
1

Automated Report Creation: From Data Import to Publication

JMP Discovery Conference – Tucson

Brian Corcoran – Software Development Director, SAS

 JMP provides a variety of methods to get data into the product. It has a lot of facilities to export

finished reports for viewing. However, it is often difficult to envision the end-to-end workflow. A

question that often comes up is: How do I take my complete report workflow and automate it so I can

come to work in the morning and already have my finished report waiting for me? This paper will give

an example of how to accomplish this. We will import data from a public data source, which will give a

brief survey of one of JMP’s import capabilities. Next, we will perform some exploration in JMP to

produce the report that conveys our findings. We can then export that output. While we do that work,

we will accumulate the JSL scripts that we need to recreate the output. Finally, we will automate the

tasks to produce our report daily.

 Imagine that we have air quality data that gets periodic updates. The data comes from a variety

of countries and states and is aggregated on one site. Any of the cities involved can update the data on

a given day, so the data can change frequently. Because of this, we would like to produce a graphic each

morning with the updated results.

 The air quality data comes from a website and organization called openaq1. The site provides an

API available via HTTP access. A REST interface is provided for retrieving the data. JMP 14 introduced

HTTP Request, a mechanism to work with interfaces just like this. JSL is required to use this, so it is

definitely a more advanced topic. There are more and more websites that are offering data in this

format, and these sites are often official government sites. The World Bank data that I have used in

previous talks is getting migrated to a databank accessible through REST interfaces. The goal with this

paper is just to make you aware of such sites, and the increasing use of them to provide data to the

public.

 To make a request to a site like openaq, the basic requirements are a URL to the API that

provides the data, and an associative array of parameters to pass to the site to tell it what kind of data

you want to retrieve. An associative array in our case is just an array of name value pairs, like

“Tucson”:”Ozone”. JMP will take the parameter arrays and transform it into JSON, a syntax specification

for name/value pairs among other things. It will then pass this request via the web protocol HTTP to the

site, which will usually return a block of data also in JSON format. JSL can then be used to break apart

this data and put it into a data table. The key JSL snippet for this example is the following:

 query = [=>];

 query["country"] = code;
 query["limit"] = 200;
 request = New HTTP Request (

1 openaq. Air Quality Data, openaq, n.d. Web. August 22, 2019. https://openaq.org . Obtained under Create
Commons CC BY 4.0 license. Web API data obtained from https://api.openaq.org.

https://openaq.org/
https://openaq.org/

2

 URL("https://api.openaq.org/v1/latest"),
 Method("Get"),
 Query String(query)
);
 json = request << Send();

Here we create an HTTP request object in JSL, and then ask it to transmit our query string to the

web API call. The returned information is stored in the json variable. This is then split apart and used to

populate the data table. I’ve included the script to openaq, developed by my co-worker Bryan Boone,

in the conference materials. Don’t get overwhelmed with the length or complexity. One key takeaway

from this tutorial is that you can assemble data from lots of places and repeat it using standard

techniques. I’m going to copy the openaq script into a WorkingScript.jsl file that we will use to collect

all of our work. This will form the basis for the automated task that we develop.

If we run the HTTP Request script, it will take a few seconds to fetch the data, and we can see

the data table populate. We will end up with several hundred rows of air quality observations.

Unfortunately, the pollutant measurements are all mixed up. There is numeric value for each pollutant,

and a column that specifies the type of pollutant. It would be nice to have all of these separated out or

sorted.

The data contains latitude and longitude data. If we drag these into Graph Builder, it will give us

an idea of the quality of the data.

Initial Look at Air Quality Measurements

 This seems like a strange pattern. Do we have some outliers or incorrectly entered values? The

easiest way to get more insight is to put a map behind the measurements. If we right click in the graph

3

frame and select Graph->Background Map and then select “Simple Earth” under Images, we see the

following:

Data with Map

 Incorrectly mapped points often show up in clusters by the poles or equator. In fact, it turns out

the issue is that a measuring station in Saskatchewan is returning 0,0 for longitude and latitude. It would

be nice to exclude this point. It’s time for Query Builder for JMP files. Before we do this, we need to put

a JSL snippet into our scripting to save the data to disk. This would look like:

dt << Save("c:\Discovery Demo\Tucson\Combined Air Quality.jmp");

 Now we can use Tables->Query Builder on the result table from our HTTP Request script. The

first thing to do is to apply a filter to the latitude. Dragging “t1.latitude” over the filters area and

providing a value of 17 reduces our observations to Puerto Rico and areas north of Puerto Rico.

4

Reduce Observations to Puerto Rico and North

 Now we can examine regional data for particular pollutants by dropping in a filter for

“t1.pollutant”. We can then generate a few query results after selecting individual pollutants to

examine. We could make this a prompted filter to allow user input as to the choice of pollutant to

examine, but this would not fit well with our desire to automate our final results. Let us try “Particulate

matter less than 2.5 micrometers in diameter”.

Filtering on Pollutant

Now if we run this query, we get just the values for “Particulate matter less than 2.5

micrometers in diameter”. A bubble plot would be a good visualization of this data. We can use latitude

as Y, longitude as X, and value for Size and Coloring. Before we even put a map on this, we see two large

values.

5

 I’m not sure about the reading in Guanajuato, but I recognize the Big Sur reading as a

time when there was a fire in the area. The thing is, we don’t really want to be viewing data from 2016.

I’m going to go back to the query and put in a filter for date, selecting Today in the date picker.

Add the Date

It is worth looking at the query now, which we can get from the Source script in our resulting

data table.

New SQL Query(
 Version(130),
 Connection("JMP"),
 JMP Tables(
 ["Combined Air Quality" =>
 "\c:\Discovery Demo\Tucson\Combined Air Quality.jmp"]
),

 <MUCH OMITTED HERE>

 From(Table("Combined Air Quality", Alias("t1"))),
 Where(
 GE(
 Column(
 "latitude",
 "t1",
 Numeric Format("Latitude DMS", "0", "NO", "")
),
 17,
 UI(Comparison(Base("Continuous")))
) & In List(
 Column("pollutant", "t1"),
 {"Particulate matter 2.5 micrometers or less in diameter"},
 UI(SelectListFilter(ListBox, Base("Categorical")))
) & GE(
 Column(
 "lastUpdated",
 "t1",
 Numeric Format("Locale Date Time h:m:s", "0", "NO", "")
),
➔ 3649401299,
 UI(Comparison(Base("Continuous")))
)
)
➔) << Run

Two things are worth noting here. Even though we said “Today” in the date picker, the script

shows a numeric value for today’s date. We don’t want to be frozen in time for that date, we want only

6

the current day’s data. We can change this value manually to Today(), subtracting one day to make sure

we get everything in the last 24 hours .

The last part in particular is also important. The Run command at the end will run the query

either on a background thread, or in the foreground, depending on your preference settings. However,

we are very order dependent with our scripting for this example. To force the query to run in the

foreground, we can use the Run Foreground command instead. Now that last snipped looks like:

 Date Increment(Today(), "Day", -1, "actual"),
 UI(Comparison(Base("Continuous")))
)
)

) << Run Foreground()

We can now copy that script into our WorkingScript.jsl file, adding a semicolon to the end of the

query. We also want to assign the result of the query to a data table variable, like:

qdt1 = New SQL Query(

Now we can remake our Bubble Plot with the current data and filters applied.

Final Bubble Plot

Our Bubble Plot script is relying on using the current data table. If we run several queries, it is

possible for this reference to get confused and to get the wrong output. To avoid this, we can assign the

output of the queries to data table objects, as that is the return object for Query Builder. Now, when we

go to generate our reports we need to make sure that the correct data table is current. We do this by

passing the data table reference to current data table(), like this:

current data table(qdt1);

7

 It would be nice to have country-wide summary to show as well. We can use Graph Builder to

do this, just putting Value in the Color role and Country in the Map Shape role.

Average Values in Graph Builder

 We can use “Save Script to Script Window” to save out the JSL we need to recreate this graph,

and then we can transfer it to our WorkingScript.jsl file.

gbOutput = Graph Builder(
 Size(534, 456),
 Show Control Panel(0),
 Variables(Color(:value), Shape(:country)),
 Elements(Map Shapes(Legend(5)))
);

 Now, it would be nice to combine these two graphs into a small dashboard. One way to do this

is to use the UI Combine Windows feature. You can find a checkbox on the bottom right of the graph

windows:

Combine Windows Checkbox

 You can check the boxes for the two graph windows and then use the dropdown to select

“Combine Windows…”. This will bring up a UI for customization, but if you select the defaults you will

end up with a dashboard containing the graphs.

 Now you can use the dashboard red triangle menu to do “Save Script->To Script Window”. The

problem with this is that Application Builder, the JMP platform that creates the dashboard, is very

thorough about making the script. It essentially duplicates much of the work that we have already done,

8

including references to the query output. This is overkill for this particular tutorial, since we already

have our working script with everything we want in the order that we want it.

 So, we can include a simple JSL snippet to do the Combine Windows. It looks like this:

app = JMP App();
app << Set Name("Dashboard of Air Quality");
app << Combine Windows({gbOutput << Report, bubbleOutput << Report});
(app << Get Modules)[1] << Set Window Title("Dashboard of Air Quality");
app << Run;

The basis of this script came out of the JSL Scripting Index under the Help menu, so remember

that as a resource for tying together your work. All that is happening here is that we are getting

something called the Report object out of each graph. It is this object that Combine Windows

understands how to tie together. We then set the Window title, which is not absolutely necessary, and

issue the Run to do the window combination.

This is the result:

Dashboard with Both Outputs

 Typically to output graphs to other formats, you get the Report object from the analysis

and pass it to the Save function that you require. The JSL Scripting Guide would give an example like

this:

biv = bivariate(y(:weight), x(:height));
rbiv = biv << report;
rbiv << Save PDF("path/to/example.pdf");

 However, we have a JMP App object and need to get the report object from that. This might

require some research, but I’ll just go to the conclusion. You first need to get the window list from the

dashboard. This should consist of one window. You can then use that window to save out the PDF file.

Using the app object from our prior code snippet, we end up with:

winList = app << Get Windows();

9

dashWin = winList[1];
dashWin << Save PDF("c:\Discovery Demo\Tucson\DashboardOfPollutants.pdf");

Now we have a static, or unchanging, copy of our output saved to disk.

 The next thing we will do is share our report with the world. JMP 14.2 introduced JMP Public, a

report collaboration site. Now, any JMP 15.0 user can publish a report to the site. Anyone, JMP user or

not, can view and interact with the reports at https://public.jmp.com . There is no charge to use the site.

Just remember that, unless you uncheck “Publish Data”, the data that is used to generate the report will

be uploaded to the site to allow interaction with the report. It is possible to set the publication of the

report such that only the publisher can see it, but by default it will be visible to anyone visiting the site. If

you do not include data, the report will not be interactive. There is a nice UI to publish your reports if

you are not trying to automate your output:

Publish UI for JMP Public

 This is available from the File Menu. Select Publish… and within the UI select the dropdown for

Publish to JMP Public instead of Publish to File.

 We want to automate this though, so that no user interaction is required. The JSL Scripting

Index is our friend again. We will want to look at New Web Report. This will show the syntax for

creating a typical report. The Publish action allows us to push the report up to JMP Public. Since we

already have the report object from our previous work, the job is somewhat simpler. The JSL looks like:

https://public.jmp.com/
https://public.jmp.com/

10

webreport = New Web Report();
webreport << Add Report(app, Title(“Dashboard of Air Quality”));
use_data = "true";
url = webreport << Publish(URL("https://public.jmp.com"),
Username("Someone.somewhere@jmp.com"),Public(1),
Password("My_SAS_Profile_Password"), Publish Data(use_data));
If(!Is Empty(url),
 Web(url)
);

JMP Public requires you to have a SAS Profile already set up to publish to the site. You do not

need this to view reports that are Featured, but you do for everything else. If you want to publish your

reports so that only you can see them, either omit the Public(1) option or use Public(0). Upon running

this script, JMP Public will update and you will see the report tile on the main page:

Report Tile

If you open the report, you’ll see the dashboard in the same layout. You can hover over the

maps to get tooltips with the underlying data.

11

Part of the JMP Public dashboard report

 Once we are satisfied with the output to JMP Public, it is worth running the complete

WorkingScript.jsl file from start to finish. Any instances where input is requested from a user must be

fixed or our automated process will not work. We need to also issue a Quit command in JSL to shut

everything down. For an automated job, we don’t want to leave JMP running because the next job will

start yet another JMP. The easiest command is:

Quit("No Save");

We don’t really need to save because our report is being retained by JMP Public, and our

queries obtain fresh data each day. Now we can work on repeating the task.

 For Windows, the easiest choice is the Windows Task Scheduler. It will provide all the

functionality that we need to run this task daily. Automator is probably your choice on the Mac,

although you can use a cron job if you want to be old fashioned. Showing Automator would take too

long for this talk, but there are good resources on the web to help you out.

 If you have Windows 7, Task Scheduler is available in System Tools. For Windows 10, I find the

easiest thing to do is just type Task Scheduler in the Windows Search bar. On startup the application will

look like:

12

Task Scheduler on Startup

 In the right Actions pane select ”Create Task…” Assign a name to the task so you can easily

remember it. There is usually a surprising amount of system tasks that fill the task library. Now look at

the Security options panel. If you have Windows 7/10 Enterprise and are part of a domain, it is

important to enter your user account. If the task has to log in to complete its task, it will fail if you do

not provide this information. I usually select “Run whether user is logged in or not” and “Run with

highest privileges”. I would suggest in Configure for: that you select the highest level that your

organization can support.

General Pane Completed

13

 Now we can proceed to the Triggers pane and select New Trigger… This is pretty self-

explanatory. You can select if you want to run the task once, daily, weekly or monthly and you can

supply the initial start date and time. For Advanced settings I usually specify ”Stop task if it runs longer

than…” as 30 minutes to avoid stalled tasks. Make sure the Enabled checkbox is selected.

Task Trigger Completed

 Once we have set up the timing of the task, we actually get to specify what task we are trying to

accomplish. We can now select the Actions pane, making sure that “Start a program” is selected next

to Action:. Select the “Browse…” button to navigate to the JMP executable in “c:\program

files\sas\jmp\15”. For the Add arguments (optional): setting, we need to fill in the location of our

WorkingScript.jsl file. In the case of this tutorial, that is “c:\Discovery Demo\Tucson\WorkingScript.jsl”.

Now we can select OK.

Specify the Script to Run

14

 The conditions panel doesn’t really contain anything of interest for our task, so it is fine to move

on to Settings. I usually check “Allow task to be run on demand” because it allows me to test the task

whenever I want. I also usually change “Stop the task if it runs longer than:” to 1 hour because this task

should be done in a few minutes. Finally, I usually specify “Stop the existing instance” because if there

is a stalled instance from a previous run I want to kill it and start anew.

Task Customization

 Now we are finished. We can press OK, and we will be prompted for credentials if we said we

want to run even if we are logged off. This is so the Task Scheduler can supply the authentication to the

OS to run the task.

 Now at the specified time JMP should start and run the script that we have developed over the

course of the tutorial. JMP Public should have a new report appear, and JMP should be shut down. This

is all done invisibly, so the only output we will see is that JMP Public report and any files that we have

explicitly saved to disk.

If you are publishing the same report day after day, you will get a new JMP Public package for

every publish event. If this is what you would like, it is advisable to append some kind of identifier to

the title to make it easy for users to tell the difference between the packages. There is also an option to

replace the package that is already in JMP Public with the newly generated report. There are two steps

to doing this. First, you must publish the package the first time using the steps we have already

discussed. Now, you need to open the report in JMP Public and examine the URL. It might look

something like:

https://public.jmp.com/packages/My-Web-Report/js-p/5c62d6f720e8bb0f94e4d49e

 The really import part of that is the long sequence of numbers and letters at the end of the URL.

That is the package ID. Now you can modify your JSL for publishing to specify the Replace option, which

requires this package ID. I will now look something like:

webreport = New Web Report();

https://public.jmp.com/packages/My-Web-Report/js-p/5c62d6f720e8bb0f94e4d49e
https://public.jmp.com/packages/My-Web-Report/js-p/5c62d6f720e8bb0f94e4d49e

15

webreport << Add Report(app);
use_data = "true";
url = webreport << Publish(URL("https://public.jmp.com"),
Username("Someone.somewhere@jmp.com"),Public(1),
Password("My_SAS_Profile_Password"), Publish Data(use_data),
Replace(“5c62d6f720e8bb0f94e4d49e”));

 Now you’ll have only one report that will be refreshed at the interval that you’ve specified.

 We’ve covered a lot of material with this tutorial, but hopefully you can see the power of the

various features within JMP, and that with a little practice you can quickly produce an automated report

result for others in your organization to view.

Conventions used:

Window panes, static UI elements and JSL keywords are bolded

Buttons / Dialog controls are “quoted and bolded”

Variables / Column names are “quoted and italicized”

