems. 

Further reading 
A wealth of research is available on automated planning systems; here we provide pointers 

to further reading on specific topics related to our approach. 

Knowledge integration 

N. Muscettola et al., “On-Board Planning for the New Millennium Deep Space One 
Spacecraft,” Proc. I997 IEEEAerospace Con$, IEEE Press, Piscataway, N.J., 1997, pp. 

B. Pel1 et al., “An Autonomous Spacecraft Agent Prototype,” Autonomous Robots, Vol. 5 ,  
No. 1, Mar. 1998. 
R. Sherwood et al., “Using Aspen to Automate EO-1 Activity Planning,” Proc. 1998 IEEE 
Aerospace Con$ , IEEE Press, 1998; http://eazy.jpl.nasa.gov/sherwood/. 

303-3 18. 

hshommitment search approach 

A. Baker, “The Hazards of Fancy Backtracking”’ Proc. AAAI ’94, AAAI Press, Menlo 
Park, Calif., 1994, pp. 288-293. 
A. Barrett and D. Weld, “Partial Order Planning: Evaluating Possible Efficiency Gains,” 
Arti$cial Intelligence, Vol. 67, No. 1, May 1994, pp. 71-1 12. 
N. Muscettola, “HSTS: Integrating Planning and Scheduling,” Intelligent Scheduling, M. 
Fox and M. Zweben, eds., Morgan Kaufmann, San Francisco, 1994, pp. 169-212. 
S. Smith and C. Cheng, “A Constraint Satisfaction Approach to Makespan Scheduling,” 
Proc. AIPS ’96: Int’l Con$ AI Planning Systems, AAAI Press, 1996, pp. 45-52. 
S. Smith and C. Cheng, “Slack-Based Heuristics for Constraint Satisfaction Scheduling,” 
Proc. AAAI ’93,AAAI Press, 1993, pp. 139-144. 

HSTS modeling support 

A. Barrett, Task-Decomposition Planning with Context-Sensitive Actions, PhD 
dissertation, Dept. of Computer Science, Univ. of Washington, Seattle, Wash., 1997. 
K. Erol, J. Hendler, and D. Nau, “UMCP: A Sound and Complete Procedure for Hierarchi- 
cal Task-Network Planning,” Proc. AIPS ’94: Int’l Con$ AI Planning Systems, AAAI 
Press, 1994, pp. 249-255. 
A. Lansky, “Action-Based Planning,” Proc. AIPS ’94: Int’l Con$ AI Planning Systems, 
AAAI Press, 1994, pp. 110-1 15. 
N. Muscettola, “HSTS: Integrating Planning and Scheduling,” Intelligent Scheduling, M. 
Fox and M. Zweben, eds., Morgan Kaufmann, San Francisco, 1994, pp. 169-212. 

Dcaps. Data-Chaser is a shuttle payload that 
flew onboard Space Shuttle flight STS-85 in 
August 1997. This payload carried several 
science instruments and demonstrated dis- 
tributed science-driven commanding. 

Data-Chaser included ground-based auto- 
mated-planning-systems technology. The 
Data-Chaser Automated Planning System 
(Dcaps) was developed jointly by JPL and 
the University of Colorado (which built and 
operated the Data-Chaser payload). Dcaps 
used the Plan-It2 sequencing tool,4 which 
provides an extensive modeling capability. 
Plan-It2 uses a state and plan representation 
that is totally committed on activity times and 
parameter values. Dcaps added a domain- 
specific, initial-schedule-generation capa- 
bility and a general iterative-repair capabil- 
ity to Plan-It2. 

The Dcaps model of the Data-Chaser 
payload was fairly large and included 67 
resources and states and 58 activity types. 
Dcaps-generated commands were Spacecraft 
Command Language scripts, which were 
used to implement the Data-Chaser execution 
system. Dcaps commands ranged from fairly 
high-level commands, such as performing an 
observation (including opening the instru- 
ment door, reading the instrument, closing the 
door, and transferring the data) to low-level 
commands such as tripping a relay. 

The ground team had tremendous success 
using Dcaps to automatically generate com- 
mands for the Data-Chaser payload. For the 
first five days of the STS-85 flight, the Data- 
Chaser operations team manually generated 
command sequences. For the last seven days 
of the flight, they used the Dcaps automated 
capability. Compared to the manual ap- 
proach, Dcaps reduced by’80% the opera- 
tions-team labor required to generate a six- 
hour operations plan. Also, it increased 
science return by 40% per six-hour opera- 
tions window. Thus, Dcaps demonstrated that 
planning-systems technology is mature 
enough to significantly improve operations. 
It also showed that basic planning technolo- 
gies-such as initial-schedule generation and 
basic heuristic iterative repair-can be of 
considerable value in operations. 

The PS planning system. NASA’s New Mil- 
lennium Program is an aggressive series of 
missions intended to demonstrate break- 
through technologies for space exploration. 
The program consists of two tracks. The first, 
led by JPL, is targeted at deep-space explo- 
ration; the other, led by the Goddard Space 
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Flight Center, is aimed at earth orbiters. 
The NMP’s first mission, New Millen- 

nium Deep Space One (NM DS-l), is sched- 
uled to launch in October 1998 and will fly 
by an asteroid, Mars, and a comet while 
demonstrating several new technologies, 
including solar electric propulsion. The NMP 
will also demonstrate the Remote Agent 
technology: the first prototype of a complete 
control system for an autonomous spacecraft 
based on AI technologies. 

The Remote Agent consists of three dis- 
tinct modules: 

a mode-identification and recovery sys- 
tem, which detects and corrects execu- 
tion-time anomalies (such as valves or 
switches stuck open or close); 
an intelligent task executive, which coor- 
dinates Remote Agent operations (includ- 
ing real-time control software) and can 
execute flexible plans; and 
the Planner Scheduler planning system 
(described below). 

The Remote Agent will assume experi- 
mental control of the spacecraft for one 
week, three to four months after launch. The 
Remote Agent’s planning system, called 
Planner Scheduler (PS),6 is an evolution of 
the Heuristic Scheduling Testbed System 
planning system? The HSTS planning sys- 
tem was developed jointly by JPL and NASA 
Ames Research Center, which led the proj- 
ect. PS consists of the HSTS temporal data- 
base and modeling facility, developed at 
NASA ARC, and the Incremental Refine- 
ment Search Engine (IRS), a backtracking, 
refinement search engine developed primar- 
ily by JPL. 

PS allows for expression of complex tem- 
poral constraints7 and contains a powerful 
suite of constraint-propagation capabilities. 
PS supports complex functional dependen- 
cies and has powerful facilities for partially 
grounding parameters. The HSTS plan rep- 
resentation maintains least-constraining tem- 
poral intervalism as in a Simple Temporal 
Problem.8 

The IRS implements refinement search. In 
this approach, each search node is more 
strictly constrained than its parent node. The 
IRS can be programmed for efficiency using 
an expressive language for specifying heuris- 
tics9 at the various choice points in the 
search. 

HSTS favors least-commitment search 
and constraint propagation, which has two 
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potential advantages. First, if properly man- 
aged, a least-commitment approach can con- 
siderably reduce the search (for more on this, 
see the “Further reading” sidebar). Second, it 
generates intrinsically flexible plans; during 
the search process, a least-commitment plan- 
ning system attempts to introduce constraints 
only when it is unavoidable. A smart execu- 
tive will flexibly execute the plan to react to 
timing fluctuations in an event. 

In the Remote Agent, PS limits execution- 
time flexibility to the timing of a start or end 
event in an activity or state. PS also pays 
attention to how rapidly the smart executive 
executes a plan. To improve the executive’s 
real-time responsiveness, PS post-processes 
the plan’s temporal constraint network so that 

LEAST-COMMITMENT SEARCH 
AND CONSTRAINT PROPAGA- 
TION HAS TWO POTENTIAL 
ADVANTAGES: IT CAN CONSID- 
ERABLY REDUCE THE SEARCH, 
AND IT GENERATES INTR7NSIC- 
ALLY FLEXIBLE PLANS. 

the smart executive can process the network 
as quickly as possible.lO.l’ 

For modeling-support, PS relies on the 
HSTS modeling language, which favors a 
first-principles approach to planning and has 
a precise, elegant semantics.I2 In relying on 
HSTS, PS relies purely on generative plan- 
ning and does not use task reduction or hier- 
archical task network (HTN) planning. This 
choice is part of the HSTS design philosophy, 
which aims to cleanly distinguish between 
allowable transitions and heuristics. HTN 
encoding can be considered a form of search 
control. Although researchers have formal- 
ized HTN planning approaches, these efforts 
have focused on classical planning models, 
and thus are far from the more “industrial 
strength” HTN planning systems such as 
SIPE13 or O-Plan.14 For more information on 
these and other icsueq in modeling support, 
see the “Further reading” sidebar. 

The distinction between allowable transi- 
tions and heuristics is important because it 
facilitates domain-knowledge validation. In 
the PS approach, systems engineers and mis- 

sion specialists need only inspect the domain- 
knowledge constraints, leaving the task of 
designing the heuristics to optimize perfor- 
mance to the planning-algorithm specialist. 

An enhanced version of the DS-1 Remote 
Agent with the PS planning system is sched- 
uled to serve as the primary control system 
for the NM DS-3 mission, launching in 2001. 
The mission will consist of three formation- 
flying spacecraft that will perform interfero- 
metric measurements. Ground operations 
will control the NM DS-3 spacecraft by up- 
linking a set of goals to the Remote Agent. 

Aspen. The Aspen15 planning system is 
being demonstrated in several contexts. The 
UHF Follow-on One (UFO-1) spacecraft is 
an in-orbit test bed for spacecraft autonomy 
operated by the United States Naval Acad- 
emy Space Artificial Intelligence Laboratory 
(USNA SAIL). In a collaborative effort 
between JPL and USNA SAIL, researchers 
are using Aspen to increase the automation 
levels in ground-based command generation. 
The first Aspen demonstration is scheduled 
for fall 1998; a series of demonstrations will 
culminate in fully automated, lights-out com- 
manding (in which there will be no ground- 
operations personnel for routine command- 
ing) in early 1999. 

Aspen represents an evolutionary ap- 
proach closer to current spacecraft com- 
manding and sequencing paradigms. Aspen 
uses an action-centered representation lan- 
guage16 designed by non-AI personnel. In 
this language, state and resource changes are 
directly attributed to actions and events. 
Aspen’s modeling language lets systems 
engineers encode standard operating proce- 
dures as task decompositions However, as a 
result of this more user-oriented approach, 
Aspen lacks clean, precise semantics. Like 
HSTS, Aspen lets temporal constraints be 
expressed as a Simple Temporal Problem 
(STP).* It also allows for expression of com- 
plex parameter constraints. Unlike HSTS, 
Aspen does not support partial grounding; it 
prefers a more committed state representation, 
requiring grounding parameter values and 
action timings to track state and resource use. 

Although Aspen supports certain elements 
of constraint propagation and least-commit- 
ment search, its bias i s  toward committed 
search, for several reasons: 

First, committed search places fewer re- 
quirements on the structure and complexity of 
auxiliary, special-purpose reasoning modules. 
In spacecraft commanding, these modules 
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provide the planning system with infomiation 
about spacecraft functions such ;is navigation, 
attitude control, power management, and ther- 
mal-constraint management. The simplest way 
for these modules to operate is to rettim a spe- 
cific value for each query. 

For example, the planning system might 
need to ask the attitude-control inodule for a 
turn path that will safely turn the spacecraft 
from one pointing direction to another. The 
exact turn path can vary significantly, de- 
pending on its exact start time, because cer- 
tain spacecraft areas must not turn toward 
certain celestial bodies (the camera must not 
face the sun, for example). This is further 
complicated in that the relative position of 
celestial bodies varies over time, particularly 
during a flyby. To fully exploit the power of 
a partially constrained plan representation. 
the planning system must use a more abstract 
information description: instead of a single 
turn path. the planning system needs a range 
of start times and path durations that stay 
within prespecilied limits. However, build- 
ing such abstractions can be costly and might 
not give the approximation level necessary 
to guarantee planning-system consistency in 
every possible execution. The balance be- 
tween additional abstraction effort and poten- 
tial payoff in t e r m  of reduced search and 

satisfiability (SAT) representations for plan- 
ning,17 The reduced cost per search node 
must be balanced against more informed or 
stronger constraint-propagation approaches 
that can reduce the nuinbcr of search modes 
required. but that often have a high cost per 
search node visited. 

Aspen is scheduled to be used to automate 
ground operations for GSFC’s New Millen- 
nium Earth Orbiter One (NM EO-I) space- 

, 

craft, launching in 1999. as well as for NM 
EO- 1’s extended mission. which begins in 
2000. Figure 1 shows an Aspen screen shot 
of a one-week operations plan for the NM 
EO-I spacecraft. Thc Aspen display is time- 
oriented; later times arc displayed to the right 
on the horizontal axis. The upper portion ot 
the screen shows the activities in the current 
mission plan, with each line beginning at the 
activity’s start time and ending at its end 
time. The timelines toward the bottom of the 
display show the state and resource evolu- 
tion as modeled and tracked by the Aspen 
planning software. 

S THESE EXPERIENCES SHOW, 
AI has clearly hcid an impact o n  the 
spacecraf t-operations community. p‘irticu- 
lady in the model-b‘ised. declarative ap- 
proach ot AI planning and how it facilitates 
model construction, validation, and refine- 
ment as coinpared to current procedural 
methods such as scripting 

* * *  

Figure 1.  A one-week operations plan for the New Millennium Earth Orbiter One generated by the Aspen planning system. 

Still. several questions 
with deep implications for 
AI remain open. One fruit- 
f u l  area of exploration 
concerns finding the right 
balance between a plan’s 
flexibility and robustness 
and the speed of the com- 
putational substrate needed 
to construct and execute 
the plan. 

Another area o f  current 
work is how to integrate 
planning and execution to 
allow I’or I-esponsiveness to 
ru 11 - t i  111 t‘ vnri at  i on s. One 
approach is to build such 
flexihility into the plan. 
verifying before execution 
that such flexibility will 
respect thc plan‘s causal 
structure. Another approach 
is to retaiii the general 
causal structure, but to 
ground times in  the plan 
while verifying it. and 
to replan and revalidate 
(using the general causal 
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structure) when runtime variations occur. 
Yet another area of current work involves 

representing and reasoning about soft con- 
straints in space operations plans. Represent- 
ing preferences and generating optimizing 
planners is an exciting area of ongoing work. 

A final area of work is aimed at gaining a 
better understanding of the relationship 
between spacecraft operations planning and 
other types of scheduling (such as manufac- 
turing). For example, spacecraft operations 
differs from other scheduling domains, such 
as production management. In  production- 
flow scheduling, the objective is often to com- 
plete a set of work as quickly as possible. 
Although the domains share some common 
elements (such as problem-representation or 
constraint-propagation methods), in space- 
craft operations the opportunities are less 
contiguous. Thus, while the operations team 
might attempt to make as many observations 
as possible in any single opportunity, the set 
of opportunities is a set of discrete, disjoint 
science opportunities dictated by geometries. 
Because of this difference, we expect the 
techniques and heuristics in spacecraft oper- 
ations will vary more in this domain than in 
manufacturing planning. 0 
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