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Abstract

Relational databases are critical for many software systems, holding the most

valuable data for organisations. Data engineers build relational databases us-

ing schemas to specify the structure of the data within a database and defin-

ing integrity constraints. These constraints protect the data’s consistency

and coherency, leading industry experts to recommend testing them.

Since manual schema testing is labour-intensive and error-prone, auto-

mated techniques enable the generation of test data. Although these gen-

erators are well-established and effective, they use default values and often

produce many, long, and similar tests — this results in decreasing fault detec-

tion and increasing regression testing time and testers inspection efforts. It

raises the following questions: How effective is the optimised random gener-

ator at generating tests and its fault detection compared to prior methods?

What factors make tests understandable for testers? How to reduce tests

while maintaining effectiveness? How effectively do testers inspect differ-

ently reduced tests?

To answer these questions, the first contribution of this thesis is to eval-

uate a new optimised random generator against well-established methods

empirically. Secondly, identifying understandability factors of schema tests

using a human study. Thirdly, evaluating a novel approach that reduces and

merge tests against traditional reduction methods. Finally, studying testers’

inspection efforts with differently reduced tests using a human study.

The results show that the optimised random method efficiently generates

effective tests compared to well-established methods. Testers reported that

many NULLs and negative numbers are confusing, and they prefer simple rep-

etition of unimportant values and readable strings. The reduction technique

with merging is the most effective at minimising tests and producing efficient

tests while maintaining effectiveness compared to traditional methods. The

merged tests showed an increase in inspection efficiency with a slight accu-

racy decrease compared to only reduced tests. Therefore, these techniques

and investigations can help practitioners adopt these generators in practice.
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Chapter 1

Introduction

1.1 Overview

Data is highly important in many areas (e.g., banks, health, taxes, and many

more) that enables people and businesses to make informed decisions. Such

influence can affect people’s lives. For example, medical test results (i.e.,

data) that impacts the doctor’s judgment could affect a patient’s health [1].

Hence, data must be available and correct for such crucial situations.

Computer systems store and manipulate data using Database Manage-

ment Systems (DBMSs) through a database instance. DBMSs allow data

engineers to design and build databases that are either categorised relational

(e.g., SQL) or non-relational (e.g., NoSQL). The most popular type are rela-

tional databases [2] and they are engineered using “blueprints” which called

schemas. Thus, each relational database instance must include a defined

schema that define the data structure that enforce how the data is stored

within a database. A schema must described in advance with defined set

of rules and relations. Such as the data structure, relationship between

data, and the permissible data types [3]. This ensures the DBMS stores and

retrieves data while abiding the user’s defined schema. However, wrongly

designed schema can allow unintended storing of incorrect or corrupt data

within the database [4]. Therefore, it might lead users to make wrong as-

sumptions that influence crucial decisions.

Relational database management systems (RDBMSs), such as SQLite [5]

or PostgreSQL [6], are enterprise database engines that administer one or

1



CHAPTER 1 1.1. OVERVIEW

more of relational databases, each specified by a schema. Hence, a schema

can be constructed using the Structured Query Language (SQL) with “CREATE

TABLE” statements, such as those shown in Figure 1.1. This CREATE TABLE

statement describes a table called person, for storing rows of data where each

row corresponds to a person. Nested within the CREATE TABLE statement is a

list of columns (“id” to “date of birth”) that describe the data to be stored

in each row about each person, including first and last names, and gender.

Each column has an associated type, such as a string (represented using the

SQL “VARCHAR” type), integer, and date.

CREATE TABLE person (

id int NOT NULL,

last name varchar(45) NOT NULL,

first name varchar(45) NOT NULL,

email varchar(45) NOT NULL UNIQUE,

gender varchar(6) NOT NULL,

date of birth date NOT NULL,

PRIMARY KEY(id)

CHECK (gender IN (’Male’, ’Female’, ’Other’))

);

Figure 1.1: The illustration of a relational database schema

Underneath the definition of columns (and occasionally in-line with a

column definition — for example, the UNIQUE on the email column) are the

declarations of integrity constraints on the data in the table. For instance,

the PRIMARY KEY integrity constraint enforces the id column value to be unique

for each row of the table. Similarly, the email must be unique as guarded by

a UNIQUE constraint. Columns marked NOT NULL mean that undefined values

using NULL are not allowed to be stored for such columns. Finally, the defined

CHECK constraint only allows one value from the defined list to be selected

(i.e., “Male”, “Female”, or “Other”) and stored within the gender column.

These constraints are significant because they protect the consistency and

coherency of data in a relational database. While a correct schema design

ensures the integrity of the data within the database, inadvertent definitions

(i.e., omitting constraints or adding the wrong constraints) can manifest in

a failure that corrupts the data [7]. Such as not having a UNIQUE constraint

2
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on the email column will allow the multiple persons to be stored with one

email address. Forgetting to define a NOT NULL on a column might lead to

issues, such as a bank account without a person’s name or not having a

starting date for an employee [8]. A developer can also unintentionally add

an integrity constraint, such as a UNIQUE constraint on a column representing

somebody’s first name. Such mistakes may happen in combination, as the

unique constraint may have been intended for a column representing some

distinctly identifiable information, such as an identification number.

1.2 Motivation

Even though many tutorials explain how to avoid making mistakes when

designing a relational database schema (e.g., [9, 10, 11, 12]), data engineers

may incorrectly specify or omit integrity constraints. Since RDBMSs often

interpret the SQL standard differently, a schema may exhibit a different be-

haviour during development and after deployment. Therefore, as advocated

by industrial practitioners [13], it is necessary to test the schema’s integrity

constraints to ensure that behaves as to what an engineer expects.

Since haphazard methods may overlook schema faults, McMinn et al.’s

work [7] presented a family of coverage criteria that support systematic

testing. These criteria require the creation of specific rows of database data

that, when featured in SQL INSERT statements, exercise integrity constraints

as true or false, or, test some particular property of the constraint. Fre-

quently, to satisfy these coverage requirements, certain values may need to

be identical to one another, different, or NULL, across different rows of data.

For example, to violate a primary key (i.e., to exercise it as false), two rows

of data need to be created with the same values for the key’s columns. To

satisfy a UNIQUE constraint (i.e., exercise it as true), values across rows need

to be different. To violate a NOT NULL constraint, a particular column must

be NULL. Manual tests can be created as in Figure 1.2 that shows a tester

trying to exercise the UNIQUE constraint of the person schema (in Figure 1.1)

as true (INSERTs that satisfy the integrity constraints in part (a)) and as false

(INSERTs that violate the UNIQUE constraint in part (b)).

Since it is challenging for a tester to cover all of these requirements man-

3
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1) CREATE TABLE person ( ..... ); 3

2)
INSERT INTO places(id, last name, first name, email, gender)

VALUES (1, 'John', 'Doe', 'john@example.com', 'Male'); 3

3)
INSERT INTO places(id, last name, first name, email, gender)

VALUES (2, 'Jane', 'Doe', 'jane@example.com', 'Female'); 3

4) DROP TABLE person; 3

(a) Test Case 1 exercise the person table as true

1) CREATE TABLE person ( ..... ); 3

2)
INSERT INTO places(id, last name, first name, email, gender)

VALUES (1, 'John', 'Doe', 'john@example.com', 'Male'); 3

3)
INSERT INTO places(id, last name, first name, email, gender)

VALUES (2, 'Jane', 'Doe', 'john@example.com', 'Female'); 7

4) DROP TABLE person; 3

(b) Test Case 2 exercise person table as false

Figure 1.2: Example of test cases for the person table in Figure 1.1. Each
tests must be ran on an empty database. The 3 and 7 illustrate that the
database will accept or reject the inserted data, respectively.

ually (i.e., exercising each integrity constraint), McMinn et al. [14] created a

tool that automatically generates the tests. The tool generates test data to

satisfy each test requirement. The test requirements are also automatically

generated with a given schema and coverage criteria. The state-of-the-art test

data generator is based on the Alternating Variable Method (AVM) [15], a

search-based method that receives guidance from a fitness function [16, 7].

However, the generation of test data with a search technique and random val-

ues can be slow because it will be searching for identical values (e.g., matching

PRIMARY KEY values) and slowly adjusting those values until they are the same.

To aid the process, the AVM may be configured to start with a series of “de-

fault” values that ensure matches are likely from the outset. However, this

can introduce many similarities across different tests in the suite, hindering

both its diversity and potential fault-finding capability [7, 17].

It is also challenging to create test cases that are understandable and

maintainable [18, 19] — mainly when the tests use complex and inter-dependent

INSERT statements to populate a relational database [20]. While automated

test data generators can create test cases that aid systematic database schema

4
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testing [16], the human cost associated with inspecting test output and un-

derstanding test outcomes is often overlooked [21]. Also, tests should be

understandable for inspection, primarily when database schemas evolve [22]

and new tests are automatically generated. This understandability is sub-

jective, with developers having different views of automatically generated

tests [23]. For example, if testers are deciding whether or not the database

will reject a test, some may prefer English-like strings, while others may ap-

preciate simple values such as empty strings. Therefore, it is crucial to create

understandable database schema test cases to support the human compre-

hension of test outcomes that may expedite the process of finding and fixing

faults [24].

Another challenge is that a test suite can include many automatically

generated tests. Thus, these tests take a long time to execute when changing

the schema-under-test (i.e., regression testing) and limit the ability of human

testers to understand them. They also include many and repetitive INSERT

statements that are inefficient while interacting with a database. Therefore,

traditional test suite reduction methods (e.g., [25, 26, 27]) can be utilised to

address this issue with discarding test cases that cover the same requirements.

However, such traditional techniques might not be well-suited to reducing

test suites for database schemas.

This thesis addresses these challenges with many empirical evaluations.

This includes evaluating a new test data generator for its effectiveness, ef-

ficiency, and fault-finding capabilities against AVM. Also, addressing the

human costs associated with inspecting and understanding generated tests.

Finally, the creation of a novel approach that is superior at reducing database

schema tests compared to traditional reduction methods.

5
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1.3 Thesis Aim and Objectives

This thesis aims to investigate and improve automated test data generation

in the context of database schema testing. Thus, this thesis tries to answer

a high-level research question on what are the strategies that efficiently gen-

erate cost-effective database schema tests? Therefore, this thesis answers

this question by addressing the challenges mentioned previously with the

following main objectives:

• To empirically evaluate the effectiveness and efficiency of a domain-

specific test data generator against the state-of-the-art search-based

technique.

• To perform a human study to find understandability factors of auto-

matically generated SQL tests.

• To empirically evaluate and improve traditional test suite reduction

methods in the context of database schema testing.

• To perform a human study to identify testers’ inspection efforts with

differently reduced test suites.

1.4 Contributions of this Thesis

This section outlines the five main contributions of this thesis. The first two

correspond to new test data generators, and the last three contributions are

based on the human oracle cost associated with inspecting generated tests.

The produced contributions are according to the above motivations, and are

as follows:

C1: An Empirical evaluation of a domain-specific test data gen-

erator – An empirical investigation determining the efficiency and effective-

ness of a new domain-specific test data generator compared to the state-of-

the-art (Chapter 3).

C2: An Empirical evaluation of a hybridised test data gener-

ator – An empirical investigation on the effectiveness of hybridising both

the domain-specific test data generator and a search-based technique (Chap-

ter 3).

6
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C3: Identifying understandability factors for database schema

tests – The creation of readable test data generator variants and the de-

termination of the understandability factors within integrity constraint test

data using a human study (Chapter 4).

C4: Evaluating the efficiency of a new reduction technique – The

creation of a domain-specific test suite reduction technique that merges tests

and an empirical investigation of its efficiency and effectiveness compared to

general-purpose reduction techniques (Chapter 5).

C5: Identifying testers’ inspection efforts with differently re-

duced test suites – A human study to identify testers’ inspection efforts of

either reduced tests (i.e., short tests) or merged tests (i.e., long, yet equivalent

tests) (Chapter 6).

1.5 Thesis Structure

This thesis is structured as follows:

Chapter 2: “Literature Review” starts with an overview of software test-

ing, the state-of-the-art test data generation, and test evaluation. The chap-

ter then reviews database testing literature that includes testing of DBMSs,

database interactions, queries, and schemas. Finally, the chapter identifies

research gaps in automated test data generation with reviewing related work

on test data generation inefficiencies, test comprehension, and test suite re-

duction methods.

Chapter 3: “DOMINO: A Fast and Effective Test Data Generator”

presents a new technique that incorporates domain-specific operators into a

random generator to generate test data, called Domino (Domain-specific

approach to integrity constraint test data generation). The chapter empir-

ically evaluates Domino against the state-of-the-art technique comparing

test data generation effectiveness, efficiency, and fault-finding capabilities.

The results and analysis of Domino’s generated test data have directed the

creation of a new hybridised technique that was also empirically evaluated

against the original technique.

7
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Chapter 4: “What Factors Make SQL Test Cases Understandable

For Testers?” presents new variants of previously studied test data gener-

ators to produce more readable tests. These generators are then used in a

human study to evaluate the test comprehension of inspecting automatically

generated tests. The human study aims to find understandability factors of

differently generated test data for database schemas using both quantitative

and qualitative studies. Thus, the results will suggest future guidelines for

SQL testing understandability that might help future test data generators.

Chapter 5: “STICCER: Fast and Effective Database Test Suite Re-

duction Through Merging of Similar Test Cases” presents a novel ap-

proach to test suite reduction called “STICCER”, which stands for “Schema

Test Integrity Constraints Combination for Efficient Reduction”. The tech-

nique discards redundant tests using a greedy algorithm while also merging

them. It aims to provide test suites with decreased database interactions

and restarts, resulting in faster test suite executions and mutation analy-

sis. Therefore, the chapter will empirically evaluate STICCER against three

general-purpose test suite techniques comparing their effectiveness and effi-

ciency of reduction, and reduced test suite impact on fault detection.

Chapter 6: “Can Human Testers Effectively Inspect Reduced Ver-

sions of Automatically Generated SQL Test Suites?” presents a vari-

ant of STICCER to reduce test suites further. The chapter then presents an

empirical investigation comparing the new variant technique to the original

STICCER technique. Subsequently, the chapter presents a human study to

evaluate testers’ inspection efforts with test suites reduced using two differ-

ent reduction techniques: only reduced tests (i.e., short tests) and merged

tests (i.e., equivalent, yet fewer long tests). The human study results will

help testers in the future to select the best reduction technique that produces

easy-to-inspect test suites.

Chapter 7: “Conclusion and Future Work” includes an overall thesis

conclusion with summaries of each chapter’s contributions, limitations, and

recommendations for future research work.
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Chapter 2

Literature Review

2.1 Introduction

Software development is considered to be a craft because it requires develop-

ers to use their eyes, hands, tools, and materials to build software systems.

This craftsmanship can introduce faults into the newly developed software

system [28], this can be due to inadvertently omitting, adding, or changing

code. With further growth of software code, new faults can be introduced

affecting the previously implemented features. For example, some simple

mistakes can manifest in minor software crashes that can irritate users, oth-

ers can cause a loss of an estimated $500 million, for example, the explo-

sion of Ariane 5 rocket after 40 seconds of launching [29]. Hence, software

developers can use testing methods to ensure the implementation correct-

ness. Testing increases the confidence of delivering a highly correct soft-

ware system [30, 31]. Therefore, software testing is a crucial part of any

software development life cycle.

Databases are an integral part of most software applications [32]. They

store and manage the software’s data, and they are particularly neglected

for testing because they are assumed to be correct. Despite that databases

are subject to modifications throughout an application’s lifetime which can

cause failures [33, 34, 35, 22]. Therefore, industry experts recommend testing

databases rigorously [13, 34, 33]. This motivated researchers to investigate

and create testing methods for databases to be used throughout the software

development life cycle.
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Software testing can consume large amounts of development time if done

manually, leading most software projects to dedicating 50% of the cost to-

wards the testing phases [31, 36]. Motivating researchers to create meth-

ods to automate testing by generating test data for both software code and

databases. Thus, helping to increase the system correctness and lower the

cost of writing tests.

The structure of the literature review is as follows: The first section

presents an overview of software testing concepts, the state-of-the-art auto-

mated testing methods, and the evaluation of automated tests. The second

section reviews relational databases basics, database testing methods, and

the state-of-the-art test automation techniques. Finally, a summary of re-

search gaps in automated relational database testing.

2.2 Software Testing

This section will introduce the basics of software testing in general. Then

introducing the software testing automation methods, such as Search-Based

Software Testing (SBST).

2.2.1 Overview

Amman and Offutt have emphasised the importance of testing within the

software development cycle [30]. They reported that software artefacts, such

as source code requires developers to test any given requirements for qual-

ity assurance purposes and ensuring the system’s correctness. That is, any

software artefact should work according to the given requirements. However,

testing has a limitation of only “show[ing] the presence of bugs, but never

to show their absence” as stated by Dijkstra [37]. A failure is defined as an

incorrect behaviour of a requirement which caused by a fault. Therefore, a

fault is the manifestation of an incorrect internal state (i.e., a fault within

the code). Hence, testing is the process of discovering these faults.

Software testing has many levels that are categorised by the location (or

grouping) of tests within the software, such as unit, integration, and system
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testing. Unit testing requires testing each function within a system. For

instance, in the context of Object-Oriented Programming (OOP), unit tests

are performed on each class and its methods. Integration testing checks the

interaction, or integration, between components (e.g., different classes). Sys-

tem testing ensures that the full software system runs correctly with all the

user’s outlined requirements (i.e., technical, functional, and business require-

ments).

Software testing methods can be categorised as conceptional views of a

box (i.e., the software artefact), such as the White-box, Black-box, and Grey-

box approaches. That is, if testers have a view of internal structures while

testing (i.e., the software code), then this is considered a white-box (i.e.,

transparent) approach. However, if testers have no knowledge of the internal

structures, then this is considered a black-box approach (e.g., like normal

users). The combination of black and white box approaches is considered

as a grey-box. For instance, a tester exercises the software with inputs and

expected output (i.e., black-box), subsequently reviewing the functions that

were executed (i.e., white-box).

Software testing can have other criteria that are non-functional. That

is, testing how well the system behaves rather than to only what it does.

For example, testing the performance of a system (response times), security

concerns, or its usability and accessibility.

Most software test data generation methods require the knowledge of soft-

ware internals to exercise the software with test data. These methods assume

that the developers have knowledge of the internal structures of a program

to evaluate it with the generated test data. Henceforth, this literature review

will focus on white-box testing as automated methods

2.2.2 White-box Software Testing

A white-box testing approach is usually applied at the unit testing level. A

unit test includes inputs and expected outputs to exercise a piece of code.

Unit tests are also referred to as test cases because they test a scenario (i.e.,

the code or test requirement) with a given input. Therefore, test cases can

be grouped a test suite, depending on covered code or test requirement.
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The construction of test requirements can be based on a code coverage

criterion in white-box testing. Such that each test case can cover part of the

software code. Some basic code coverage criteria include the following:

Statement Coverage – covering and executing a set of code statements.

Function Coverage – covering and executing a function.

Branch Coverage – covering and executing branches (i.e., control struc-

ture, such as IF statements).

Logical Coverage – covering and executing boolean expressions that must

evaluate to either true or false.

Modified Condition/Decision Coverage (MCDC) this requires the tests

to invoke each entry and exit of a program, each condition, and each

decision must be invoked at least once with every possible outcome.

A statement coverage criterion is defined as simply covering required code

statements by a test case. For example, a test requirement state that each

line statement in the program must be covered/exercised at least once. The

function coverage criterion requires a test to cover a one or multiple func-

tions in a system. For example, exercising each function with inputs and

expected outputs.

1 if (x > y) {

2 z = 1;

3 } else {

4 z = 0;

5 }

n0

start

n1 n2

n3

x > y x ≤ y

z = 1 z = 0

Figure 2.1: Control Flow Graph code fragment example.
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A branch coverage criterion uses the structure of a system to create test

cases. This structure is observed from the program abstraction graph that

represents both the control and data flow. Thus, this criterion requires cover-

ing each part of the graph. For instance, Figure 2.1 includes an IF statement

that can be represented in a graph. The graph includes nodes and edges,

where a node represents a function, source code lines, or a condition (i.e., a

control). An edge represents the entry or exit of each node. Therefore, the

branch coverage criterion requires tests to cover each node and its edges.

The logical coverage criteria test the logical expressions within a system.

Such expressions can be sourced from decisions (i.e., conditions), finite state

machines, or requirements. These expressions are represented as predicates

that returns a boolean result, true or false. For example, A < 5 ∧ B > 100

predicate must be evaluated as true by one test case and as false by another

test case. However, a predicate can have multiple clauses joined by logical

operators (e.g. ∨ denotes OR and ∧ denotes AND). That is, a clause is a

predicate without logical operators. For instance, A < 5 ∧ B > 100 includes

two clauses of A < 5 and B > 100. This leads the logical coverage to have

three criteria: predicate, clause, and the combination coverage.

The predicate coverage criterion requires testing predicates to be evalu-

ated as true or false. Similarly, the clause criterion exercises each clause of

the predicate but does not ensure the predicate is fully covered. Therefore,

to cover both the clauses and predicates, a tester must use the combinations

of both the predicate and clause criteria that is called combination coverage

criterion.

The creation of tests with one or multiple criteria manually can be a

tedious task. This motivated many researchers to create automated methods

to generate test cases with their expected input and output (i.e., test data).

The following section will explore these automated testing techniques.
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2.2.3 Automated Test Data Generation

Symbolic Execution

Symbolic execution is a method that was first introduced in 1979 [38, 39].

It does not execute the program, but it assigns symbolic values to variables

to follow the path of the source code structure. Thus, it generates algebraic

expressions from the constraints within the system. These are passed to

a constraint solver to satisfy test requirement with applicable values. For

example, going back to Figure 2.1, to generate values to hit node 1, the

symbolic execution assign value x and y symbols δ and σ, respectively. This

leads to generate the following expression δ > σ which needs to be solved

by a constraint solver. The constraint solver generates values to satisfy the

expression and these values are used for the creation of test cases. Many

researchers have surveyed symbolic executions [40, 41, 42, 43].

Random Test Data Generation

Random testing is a technique that executes the program with randomly

generated inputs (test data) to observe the program structure [44]. This will

likely fail to find globally optimal inputs (i.e, solutions/tests that will exercise

the target program) because it might search a small segment of the whole

input space [43]. Random search is considered unguided test data generator

that does not have any defined goal to test a targeted part of the software

code. Therefore, research created techniques that devised a goal to test a

system using what referred as a fitness function (i.e., goal-oriented search)

that evaluates generated inputs (i.e., tests/solutions) on their effectiveness

of covering the code. They are considered guided generators that will be

reviewed in the following section.

Search-Based Software Testing

Search-Based Software Testing (SBST) is the application of meta-heuristic

search techniques to automatically generate test cases for a specific program.

It uses techniques such as Genetic Algorithm (GA), Hill Climbing (HC), and

Simulated Annealing (SA). SBST research has captured the interest of many
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researchers in recent years [45]. There are also many surveys discussing and

reporting on SBST, like McMinn (2004) [43], Afzal et al. (2009) [46], and

Anand et al. (2013) [47]. They have discussed some search techniques in

software test data generation and reported on the use of GA, HC, and SA

implementations to automatically generating tests that are random in nature.

Hill Climbing Algorithm (HC): The simplest search algorithm that

uses a fitness function, as illustrated in algorithm Figure 2.2. Hill Climbing

selects a point randomly within the search space, then checks the closest

solutions in that space (within the neighbourhood), and if the neighbouring

solution is found to have a better fitness score it will then ‘move’ to this new

solution. It will then iterate through this until there is no better solution.

The Figure 2.2 states a choice of an ascent strategy, meaning how the search

moves around the neighbours. The “steepest” ascent strategy means that

all neighbours should be evaluated, and the best solution is selected for the

next move. However, a “random” ascent strategy means that neighbours

are selected at random to evaluate its fitness, and if the selected neighbour

solution is better, it will be selected for the next move. HC generate one

solution at time, evaluating the neighbour depending on the ascent strategy

and only selecting the best and not accepting worse solutions to rigorously

search other solutions. Thus, this will likely lead the technique to select

best solution within a small segment of possible solutions (i.e., stuck in local

optima), while there are better solution in another segment, as illustrated in

Figure 2.3. However, to mitigate this issue the search technique should be

restarted multiple times to find the global optima as in Figure 2.4.

1 Select a starting solution s ∈ S
2 repeat
3 Select s′ ∈ N(s) such the obj(s′) > obj(s)

according to ascent strategy
4 s← s′

5 until obj(s) ≥ obj(s′),∀ s′ ∈ N(s);

Figure 2.2: Hill Climbing Algorithm — in high level description, solution
space S ; neighbourhood structure N ; and obj, the objective function to be
maximised, as illustrated by McMinn [43].
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The Alternating Variable Method (AVM) [15, 14] is a heuristic that uses

a variable search process called Iterated Pattern Search [48] which accelerates

the HC search method. That was applied successfully in SBST [49, 7]. The

AVM tries to explore with moves called “exploratory”, in the direction of an

improved fitness, where the “pattern” of those movements is considered. The

pattern steps iteratively increase in size, if improvements in fitness remain. If

the fitness hits a local optimum, the technique will restart the search. This

approach was used to automate test data generation in database testing,

which will be discussed in the following section.

Input Domain

Fitness

Figure 2.3: Hill Climber searching
for a solution and getting stuck in
Local Optimum.

Input Domain

Fitness

Figure 2.4: Restarting the Hill
Climber and finding Global Opti-
mum.

1 int compare(int x, y) {

2 z = null;

3 if (x > y) {

4 z = 1;

5 } else {

6 z = 0;

7 }

8 return z;

9 }

Figure 2.5: Example of a compare function

Let’s consider generating test data that targets a branch to be true, in

Figure 2.1, using the AVM search technique. It will first generate random

inputs for x and y, assuming x = −10 ∧ y = 1, therefore exercising the false
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1 void testCompare() {

2 int x = 2;

3 int y = 1

4 int z = compare(x,y);

5 assertEqual(z, 1);

6 }

Figure 2.6: An illustrative test example for the compare function in Fig-
ure 2.5.

branch. To exercise the true branch, the fitness function will be y − x + K

applied and minimised to evaluate the generated values (where K is a small

positive number, let’s say 1), making the current random generated value

have a fitness score of 10. So, AVM will start with “exploratory move” on

each input variable, either increasing or decreasing the values. Suppose a

value can change as ±1, if the move on x value is decreased the test will still

hit the false branch (i.e., x = −11∧y = 1) having a worse fitness score of 11.

However, if the move increased (i.e., x = −9∧ y = 1) it will get closer to the

target branch and the solution fitness score of 9 is better than the prior score.

Incrementally the x value will again create a better fitness score of 8 with

x = −8. The focus on variable x leads to a “pattern” of better scores that the

next move will consider this pattern until the target branch is exercised or the

score becomes worse. Making the pattern applied as multiplying the prior

change by two (±1× 2) for each iteration. Going from x = (+1× 2)− 8 = 6

to x = (+2 × 2) − 6 = −2, then to x = (+4 × 2) − 2 = 2. Therefore, with

only 5 moves the solution was found with x = 2 ∧ y = 1 and fitness score of

−2. On the other hand, if x = 0∧ y = 1 are the initialised values, AVM will

start alternating the x variable to be 1 or −1, which will not hit the true

branch. After so, AVM will jump to the y variable and explore it with the

move of x = 1 ∧ y = 0 hitting the targeted branch.

Simulated Annealing (SA): inspired by annealing of materials with

the use of heat temperature to control the search. This is to remove the need

to restart the algorithm and overcome the issue of local optima. This is by

allowing the algorithm, illustrated in Figure 2.7, to accept poorer solutions
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with lower fitness score, using a variable called ‘temperature’. It initially

sets the temperature to ‘high’, then it will ‘cool’ down as the algorithm runs.

While the temperature variable is high, the algorithm will accept, with high

probability, any solutions that has a lower fitness score than the current

solution. This will lead the algorithm to jump around optima, early on of

the execution. The probability of accepting worse solutions will be high, as

the temperature is being reduced to a ‘freezing point’, therefore leads the

algorithm to focus on areas of the space that has an optimum solution. This

technique has been used in software testing but not in database testing [50].

1 Select a starting solution s ∈ S
2 Select an initial temperature t > 0
3 repeat
4 it← 0
5 repeat
6 Select s′ ∈ N(s) at random
7 ∆ e← obj(s′)− obj(s)
8 if ∆ e < 0 then
9 s← s′

10 else
11 Generate random number

r, 0 ≤ r < 1
12 if r < e−

δ
t then

13 s← s′

14 end

15 end
16 it← it+ 1

17 until it = num solns;
18 Decrease t according to cooling schedule

19 until Stopping Condition Reached ;

Figure 2.7: Simulated Annealing Algorithm — in high level description, so-
lution space S ; neighbourhood structure N ; num solns, the number of con-
sidered at each temperature level t ; and obj, the objective function to be
minimized, as illustrated by McMinn [43].

Genetic Algorithm (GA): inspired by biological evolution that arises

from reproduction, mutation, and survival of the fittest, the GA concept

is based on the Darwin’s theory of evolution. Like HC and SA, the GA

must use a fitness function to rate or score solutions. The algorithm as il-

lustrated in Figure 2.8 starts with a set of chromosomes (i.e., solutions or
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test data), also called individuals, in a population at random. The popula-

tion is a set of solutions that are sampled from the search space. The GA

then evolves the population with new individuals (solutions), each evolution

is called a generation, and each generation evolves from the fittest individ-

uals from the previous population. Over many generations, new solutions

are generated and added to the new population until a defined number of

evaluations are reached.

The evolution within GA uses three types of operators: selection, crossover

(or recombination), and mutation. The selection operator can be used to

select the fittest individuals (i.e., the best solutions with the best fitness

scores) that are considered during the next evolution. The crossover op-

erator can generate new individuals for each generation by selecting two

individuals (i.e., parents), then splitting the individual at a random point

and combine them by crossing them over. For example, if the test data of

two parents are {1, 2, 3, 4} and {5, 6, 7, 8}, then the new crossed over test

data are {1, 2, 7, 8} and {5, 6, 3, 4}, if assumed that the split in the middle.

These new individuals are usually called an offsprings. The GA also can mu-

tate these individuals using the mutation operator with small changes (e.g.,

{1, 2, 7, 8} → {1, 2, 7, 10}).

1 Randomly generate or seed initial population P
2 repeat
3 Evaluate fitness function of each individual in P
4 Select parents from P based on selection mechanism
5 Recombine parents to generate a new offspring
6 Construct a new population P ′ from parents and offsprings
7 Mutate P ′

8 P ← P ′

9 until Stopping Condition Reached ;

Figure 2.8: Genetic Algorithm pseudo-code, as illustrated by McMinn [43].

Global and Local Search. The above algorithms are classified either

global or local search techniques. The global search samples solutions from

many areas of the search space, however, the local search uses one solution

and focuses on one area of the search space (i.e., a neighbourhood). This

means a GA technique is considered as a global search technique, meanwhile
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the other two algorithms, the HC and SA, are local search technique.

Search-Based Software Testing applies these algorithms to cover the pro-

gram code using a test criterion such as branch coverage. The testing crite-

rion evaluates the generated test data with fitness values. For example, the

implementations of EvoSuite [51] and IGUANA [52] both use the aforemen-

tioned algorithms. Thus, the SBST research community tries to identify an

optimal set of test data that use a coverage criterion, or multiple criteria,

in a reasonable time. For example, EvoSuite implements a GA method to

generate test data for Java programs and it represents each individual as a

test suite (i.e., including test cases). It can generate test suites that cover up

to 71% of branches, while random search got 65% coverage all with a bud-

get of one minute [53]. However, there are limitations with using generated

test data that must be evaluated/inspected by a tester or a specification for

its correctness. This is referred to as the oracle problem. If inspected by a

human tester, the generated test data can hinder this task as the generated

test data can be long and unreadable. Coverage-oriented test data genera-

tion can generate inadequate tests; therefore, mutation analysis is used to

evaluate such generated test data which is explained in the next section.

2.2.4 Mutation Analysis

Mutation Testing, or mutation analysis, is used to evaluate the quality of

existing test cases [54]. This is done by seeding systematic faults in the pro-

gram code to make it ‘mutated’ (or faulty) code, then executing the test cases

against it and review if the fault was detected. If any test case fails then the

mutant is killed (i.e., detected). Otherwise, mutant is considered alive (i.e.,

undetected). This process determines the quality of the test suite, and the

mutation score (i.e., detection effectiveness) is calculated by summing all the

killed mutants and divided by the total generated mutants. The advantage

of mutation testing that it evaluates the fault-finding capabilities of a test

suite, rather than relying only on coverage criteria. That is, coverage criteria

only measure the executed code and are not able measure fault detection.

Mutating the code requires mutation operators that change a specific

code. The most common operators are statement deletion, swapping of
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boolean expressions or arithmetic operators. For example, replacing a sum-

mation sign with a division, or changing of some boolean relations with others

such as greater than with less than relations. Mutation testing has been used

in relational databases to validate queries and schemas that will be described

in the following section.

Listing 2.1 and 2.2, shows a real example of mutation testing. This mu-

tates Line 1 by changing the operator from a “greater than” to a “less than”

condition on the mutated code. The test case must kill the mutant which

means it must fail as a test, if not, the test has not exercised the actual

condition been given.

Listing 2.1: Original code

1 if (x > y) {

2 z = 1;

3 } else {

4 z = 0;

5 }

Listing 2.2: Mutated Code

1 if (x < y) {

2 z = 1;

3 } else {

4 z = 0;

5 }

Mutation analysis consume time as there can be many generated mutants

(i.e., many versions of the code) and executing test suite on each mutant.

For example, many test cases are executed and validated (i.e., regression

testing), and mutation analysis is used to assess their fault-finding capabil-

ities. This leads to long waiting times for developers to get the results of

failing or passing tests [55]. Also, requiring developers to inspect the tests

to reason about their failures, especially with automatically generated test

data. Therefore, test suite can be reduced using reduction techniques (i.e.,

obtaining a representative smaller test suite with fewer test cases) to lower

their running times and inspecting the test suites. The following section will

review related work in of test data evaluation (i.e., inspecting tests).

2.2.5 Test Data Evaluation (The Oracle)

The test oracle is a process that identifies the correct behaviour of the System

Under Test [56]. For example, the inspection of the automatically generated
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inputs with respect to the expected behaviour. Therefore, test oracles can

be constructed and used to inspect the test data from many sources, such

as specifications or program executions. The oracle construction has diffi-

culties because the lack of formal specifications that creates a higher oracle

cost [57], or the expensive computations to execute the system under tests.

Therefore, generated test cases usually do not have an oracle making this

known as the “oracle problem” as illustrated in Figure 2.9. Thus, when no

specifications are found, the automatically generated tests are usually in-

spected/evaluated by humans (i.e., testers or developers) manually, however,

this a time-consuming task. Barr et al. [56] have discussed many types of

oracles extensively, such as Specified, Derived and Human oracles which will

be reviewed in the following sections.

The Oracle

Data
Generation

Inputs

System
Under
Test

Execution Evaluation

Specifications

Expected
Output?

Actual
Output

Output

Pass/Fail

—3
—3
—7
—7

Figure 2.9: An illustration of the oracle problem.

Specified Test Oracle

An oracle information can be sourced from the specification, hence the name

Specified Test Oracle. The sources can be specifications, models, finite state

machines, and many more. Specifications are documentations of how the

system should behave, and they can be informal or formal. Many software

systems have informal specification that rely on human natural language [57].

Whereas formal specifications are methods of documenting exactly how the

system should behave using mathematical based techniques. They can be

written using notations such as Z language [58], and Abstract Machine No-

tation (AMN) in the B-Method [59]. These notations can be used to generate

test oracles to ensure that the system under test behaves correctly. However,
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using specifications can be limiting as they are lacking within most systems,

too abstract, and might be infeasible to use. Others experimented with fi-

nite state machines to construct test oracles [60]. While some used assertions

within the program code to create assertion-based test oracles [61, 62].

Derived Test Oracle

Deriving the oracle information from documentation or system executions

can be categorised as Derived Test Oracle. That are generated when spec-

ifications are not available, and they can be pseudo-oracles, metamorphic

relations, invariant detection, and many more.

Documentation can provide information to construct test oracles such as

sequencing informal text to formal specifications [63]. Another test oracle

can be sourced from a version of the system that was written with a different

programming language and by another team where the original specifica-

tions did not change. This version can be referred as a pseudo oracle that

can be executed in parallel with original system using the same test data to

derive a test oracle. If the system result is equal, then the original program

is considered valid, otherwise it indicates presence of faults in the program

or requirements [64]. Therefore, multiple versions of the system can be gen-

erated automatically using genetic programming methods [65] or the use of

testability transformations [66].

Program invariants (i.e., constraints that always hold true) can be used

to derive test oracles [67]. They can be automatically detected using a tool

called Daikon [68] that executes the program with test data. Detected in-

variants can show program behaviours and are used to check the program

correctness (i.e., deriving the test oracle).

Derived test oracles are computationally expensive as they require the

analysis of one or many sources that infer an oracle. Importantly, inferring

derived test oracles can be inaccurate and include many false positives [56].

Human Test Oracle

The effort required by a human acting as an oracle for a test suite — that

is, understanding each test case and its outcomes, reasoning about whether
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a test should pass or fail and whether the observed behaviour is correct or

otherwise — is referred to as the “human oracle cost” [56]. Human oracle

costs are either quantitative or qualitative. It is possible to decrease the

quantitative costs by, for instance, reducing the number of tests in a suite

or the length of the individual tests [25, 26, 27]. Strategies to reduce the

qualitative costs often involve modifying the test data generators so that they

create values that are more meaningful to human testers [69, 70, 24, 71].

Automated test data generation can be helpful to lower the cost of written

tests. However, it comes with a cost of manually inspecting test cases. This

oracle problem was not tackled in database schema testing as it will be shown

in future sections. The following section will review relational databases and

their testing methods.

2.3 Database Management Systems (DBMS)

Database Management Systems (DBMS) allow users to organise, store, re-

trieve, and modify data within a database instance [72]. Organisations con-

sider their databases as the most valuable asset and they are the backbone

of most software systems [73]. Databases can be relational or non-relational.

These categories can be considered too generalised because the relations

between data can be applied to non-relational databases, such as graph

databases. However, Sint et al. [74] categorised databases depending on

the methodology of storing the data that can be structured, semi-structured,

or non-structured. Structured data layout can be applied in advance us-

ing a schema. A semi-structured database, known as schema-less, does not

require a layout implemented in advance. However, some semi-structured

databases can have the option to create such layout (i.e., semi-layout), which

are called schema-optional. This section focuses only on relational databases

(i.e., structured databases) because many testing methods have been created

for them.
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2.3.1 Relational Databases Basics

Relational databases enable users (or database engineers) to create a collec-

tion of organised data using tables, columns, data types, and constraints.

That is, designing a schema in advance which has a set of rules that define

the structure of data in a database [72].The concepts of Relational Database

Management Systems (RDBMSs) introduced by Codd [75] are based on set

theory and have two-dimensional tables with rows and columns. RDBMSs

require schemas to navigate the databases. A schema defines the tables and

their structure with relationships. Each table has columns that store a piece

of data and can impose restrictions on data types, value uniqueness, and if

they can be nullable. RDBMSs have a feature of using a high declarative

language interface to interact with data, called Structured Query Language

(SQL) which can create, access and manipulate data.

SQL can be explained with a simple teacher-course database example with

the following set of requirements: (1) A teacher record must have a unique

identifier (ID), a full name, and date of birth (dob) and the teacher must be

over 18 years old; (2) A course record must also have a unique ID, name, and

starting date; (3) Each course must have one teacher. These requirements

can be designed into a schema using SQL CREATE TABLE commands. Thus,

the schema should include two tables, teacher and course, as illustrated in

Figure 2.10. Each table must have a set of columns; hence, the teacher table

will have teacher id, fullname, and a dob. Each column must have a data type

such as int for a numeric and varchar for characters. As a requirement, the

teacher ID must be unique, and the date of birth must be over 18 years old.

Therefore, the UNIQUE constraint and a CHECK constraint to defend and preserve

the consistency and coherency of the required data. A PRIMARY KEY constraint

is also used to make the identifier unique, like the UNIQUE constraint. For

this example’s sake both the PRIMARY KEY and UNIQUE will be used together.

Like the teacher table, the course table is built using data types and integrity

constraints. However, the last requirements require each course to have one

teacher, thus the FOREIGN KEY constraint was used in the course table to be

linked with a teacher ID.
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1 CREATE TABLE teacher ( 7 CREATE TABLE course (

2 teacher id INT PRIMARY KEY, 8 course id INT PRIMARY KEY UNIQUE,

3 fullname VARCHAR(255) NOT NULL, 9 course name VARCHAR(255),

4 dob DATE, 10 starting date DATE,

5 CHECK (dob < (‘now’, ‘-18’) 11 teacher id int

6 ); 13 FOREIGN KEY (teacher id) REFERENCES

14 teacher(teacher id)

15 );

Figure 2.10: An example of a course schema to illustrate the use of creating
schemas using SQL CREATE TABLE command.

The SQL gives a rich number of commands to add, retrieve, modify and

remove records. In Figure 2.11 a record is added in the teacher table using

the INSERT command (Line 1), retrieve all rows in the teacher table can be

done with the SELECT command in Line 2. However, retrieving one record

from the teacher table where the ID is 1 can be done with the SELECT and

WHERE commands (Line 3). Updating a record (i.e., modifying a piece of data),

Line 4 uses the UPDATE command to change the date of birth for a teacher

record that has an ID of 1. Deleting a record can be done using a DELETE

command, Line 5. SQL also can create more complex queries using JOINs

and GROUP BY.

1) INSERT INTO teacher (teacher id, fullname, dob) VALUES (1,’John’,23-10-1990);

2) SELECT * FROM teacher;

3) SELECT * FROM teacher WHERE teacher id = 1;

4) UPDATE teacher SET dob=11-11-1911 WHERE teacher id = 1;

5) DELETE FROM teacher WHERE teacher id = 1;

Figure 2.11: Demonstrating SQL queries

In relational databases, there has been major research development re-

garding software testing and the programs that are reliant on them. If the

DBMS or even the database has any faults then the application that relies

upon it would be error prone, which leads to either data loss or inconsisten-

cies of the data stored [76, 20]. Therefore, the following sections will cover

related work on testing of relational databases such as DBMSs, database

interactions, queries, and the focus of this thesis testing schemas.
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2.3.2 DBMS Testing

DBMSs are important to manage data and therefore must be tested. Test-

ing ensures that users retrieve the expected query results. This motivated

many researchers to create testing methods for relational DBMSs [77, 78, 79].

In order to test a DBMS, testers must populate the database with data

and produce a set of queries with their expected results. However, with

a given schema, there is an enormous number of queries that can be cre-

ated which target different parts of the DBMS. Automatically generating all

possible queries according to a given criterion is considered as a ‘sampling’

approach [77, 78, 79]. However, producing queries systematically to test cer-

tain parts of the DBMS is considered as ‘systematic’ approach [80, 81, 82, 83].

These approaches require the database to be populated with data to exercise

the queries with either a given a set of queries or a schema. Therefore, this

section will discuss the techniques relating query and data generation.

Query Sampling Approaches

There are many test automation techniques that generate test queries for

testing DBMSs such as random techniques, constraint solvers, and search-

based techniques. Slutz [77] was the first to introduce an automated tool

called RAGS (Random Generation of SQL) for relational DBMSs that ran-

domly generates queries for enterprise systems. This tool was used to gen-

erate random queries based on a given schema to evaluate the database loss

of connection, compiler errors, execution errors, and system crashes. There-

fore, successful queries that crash the system will be saved for regression

testing. RAGS work on a pre-populated database and then generates queries

by traversing the SQL statement tree and randomly adding or modifying

elements on the statements that create more complex SELECT queries. The

addition or modification can be on the columns, tables, WHERE conditions, and

group clauses. The results of running the queries on different versions of the

DBMS are then compared. If they are different, then the assumption that

one of them is faulty. This tool can generate up to three million queries per

hour and helps find bugs within a DBMS.
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RAGS was improved by Bati et al. [78] using a genetic algorithm (GA)

to generate SELECT statements that cover a goal. With a pool of queries,

the algorithm runs by ranking each statement depending on the goal. Thus,

using RAGS to mutate the queries and generate new ones for the next eval-

uation. The fitness function evaluates the queries with the number of paths

discovered within the DBMS by checking the logs and execution time. Thus,

trying to cover most of the system. The new GA technique was compared to

the original technique (i.e., RAGS) and achieved around 29% more coverage

with both techniques having the same time budget.

QGEN is a technique that was proposed by Poess and Stephens [79] to

generate queries with a given template language. That is, creating template

of variables. The technique then generate data randomly with a predicable

distribution set. For example, generating random years in a query with an

assigned to a variable range between 1900 and 2000. The technique was not

rigorously evaluated but it can be used to test the performance of DBMSs.

Query Systematic Approaches

This approach aims to test the DBMS in a structured way. That is, us-

ing a model of the system’s constraints and constraints solvers to gener-

ate queries [84]. Therefore, the constraint solver must be given a described

schema in Alloy language format to generate all possible valid SELECT queries.

The queries include many elements such as grouping or joins or even ag-

gregation operators. These queries are meant to cover all elements of the

schema and test against the DBMS. However, the technique can generate

many queries depending on the given schema. For example, Khalek and

Khurshid [84] generated over 27,000 queries in around two minutes for a sim-

ple two table schema and the DBMS can take a long time to execute such

queries.

Automatically populating DBMSs

Testing a DBMS requires the database to be populated with rows for the

query to return results. Thus, it needs to be populated either with prior

knowledge of the queries that will be executed, or with data that exhibit the

schema design. The former is categorised as ‘query-oriented’ approach [80,
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81, 82, 83] and the latter is ‘schema-oriented’ approach [85, 86].

Query-oriented approaches can help in testing targeted parts of the DBMS

by constructing the database with specific data to satisfy results for queries.

There are tools that generate the test data automatically such as QAGen [80],

DataSynth [81, 82], and ADUSA [83]. QAGen generates data with user

defined constraints of the schema and the queries. For example, the user can

define the number of rows for each part of a given query using cardinality

constraints. That is, the course table is 100 rows to be generated for SELECT

queries whereas JOINs and other operations can have their own sizes. QAGen

will then generate and guarantee the number of rows retrieved by a given

query and schema. This generation will help testers to get the desired data

of a query and help to test a range of DBMS tasks such as memory managers

and query optimisers. The study showed that QAGen produced 10 megabytes

of test data for each query in ∼14 minutes and up to 1 gigabyte in ∼27 hours.

DataSynth [81, 82] generate test data similar to QAGen however it pro-

duces data simultaneously for many cardinality constraints rather than gen-

erating data for each query. Using integer linear programming compared to

QAGen which uses a constraint solver, DataSynth was more efficient to gen-

erate test data compared to QAGen. For instance, DataSynth solver took

under 5 seconds compared to QAGen solver that took over 10 minutes for

the same query that required 1 gigabyte of test data.

The Alloy language was used to model queries and schemas to gener-

ate test data. An approach Khalek et al. [83] created to utilise the Alloy

Analyser for generating test data, called ADUSA. If possible, the analyser

tries to satisfy the given constraints with data, guaranteeing returned data

for the query. The analyser results can be compared to the DBMS results

that removes the need of a test oracle or other DBMSs for comparisons. The

empirical evaluation of ADUSA showed 1,000 test databases were gener-

ated in under 78 seconds for a five-table schema that included FOREIGN KEYs.

However, the queries are simple and only had a where predicate. If more

rows are required, the generation time will take significantly longer. Their

results showed that ADUSA successfully detected bugs in commercial and

open source DBMSs.
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Producing test data with prior knowledge of queries and schemas can

be helpful to control the tests and the amount of results returned by the

DBMS. However, if testers want to test the DBMS on its structure and re-

lationships of the schema without prior knowledge of the queries, they can

use the schema-oriented approach. Therefore, generating large amount of

data for a given schema. For instance, Bruno and Chaudhuri [85] created a

technique that annotates the schema to generate data, referred to as flexi-

ble database generation. The technique employed statistical distribution to

generate test data as normal or uniformed data. It also ensures that the

data does not violate the integrity constraints defined in the schema and the

relations between tables are upheld. The tester can annotate the schema and

select a statistical distribution with a size variable (i.e., the number of rows)

and it will automatically generate data. The size variable can be used to

test the DBMS performance. This technique showed it can generate ∼1GB

of data around 13 minutes, translating to 10.3 million rows.

Houkjær et al. [86] created a schema-oriented approach that utilises a

graph model (i.e., edges and nodes) to represent a schema. The node in the

graph represents table columns, data types, and the number of rows required.

The edges represent the relations between nodes (i.e., FOREIGN KEYs). The

graph then is used to generate data and populate the database by traversing

the graph, upholding the relationships of the schema. This technique gener-

ated 1GB of data within 10 minutes. Both the graph model and annotation

methods can be useful to generate data for a given schema. However, the

data does not guarantee queries to have returned results.

All aforementioned studies focus on testing the DBMS, the large system

that manage databases. However, the work in this thesis focus on testing

database schemas. Nonetheless, the following section explore the related

research with database interaction and query testing.

2.3.3 Database Interaction Testing

Testing DBMSs does not ensure the correctness of the application and database

interaction. Thus, testing the application that uses the database to store the
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data is more challenging. That is because the application state can be influ-

enced by the data within a database. For example, queries embedded within

the application can be faulty. This motivated some researchers [87, 88, 89, 90]

to test the interactions between databases and applications which can be

called “database application testing”. For example, fault-based testing was

used by Chan et al. [88] with mutating the database entity-relationship

model (i.e., a schema model). They introduced seven mutation operators

that change the model with semantic mutants (i.e., that change the meaning

rather than the code). Therefore, they can be tested against the embedded

SQL queries. However, this concept has not been prototyped and empirically

evaluated.

The use of data flows between a program and the database interaction

can be tested using criteria introduced by Kapfhammer and Soffa [87]. The

testing criteria were based on def-use (i.e., variable definition and its uses

within a program) that ensures test cases capture the interaction between

the program and the data store. That is, observing the changes in entered

values within a program and the storing of these values. They showed that

two applications had test suites that significantly overlooked the database

interactions when using def-use testing methods. Therefore, their criteria

can be used to test database applications and test data generation based on

these criteria.

Many others have created their own coverage criteria to test database

applications [91, 92]. Such as using a command-form (i.e., SQL commands

issued to the database by the application) criteria [92]. Another proposed a

structural coverage criterion that requires all the conditions within an SQL

query (i.e., FROM, WHERE, and JOIN) to be tested [91].

Chays et al. proposed a framework called AGENDA that aims to gen-

erate test cases that check the program queries, retrieved results, and the

database states [89]. That is, parsing the schema, populating the database

with satisfying the integrity constraints. Then, generating test data is used

and entered into the application. Therefore, the test data and the results

are checked against the database. Following this, the technique generates a

report to assist the tester to inspect the queries embedded for any issues. For
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example, undesired values can enter the database which the tester can see

as a fault within the queries embedded in the application. The AGENDA

framework was then extended with query transactions and was empirically

evaluated [93]. They experimented with three database applications that

were seeded with 15 faults. The results showed that AGENDA detected

more than half the faults (i.e., 52% detection) in less than a minute.

Testing database applications might require the database to reset to the

initial state. For example, a test case might modify the database that can

affect other test cases results. Especially with test cases that include many

test data, requiring the database reset its state. This issue is considered non-

trivial and motivated Haftmann et al. [94] to propose a set of algorithms that

orders the test case executions without the need to reset the database state

and with the aim to have correct results. Their empirical results showed that

their technique significantly reduced a large set of databases using a thousand

test cases. However, their techniques resulted of some false positives because

the database state can be empty, and the tests passes.

Arcuri and Galeotti [95] improved their EvoMaster framework that gen-

erates test data for web services (i.e., REST and SOAP) by ensuring that

the database state is correct and populated. EvoMaster generates tests at

system level for web APIs and utilises an evolutionary algorithm (e.g., a

GA). Testing an API sometimes requite interacting with database by cre-

ating, retrieving, and updating data. Therefore, they proposed a heuristic

that monitors the database interactions and tries to maintain and populate

the database with test data. Their technique generates a list of INSERTs that

populates that databases with random values. However, when values conflict

(i.e., violation of a PRIMARY KEY), there is a repair method that tries to fix

such conflicts with randomisation of values. The FOREIGN KEY values are fixed

with the use of auto-incremental values of the prior INSERTs. Their empirical

evaluation showed that generating test data for the database increased their

coverage by 18.7%. Therefore, the consistency of the database state helped

with testing web service APIs. This work relates to database testing with

exercising some of the schema’s behaviour. However, it does not fully test

schema’s with defined criteria as this thesis. The use of “fix” technique is

32



2.3. DATABASE MANAGEMENT SYSTEMS (DBMS) CHAPTER 2

somewhat related to the test data generator that will be evaluated in the

following chapter.

2.3.4 Query Testing

Queries are a major part of any system, and they are required to be tested

to ensure that they retrieve the correct results. Thus, testing constructed

queries is important and motivated many to create testing methods for them.

For example, Tuya et al. [90] developed test coverage criteria called SQLFpc

based on a program modified condition/decision criteria. It considers differ-

ent semantics of SQL syntax and schema constraints. The criteria require

testing SELECT statements, considering sub-queries such as joining and group-

ing. For example, if SELECT * FROM a WHERE x ≥ 10 then the test requirement

would be testing x > 10, x = 10, x < 10, and testing it with x = NULL. There-

fore, exercising each part of the WHERE clause as true and false, and any other

part of the query such as join must be tested too.

Tuya et al. [90] test coverage criteria were automated by Riva et al. [96]

with the Alloy language. That is, generating test data within the database

to satisfy the test requirements of SQLFpc coverage criteria. The tester must

create a set of coverage rules that cover the SQLFpc criteria and expressed

in the Alloy relational language. This is then passed into the tool with an

encoded Alloy schema to be solved with generated test data. Thus, each

rule will have generated test data that are stored within the database to

return results for test query. This approach was empirically evaluated based

on coverage and mutation analysis that was introduced by Tuya et al. [97].

The mutation analysis mutates the clauses of the SELECT SQL command (e.g.,

the above statement can be mutated as SELECT * FROM a WHERE (x-1) ≥ 10).

Using a case study that has production data and many queries, they evalu-

ated the automatically generated test data with the production data on the

case study’s queries and mutation analysis. The results showed the SQLFpc

tool got 86.67% coverage compared to 57.33% of the production data. The

mutation score of their test data was 84.13% compared to 66.54% of the pro-

duction data. The tool also generated 139 rows, which was significantly fewer
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than the production database that included 139,259 rows. Thus, making the

tool more efficient to test queries with useful test data.

Production data can be copied and used for testing. However, the large

amount of data can be inefficient and sometimes ineffective [96]. Therefore,

Tuya et al. [98] created a method that reduces the production data to en-

sure efficient and effective testing. Using a greedy algorithm to reduce the

test data while maintaining the queries’ coverage. They empirically evalu-

ated their technique with four case studies that contain rows ranging from

137,490 to 86,805. The results showed that the greedy algorithm reduced the

data from 137,490 to 194 rows with an increase in coverage of 1.5% for one

case study. The fault-finding capability (i.e., mutation analysis scores) only

declined by 0.3% for the same case study. All of their results indicate that

their technique is scalable on production data and will help with efficient

regression testing.

Castelein et al. [99] applied search-based testing methods rather than

constraint solvers. Because the constraint solvers did not deal well with

complex quires such as JOINs. Therefore, they implemented random search,

biased random search (i.e., a random search that uses pool of constants

mined from queries), and genetic algorithms (GAs) in a tool called EvoSQL.

Utilising SQLFpc coverage criteria, they created their own fitness functions.

Thus, EvoSQL generates test data for the database with a given SQL query,

the database schema, and coverage requirements. They empirically evaluated

their approaches with extracted queries from four software systems, totalling

2,106 queries. Their results show that the random search obtained 6.5%

coverage of all the queries. The GA obtained 98.6% coverage between 2-15

seconds. However, the biased random search obtained 90% coverage with a

competitive efficiency that generated data faster than the GA when there are

low number of coverage targets (e.g., a branch or a statement). Therefore,

random search can be beneficial for efficiency in some cases.

In summary, query and database interaction testing can help improve the

program quality that rely on a database. That is, correctly retrieving and

manipulating stored data. This section shows the need to obtain effective and

efficient automated techniques for testing databases. However, ensuring that
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database is consistent and coherent requires a correct schema. Therefore, the

following section and chapters will focus on testing database schemas.

2.3.5 Schema Testing

One of the most important artifices of a relational database is the schema

and it is the focus of this thesis. It structures how the data should be stored

within a database. It includes integrity constraints that defend and preserve

the consistency and coherency of data. For example, they prevent duplicate

usernames and negative prices. Therefore, any wrong implementations will

lead to unwanted and maybe corrupt data within the database. Schemas are

often implied to be correct and are implemented with no tests [33]. Moreover,

they are always changing throughout the system’s lifetime [34, 35, 22].

Like other software artefacts, integrity constraints are subject to errors of

omission and commission [30]. An example of an omission error is a developer

forgetting to add a constraint on a column, such as not defining a UNIQUE

constraint on a username column. Conversely, a commission error would be

a developer unintentionally adding an integrity constraint, such as a UNIQUE

constraint on a column representing somebody’s first name (these mistakes

may happen in combination, as the unique constraint may have been intended

for a column representing some distinctly identifiable information, such as

an identification number). For these reasons, industry experts recommend

thorough testing of integrity constraints [13, 34, 33].

Testing the integrity constraints, an approach that will be used in this the-

sis, can be accomplished by inserting data within tables exercising each con-

straint as true (accepted by the database) or false (rejected by the database).

Therefore, each integrity constraint can be treated as a predicate and covered

similarly to logical coverage of program testing, as described in Section 2.2.2.

To guide this process, the current state-of-the-art testing coverage criteria,

based on logical coverage, for relational database schemas was developed by

McMinn et al. [7]. That is, testing integrity constraints within schemas using

any of the nine different coverage criteria for testing schemas. These were cat-

egorised into two main coverages, constraint coverage, and column coverage

criteria. Covering constraints are based on basic logical coverage. However,
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covering a column requires testing them for uniqueness and nullability. The

following are the nine coverage criteria:

• Constraint coverage criteria:

– Acceptance Predicate Coverage.

– Integrity Constraint Coverage.

– Active Integrity Constraint Coverage.

– Condition-Based Active Integrity Constraint Coverage.

– Clause-Based Active Integrity Constraint Coverage.

• Column coverage criteria:

– Unique Column Coverage.

– Null Column Coverage.

– Active Unique Column Coverage.

– Active Null Column Coverage.

Constructing tests based on the above coverage criteria sometimes re-

quires the database to be prepared in the correct state and to ensure the test

requirement is satisfied. For example, testing a UNIQUE constraint requires the

database to populated for comparison and to exercise the integrity constraint

with a test INSERT. Testing also may require a populated table to test another

table because of relational constraints (i.e., FOREIGN KEYs). That is, each test

case, depending on the test requirement, require the database state to be pre-

pared to exercise certain integrity constraints. This is called T-Sufficiency of

a test case and formally defined as follows:

Definition 1 (T-Sufficiency). The data within a database d for the schema-

under-test s is considered T-Sufficient with respect to some test requirements

tr ∈ TR if: 1) tr is not satisfied by the insertion of an arbitrary row of data

into d; and 2) The contents of d do not render tr infeasible.

Acceptance Predicate Coverage (APC) is the simplest criterion that re-

quires two test cases for each table within a schema. These two test cases

should exercise the table as true (i.e., test data accepted by the database)

and false (i.e., test data rejected by the database) using INSERT statements.

36



2.3. DATABASE MANAGEMENT SYSTEMS (DBMS) CHAPTER 2

CREATE TABLE places ( CREATE TABLE cookies (

host TEXT NOT NULL, id INTEGER PRIMARY KEY NOT NULL,

path TEXT NOT NULL, name TEXT NOT NULL,

title TEXT, value TEXT,

visit count INTEGER, expiry INTEGER,

fav icon url TEXT, last accessed INTEGER,

PRIMARY KEY(host, path) creation time INTEGER,

); host TEXT,

path TEXT,

UNIQUE(name, host, path),

FOREIGN KEY(host, path) REFERENCES places(host, path),

CHECK (expiry = 0 OR expiry > last accessed),

CHECK (last accessed >= creation time),

);

Figure 2.12: The BrowserCookies relational database schema as illustrated
and studied by McMinn et al. [7]

The rejection test must at least violate one of the constraints while an ac-

ceptance test must satisfy all the integrity constraints. Therefore, APC is

defined as follows:

Criterion 1. Acceptance Predicate Coverage (APC). For each table tbl of

the schema-under-test s, two test requirements are added to TR: one evalu-

ates to true, and one evaluates to false.

Figure 2.13 shows an example APC with two test cases constructed for the

places table in of the BrowserCookies schema in Figure 2.12. Figure 2.13a

illustrates a test case that exercises the table’s constraints as true. Con-

versely, Figure 2.13b illustrates the false (expecting a rejection) test case

for the places table by violating one of the constraints, in this instance the

PRIMARY KEY. Both test cases include two INSERT statements, the first ensures

that the database state is prepared (i.e., T-sufficient) for the second test’s

INSERT. Therefore, the BrowserCookies test suite, using this criterion must

have four test cases, two test cases per table.

The APC criterion tests each table within a schema but does not exercise a

specific integrity constraint. Therefore, Integrity Constraint Coverage (ICC)

criterion aims to exercise each internity constraint in the schema as true and

false. ICC is defined as follows:

Criterion 2. Integrity Constraint Coverage (ICC). For each integrity con-

37



CHAPTER 2 2.3. DATABASE MANAGEMENT SYSTEMS (DBMS)

1)
INSERT INTO places(host, path, title, visit count, fav icon url)
VALUES ('amazon.com', '/login.html', 'Log-in', 0, '') 3

2)
INSERT INTO places(host, path, title, visit count, fav icon url)
VALUES ('amazon.com', '/home.html', 'Home', 0, '') 3

(a) Test Case 1 exercise the places table as true

1)
INSERT INTO places(host, path, title, visit count, fav icon url)
VALUES ('amazon.com', '/login.html', 'Log-in', 0, '') 3

2)
INSERT INTO places(host, path, title, visit count, fav icon url)
VALUES ('amazon.com', '/login.html', 'Login', 0, '') 7

(b) Test Case 2 exercise places table as false

Figure 2.13: Example of Acceptance Predicate Coverage (APC) test cases
for the places table in Figure 2.12. The 3 and 7 illustrate that the database
acceptance or rejection of the INSERT, respectively.

straint ic of s, two test requirements are added to TR, one where the ic

evaluates to true, and one where it evaluates to false.

ICC require 20 test cases for the BrowserCookies schema that include ten

integrity constraints (i.e., each IC is tested as true and false). For instance,

Figure 2.13 also show that the PRIMARY KEY constraint is tested with both test

cases, one with satisfaction and the other is rejection.

The ICC does not require the satisfaction of other constraints when test-

ing a specific constraint. This lead to weaker test cases with INSERTs not

focusing on the required integrity constraint. For example, a tester that use

ICC will exercise a PRIMARY KEY as false (i.e., expected violation from the

DBMS) while also include a NULL value in a NOT NULL defined column, failing

both constraints. Therefore, having a weaker test that might detect changes

to the PRIMARY KEY.

Therefore, all the constraints must be satisfied to ensure the constraint

under test is exercised with greater precision. Hence, the Active Integrity

Constraint Coverage (AICC) criterion aims to exercise each defined integrity

constraint as true and false while all other constraints evaluate as true. The

AICC therefore is defined as follows:

Criterion 3. Active Integrity Constraint Coverage (AICC). For each table

tbl of s, let each ici ∈ IC under test evaluate as true and false while other
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integrity constraints icj ∈ IC, j 6= i evaluates to true. TR contains the

following requirements: one where evaluates the ici to true, and one where

it evaluates to false.

For example, exercising the PRIMARY KEY in cookies table of the Browser-

Cookies schema, the id column, require AICC tests to satisfy all the integrity

constraints defined in the cookies table. That is, creating a value for the name

column rather than a NULL, and satisfying all the CHECK constraints and FOREIGN

KEY constraint.

The above criteria only exercise constraints as a true and false while rela-

tional databases have another state called “unknown” (i.e., allowing NULLs).

For example, a nullable column that is involved in a CHECK constraint allows

NULLs. Also, some DBMSs interpret SQL standard differently and allow NULLs

into PRIMARY KEY columns (e.g., SQLite) while other DBMSs disallow such

behaviour (e.g., PostgreSQL). Therefore, each integrity constraint should be

tested as true, false, and with a NULL-condition (i.e., DBMS dependent on the

behaviour of NULL and its truth value). Hence, the next criterion aims to test

such shortfall:

Criterion 4. Condition-Based Active Integrity Constraint Coverage (Clause-

AICC). For each table tbl of s, let each ici ∈ IC under test evaluate as true,

false, with a null condition while other integrity constraints icj ∈ IC, j 6= i

evaluates to true. TR contains the following requirements: one where eval-

uates the ici to true, and one where it evaluates to false, and one with a

null-condition.

The CondAICC begin exercising each constraint as true and false similar

to AICC. Then it requires a test to exercise the NULL-condition. That is

exercising the constraint with a NULL and evaluating the truth value depending

on the DBMS behaviour. For example, in testing a PRIMARY KEY null-condition

and the DBMS is PostgreSQL, then the NULL value will be evaluated as false.

Conversely, with SQLite the NULL value will be evaluated as true.

Integrity constraints may include multiple clauses that need to be exer-

cised in isolation such as composite keys and multi-clause CHECK constraints.

Thus, the Clause-Based Active Integrity Constraint Coverage (ClauseAICC)

39



CHAPTER 2 2.3. DATABASE MANAGEMENT SYSTEMS (DBMS)

criterion aims to exercise each clause of such constraints as true, false, and

with a NULL-condition. It is, therefore, defined as follows:

Criterion 5. Clause-Based Active Integrity Constraint Coverage (Clause-

AICC). For each table tbl of s, each ici ∈ IC under test evaluate as true,

false, with a null condition while other integrity constraints icj ∈ IC, j 6= i

evaluates to true. Let c be the set of atomic clauses of ici, that is the

joined sub-expressions through the logical connectives ∧ and ∨. Let each

ck ∈ C evaluate as true, false, and null condition while the other clauses

cm ∈ C,m 6= k evaluate as true. TR contains the following requirement: one

where evaluates the ck to true, and one where it evaluates to false, and one

with a null condition.

For example, the CHECK (expiry = 0 OR expiry > last accessed) in the cookies

has two clauses that should be exercised as true, false, and NULL-condition.

That is, the expiry = 0 need to evaluate as true while the last accessed value

needs to be under zero. As for the violation test expiry value can be over

zero while last accessed maintain the same value, and similarly with the NULL

value. Afterword, the expiry must be zero while last accessed is exercised

with another three test cases similar to the first clause.

Another example is the UNIQUE(name, host, path) in the same table that

require tests to exercise each of the three columns as true, false, and NULL

while the rest of columns evaluate as true. This composite UNIQUE key requires

the tester to create seven tests. Three of which exercise each column with a

null condition, another three with a true condition, and one as false (i.e., to

reject a composite key, all columns must be identical to one existent row in

the database).

The aforementioned criteria test defined integrity constraints. However,

they do not test for omitted integrity constraints. For instance, a “username”

column not being declared as UNIQUE or a “name” column is not being declared

as NOT NULL. Therefore, each of the column in the schema must be tested as

a UNIQUE, non-UNIQUE, and with NULL and not-NULL values. That is using the

Unique Column Coverage (UCC) criterion and Null Column Coverage (NCC)

criterion, respectively. Therefore, the formal definitions of these criteria are
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as follows:

Criterion 6. Unique Column Coverage (UCC). For each table tbl of a schema

s, let CL be the set of columns. Let nr be a new row to be inserted into

tbl and er be the existent row. For each cl ∈ CL, let ucl ← ∀er ∈ tbl :

nr(cl) 6= er(cl). TR contains two requirements for each cl, one in which

ucl = true∧ nr(cl) 6= NULL, and one where ucl = false∧ nr(cl) 6= NULL.

Criterion 7. Null Column Coverage (NCC). For each table tbl of a schema s,

let CL be the set of columns. Let nr be a new row to be inserted into tbl. For

each cl ∈ CL, let nncl ← nr(cl) 6= NULL. TR contains two requirements

for each cl, one in which nncl = true, and one where nncl = false.

The UCC requires two tests to exercise each unique column in a table,

where one test has unique values to be accepted and the other test has non-

unique values to be rejected. However, these test requirement do not need

the satisfaction of other integrity constraints such as PRIMARY KEY constraint.

To consider other constraints, the Active Unique Column Coverage (AUCC)

criteria must be used, which requires each test to comply with all constraints

while exercising the required column. Like UCC, NCC must require two tests

that exercise each column with NULL and not-NULL values. To also consider

the other constraints, the Active Null Column Coverage (ANCC) criteria can

be used to exercise each column while complying with all constraints. The

formal definitions of AUCC and ANCC are as follows:

Criterion 8. Active Unique Column Coverage (AUCC) For each table tbl of

a schema s, let CL be the set of columns. For each cl ∈ CL, let nr be a new

row to be inserted into tbl, and let ucl ← ∀er ∈ tbl : nr(cl) 6= er(cl). Let

icaucc be the columns for tbl that does not account for integrity constraints

that require cl to be individually unique (i.e., UNIQUE constraints and PRIMARY

KEY constraints defined on cl). TR contains two requirements for each cl,

one in which ucl = true ∧ nr(cl) 6= NULL ∧ icaucc = true, and one where

ucl = false ∧ nr(cl) 6= NULL ∧ icaucc = true.

Criterion 9. Active Null Column Coverage (ANCC) For each table tbl of

a schema s, let CL be the set of columns. For each cl ∈ CL, let nr be a
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new row to be inserted into tbl, and let ancl ← nr(cl) 6= NULL. Let icancc

be the columns for tbl that does not account for integrity constraints that

require cl to be individually NULL (i.e., a NOT NULL constraint on cl; or a PRIMARY

KEY constraint defined for cl only, in the case of a non-SQLite database). TR

contains two requirements for each cl, one in which ancl = true ∧ icancc =

true, and one where ancl = false ∧ icancc = true.

Clause-Based Active
Integrity Constraint Coverage

(ClauseAICC)

Condition-Based Active
Integrity Constraint Coverage

(CondAICC)

Active Integrity
Constraint Coverage

(AICC)

Acceptance Predicate Coverage
(APC)

Integrity Constraint Coverage
(ICC)

Constraint criteria

Active Unique Column Coverage
(AUCC)

Unique Column Coverage
(UCC)

Unique column criteria

Active Null Column Coverage
(ANCC)

Null Column Coverage
(NCC)

Null column criteria

Figure 2.14: The coverage criteria subsumption hierarchy for testing rela-
tional database schemas.

All the aforementioned criteria have a hierarchy that one criterion might

subsume another. Therefore, in Figure 2.14, the subsumption hierarchy show

the strong criterion at the top. Hence, creating tests using ClauseAICC

criterion will satisfy the requirements of all the constraint criteria.

These coverage criteria can demand many test requirements to cover the

logical predicates. Therefore, they can be generated automatically. For ex-

ample, to create a ClauseAICC test that exercises the name column of the

composite UNIQUE key in BrowserCookies schema as true, the following predi-

cates must be satisfied in conjunction with each other and assuming that the

database is already populated:

1. The new row (nr) of the cookies table must include an id column value

that is not NULL and distinct to existing row (er) id value:

PK← nr(cookies.id) 6= NULL ∧ (∀er ∈ nr(cookies.id) 6= er(cookies.id))

2. The new row must also have a name column value and not equal to NULL:

NL← nr(cookies.name) 6= NULL
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3. The new row of the cookies table must have connecting FOREIGN KEYs.

Thus, the host and path must be equal to the host and path of the places

table or either/both columns equal to NULL:
FK ← (∀er ∈ nr(cookies.host) = er(places.host) ∧ nr(cookies.path) =

er(places.path)) ∨ nr(host) = NULL ∨ nr(path) = NULL

4. The new row of the cookies table must have the expiry column value

equal to zero or greater than the last access or either/both values equal

to NULL:
CH1 ← (nr(expiry) = 0 ∨ nr(expiry) > nr(last access) = unknown) ∨

(nr(expiry) = 0 ∨ nr(cookies.expiry) > nr(last access) = true)

5. The new row of the cookies must have the last accessed column value

greater or equal to creation time, or either of the columns equal to NULL:
CH2 ← (nr(last access) ≥ nr(creation time) = unknown) ∨ (nr(last access) ≥

nr(creation time) = true)

6. The new row of the cookies must have equal host and path values to

existent rows in the cookies table. The new row must have a distinct

value for the name column and all the three columns must be not equal

to NULL:
UQ ← (∀er ∈ nr(cookies.name) 6= er(cookies.name) ∧ nr(cookies.host) =

er(cookies.host) ∧ nr(cookies.path) = er(cookies.path)) ∧ nr(cookies.name) 6=

NULL ∧ nr(cookies.host) 6= NULL ∧ nr(cookies.path) 6= NULL)

These predicates in conjunction with each other forces the tester to sat-

isfy the test requirement and create test data that will be accepted by the

database. This example shows that, for one test case, manually writing tests

to cover a whole criterion can be tedious and automated test data genera-

tors will expedite the process. The following section review these automated

techniques for database schemas using these coverage criteria.

2.3.6 Schema Test Data Generation

Automation techniques for schema-based testing and its integrity con-

straints was also proposed and created by McMinn et al. [7] using a frame-

work called SchemaAnalyst . The framework generates test data to satisfy
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Figure 2.15: The inputs and outputs of the SchemaAnalyst tool

and cover any of the family of coverage criteria stated in the previous sec-

tion to generate unit tests automatically. With a given schema and coverage

criteria, the SchemaAnalyst will generate test requirements (i.e., the logical

predicates stated in previous section) and generate the test data automat-

ically, as illustrated in Figure 2.15. The framework implements two search

methods for generating the test cases, a random technique and search-based

technique. The framework generates test values for SQL INSERT statements

to check if the database will accept or reject the INSERTs.

The Alternating Variable Method (AVM) is the search technique that was

implemented into SchemaAnalyst to automatically generate test data [16, 7].

It works to optimise a vector of test values according to a fitness function.

Figure 2.16b shows the arrangement of the values of the test case in part (a)

into the vector ~v = (v1, v2, . . . , vn).

1)
INSERT INTO places(host, path, title, visit count, fav icon url)

VALUES('aqrd', 'xj', 'vnobtpvl', 0, 'dmnofpe');
3

2)
INSERT INTO cookies (id, name, value, expiry, last accessed, creation time, host, path)

VALUES (0, 'ddfvkxnjg', '', -332, -333, -1050, 'aqrd', 'xj');
3

1)
INSERT INTO places (host, path, title, visit count, fav icon url)

VALUES ('te', '', '', -40, 'vfbtnwimd');
3

2)
INSERT INTO cookies (id, name, value, expiry, last accessed, creation time, host, path)

VALUES (1, 'kavd', '', 0, NULL, 165, 'aqrd', 'xj');
3

(a) SchemaAnalyst generated test case example, which consists of INSERT statements for a database
instantiated by the BrowserCookies schema in Figure 2.12. The 3 denote the data contained within each
INSERT statement satisfied the schema’s integrity constraints and was accepted into the database.

1) INSERT INTO places ...
host path title vist count fav icon url

v1 v2 v3 v4 v5

2) INSERT INTO students ...
id name value expiry last access creation time host path

v6 v7 v8 v9 v10 v11 v12 v13

1) INSERT INTO places ...
host path title vist count fav icon url

v14 v15 v16 v17 v18

2) INSERT INTO students ...
id name value expiry last access creation time host path

v19 v20 v21 v22 v23 v24 v25 v26

(b) The vector ~v = (v1, v2, . . . , vn) representation used by random and fitness-guided search techniques
for finding the test data for each INSERT forming the test in part (b).

Figure 2.16: A Test Case For the Students Schema
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The AVM, illustrated in Figure 2.17, starts by initialising each value in

the vector at random. Next, it proceeds through the vector, sequentially

making a series of “moves” (adjustments) to each variable value. These are

either small exploratory or large jumps in one direction in a pattern moves,

exploring the fitness landscape for improvements. It performs moves until a

complete cycle through the vector during which no move successfully yielded

a fitness improvement. At this point the algorithm may restart with a new

randomly initialised vector. The AVM terminates when either the required

test vector has been found, or a pre-defined resource limit has been exhausted

(e.g., some number of fitness function evaluations).

1 while ¬ termination criterion do
2 RANDOMIZE(~v)
3 i← 1; c← 0
4 while c < n ∧ ¬termination criterion do
5 ~v′ ← makeMoves(vi)
6 if fitness(~v, r′) < fitness(~v, r) then
7 ~v ← ~v′; c← 0
8 else
9 c← c+ 1

10 end
11 i← (i mod n) + 1

12 end

13 end

Figure 2.17: the AVM algorithm that automatically generate, according to
some coverage criterion r, a vector ~v of variables appearing in the INSERT state-
ments of a test case for database schema integrity constraints.

Traditionally, the AVM has been applied to numerical test data genera-

tion [52]. However, databases can have many data types, including strings

and dates. These are handled by representing the variable as a “sub-vector”

of the overall main vector. That is, the variable itself is broken into a series

of variables, each optimised by the AVM. For instance, a string is repre-

sented as a variable-length sequences of characters. Furthermore, values in

databases may also be “NULL”. The AVM adaptation for database schemas

therefore includes a “NULL-move”, whereby the value is shifted to NULL and the

effect is checked on the fitness function. This move is reversed if fitness does
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not improve. Thus, the AVM is equipped to generate test data for schemas

including handling for variable-length strings, dates, and NULL values.

The fitness function within the AVM uses the coverage requirement of

a given coverage criteria (e.g., the satisfaction or violation of a particular

integrity constraint). The fitness function for each coverage requirement is

constructed using distance functions similar to those employed in traditional

test data generation for programs [43, 100]. For example, for satisfaction

of the CHECK constraint “expiry > last access” for INSERT statement 2 of Fig-

ure 2.16a, the distance function v10−v9 +K is applied and minimised (where

K is a small positive constant value, and v10 is the vector value of Fig-

ure 2.16b). Conversely, for violation of the constraint, the distance function

v9 − v10 + K is used. NOT NULL constraints are easily solved using the AVM

via the aforementioned NULL-move. The fitness function assigns a high (i.e.,

poor) fitness when a NULL/non-NULL value in the vector that is contrary to

that required. Primary key, UNIQUE, and foreign key constraints involve en-

suring that certain values are the same or different to those appearing in

prior INSERT statements of the test, depending on whether the constraint is

to be satisfied or violated. For instance, suppose in the test of Figure 2.16a,

the fourth INSERT statement was required to satisfy the primary key of the

cookies table, by having a different id column value. In this case, the distinct

values are computed with the distance such that |v19 − v6| + K would be

applied.

Furthermore, the AVM introduced and used by McMinn et al. [7], ini-

tialises the vector to a series of default values chosen for each type (e.g.,

zero for integers and empty strings for VARCHAR) and only randomising the

vector on the method’s restart, referred as AVM-D in the following chapters.

That is because the AVM can get stuck in local optima when initialised with

random values trying to match values for UNIQUEs, PRIMARY KEYs, and FOREIGN

KEYs. The use of default values increases the likelihood of inducing matching

column values from the outset, speeding the test data generation. For exam-

ple, Figure 2.18 shows a SchemaAnalyst produced JUnit test case generated

by AVM with default values and the test case has equal test requirement as

the test case in Figure 2.16a.
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1 @Test

2 public void test8() throws SQLException {

3 // 11-cookies: UNIQUE[name, host, path] for cookies - all cols equal except name - Clause-AICC

4
5 // prepare the database state

6 assertEquals(1, statement.executeUpdate(

7 "INSERT INTO \"places\"(" +

8 " \"host\", \"path\", \"title\", \"visit\_count\", \"fav\_icon\_url\"" +

9 ") VALUES (" +

10 " ’’, ’’, ’’, 0, ’’" +

11 ");"));

12 assertEquals(1, statement.executeUpdate(

13 "INSERT INTO \"cookies\"(" +

14 " \"id\", \"name\", \"value\", \"expiry\", \"last\_accessed\", \"creation\_time\", \"host\", \"path\"" +

15 ") VALUES (" +

16 " 0, ’’, ’’, 0, 0, 0, ’’, ’’" +

17 ");"));

18
19 // execute INSERT statements for the test case

20 assertEquals(1, statement.executeUpdate(

21 "INSERT INTO \"places\"(" +

22 " \"host\", \"path\", \"title\", \"visit\_count\", \"fav\_icon\_url\"" +

23 ") VALUES (" +

24 " ’a’, ’’, ’’, 0, ’’" +

25 ");"));

26 assertEquals(1, statement.executeUpdate(

27 "INSERT INTO \"cookies\"(" +

28 " \"id\", \"name\", \"value\", \"expiry\", \"last\_accessed\", \"creation\_time\", \"host\", \"path\"" +

29 ") VALUES (" +

30 " 1, ’a’, ’’, 0, 0, 0, ’’, ’’" +

31 ");"));

32 }

Figure 2.18: An Example JUnit generated test by SchemaAnalyst . This test
satisfies the all constraints and exercising the name column of the composite
UNIQUE in the places table of the BrowserCookies schema. This test was
generated using AVM method with default values.

The random search for relational schema testing simply involves repeat-

edly generating vectors with random values until the required vector is found,

or other resources limit was exhausted. The random technique used by

McMinn et al. [7] called Random+ was not so naive because technique utilised

a pool of constants mined from the schema (i.e., values within CHECK con-

straints). Therefore, when a random value is required, a value may be se-

lected from this pool or generated freely at random, depending on some

probability. The purpose of the pool is to help each algorithm satisfy and

violate CHECK constraints in the schema for some requirement of a coverage

criterion. The pool of constants was also utilised by the AVM to generate

test data for database schemas.

McMinn et al. [7] empirically evaluated AVM against a random search

technique. The experiment was conducted on all the above criteria and on

three different DBMSs, HyperSQL, PostgreSQL, and SQLite. Their results

showed there was no significant difference regarding coverage between the
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databases for each test data generator. The only difference that was observed,

even though there is no significance, was the test suites differ for SQLite

compared to other DBMSs. That was because SQLite varies in implementing

PRIMARY KEYs that accepts NULL as a value.

The AVM was significantly better than the random search in experi-

ments conducted on a wide range of schemas, including those with complex

integrity constraints and many tables [16, 7]. Furthermore, AVM results

attained 100% coverage for different criteria for most schemas studied. How-

ever, random search never achieved full coverage for any schema, obtaining

less than 70% in some instances.

They evaluated the fault-finding capabilities of each criterion using mu-

tation analysis for database schemas. The mutation analysis simply adds,

removes, and exchanges integrity constraints within a schema. Their results

only included effective mutants, which will be discussed in detail in the fol-

lowing section. The results showed that the higher the test suite’s coverage

criterion in the subsumption hierarchy, the more faults are detected. That

is especially for the AVM generated test suites. They observed that column

coverage criteria were better at detecting mutants that introduce omission

type faults. Moreover, constraint coverage criteria were better at detecting

mutants that introduce commission type faults. Therefore, different criteria

complement each other. This observation allowed them to empirically eval-

uate combining different coverage criteria regarding fault detection. Hence,

their results show that combining criteria at the top of each hierarchy resulted

in the best fault-finding capability with 94% killed mutants. However, this

result was second using AVM and default values that resulted with the com-

bination of ClauseAICC, UCC, and ANCC. Because they found that default

values that were used in AVM were influencing the detection rate compared

to random values generated by Random+. Thus, the use of default values

resulted in test cases sharing many similar values, thereby lowering diversity

and hindering the fault-finding capability of the tests.

The SchemaAnalyst framework required some future work as reported

by its authors. That is, incorporating new algorithms that improve the ef-

fectiveness and efficiency compared to the current techniques. Furthermore,
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improving the generated test suites regarding fault-finding capabilities and

reduction.

This thesis will use SchemaAnalyst to automatically generate test data

and evaluate many techniques in the following chapters. Both the AVM and

Random+ will be used to as a baseline for evaluating other generators in

the following chapters. The procedures and recommendations of McMinn et

al. [7] will be followed closely. However, the thesis research differs from their

work as it will evaluate multiple test data generators effectiveness rather than

evaluating test coverage criteria.

2.3.7 Schema Mutation Analysis

Mutation analysis can help evaluate and estimate the fault-finding capabil-

ities of a test suite. That is, systematically seeding the database schema

with faults using mutation operators and running the test suite against mu-

tated schema. Mutation analysis for database schema was first introduced

by Kapfhammer et al. [16] to validate the quality of test cases that exercise

the database integrity constraints. The operators add, remove, or exchange

the main integrity constraints on columns. However, this was extended by

Wright et al. [101] with operators that exchanging the columns and relational

operators in CHECK constraints, and mutating FOREIGN KEYs. Table 2.1 show

the integrity constraints mutation operators by their creator.

By Operator Name Description

Kapfhammer et al. PKColumnA Adds a PRIMARY KEY to constraint to a column
PKColumnR Removes a PRIMARY KEY constraint from a column
PKColumnE Exchanges a PRIMARY KEY constraint with another column
FKColumnPairR Removes a column pair from a FOREIGN KEY

NNA Adds a NOT NULL constraint to a column
NNR Removes a NOT NULL constraint from a column
UColumnA Adds a UNIQUE constraint to a column
UColumnR Removes a UNIQUE constraint
UColumnE Exchanges a UNIQUE constraint column with another
CR Removes a CHECK constraint

Wright et al. FKColumnPairA Adds a FOREIGN KEY to a pair column
FKColumnPairE Exchanges a FOREIGN KEY from one column pair
CInListElementR Removes an element from an IN CHECK constraint
CRelOpE Exchanges a relational operator in CHECK cosntraint

Table 2.1: Kapfhammer et al. [16] and Wright et al. [101] mutant operators.
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PRIMARY KEY mutants manifest in three ways: add column, exchange col-

umn, or remove column. That is, a schema can be mutated by exploring

each column and applying these operators. If the column has a PRIMARY

KEY, it can be removed to produce a mutant, or the PRIMARY KEY’s column

is exchanged with another column. If no PRIMARY KEY constraint constraint

is present in the table then it will be added to column. Therefore, having

the PKColumnA operator for addition, PKColumnR operator for removal,

and PKColumnE operator for exchanging. These operators are illustrated in

the first row of Table 2.2 were the PRIMARY KEY is in the places table of the

BrowserCookies schema.

Original Constraints Add Mutation Remove Mutation Exchange Mutation

PRIMARY KEY (host, path) PRIMARY KEY (host, path,

title)

PRIMARY KEY (host) PRIMARY KEY (host,

visit count)

UNIQUE (name, host, path) UNIQUE (name, host, path,

expiry)

UNIQUE (host, path) UNIQUE (name, host, value)

host TEXT NOT NULL - host TEXT -

title TEXT title TEXT NOT NULL - -

FOREIGN KEY (host, path)

REFERENCE places(host,

path)

FOREIGN KEY (host,

path, value) REFERENCE

places(host, path, title)

FOREIGN KEY (host)

REFERENCE places(host)

FOREIGN KEY (host, name)

REFERENCE places(host,

title)

CHECK (last access >=

creation time)

- removed CHECK (last access <

creation time)

CHECK (gender IN (’Male’,

’Female’, ’Uknown’))
-

CHECK (gender IN (’Male’,

’Female’))
-

Table 2.2: Integrity constraints from the BrowserCookies schema in Fig-
ure 2.12 with the applying mutation operators in Table 2.1

UNIQUE mutants manifest in the same way as PRIMARY KEY mutants. That

is, adding, exchanging, or removing columns with UNIQUE constraints, as il-

lustrated in the second row of Table 2.2. NOT NULL mutants can manifest in

two ways, either by removing a NOT NULL if declared on the column or adding

a NOT NULL constraint if column does not have its declaration (row 3 and 4 of

Table 2.2).

FOREIGN KEY mutants manifest in three ways, similar to a PRIMARY KEY and

UNIQUE constraints. However, FOREIGN KEY addition or exchange must have

matching data types of the paired columns. For example, the fifth row of

Table 2.2 show adding value and title columns in the FOREIGN KEY can mutate

the schema and both columns are TEXT data type.
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CHECK mutants differ from other constraints and can manifest in many

ways. That is because CHECKs can use relational operators (e.g., =, <,>,≤,≥)

to compare two columns, or the IN operator which is equivalent to multiple

OR operators. The IN operator checks the value against a set of values, if they

do not match, then the value is rejected. Therefore, CHECK mutants manifest

with the following: (1) removing the CHECK constraint from the schema using

the CR operator (e.g., row 6 of Table 2.2); (2) exchanging relational operators

within the predicate, if applicable, using the CRelOpE operator (e.g., row

6 of Table 2.2); (3) removing a value from the IN, if applicable, using the

CInListElementR operator (e.g., row 7 of Table 2.2).

The aforementioned mutation operators were implemented into Schema-

Analyst to measure the effectiveness of fault-finding of generated test suites.

Thus, making this framework the state-of-the-art and includes both test data

generation and mutation analysis techniques. These operators were used by

McMinn et al. [7] for evaluating the different coverage criteria and test data

generator, the AVM and Random+, stated in previous section. However, their

results did not include all mutants, and they removed ineffective mutants that

are: equivalent, redundant, and quasi-mutants (referred to as “still-born”).

An equivalent schema mutant has equal functionality to the original schema.

Redundant mutants are the same as other mutants in regard of functionality.

Quasi-mutants are schemas that are invalid or infeasible, depending on the

DBMS implementation. For example, if a DBMS implementation forces a

FOREIGN KEY to reference to only UNIQUEs or PRIMARY KEYs (e.g., PostgreSQL),

then any mutant that violates this implementation is a quasi-mutant [101].

Therefore, SchemaAnalyst implements the detection of ineffective mutants

and it will be used in the following chapters’ experiments.
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2.4 Limitations and Research Gaps

This section reviews the literature to identify research gaps in automated

test data generation, particularly in schema testing. It starts with reviewing

inefficiencies of search-based test generators. It also reviews the challenges

and improvements in test comprehension. It then reviews some traditional

methods for test suite reduction and their potential uses and limitations in

decreasing the test suite sizes for relational database schema testing.

2.4.1 Search-Based Test Data Generation Inefficien-

cies

Shamshiri et al. [102, 103] empirically studied two evolutionary algorithms

compared to two random search techniques in object-oriented classes. The

first technique is a standard genetic algorithm (GA), the other is based on a

chemical reaction optimisation (CRO). The two random techniques are naive

random and Random+ (i.e., a random search that utilises mined values from

the class). Their results showed that the GA and CRO are comparable re-

garding the coverage in some cases, and the rest CRO significantly covered

more branches. The results also showed that the random techniques cov-

ered less branches. However, and surprisingly, their analysis on both the

search-based techniques generated tests with less diverse data compared to

the random search techniques. Because the search-based techniques spend a

large amount of time evaluating the neighbourhood of existing solutions (i.e.,

test data), however both random searches keep moving in many neighbour-

hoods creating new diverse test data. Random search was more efficient in

generating new tests, but the search-based techniques generated tests cov-

ering more complex branches. Furthermore, Random+ showed to generate

better tests compared to both search-based methods with plateau branches

(i.e., a branch with non-gradient distance landscape) which are the major-

ity in their subjects. Therefore, they suggested that random search can be

optimised and utilised in generating tests with higher coverage.
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Shamshiri et al. [102] results and conclusions were similar to Sharma

et al. [104] that they compare random testing to a systematic technique

specific for container classes called Shape Abstraction. The test context was

on container classes that are list or set representation classes. Their study

and results show that random testing preform efficiently and create long

sequences compared to the Shape Abstraction. Therefore, random testing

needed fewer computation resources compared to the more specific technique.

In summary, the use of random test data generation can be more bene-

ficial than search-based techniques in regard of test data diversity. Random

methods can be engineered to be more specific for the domain context to

gain comparable coverage to other state-of-the-art techniques, and improv-

ing fault-finding capabilities, such as the repair methods that match and mis-

match values of INSERTs in EvoMaster [95]. Moreover, according to McMinn

et al. [7] the use of default values with AVM generated tests that are efficient.

However, these values resulted in weakening the fault-finding capabilities of

the strong combined coverage criteria. Thus, random values can be used to

generate more diverse and effective tests. This might affect the human test

oracle with many tests that take long time to run and evaluate. Therefore,

in the following, chapters different values will be investigated and explored

for effectiveness and overall human oracle cost in the context of database

schema testing.

2.4.2 Test Comprehension

Automated test data generators can help testers to avoid the tedious and

error-prone task of manually writing tests for a database schema. Prior work

has shown that automatically generated tests can effectively cover the schema

and detect synthetic schema faults [7, 101, 105]. Yet, testers must still act as

an “oracle” for a test when they judge whether it passed or failed [24], a chal-

lenging task that is often overlooked. Especially, comprehending each test

case outcomes and whether the observed behaviour is correct or otherwise.

Test comprehension is a frequently studied issue. For instance, Li et al.

surveyed 212 developers and more than half reported difficulty with under-

standing unit tests [106]. Interestingly, the survey reported that only ∼53%

53



CHAPTER 2 2.4. LIMITATIONS AND RESEARCH GAPS

of developers do ‘fairly often’ or ‘always’ write tests, and ∼44% of developers

reported that they ‘never’ or ‘rarely’ change tests. Inferring, that tests are

always created, but they are difficult to understand, making changing them

difficult. The paper also proposed an automatic test documentation tool

called ‘UnitTestScribe’ that utilises static analysis, natural language process-

ing, backward slicing, and code summarisation techniques to automatically

generate comments/documentation for test cases. They again surveyed de-

velopers to evaluate their tool and the results showed their technique was able

to generate easy to read informative documentation for tests with minimum

redundancy. Thus, helping developers to understand tests.

Li et al. [107] used a tagging technique called stereotypes for each test case

within a test suite, which they called TeStereo. A stereotype is a comment or

a tag that reflects the role of a program (i.e., a class or method). Therefore,

their technique can tag a test case with description. That is, a test case that

tests a boolean can be tagged with a “Boolean verifier” and a description of

“Verifies boolean conditions”. To empirically evaluate their technique with

a human study (71 participants) with a group with no tagging and the other

group with tagging. Their results showed that ∼58% agreed that TeStereo

was complete with no missing information, ∼68% agreed that TeStereo was

concise with no redundant information, and ∼56% agreed that TeStereo was

easy to read and thus expressive. Of the 71 participants, 25 are active Apache

developers that responded with feedback that TeStereo reports are useful for

test case comprehension tasks. However, this was not for testing database

schemas and there is a gap in the literature in that context.

Similar to UnitTestScribe, Linares-Vásquez et al. [108] created a docu-

mentation tool for database applications called ‘DBScribe’. This tool stat-

ically analyses the application code and the database schema to infer the

usage of queries to generate comments. The comments are automatically

generated and added to the application code to help developers understand

the interactions between the embedded query and the database. For exam-

ple, it would add the following comment: “It inserts the <attri> attributes

into table <table>” as a template for an INSERT statement. They surveyed

their tool with 52 participants, a mix of students and professional developers.
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Their survey results showed that ‘DBScribe’ had the following participants

agreements: ∼65% agreed that it generate complete information. ∼70%

agreed that generated comment was concise without redundant information.

∼77% agreed that the comments were easy to read, and ∼92% agreed that it

would be useful. Therefore, automatically commenting database interactions

are useful and important to help with debugging and maintenance. However,

there are no indication of this that will help with testing and understanding

the test data, especially for automated test data generation.

Cornelissen et al. [109] studied visualisation techniques to help with un-

derstanding tests. However, they have not evaluated their technique with a

human study. Furthermore, Smith et al. [110] applied a multi-plot to show

the test suite order for the purpose of test prioritisation. This was to help

testers to evaluate and compare the effectiveness of test suite order. They

conducted an informal study with a senior researcher and two postgradu-

ate students. They inferred that this technique may help testers with plots

rather than raw data.

All the above work does not concern with test data and how it impacts

the comprehension of tests. This thesis focuses on understanding automat-

ically generated test data rather than the visualisation or tagging of tests.

Therefore, the following explore related research in the test readability to

increase test comprehension.

Test readability motivated Afshan et al. [69] to incorporate it into test

data generation. They applied a natural language model (LM) as an objective

of the search-based technique (i.e., part of the AVM fitness) to generate more

readable string data. The LM works by assigning a probability score to a

string depending upon its likelihood of occurring as part of a language, by

checking how well a string is formed. The process of LMs starts by loading

a corpus (documents) before the evaluation process to train the language

model. LMs are often used in Natural Language and Speech Processing

research. Therefore, Ashfan et al. [69] used the character-based language

model to estimate the probability of each character based on the character

immediately precedes it. They implemented their technique to generate test

data for Java programs using the IGUANA framework and evaluated the
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readable test data on a human study. They compared the AVM-LM with

randomly generated test data. Their results showed that the language model

generated significantly more readable test data regarding correct answers

(i.e., accuracy of judgements) for only three case studies. However, the rest

of the cases (i.e., 14 case studies) did not show any hindrance to accuracy.

They also evaluated the test evaluation duration, and the results show that

participants responded faster when presented with LM data compared to

random data.

Daka et al. [24] improved automatically generated test cases by increasing

readability using predictive models and incorporated this into the EvoSuite

framework. They built their predictive model based on results of crowd

source participants generating 15,669 human readable scores using 450 au-

tomated and manual tests. Then they used this model to generate readable

variables and values to replace the automatically generated text in tests. In

their study, they compared generated default tests with the more readable

optimised tests in regard of readability scores and a human study to evaluate

readability. Their results indicated that the predictive model was 2% more

readable on average, 69% of human participants preferred the readable opti-

mised tests, and participants answered questions 14% faster with no change

in accuracy.

Rojas et al. [111] conducted two human studies with students and pro-

fessionals to evaluate if automated tests are helpful to developers compared

to manually written tests. Their first human study with 41 students indi-

cated that EvoSuite, the automated testing tool, supports developers with

tests that have more than 14% coverage and 36% less time spent compared to

manual testing, with branch testing coverage criteria. Their second study was

a think-aloud study, asking participants to describe their thought processes

aloud to obtain inferences, reasons, and decisions made by participants. This

study included five professionals and confirmed that automated tools support

testers. However, the generated tests were hard to understand and difficult

to maintain. Therefore, both studies showed that automatically generated

tests need to be more usable (i.e., readable and understandable).

In another research, Daka et al. [71] investigated variable naming and how
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it affects the readability and understandability of test cases. In their study,

they motivated their work as automatically generated test case that are name

d“test0”. Thus, they proposed a technique that uses the summarises the cov-

erage goals as the name of the test, which was also integrated into the Evo-

Suite framework. For example, their technique will change “test0” to either

“getTotalReturningPositive” or “getTotalReturningNegative” depending on

the coverage goal. They evaluated this technique against manually written

test names with 47 participants. The study results showed that the partici-

pants agreed similarly and disagreed less with synthesised names which are

equally descriptive to manually written tests names. Participants are also

tasked with matching the code to the tests. This showed that the partici-

pants are slightly more accurate and faster with synthesised names compared

to manually written names. Moreover, participants were more accurate at

identifying the relevant tests for a given code using synthesised test names

compared manually written test names.

Grano et al. [112] explored and studied the readability of manually written

test cases compared to the code under test and automatically generated

test cases. They used a readability model to compute the readability of

tests and the code under test. This model was created by Scalabrino et

al. [113] to evaluate program code readability. Grano et al. study showed

that manually written test cases were significantly less readable than the

code under test. However, manually written tests are significantly more

readable than automatically generated tests with small effect size. Therefore,

their conclusion was that developers tend to write less readable test cases

and automated tools generally produce the worst readable test cases. This

work might not be applicable with database schemas due to SQLCREATE TABLE

commands have nearly equal structure while INSERTs values are different in

readability, making unfair comparison.

These studies examined test comprehension in the context of traditional

programs. In the context of understanding the SQL language, some re-

searchers studied human errors in database query languages [114, 115, 116,

117]. However, there is no work on test comprehension in the domain of

database schemas and SQL statements. This is surprising, since there are
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many prior methods for automatically testing and debugging a database.

Importantly, previous work did not characterise the impact of different test

inputs on a human oracle, especially in the context of automated testing and

more particularly in database schema testing. Therefore, trying to evaluate

the generated test data and its human understanding affects while deter-

mining the test’s behaviour is limited in the research of software testing.

Consequently, it is important to identify and infer the characteristics that

make test cases easy to understand for testers.

This thesis intends to identify the characteristics of understandable schema

test cases. Thus, the thesis will present techniques with test readability in-

corporated for database schema testing (e.g., language model and readable

values). This will help identify comprehension factors of different readable

test inputs. However, as this thesis domain is database schema testing, other

test readability methods such as readable variable names [71] are not appli-

cable with INSERT statements. Rojas et al. [111] used the think-aloud protocol

that helped to identify the difficultly of understanding automated program

tests. Therefore, this thesis will utilise the think-aloud protocol to go further

and identify factors of understandable SQL tests.

2.4.3 Test Suite Size

Test suites can contain many test cases that take a long time to run and

require longer times for testers to evaluate the whole test suite. The test

cases can have overlaps of requirements based on their test requirement. For

example, one test case can subsume and cover one or more test cases (i.e.,

covering their test requirements). Thus, a test suite can be reduced using

reduction techniques to have representative test suite. The reduced test

suites will also help decrease the quantitative human oracle costs.

Reducing a test suite is equivalent to the minimal set cover problem,

which is NP-complete [118]. There are several heuristics capable of effec-

tively reducing test suite size to support developers. Yoo and Harman [119]

surveyed prior work on ways to reduce suites by selecting a representative

subset of test cases. These included Random, Greedy [120], HGS [25], Greedy
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r1 r2 r3 r4 r5 r6

t1 X X X
t2 X X
t3 X X
t4 X X
t5 X

T1 T2 T3 T4 T5 T6

Figure 2.19: Example of test cases {t1, . . . , t5} and test requirements
{r1, . . . , r6}, an input for test suite reduction methods (excerpted from [122]).

Essential (GE), and Greedy Redundant Essential (GRE) [121]. This section

will review these reduction techniques which will be used in the following

chapters to evaluate against a new reduction technique. Also, Figure 2.19 will

be used to illustrate how the reduction techniques work. This example figure

shows a test suite with five test cases {t1 . . . t5} and five test requirements

{r1 . . . r6}, where the test cases have different, yet overlapping, coverage of

the test requirements.

A random test suite reduction is a simple heuristic that is often effective

at reducing test suites [119]. As illustrated in Figure 2.20a, this reduction

method starts with an empty test suite, adding test cases from the original

test suite so long as they cover new test requirements, and continuing until all

test requirements are covered. A Greedy heuristic, in some literature is called

additional greedy and illustrated in Figure 2.20b, works in a similar loop to

produce a smaller test suite, but instead of selecting test cases at random from

the original test suite, it selects the next previously unconsidered test case

that covers the most uncovered test requirements (the max cov() method

in the algorithm) [119]. In the example from Figure 2.19, Greedy selects t1

first. Since the remaining test cases all cover one remaining requirement,

this reduction method will select them at random until all requirements are

covered, yielding a reduced test suite of four test cases.

Another well-known approach, called HGS, was developed by Harrold,

Gupta, and Soffa [25], and illustrated in Figure 2.20c. It works by creating

test suites containing test cases that cover each test requirement, i.e. T1 =
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1: while R = φ 1: while R = φ 1: T1, T2...Tn associated test sets for r1, r2...rn

2: t← randomly selected test case 2: t← test case with max cov(t) 2: curret car ← 1

4: RTS = RTS ∪ t 3: RTS = RTS ∪ t 3: RTS = RTS ∪ Ti, car(Ti) = curret car

4: T = T − {t} 4: T = T − {t} 4: mark(Ti ∩RTS) = true

4: R = R− {r|(t, r) ∈ S} 5: R = R− {r|(t, r) ∈ S} 5: while curret car ≤ max(cardinality)

4: return RTS 6: return RTS 6: curret car ← curret car + 1

7: while car(Ti) = curret car ∧ ¬mark(Ti)

8: list← ti ∈ Ti
9: RTS = RTS ∪ select(curret car, list)

10: mark(Ti ∩RTS) = true

11: return RTS

(a) Random (b) greedy (c) HGS

Figure 2.20: Test Suite Reduction algorithms. T denote the set of test
cases. R denote the set of test requirements. S indicate the relation between
a test case t that satisfies a requirement r, S = {(t, r)|t satisfies r, t ∈ T , and
r ∈ R}. RTS is the reduced test suite.

{t1, t2}, covering r1; T2 = {t1, t3} covering r2, up to T6 = {t4}, covering

r6. HGS starts by adding test cases to the reduced test suite from the test

suites T1 . . . Tn with cardinality 1 (Line 3 of the algorithm). In the example,

test suites with cardinality 1 are T4 and T6, involving test cases t2 and t4,

which result in the coverage of {r1, r4} and {r3, r6}, respectively. HGS then

“marks” test suites that also cover these requirements (i.e., T1 and T3) so

they are not considered by further steps of the algorithm (illustrated as the

mark() method in Line 4). HGS then repeatedly selects the test cases in

unmarked test suites of increasing cardinality. In the example, unmarked

test suites of cardinality 2 are T2 and T5, with t3 the only test case to occur

in both and evaluated using the select() method, and thus added to the

reduced test suite. Since t3 covers r2 and r5, all test requirements are now

covered, and the algorithm terminates with the reduced test suite containing

three tests — one fewer than Greedy. HGS avoids selecting t1, which is

challenging for Greedy, thus leading to Greedy being less successful than HGS

at reducing this example test suite. Both HGS and Greedy were extended

by other researcher for more complex examples. Moreover, experimental

studies showed that HGS and Greedy significantly reduced the size of test

suites [123, 121].

Both GE and GRE are variants of the Greedy algorithm that was devel-

oped by Chen and Lau [121]. The GE stands for “Greedy Essential”, which
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starts by selecting essential, or “irreplaceable”, test cases first then applies the

standard greedy algorithm. For example and referring back to Figure 2.19,

the essential tests are t2 and t4 because r4 and r6 are only satisfied by these

test cases and will be selected first. Then the greedy will consider t1, t3, and

t5, however, with the unsatisfied test requirements, t3 will be selected as it

has the highest covered test requirements. Conversely, GRE (i.e., Greedy

Redundant Essential) removes any redundant tests that the essential tests

already covered (e.g., removing t1 to consider other test cases), the Greedy

will only consider t3 and t5 selecting only t3. In this example, GRE and GE

are equal to HGS because the overlap was small. However, in their study,

they showed that GE and GRE selected smaller or equal set of tests com-

pared to HGS depending on the overlap size (i.e., overlap of requirements).

However, HGS was able to reduce the test suite more than both techniques

with different overlaps. Their technique requires knowing the overlap prior

to reducing the test suite. Therefore, with test data generation and randomi-

sation, overlaps are difficult to predict and falling to the original technique

is the safest option. The study suggested that no technique is better than

the other as they are approximations rather than precise algorithms.

Tallam and Gupta [124] developed a greedy algorithm called delayed

greedy. It was based on Formal Concept Analysis (i.e., deriving a concept

hierarchy) of relations between tests and requirements. That is because a

Greedy algorithm makes early selections of redundant test cases (e.g., select-

ing t1). Delayed greedy first transforms the relations into a hierarchy that

removes tests that are a subset of another test case based on requirements.

Second, it removes the requirements that are also a subset of other test re-

quirements. Then, the greedy algorithm is applied on transformed set. For

instance, if test case ti has a superset cover tj test requirements then tj will

be removed. After that, if ri test cases are a subset of rj test cases then ri will

be removed. Lastly, the greedy algorithm will run on the rest of test cases

and requirements. Their empirical evaluation showed that their technique

had smaller or equal minimised test suites compared to Greedy and HGS.

Many others have used these methods as building blocks for new re-

ducers (e.g., [125, 126, 127]). Some applied integer linear programming
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(e.g., [128, 129]) or evolutionary algorithms (e.g., [130]) to the problem of test

suite reduction. Finally, Yoo and Harman used multi-objective search with

test reduction, test coverage, and past fault-detection history as goals [131].

Vahabzadeh et al. [132] proposed a technique to minimize test cases with

identifying equal test states to combine the assertions within tests into one

test, reducing the whole test suite considerably and improving regression

testing efficiency. All of this work has been applied to program code rather

than database schema testing context. Therefore, there is a research gap of

applying test suite reduction techniques into database schema testing.

In the context of database testing, there are several studies of database

schema evolution (e.g., [35, 22, 133]), thereby motivating the need for efficient

regression testing methods. Kapfhammer reduced test suites for database

application tests using a greedy algorithm [134]. Similarly, Tuya et al. used

a greedy algorithm to reduce the amount of data within databases for testing

SQL SELECT queries [98, 135]. Haftmann et al. used a slicing technique to

prioritise tests and reduce the number of database resets to improve the

efficiency of regression testing [94]. However, unlike these examples of prior

work, there are no work on database schema testing.

Finding tests that are understandable can decrease the oracle cost. How-

ever, the size of test cases and test suites can be large and will require longer

times to evaluate. Many factors can influence the test suite size such as the

combination of coverage criteria recommend by McMinn et al. [7] which was

the strongest in regard of fault-finding capabilities. This will lead to many

duplicate tests with different test requirements satisfying different coverage

criteria (e.g., satisfying a UNIQUE column test and a PRIMARY KEY column test).

Another factor is the duplication of INSERT statements, and they can be un-

necessary to the test requirement. Therefore, removing such INSERTs will not

affect the test case coverage. Thus, the following chapters will evaluate test

suite reduction methods in database schema testing and identify improve-

ments for such domain.

The benefits of reducing the test suite and the test cases is the execution

speed. Especially with mutation analysis (i.e., mimicking regression testing

and faults) because many mutants can be produced and requires the test suite
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to be executed each time. Another benefit is reducing the human oracle cost

that can help promote the use of automated tools. However, there are no

prior work in testing database schema and there are no prior work reviews

test suite reduction with actual humans. Therefore, these are major research

gaps that should be tackled and empirically evaluated.

2.5 Summary

Relational databases are the backbone of most software systems and it is

considered the most valuable asset of any organisation. That motivates the

importance of database design (i.e., schema) testing, which is essential to en-

sure the quality of a system. However, writing methodological tests manually

using coverage criteria is tedious, error-prone, and time-consuming. There-

fore, automating and generating tests can lower this cost [111]. However,

testers must execute such tools and evaluate the produced tests. This re-

quires the test data generation tools to produce effective test cases at high

speeds that are understandable, and as short as possible while maintaining

the coverage and fault-finding capabilities. That is, improving these tools

and empirically evaluating them is crucial as they need to be applicable in

real-world testing scenarios.

Schema
Testing
Section

2.3.5

Human
Oracle
Section

2.4

Test Data
Generation
Section

2.3.6

This

Thesis

Figure 2.21: Identified gaps related to existing work in this literature review
and the contributions of this thesis.

This literature review surveyed software testing concepts and the state-
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of-the-art test data generation techniques for both software programs and re-

lational databases. It identified gaps in research that are crucial for database

schema testing as illustrated in Figure 2.21 and listed as follows:

• Viable improvements for test data generation

• Lowering the human oracle cost with the following:

– Improving the comprehension of generated test data

– Reducing generated test suites

This thesis will empirically evaluate new methods that generate which

are more efficient, effective, and less demanding of human oracle cost. First,

evaluating and improving a domain specific technique with a hyper tech-

nique that utilises random and AVM. Secondly, identifying understandable

factors of tests inputs with a human study and multiple variants of read-

able techniques in the context of database schemas. Finally, implementing

an improved reduction technique for database schema testing and evaluated

against traditional techniques, improving both regression testing and the hu-

man oracle cost.
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Chapter 3

DOMINO: A Fast and Effective

Test Data Generator

The content of this chapter is based on the published work during this PhD,

and presented in the International Conference on Software Testing, Verifica-

tion and Validation (ICST) 2018 [17].

3.1 Introduction

In the literature review chapter, the Alternating Variable Method (AVM) [15]

is the state-of-the-art method for generating schema tests. The AVM is a

search-based technique that receives guidance from a fitness function [16,

7]. However, the generation of schema tests with this search can be slow,

particularly when it must locate columns that need to have identical values

and then adjust those values until they are the same. To aid the process,

prior work configured the AVM that can start with a series of “default”

values, thus ensuring that matches are likely from the outset. Yet, this can

introduce a lot of similarity across the different tests in the suite, hindering

both its diversity and potential fault-finding capability.

Therefore, this chapter introduce a new test data generation technique for

testing relational database integrity constraints, called Domino (Domain-

specific approach to integrity constraint test data generation). The Domino

technique utilises random search with a tailored approach that uses domain

specific operators to generate test data. That is, the technique try to “fix” the
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randomly generated values for INSERT statements to satisfy the given coverage

criteria. Thus, Domino leverage the knowledge of the schema and a coverage

requirement to explicitly sets data values to be the same, different, or NULL,

only falling back on random method when it must satisfy more arbitrary

constraints.

The intuition is that random values can generate more diverse test data

and increase the fault-finding capability of the generated test suite (i.e., a

more effective tests). Also, the fixing of randomly generated can increase

the efficiency of the generator. However, these claims need to be empirically

evaluated. Therefore, this chapters empirically evaluates and analyse the

technique, enabling a new variant of hybrid technique of Domino to be

created, called Domino-AVM.

This chapter experimentally compare Domino to both AVM and a hy-

brid Domino-AVM method, using 34 relational database schemas hosted by

Domino different DBMSs (i.e., HyperSQL, PostgreSQL, and SQLite). The

results show that Domino generates data faster than both the state-of-the-

art AVM and the hybrid method, while also producing tests that normally

detect more faults than those created by the AVM.

The Domino method was developed in 2014 while implementing and

designing the SchemaAnalyst framework by Professor Phil McMinn. This

chapter evaluated and improved this technique during the PhD time. There-

fore, the outlines and contributions of this chapter as follows:

1. Experiments showing that Domino is both efficient (i.e., it is faster

than the AVM at obtaining equivalent levels of coverage) and effective

(i.e., it kills more mutants than the AVM), in Section 3.4.

2. An informal analysis of finding faults capabilities with different test

data generators (Section 3.4).

3. The creation of a new hybrid technique called Domino-AVM (Sec-

tion 3.5).

4. Experiments comparing both techniques and the results showed that

the Domino-AVM is not superior to Domino (Section 3.5).
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To support the replication of this chapter’s experimental results and to

facilitate the testing of relational database schemas, the procedures were

implemented into scripts that can re-run experiments and analyse results.

Please follow Appendix B.1 for replication instructions.

3.2 Motivation

Prior work has shown that the AVM can generate test data for relational

schemas [7], it is subject to inefficiencies. First, the method waste time

cycling through column values that are not involved in any of the schema’s

integrity constraints. That is changing each column’s value to improvement

the fitness score. Secondly, the AVM get stuck in local optima, requiring

restarts as stated in the literature review. Because it tries to find test data

(i.e., solutions) in a small segment of the search space and after many iterative

changes with no improvements to the fitness. Finally, the AVM spend time

making incremental changes to a particular column value to match another

value in the test data vector, with the purpose of satisfying or violating

a PRIMARY KEY, UNIQUE, or FOREIGN KEY constraint. For example, matching a

FOREIGN KEY to a PRIMARY KEY (i.e., already been generated) requires the AVM

to incrementally change a random value to match the generated value. Such

as match a ‘906’ and ‘-908’ will enforce the AVM to make many steps, even

with “pattern” moves, to match them both.

The last two issues can be mitigated by first initialising the vector to a

series of default values chosen for each type (e.g., zero for integers and empty

strings for VARCHAR), and only randomising the vector on the method’s restart

[7]. This increases the likelihood of inducing matching column values from

the outset. Hereinafter, this variant of the AVM will be referred as “AVM-D”,

and the traditional randomly initialised vector version as “AVM-R”.
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3.3 The Domino Test Data Generator

Given the inefficiencies identified in the test data generator for integrity con-

straints, we developed an alternative, tailored approach to the problem that

uses domain knowledge. This new approach, called “Domino” (Domain-

specific approach to integrity constraint test data generation), can replicate

values in the test data vector for different constraint types, depending on

the coverage requirement. The Domino algorithm in Figure 3.1 begins by

initialising the test data vector at random. Henceforth, this technique will

be called DOM-RND as it use randomly generated values (i.e., the “RND”

of DOM-RND) and to distinguish Domino (i.e., the “DOM” of DOM-RND)

from new variations of these techniques presented in the next chapters. The

main loop then works according to the following intuition: Where a value

needs to be the same as one of a selection of values already in the vec-

tor, choose a value from that selection at random and copy it (through the

copyMatches function); else randomly select a new value instead through

the randomizeNonMatches function (where the “new” value is chosen

from the constant pool, as described in Section 2.3.5, or is a freshly gener-

ated value). NOT NULL constraints and CHECK constraints are handled separately

through the setOrRemoveNullsfunction and the solveCheckConstraintsfunc-

tion, respectively.

1 RANDOMIZE(~v)
2 while ¬ termination criterion do
3 copyMatches(~v, r)
4 randomizeNonMatches(~v, r)
5 setOrRemoveNulls(~v, r)
6 solveCheckConstraints(~v, r)

7 end

Figure 3.1: The Domino (i.e., DOM-RND) algorithm that automatically
generate, according to some coverage criterion r, a vector ~v of variables ap-
pearing in the INSERT statements of a test case for database schema integrity
constraints.

68



3.3. THE DOMINO TEST DATA GENERATOR CHAPTER 3

CREATE TABLE products ( CREATE TABLE orders (

product no INTEGER PRIMARY KEY NOT NULL, order id INTEGER PRIMARY KEY,

name VARCHAR(100) NOT NULL, shipping address VARCHAR(100));

price NUMERIC NOT NULL,

discounted price NUMERIC NOT NULL, CREATE TABLE order items (

CHECK (price > 0), product no INTEGER REFERENCES products,

CHECK (discounted price > 0), order id INTEGER REFERENCES orders,

CHECK (price > discounted price)); quantity INTEGER NOT NULL,

PRIMARY KEY (product no, order id),

CHECK (quantity > 0));

(a) A relational database schema containing three tables.

1) INSERT INTO products(product no, name, price, discounted price) VALUES(0, 'ijyv', 280, 1); 3

2) INSERT INTO orders(order id, shipping address) VALUES(0, 'kt'); 3

3) INSERT INTO order items(product no, order id, quantity) VALUES(0, 0, 290); 3

4) INSERT INTO products(product no, name, price, discounted price) VALUES(1, '', 728, 299); 3

5) INSERT INTO orders(order id, shipping address) VALUES(-285, 'shpalcrku'); 3

6) INSERT INTO order items(product no, order id, quantity) VALUES(0, 0, 1); 7

(b) An example test case automatically generated and consists of INSERT statements for a database spec-
ified by the relational schema in part (a). The test case exercises the PRIMARY KEY of the order items
table as false. Normally inspected by a tester who is checking schema correctness, the 3 and 7 marks
denote whether or not the data contained within each INSERT satisfied the schema’s integrity constraints
and was accepted into the database.

1) INSERT INTO products ... product no name price discounted price

v1 v2 v3 v4

2) INSERT INTO orders ...
order id shipping address

v5 v6

3) INSERT INTO order items ...
product no order id quantity

v7 v8 v9

4) INSERT INTO products ...
product no name price discounted price

v10 v11 v12 v13

5) INSERT INTO orders ...
order id shipping address

v14 v15

6) INSERT INTO order items ...
product no order id quantity

v16 v17 v18

(c) The vector ~v = (v1, v2, . . . , vn) representation used by random and fitness-guided search techniques
for finding the test data for each INSERT forming the test in part (b).

Figure 3.2: The Products relational database schema and an example test
case.
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While value copying and randomisation may “fix” a part of the test data

vector for a particular integrity constraint, it may also invalidate some other

part. For example, ensuring the distinctness of a primary key value, through

randomizeNonMatches, may destroy its foreign key reference, previously

set through copyMatches. To handle this concern, the functions are ap-

plied one after the other in a loop, continuing until an overall solution is found

or resources (i.e., a given number of algorithm iterations) are exhausted.

Now every function in DOM-RND’s main loop will be discussed to show

how it generates test data for the Products schema in Figure 3.2 and for

satisfying/violating each of the different types of integrity constraints.

Primary Keys and “Unique” Constraints

The functions copyMatches and randomizeNonMatches work to en-

sure that values in INSERT statements pertaining to primary keys/UNIQUE con-

straints are (a) distinct when such constraints need to be satisfied, else ensur-

ing those values are (b) identical should the constraint need to be violated.

Ensuring distinctness is not usually difficult to achieve by selecting values

randomly, as the probability of choosing the same value more than once is

small. Nevertheless, if two values match in the vector, the second value

is regenerated by randomizeNonMatches. Alternatively, if a primary

key/UNIQUE constraint is required to be violated by the test case, the values

for the columns involved in the latter, constraint-violating, INSERT statement

are copied from an earlier INSERT statement to the same table appearing in

the test case. For example, the PRIMARY KEY of the order items table is required

to be violated, that is the test case of Figure 3.2. Therefore, v16 and v17 is

required to be equal to v7 and v8, respectively. Thus, the copyMatches

copies v16 and v17’s values from v7 and v8. If there is a choice of subsequent

INSERT statements from which to copy a value, copyMatches selects one

at uniform random. If the primary key/unique constraint involves multiple

columns, then multiple values are copied together from a selected prior INSERT

statement in the test case.
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Foreign Keys

Compared to the previously described functions, copyMatches and ran-

domizeNonMatches work in a reverse fashion for foreign keys in that the con-

straint is satisfied when values match for the relevant columns across INSERT

statements in the test case, and violated when they do not. As with the

previous two functions, randomizeNonMatches generates non-matching

values randomly, while copyMatches copies values that are supposed to

match from elsewhere in the vector. Take the example of INSERTs 3 and 6

from the test of Figure 3.2b and the values of product no and order id, which

individually need to match the corresponding column in the products and

orders table. In both cases, two options exist. For product no, a matching

value is found in INSERT statements 1 and 4 (i.e., v1 and v10 in the vector).

For order no, a matching value is found in INSERT statements 2 and 5 (i.e.,

v5 and v14). As before, where choices exist, copyMatches selects one at

uniform random.

“Not Null” Constraints

Depending on the coverage requirement, the setOrRemoveNulls function

works to overwrite values in the vector with a random value where a non-

NULL value is required (e.g., to satisfy a NOT NULL constraint), and copies NULL

into the vector where a NULL value is required instead (e.g., to violate a

NOT NULL constraint). For instance, to violate the NOT NULL constraint on the

name column of the products table, the setOrRemoveNulls function would

replace the value of either v2 or v11 with a NULL value.

“Check” Constraints

As they involve arbitrary predicates that need to be solved, CHECK constraints

cannot generally be satisfied nor violated by copying values from elsewhere

in the vector. The solveCheckConstraints function generate random

values, (e.g., for price and discounted price in the products table). This is

the default approach taken by DOM-RND, and the one employed unless

otherwise specified. Values are chosen at random from the domain of the
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column type, or from the pool of constants mined from the schema (i.e., the

mechanism described for the Random+ method, introduced in Section 2.3.5).

The latter mechanism is particularly useful for constraints of the form “CHECK

a IN (x, y, z)” where the column a has to be set to one of “x”, “y”, or “z”

to be satisfied. These values are hard to “guess” randomly without any prior

knowledge, yet since the values “x”, “y”, or “z” will have been added to the

constant pool, DOM-RND is able to select and use them as test data values.

3.4 DOMINO-RANDOM Empirical Evalua-

tion

The aim of this section’s empirical evaluation is to determine if DOM-RND

will improve the efficiency and effectiveness of test data generation for rela-

tional database schemas. That is, improving the test data generation cover-

age, timing, and fault-finding capabilities. Therefore, the study is designed

to answer these two research questions:

RQ1: Test Suite Generation for Coverage—Effectiveness and Ef-

ficiency. How effective is DOM-RND at generating high-coverage tests for

database integrity constraints and how fast does it do so, compared to the

state-of-the-art AVM?

RQ2: Fault-Finding Effectiveness of the Generated Test Suites.

How effective are the test suites generated by DOM-RND in regard to fault-

finding effectiveness, and how do they compare to those generated by the

state-of-the-art AVM?

3.4.1 Methodology

Techniques

To answer the RQs, DOM-RND will be empirically evaluated, comparing it

to the AVM. Both variants of the AVM. The first was studied by McMinn et

al. [7], as discussed in Section 3.2 and Section 2.3.5, and uses default values
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for the first initialisation of the vector (and then random re-initialisation fol-

lowing each restart), which is referred as “AVM-D”. For a better comparison

with DOM-RND, the variant of AVM where all initialisations are performed

randomly, which is called “AVM-R”, will be evaluated. And only performing

Random+ to obtain its coverage levels to establish a baseline for which to

compare all techniques.

Subject Schemas

the experiments were performed by using the 34 relational database schemas

listed Appendix A. In order to answer RQ1, and to generate test suites

with which to assess fault-finding capability, a coverage criterion is required.

For this purpose, the combination of three coverage criteria were adopted:

“ClauseAICC”, “AUCC”, and “ANCC”, as introduced in Section 2.3.5. The

reason for using this combined coverage criterion is that it was reported as

the strongest to find seeded faults [7], combining the capability to find faults

of both commission and omission.

The set of 34 relational database schemas were featured in previous work

on testing database schemas (e.g., [16, 7, 136]). Since Houkjær et al. noted

that complex real-world relational schemas often include features such as

composite keys and multi-column foreign-key relationships [86], the schemas

chosen for this study reflect a diverse set of features, from simple instances

of integrity constraints to more complex examples involving many-column

foreign key relationships. The number of tables in each relational database

schema varies from 1 to 42, with a range of just 3 columns in the smallest

schemas, to 309 in the largest. Some schemas are examples from many

sources, and they are simpler than some other schemas used in this study,

they nevertheless proved challenging for database analysis tools such as the

DBMonster data generator [16].

DBMSs

The HyperSQL, PostgreSQL, and SQLite DBMSs hosted the subject schemas.

Each of these database management systems is supported by our Schema-
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Analyst tool [14]; they were chosen for their performance differences and

varying design goals. PostgreSQL is a full-featured, extensible, and scalable

DBMS, while HyperSQL is a lightweight, small DBMS with an “in-memory”

mode that avoids disk writing. SQLite is a lightweight DBMS that differs in

its interpretation of the SQL standard in subtly different ways from Hyper-

SQL and PostgreSQL. A wide variety of real-world programs, from different

application domains, use these three DBMSs.

RQ1

For RQ1, each test data generation method ran on each schema and DBMS,

for each coverage requirement. Each technique moves onto the next require-

ment (or terminating if all requirements have been considered) if test data has

been successfully found, or after iterating 100,000 times if it has not. Obtain-

ing the coverage levels, and the test data generation time, for 30 repetitions

of each method with each of the 3 database schemas and the 3 DBMSs.

RQ2

For RQ2, the fault-finding strength were studied on each generated est suite

for RQ1, following standard experimental protocols that use mutation anal-

ysis [137]. Adopting Wright et al.’s procedure [101], using the same set of

mutation operators that mutate the schema’s integrity constraints, for more

details please refer to Section 2.3.7. These operators add, remove, and swap

columns in primary key, UNIQUE, and foreign key constraints, while also invert-

ing NOT NULL constraints and manipulating the conditions of CHECK constraints.

RQ2 deems the automatically generated test suites to be effective if they can

“kill” a mutant by distinguishing between it and the original schema, leading

to the formulation of the higher-is-better mutation score as the ratio between

the number of killed and total mutants [138, 139, 140].

Experimentation Environment

All the experiments were performed on a dedicated Ubuntu 14.04 worksta-

tion, with a 3.13.0–44 GNU/Linux 64-bit kernel, a quad-core 2.4GHz CPU,
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and 12GB of RAM. All input (i.e., schemas) and output (i.e., data files) were

stored on the workstation’s local disk. Using the default configurations of

PostgreSQL 9.3.5, HyperSQL 2.2.8, and SQLite 3.8.2, with HyperSQL and

SQLite operating with their “in-memory” mode enabled.

Statistical Analysis

Using four tables, this chapter reports the mean values for the 30 sets of eval-

uation metrics (i.e., coverage values, time to generate test suites in seconds,

and mutation scores) obtained for each schema with each DBMS. For reasons

similar to those of Poulding and Clark [141], the means were reported instead

of medians: for data that was sometimes bi-modal, the median value was one

of the “peaks” while the mean reported a more useful statistic between the

peaks.

Using statistical significance and effect size, we further compared DOM-

RND pairwise with every other studied technique. Following Arcuri and

Briand recommendations regarding randomisation algorithms, we performed

the non-parametric Mann-Whitney U test for statistical significance [142].

Performing one-sided tests (sided for each technique in each pairwise com-

parison) with p-value < 0.01 regarded as significant. In all of the results

tables, the technique’s value is marked if it was significant, using the “F”

symbol if the mean result is lower compared to DOM-RND or the “�” sym-

bol if the mean result is higher compared to DOM-RND. In addition to

significance tests, the effect sizes are calculated using the non-parametric

Â metric of Vargha and Delaney [143]. Classifying an effect size as “large”

if |Â − 0.5| > 0.21. In all of the tables, the technique’s result marked with

the “∗” symbol if DOM-RND performed significantly better and with a large

effect size.

Threats to Validity

External Validity. The diverse nature of real software makes it impossi-

ble for me to claim that the studied schemas are representative of all types

of relational database schemas. Therefore, we attempted to select diverse
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schemas that came from both open-source and commercial software systems,

choosing from those used in past studies [7]. Also, the results may not gen-

eralise to other DBMSs. However, HyperSQL, PostgreSQL, and SQLite are

three widely used DBMSs with contrasting characteristics—and they also

implement key aspects of the SQL standard related to defining schemas with

various integrity constraints.

Internal Validity. To control threats of both the stochastic behaviour

of the techniques and the possibility of operating system events interfering

with the timings, we repeated the experiments 30 times. To mitigate threats

associated with the statistical analysis we (a) used non-parametric statis-

tical tests and (b) performed all the calculations with the R programming

language, writing unit tests to check the results.

Construct Validity. It is worth noting that, while this chapter does

not report the cost of running the generated tests, they normally consist of

a few INSERTs whose cost is negligible and thus not of practical significance.

3.4.2 Experimental Results

RQ1: Test Suite Generation for Coverage—Effectiveness and Effi-

ciency

Table 3.1 shows the mean coverage scores for DOM-RND (written as DR)

compared to the two AVM variants and Random+ (written as R+). In the

table, a value annotated with the “F” symbol means that significance tests

reveal that a technique obtained a significantly lower coverage score than

DOM-RND (written as DR), while “�” means the technique obtained a sig-

nificantly higher coverage than DOM-RND. The poor results for Random+

underscore that test data generation is not a trivial task for most schemas, ex-

cept for NistDML183 and NistXTS748. Random+ is outperformed by every

other method. Note that while the table only reports statistical significance

and a large effect size for DOM-RND pairwise with every other technique,

the coverage scores for the two versions of the AVM are also significantly bet-

ter with a large effect size in each case when compared to Random+. Since

it is dominated by the three other methods, from hereon we will discount
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Table 3.1: Mean Coverage Scores For Each Technique

HyperSQL PostgreSQL SQLite

Schema DR AVM-R AVM-D R+ DR AVM-R AVM-D R+ DR AVM-R AVM-D R+

ArtistSimilarity 100 100 100 ∗F59 100 100 100 ∗F59 100 100 100 ∗F62
ArtistTerm 100 100 100 ∗F60 100 100 100 ∗F60 100 100 100 ∗F63
BankAccount 100 100 100 ∗F85 100 100 100 ∗F85 100 100 100 ∗F87
BookTown 99 99 99 ∗F92 99 99 99 ∗F92 99 99 99 ∗F92
BrowserCookies 100 ∗F99 100 ∗F58 100 ∗F99 100 ∗F58 100 ∗F99 100 ∗F59
Cloc 100 100 100 ∗F92 100 100 100 ∗F92 100 100 100 ∗F92
CoffeeOrders 100 100 100 ∗F58 100 100 100 ∗F58 100 100 100 ∗F62
CustomerOrder 100 100 100 ∗F42 100 100 100 ∗F42 100 100 100 ∗F42
DellStore 100 100 100 ∗F93 100 100 100 ∗F93 100 100 100 ∗F93
Employee 100 100 100 ∗F89 100 100 100 ∗F89 100 100 100 ∗F90
Examination 100 100 100 ∗F83 100 100 100 ∗F83 100 100 100 ∗F84
Flights 100 ∗F97 100 ∗F59 100 ∗F97 100 ∗F59 100 ∗F97 100 ∗F58
FrenchTowns 100 100 100 ∗F35 100 100 100 ∗F35 100 100 100 ∗F35
Inventory 100 100 100 ∗F96 100 100 100 ∗F96 100 100 100 ∗F96
Iso3166 100 100 100 ∗F85 100 100 100 ∗F85 100 100 100 ∗F89
IsoFlav R2 100 100 100 ∗F88 100 100 100 ∗F88 100 100 100 ∗F88
iTrust 100 100 100 ∗F92 100 100 100 ∗F92 100 100 100 ∗F92
JWhoisServer 100 100 100 ∗F86 100 100 100 ∗F86 100 100 100 ∗F87
MozillaExtensions 100 100 100 ∗F88 100 100 100 ∗F88 100 100 100 ∗F88
MozillaPermissions100 100 100 ∗F96 100 100 100 ∗F96 100 100 100 ∗F96
NistDML181 100 100 100 ∗F64 100 100 100 ∗F64 100 100 100 ∗F65
NistDML182 100 100 100 ∗F62 100 100 100 ∗F62 100 100 100 ∗F65
NistDML183 100 100 100 100 100 100 100 100 100 100 100 100
NistWeather 100 100 100 ∗F57 100 100 100 ∗F57 100 100 100 ∗F75
NistXTS748 100 100 100 100 100 100 100 100 100 100 100 100
NistXTS749 100 100 100 ∗F86 100 100 100 ∗F86 100 100 100 ∗F86
Person 100 100 100 ∗F93 100 100 100 ∗F93 100 100 100 ∗F94
Products 98 98 98 ∗F70 98 98 98 ∗F70 98 98 98 ∗F79
RiskIt 100 100 100 ∗F68 100 100 100 ∗F68 100 100 100 ∗F70
StackOverflow 100 100 100 ∗F96 100 100 100 ∗F96 100 100 100 ∗F96
StudentResidence 100 100 100 ∗F70 100 100 100 ∗F70 100 100 100 ∗F74
UnixUsage 100 100 100 ∗F50 100 100 100 ∗F50 100 100 100 ∗F52
Usda 100 100 100 ∗F90 100 100 100 ∗F90 100 100 100 ∗F90
WordNet 100 100 100 ∗F90 100 100 100 ∗F90 100 100 100 ∗F89

Random+ as a comparison technique for generating test suites for database

schemas.

The state-of-the-art AVM-D obtains 100% coverage for each schema, ex-

cept for BookTown and Products, which contain infeasible coverage require-

ments. DOM-RND matches this effectiveness (it cannot do any better, but

it does not any worse either), while AVM-R has difficulties with Browser-

Cookies and Flights. For these schemas, AVM-R has trouble escaping a local

optimum for a particular coverage requirement. It restarts many times, but

fails to find test data before its resources are exhausted. The use of default

values always provides a good starting point for AVM-D to cover the re-

quirements concerned, and as such, it does not suffer from these problems.
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DOM-RND does not use a fitness function, and so does not face this issue.

Thus, for coverage scores, DOM-RND performs identically to AVM-D,

but better than AVM-R for some schemas, and significantly better than

Random+ for all non-trivial schemas.

Table 3.2: Mean Test Generation Times (in seconds)

HyperSQL PostgreSQL SQLite

Schema DR AVM-R AVM-D DR AVM-R AVM-D DR AVM-R AVM-D

ArtistSimilarity 0.49 ∗�0.96 ∗�0.60 1.02 ∗�1.41 ∗�1.08 0.29 ∗�0.72 ∗�0.44
ArtistTerm 0.56 ∗�1.15 ∗�0.72 2.60 ∗�3.10 ∗�2.68 0.33 ∗�0.91 ∗�0.54
BankAccount 0.53 ∗�0.83 ∗�0.76 1.33 ∗�1.62 ∗�1.59 0.32 ∗�0.62 ∗�0.57
BookTown 1.03 ∗�1.41 ∗�1.09 7.18 ∗�7.54 7.24 0.57 ∗�0.95 ∗�0.64
BrowserCookies 0.66 ∗�5.76 ∗�3.37 3.22 ∗�8.19 ∗�5.85 0.42 ∗�5.97 ∗�3.23
Cloc 0.51 ∗�0.63 ∗�0.60 1.15 ∗�1.28 ∗�1.19 0.30 ∗�0.41 ∗�0.43
CoffeeOrders 0.65 ∗�1.11 ∗�1.08 4.43 ∗�4.90 ∗�4.74 0.40 ∗�0.85 ∗�0.82
CustomerOrder 0.86 ∗�3.36 ∗�1.87 7.94 ∗�10.62 ∗�8.65 0.55 ∗�3.22 ∗�1.79
DellStore 0.83 ∗�1.63 ∗�1.56 4.19 ∗�4.96 ∗�4.84 0.48 ∗�1.28 ∗�1.14
Employee 0.55 ∗�0.82 ∗�0.90 1.05 ∗�1.27 ∗�1.34 0.34 ∗�0.59 ∗�0.70
Examination 0.78 ∗�1.74 ∗�1.57 4.05 ∗�4.94 ∗�4.84 0.49 ∗�1.45 ∗�1.27
Flights 0.69 ∗�4.93 ∗�3.99 2.48 ∗�6.59 ∗�5.77 0.45 ∗�5.23 ∗�3.90
FrenchTowns 0.68 ∗�1.94 ∗�1.70 3.02 ∗�4.17 ∗�3.86 0.43 ∗�1.63 ∗�1.94
Inventory 0.48 ∗�0.56 ∗�0.60 0.70 ∗�0.75 ∗�0.80 0.28 ∗�0.35 ∗�0.44
Iso3166 0.47 ∗�0.55 ∗�0.55 0.48 ∗�0.54 ∗�0.50 0.27 ∗�0.35 ∗�0.40
IsoFlav R2 0.75 ∗�1.31 ∗�1.27 5.13 ∗�5.69 ∗�5.48 0.43 ∗�0.99 ∗�0.93
iTrust 4.91 ∗�47.91 ∗�15.99 46.95 ∗�85.67 ∗�55.28 4.58 ∗�47.11 ∗�14.12
JWhoisServer 0.89 ∗�2.09 ∗�1.88 4.03 ∗�5.15 ∗�4.87 0.55 ∗�1.79 ∗�1.55
MozillaExtensions 0.86 ∗�2.01 ∗�1.92 6.36 ∗�7.62 ∗�7.34 0.55 ∗�1.65 ∗�1.55
MozillaPermissions0.51 ∗�0.61 ∗�0.66 1.08 ∗�1.16 ∗�1.19 0.31 ∗�0.40 ∗�0.49
NistDML181 0.53 ∗�0.83 ∗�0.71 1.55 ∗�1.80 ∗�1.71 0.32 ∗�0.62 ∗�0.54
NistDML182 0.76 ∗�2.36 ∗�1.94 5.74 ∗�7.43 ∗�6.81 0.50 ∗�2.10 ∗�2.09
NistDML183 0.51 ∗�0.58 ∗�0.64 1.32 ∗�1.44 ∗�1.44 0.30 ∗�0.36 ∗�0.48
NistWeather 0.71 ∗�1.42 ∗�1.31 1.93 ∗�2.64 ∗�2.52 0.48 ∗�1.14 ∗�1.22
NistXTS748 0.48 ∗�0.53 ∗�0.61 0.61 ∗�0.66 ∗�0.71 0.28 ∗�0.33 ∗�0.50
NistXTS749 0.55 ∗�0.78 ∗�0.82 1.54 ∗�1.81 ∗�1.77 0.33 ∗�0.57 ∗�0.69
Person 0.55 ∗�1.05 ∗�1.60 0.68 ∗�1.17 ∗�1.73 0.34 ∗�0.87 ∗�1.56
Products 0.71 ∗�1.72 ∗�1.71 2.30 ∗�3.28 ∗�3.40 0.47 ∗�1.33 ∗�1.38
RiskIt 1.00 ∗�3.62 ∗�2.31 11.70 ∗�14.72 ∗�12.53 0.63 ∗�3.48 ∗�1.99
StackOverflow 0.82 ∗�1.17 ∗�1.47 4.66 ∗�4.83 ∗�5.01 0.48 ∗�0.84 ∗�1.12
StudentResidence 0.59 ∗�0.97 ∗�0.78 1.43 ∗�1.72 ∗�1.54 0.38 ∗�0.75 ∗�0.63
UnixUsage 0.87 ∗�3.48 ∗�1.93 11.11 ∗�13.31 ∗�11.52 0.52 ∗�2.99 ∗�1.67
Usda 0.86 ∗�1.40 ∗�1.53 6.23 ∗�6.40 ∗�6.47 0.49 ∗�1.01 ∗�1.03
WordNet 0.68 ∗�0.97 ∗�1.13 3.64 ∗�3.92 ∗�3.99 0.40 ∗�0.67 ∗�0.84

Table 3.2 gives the mean times for each technique to obtain the coverage

scores in Table 3.1, excluding Random+. In the table, a value annotated with

a “F” symbol means that significance tests reveal that a technique required a

significantly shorter time than DOM-RND, while “�” indicates the technique

needed a significantly longer time than DOM-RND. The results show that

DOM-RND outperforms both of the AVM variants, which incur significantly
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higher times in each case, with a large effect size. The difference is most

noticeable for larger schemas (i.e., iTrust and BrowserCookies). With iTrust,

DOM-RND is approximately 40 seconds faster than AVM-R with each of the

DBMSs, representing a speedup of 8–10 times for HyperSQL and SQLite.

Compared to AVM-D, DOM-RND is approximately 10 seconds faster for

each DBMS. For smaller schemas, the differences are significant but less

pronounced. Although DOM-RND is faster than the AVM variants for these

schemas, the practical difference is almost negligible.

Concluding RQ1, DOM-RND yields the same coverage scores as the state-

of-the-art AVM-D, but in less time. Compared to DOM-RND, AVM-R is

slower and has slightly worse coverage.

RQ2: Fault-Finding Effectiveness of the Generated Test Suites

Table 3.3 shows the mean mutation scores obtained by each technique’s gen-

erated test suites. The results show that DOM-RND achieved significantly

higher mutation scores (i.e., values annotated with a “F” symbol) than the

state-of-the-art AVM-D technique for 20–23 of the 34 schemas, depending on

the DBMS, with a large effect size in almost every case. AVM-R is more com-

petitive with DOM-RND, however. For these two techniques there are fewer

differences in effectiveness. Therefore, it seems that developing test cases

from a random starting point is important for mutation killing effectiveness.

AVM-D starts from the same default values, which may remain unchanged,

depending on the test requirement. Ultimately, there is less diversity across

this method’s test suites, leading them to kill fewer mutants.

Variations in DOM-RND’s effectiveness compared to AVM-R stem from

differences in the approach taken for generating test data: DOM-RND always

copies values where it can for certain types of requirement and integrity

constraint, whereas AVM-R may legitimately opt to use NULL instead of a

matching value. For instance, DOM-RND satisfies foreign keys with NULL

values, unless there are NOT NULL constraints on the columns of the key. The

occasional use of NULL leads AVM-R to kill more mutants than DOM-RND for

some schemas, and fewer for others. The relative advantages depend on the
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Table 3.3: Mean Mutation Scores

HyperSQL PostgreSQL SQLite

Schema DR AVM-R AVM-D DR AVM-R AVM-D DR AVM-R AVM-D

ArtistSimilarity 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ArtistTerm 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
BankAccount 95.9 95.5 ∗F88.5 95.9 95.5 ∗F88.5 96.4 96.1 ∗F86.7
BookTown 99.5 99.4 ∗F97.6 99.5 99.4 ∗F97.6 99.1 99.0 ∗F85.5
BrowserCookies 96.3 F95.6 ∗F92.3 96.3 F95.6 ∗F92.3 95.9 96.1 ∗F86.5
Cloc 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
CoffeeOrders 100.0 100.0 100.0 100.0 100.0 100.0 98.6 ∗�100.0 ∗F94.6
CustomerOrder 97.5 97.5 ∗F94.0 97.5 97.4 ∗F93.9 98.0 98.0 ∗F95.2
DellStore 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Employee 97.7 97.6 ∗F95.3 97.7 97.6 ∗F95.3 97.3 97.4 ∗F84.1
Examination 100.0 F99.8 ∗F97.3 100.0 F99.8 ∗F97.3 99.2 99.6 ∗F85.8
Flights 99.8 ∗F97.9 ∗F95.2 99.8 ∗F97.9 ∗F95.2 100.0 ∗F98.2 ∗F84.3
FrenchTowns 94.3 94.3 ∗F82.5 94.3 94.3 ∗F82.5 94.6 94.6 ∗F83.3
Inventory 100.0 100.0 ∗F87.5 100.0 100.0 ∗F88.2 100.0 100.0 ∗F75.0
Iso3166 99.6 99.6 ∗F77.8 99.6 99.6 ∗F77.8 99.7 99.7 ∗F80.0
IsoFlav R2 99.7 99.8 ∗F87.0 99.7 99.8 ∗F87.0 99.7 99.8 ∗F84.4
iTrust 99.7 ∗F99.6 ∗F95.8 99.7 ∗F99.6 ∗F95.8 99.2 99.2 ∗F83.6
JWhoisServer 99.6 99.6 ∗F78.7 99.6 99.6 ∗F78.7 99.6 99.5 ∗F76.6
MozillaExtensions 99.8 99.6 ∗F82.1 99.8 99.6 ∗F82.1 99.7 99.5 ∗F71.3
MozillaPermissions100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.8 ∗F76.7
NistDML181 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
NistDML182 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
NistDML183 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
NistWeather 98.2 �100.0 ∗F93.3 98.2 �100.0 ∗F93.3 98.4 �100.0 ∗F93.8
NistXTS748 93.3 93.7 ∗F88.2 93.3 93.7 ∗F88.2 92.9 93.3 ∗F87.5
NistXTS749 95.0 95.0 95.0 95.0 95.0 95.0 91.7 ∗�96.0 92.0
Person 97.8 96.5 ∗F81.0 97.8 96.5 ∗F81.0 98.8 97.3 ∗F81.8
Products 87.2 87.1 F86.5 87.2 87.1 F86.5 87.8 87.7 F87.1
RiskIt 100.0 100.0 ∗F99.5 100.0 100.0 ∗F99.5 99.5 ∗�99.9 ∗F89.3
StackOverflow 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
StudentResidence 97.2 F96.5 ∗F94.4 97.2 F96.5 ∗F94.4 95.7 96.6 ∗F87.2
UnixUsage 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 ∗F98.2
Usda 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
WordNet 97.8 97.6 ∗F93.7 97.8 97.6 ∗F93.7 98.5 97.9 ∗F87.4

DBMS: For HyperSQL and PostgreSQL, DOM-RND obtains a significantly

higher mutation score for five schemas, while AVM-R performs better for

one schema. While some of these comparisons are accompanied by a large

effect size, the differences in means are usually marginal. Conversely, for

the SQLite DBMS, DOM-RND is better for two schemas, while AVM-R is

better for three. This is likely because SQLite allows the use of NULL values in

primary key columns, giving more opportunity for NULL to be used as a data

value in tests for schemas that it hosts. AVM-R can exploit this opportunity

by using NULL whereas DOM-RND does not—in turn leading to more times

for which using NULL can result in the killing of a mutant.

For nine schemas, a 100% mutation score was achieved regardless of tech-

nique and DBMS. Closer inspection revealed that these schemas had few or

80



3.5. THE HYBRID DOMINO-AVM METHOD CHAPTER 3

simple constraints (i.e., all NOT NULL constraints), the mutants of which were

easy to kill.

The schemas with the weakest mutation score was Products, with a max-

imum of 87.8% with DOM-RND and the SQLite DBMS. Closer inspection

revealed that this schema had many live mutants generated as a result of

CHECK constraints, thus motivating the hybrid Domino-AVM investigated in

RQ3.

To conclude for RQ2, the results show that DOM-RND is more effec-

tive at killing mutants than the state-of-the-art AVM-D technique. The

results reveal few differences in the mutation score of DOM-RND compared

to AVM-R. Yet, RQ1 showed that DOM-RND generates data significantly

faster than AVM-R—with marginally better coverage as well—and therefore

is the most effective and efficient technique of the three.

3.5 The Hybrid Domino-AVM Method

DOM-RND does not solve CHECK constraints with domain-specific heuristics,

as with other types of constraint, and lead to a weaker detection of CHECK con-

straint mutants. Instead, its random method relies on a solution being

“guessed” without any guidance. Thus, presenting a hybrid version of DOM-

RND, called “Domino-AVM”, that uses the AVM to handle this aspect of

the test data generation problem. The AVM uses the fitness function that

would have been employed in the pure AVM version of Section 3.2, providing

guidance to the required values that may be valuable when the constraints are

complex and difficult to solve by chance selection of values. This is illustrated

in Figure 3.3 where the role of the solveCheckConstraintsWithAVM

function is to run the AVM on the CHECK constraint and generate data with

guidance.

3.5.1 Domino-AVM Empirical Evaluation

In this section aims to empirically evaluate if the Domino-AVM will improve

the efficiency and effectiveness of test data generation for relational database
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1 RANDOMIZE(~v)
2 while ¬ termination criterion do
3 copyMatches(~v, r)
4 randomizeNonMatches(~v, r)
5 setOrRemoveNulls(~v, r)
6 solveCheckConstraintsWithAVM(~v, r)

7 end

Figure 3.3: The Domino-AVM algorithm that automatically generate, ac-
cording to some coverage criterion r, a vector ~v of variables appearing in the
INSERT statements of a test case for database schema integrity constraints.

schemas. Therefore, the same methodology in previous section was used to

answer the following research question:

RQ3: The Hybrid Domino-AVM Technique. How do test suites gen-

erated by Domino-AVM compare to DOM-RND’s in terms of efficiency,

coverage, and fault-finding capability?

To answer RQ3, coverage was measured, the time taken to obtain cov-

erage, and the mutation score of the Domino-AVM’s tests for the schemas

with CHECK constraints (i.e., those for which the Domino-AVM, which uses

the AVM instead of random search to solve CHECK constraints, will register a

difference). These results were compared to those of DOM-RND, which uses

the default mode of random search to solve CHECK constraints.

RQ3: The Hybrid Domino-AVM Technique

For the schemas with CHECK constraints — that is, the schemas for which

Domino-AVM could potentially improve upon DOM-RND — Table 3.4 re-

ports the mean results of coverage, test suite generation time, and mutation

scores. For ease of comparison, DOM-RND results are re-reported for these

schemas alongside those obtained for Domino-AVM.

Domino-AVM achieves full coverage for all schemas, except for those

that involve infeasible test requirements, as did DOM-RND. Perhaps sur-

prisingly, however, Domino-AVM is generally no better in terms of time

to generate the test suites, and is in fact reported as significantly worse in
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the table for several schemas, with an accompanying large effect size. This

indicates that, for this study’s schemas, random search can successfully solve

the CHECK constraints and utilisation of the constant pool mined it from the

schema. Thus, using the AVM is of no additional benefit in terms of speeding

up the test data generation process.

In terms of mutation score, there is one schema (i.e., NistWeather) where

Domino-AVM is significantly better than DOM-RND for all DBMSs, and

cases where the reverse is true (e.g., Employee and Examination) but for the

HyperSQL and PostgreSQL DBMSs only. The actual differences in means are

small, and are accounted for by the random solver’s use of constants mined

from the schema with DOM-RND, as opposed to the search-based approach

taken by Domino-AVM. In the cases where DOM-RND does better, it is for

relational constraints where a value is being compared to a constant (e.g., x

>= 0). The use of the seeded constant (i.e., 0 for x) means that a boundary

value is being used, which helps to kill the mutants representing a changed

relational operator (e.g., from >= to >).

On the other hand, Domino-AVM may use any value that satisfies the

constraint (e.g., 1 for x), according to the fitness function, that may not

fall on the boundary and not kill the mutant. Conversely, not using constant

seeding can help to kill other mutant types, which is what happens with Nist-

Weather. Here, DOM-RND only satisfies a CHECK constraint by using a value

mined from the schema, leading to a repetition of the same value across dif-

ferent INSERT statements of a test case. In contrast, the fitness function gives

guidance to different values that satisfy the CHECK constraint for Domino-

AVM. This increased diversity helps Domino-AVM to consistently kill an

additional mutant that DOM-RND was unable to kill.

The conclusion for RQ3 is that the AVM’s potential to improve the gen-

eration of data for test requirements involving CHECK constraints is only of

benefit for a few cases. The use of random search, as employed by DOM-

RND, achieves similar results to Domino-AVM in a shorter amount of time.

Overall Results Conclusions: The results indicate that DOM-RND is the

best method, achieving the highest mutation scores (RQ2) and requiring the
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least time to generate test suites (RQ1). The coverage it obtains is opti-

mal and is comparable with the previous state-of-the-art-technique, AVM-D.

Yet, it generates test data that is more diverse, which has a positive impact

on the fault-finding capability of its test suites. Given that DOM-RND han-

dles CHECK constraints randomly, while the AVM is fitness-guided, a hybrid

technique would seem fruitful. However, the results from RQ3 contradict

this intuition. Instead, it seems that AVM’s superiority over random search,

as shown by the results for RQ1, is to do with generating test data for other

types of integrity constraint. For the studied schemas, test data can be ef-

fectively generated for CHECK constraints with a random method — although

Domino-AVM does generate tests that are better at killing mutants for one

particular subject.

3.6 Summary

Since databases are a valuable asset protected by a schema, this chapter

introduced DOM-RND, a method for automatically generating test data

that systematically exercises the integrity constraints in relational database

schemas. Prior ways to automate this task (e.g., [16, 7]) adopted search-

based approaches relying on the Alternating Variable Method (AVM). Even

though DOM-RND is more efficient than the AVM, its domain-specific op-

erators enable it to create tests that match the coverage of those produced

by this state-of-the-art method.

DOM-RND can also generate tests that are better at killing mutants

than AVM-D, a version of the AVM that starts the search from a set of

default values (e.g., ‘0’ for integers or the empty string for strings). This

is advantageous because the test data values generated by DOM-RND, not

being based on default values, have greater diversity. Following this insight,

we also studied an AVM that starts with random values. Experiments show

that, while AVM-R has a similar mutant killing capability to DOM-RND, its

overall coverage scores are not as high as the presented method’s and it takes

significantly longer to generate its tests. Finally, we compared DOM-RND

to a hybridisation combining the domain-specific operators with the use of

85



CHAPTER 3 3.6. SUMMARY

AVM for the CHECKs, finding that this alternative is less efficient that the

presented method and no more effective.

Since prior work has shown the importance of human-readable test data [70,

69], the following chapter will study whether testers understand DOM-RND’s

data values. That is, evaluating the generated test data (i.e., inputs) and

trying to identify which data contribute positively or negatively on under-

standing the tests within the evaluation phase (i.e., helping to decrease the

human oracle cost).
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Chapter 4

What Factors Make SQL Test

Cases Understandable For

Testers?

The content of this chapter is based on the published work during this PhD,

and presented in the International Conference on Software Maintenance and

Evolution (ICSME) 2019 [144].

4.1 Introduction

The previous chapter showed that domain-specifies operators incorporated

with a random search, called Domino, significantly improved the effective-

ness and efficiency of test data generation. While testers need to act as an

oracle and understand each test case, Domino generates random values that

can difficult to understand. Therefore, this chapter will investigate under-

standability factors associated with database schema testing.

It is challenging to create test cases that are understandable and main-

tainable [18, 19] — mainly when the tests use complex and inter-dependent

INSERT statements to populate a relational database [20]. While automated

test data generators can create test cases that aid systematic database schema

testing [16], the human cost associated with inspecting test output and un-

derstanding test outcomes is often overlooked [21].

When database schemas evolve [22], their automatically generated tests

should be understandable by humans. Source code understandability is sub-
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jective, with developers having different views of automatically generated

tests [23]. For example, if testers are deciding whether or not the database

will reject a test, some may prefer English-like strings, while others may

appreciate simple values such as empty strings. Yet, it is crucial to create

understandable database schema tests, since comprehensible test inputs sup-

port human comprehension of test outcomes and may expedite the process

of finding and fixing faults [24].

Intending to identify the factors that make SQL tests understandable

for human testers, this chapter uses several automated test data generation

methods to create tests for database schemas. Therefore, four techniques

are implemented and categorised according to the data that they generate:

(1) random values; (2) default values that use empty strings for characters

and constants for numeric values; (3) values from a language model used

by Afshan et al. [69], combined with a search-based technique, Alternating

Variable Method (AVM); and (4) reused values derived from either column

names or a library of readable values. A human study is conducted to eval-

uate the understandability of the data generated. The human participants

were tasked with explaining test outcomes for data arising from the five data

generators (i.e., inspecting the test behaviour). Therefore, participants were

asked to identify which INSERT statement, if any, would be rejected by the

database because it violated a schema’s integrity constraint.

This chapter highlights two key findings. The first is that the data values

in INSERTs influence human understandability: using default values for ele-

ments not involved in the test — but necessary for adhering to SQL’s syntax

rules — aided participants, allowing them to identify and understand the

critical values easily. Yet, negative numbers and “garbage” strings hindered

a human’s ability to reason about the rejection of INSERT statements. The

second finding is more far-reaching and in confirmation of prevailing wisdom

among database developers: humans found the outcome of tests challenging

to predict when NULL was used in conjunction with foreign keys and CHECK

constraints. Even though NULLs limit test understandability for humans, this

result suggests that NULL use in tests can surface the confusing semantics of

database schemas.
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Overall, this chapter makes the following contributions:

1. New test data generator variants that are adapted into SchemaAnalyst

that aims to improve readability (Section 4.3.1).

2. A human study that assesses the understandability of automatically

generated test data by using a realistic task in which participants

must determine which INSERT, if any, would be rejected by a relational

database (Sections 4.3 – 4.4).

3. Readability guidelines for schema tests, derived from quantitative and

qualitative feedback from industrial and academic experts in the human

study, directing both manual testers and creators of automated testing

tools (Sections 4.5 – 4.6).

To support the replication of this chapter’s experimental results and to

facilitate the testing of relational database schemas, the proposed techniques

are implemented into SchemaAnalyst [145] and the procedures into scripts.

Replication instructions are available in Appendix B.2.

4.2 Motivation

To motivate this chapter, the BrowserCookies schema that was used in

Chapter 2 is iterated as an example in Figure 4.1(a). Figure 4.1(b) gives

examples of tests, produced by DOM-RND and AVM-D, that violate the

UNIQUE constraint of the cookies table. Both AVM-D and DOM-RND assume

an empty database, building up the sequence of INSERTs required to first

populate the database with valid values, so that the constraint can be tested

with identical values for the columns focused on by the final INSERT of each

test. The sequence of statements also involves inserting data into the places

table so that the foreign key of the cookies table is not violated instead of

the UNIQUE constraint, which is the ultimate target of this test case.

Automated test data generators can help testers to avoid the tedious

and error-prone task of manually writing tests for a database schema. Also,

the previous chapter and in prior [7, 101, 105], the techniques automatically

generated tests that can effectively cover the schema and detect synthetic

schema faults.
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CREATE TABLE places ( CREATE TABLE cookies (

host TEXT NOT NULL, id INTEGER PRIMARY KEY NOT NULL,

path TEXT NOT NULL, name TEXT NOT NULL,

title TEXT, value TEXT,

visit count INTEGER, expiry INTEGER,

fav icon url TEXT, last accessed INTEGER,

PRIMARY KEY(host, path) creation time INTEGER,

); host TEXT,

path TEXT,

UNIQUE(name, host, path),

FOREIGN KEY(host, path) REFERENCES places(host, path),

CHECK (expiry = 0 OR expiry > last accessed),

CHECK (last accessed >= creation time),

);

(a) The BrowserCookies relational database schema

AVM-D

1)
INSERT INTO places(host, path, title, visit count, fav icon url)

VALUES ('', '', '', 0, '')

2)
INSERT INTO cookies(id, name, value, expiry, last accessed, creation time, host, path)

VALUES (0, '', '', 0, 0, 0, '', '')

3)
INSERT INTO places(host, path, title,visit count, fav icon url)

VALUES ('a', '', '', 0, '')

4)
INSERT INTO cookies(id, name, value, expiry, last accessed, creation time, host, path)

VALUES (1, '', '', 0, 0, 0, '', '')

DOM-RND

1)
INSERT INTO places(host, path, title, visit count, fav icon url)

VALUES ('xuksiu', 'fwkjy', 'bmmniu', -53, 'f')

2)
INSERT INTO cookies(id, name, value, expiry, last accessed, creation time, host, path)

VALUES (0, 'iywt', 'ryl', 0, -357, -877, 'xuksiu', 'fwkjy')

3)
INSERT INTO places(host, path, title,visit count, fav icon url)

VALUES ('lmm', 'j', 'w', 907, NULL)

4)
INSERT INTO cookies(id, name, value, expiry, last accessed, creation time, host, path)

VALUES (131, 'iywt', 'mdofmfl', NULL, NULL, 106, 'xuksiu', 'fwkjy')

(b) Automatically generated test cases using AVM-D and DOM-RND that violates a
UNIQUE constraint,

Figure 4.1: The BrowserCookies relational database schema with examples
of automatically generated test case data.

That is one example of a test case from a test suite can have many

test cases. For example, a basic coverage criterion that simply satisfies and

violates each constraint would therefore have 20 test requirements, The more

complex combination of ClauseAICC, ANCC and AUCC, with higher fault

revealing power [7], has 71. Therefore, testers must still act as an “oracle”

for a test when they judge whether it passed or failed [24], a challenging task

that is often overlooked.

The effort expended by a human acting as an oracle for a test suite — that

is, understanding each test case and its outcomes, reasoning about whether
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a test should pass or fail and whether the observed behaviour is correct or

otherwise — is referred to as the “human oracle cost” [56]. Human oracle

costs can be categorised either quantitative or qualitative. It is possible

to decrease the quantitative costs by, for instance, reducing the number of

tests in a suite or the length of the individual tests. Strategies to reduce

the qualitative costs often involve modifying the test data generators so that

they create values that are more meaningful to human testers [69, 70]. With

the ultimate goal of reducing human oracle costs, this chapter identifies the

factors that influence test understandability.

Although human oracle costs can be ameliorated by creating automated

test data generation methods that consider readability (please refer to Sec-

tion 2.4 for more details), to the best of my knowledge there is no prior work

aiming to characterise and limit the qualitative human oracle costs associ-

ated with the automated testing of a database schema. As a first step, we

must determine how generated test data affects a human’s understanding of

a test’s behaviour. Thus, before focusing on generating tests that limit hu-

man oracle costs, it is prudent to identify the characteristics that make test

cases easy for testers to understand and reason about. This chapter reports

on a human study performing this important task.

As an example, even though each of the tests in Figure 4.1(b) successfully

violate the intended UNIQUE, they employ different values because they were

created with the two previously described automated test data generation

techniques. Depending on the generated test data, it may be more or less

challenging for a tester to effectively reason about test outcomes [24] and

determine whether or not the tests achieved the goal of creating inputs that

do not satisfy an integrity constraint. For instance, the second and fourth

INSERT statements from AVM-D assign empty strings for the values of the

UNIQUE constraint, while the second and fourth INSERTs from the DOM-RND

technique use randomly generated strings. Since every data generator works

differently, each created test may have varying values — all of which may

differ in their human understandability and support of effective testing —

for both those attributes involved in testing an integrity constraint and the

other schema attributes.
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Knowing that the readability of test inputs influences test case under-

standability [24], variants of AVM and Domino are created that generate

more readable data values. This enables the characterisation of factors in-

volved in the comprehension of tests for relational database schemas, which

is the focus of this chapter’s study, the design of which the next section

describes.

4.3 Methodology

In order to act as a human oracle, testers must understand the behaviour of a

test. The aim of this study is to find out what properties of relational schema

tests, comprising SQL INSERTs, make them easy for humans to understand.

I have studied five different ways to automatically generate tests, based

on the two main techniques, AVM and Domino, as introduced in the previ-

ous chapter. Each technique embodies a different strategy for producing the

test inputs (i.e., the values within the INSERTs) that may affect the human

comprehension of those tests. These involve the use of default values, ran-

dom values, pre-prepared data such as dictionary words, or data specifically

generated to have English-like qualities.

4.3.1 Automated Test Case Generation Techniques

Figure 4.2 introduce each automated method with example test cases for the

NistWeather schema. The test cases generated by each method, featured in

part (b) of this figure, aim to satisfy the CHECK constraint on the MONTH column

of the Stats table, starting from an initially empty database. In order to insert

a valid row in the Stats table, a row must first be inserted into the Station

table, thereby ensuring that the foreign key declared in the Stats table is not

violated. Thus, each test case consists of two INSERT statements.

The first two test data generators, AVM-D and AVM-LM, are based on

the Alternating Variable Method from prior chapters.

AVM-D previously introduced in previous chapter and was chosen for

this study as it has featured in a number of prior papers devoted to testing
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relational database integrity constraints (e.g., [16, 7]). An example test case

generated by AVM-D is shown in Figure 4.2(b). The default values — empty

strings and zeros — are shown in each INSERT statement and are used when

AVM-D did not need to modify the data values to fulfil the test requirement.

The values of 1 and 127 are needed to satisfy the CHECK constraints on MONTH

and TEMP F, respectively.

CREATE TABLE Station ( CREATE TABLE Stats (

ID INTEGER PRIMARY KEY, ID INTEGER REFERENCES STATION(ID),

CITY VARCHAR(20), MONTH INTEGER NOT NULL

STATE CHAR(2), TEMP F INTEGER NOT NULL,

LAT N INTEGER NOT NULL, RAIN I INTEGER NOT NULL,

LONG W INTEGER NOT NULL, CHECK (MONTH BETWEEN 1 AND 12),

CHECK (LAT N BETWEEN 0 and 90), CHECK (TEMP F BETWEEN 80 AND 150),

CHECK (LONG W BETWEEN 180 AND -180) CHECK (RAIN I BETWEEN 0 AND 100),

); PRIMARY KEY (ID, MONTH)

);

(a) The NistWeather relational database schema.

AVM-D 1)
INSERT INTO Station(ID, CITY, STATE, LAT N, LONG W)

VALUES (0, '', '', 0, 0);

2)
INSERT INTO Stats(ID, MONTH, TEMP F, RAIN I)

VALUES (0, 1, 127, 0);

AVM-LM 1)
INSERT INTO Station(ID, CITY, STATE, LAT N, LONG W)

VALUES (100, 'Thino', 'jo', 0, 0);

2)
INSERT INTO Stats(ID, MONTH, TEMP F, RAIN I)

VALUES (100, 6, 127, 1);

DOM-RND 1)
INSERT INTO Station(ID, CITY, STATE, LAT N, LONG W)

VALUES (100, 'ivjyv', 'jr', 0, 0);

2)
INSERT INTO Stats(ID, MONTH, TEMP F, RAIN I)

VALUES (100, 12, 90, 40);

DOM-COL 1)
INSERT INTO Station(ID, CITY, STATE, LAT N, LONG W)

VALUES (100, 'CITY 0', 'ST', 2, 0);

2)
INSERT INTO Stats(ID, MONTH, TEMP F, RAIN I)

VALUES (100, 12, 90, 1);

DOM-READ 1)
INSERT INTO Station(ID, CITY, STATE, LAT N, LONG W)

VALUES (100, 'sidekick', 'ba', 90, 150);

2)
INSERT INTO Stats(ID, MONTH, TEMP F, RAIN I)

VALUES (100, 12, 80, 12);

(b) Generated test cases with multiple techniques that satisfies a CHECK constraint for column MONTH.

Figure 4.2: The NistWeather relational database schema with examples of
automatically generated test case data.

AVM-LM is the basic AVM algorithm but with an additional post-

processing step. Following the generation of data using the AVM (this time,

starting with random, rather than default values), the strings in a test case

are optimised for “English-likeness” using a language model, similar to that

employed by Afshan et al. [69]. This method replaces every instance of a

string in each INSERT statement of a test case with a new string generated
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using the language model. The algorithm generates 10,000 strings of the

same length and picks the one with the best language model score. We in-

cluded AVM-LM because, in Afshan et al.’s study of automated test data

generation for C programs, the incorporation of a language model as an ex-

tra fitness component in the search-based method helped to produce more

readable strings that made tests easier and quicker for human testers to

understand [69]. Figure 4.2(b) shows an example of a test case generated

with AVM-LM. The test case does not use default values, but rather starts

with a sequence of data values that are either randomly generated or ran-

domly selected from constants used in the schema itself. This method creates

English-like words for test strings (i.e., “Thino” and “jo”).

The next three methods, DOM-RND, DOM-COL, and DOM-READ are

variants of the Domino from Section 4.2.

DOM-RND was also chosen for this study as it was featured in the pre-

vious chapter’s study and found to obtain the highest mutation scores out

of all studied testing methods. Also, DOM-RND generate values that are

nearly identical to a random test data generator, and from an understand-

ability perspective its allowing me to not include a purely random test data

generator. Figure 4.2(b) gives an example of a test in which this method

generated all values randomly or randomly selected from constants mined

from the schema.

DOM-COL is a variant of Domino that, instead of using a randomly

generated value for a string, uses the value’s associated column name with a

sequential integer suffix. The motivation behind DOM-COL is the intuition

that, if a data value embodies the column name, testers should easily match

data values in an INSERT with their columns. Since this is only viable with

strings, for integer data DOM-COL attempts to use sequentially generated

integers instead of random values. DOM-COL’s example test in Figure 4.2(b)

shows how “CITY 0” is used as one of the values. Since the STATE column has a

two character limit, the chosen value is a random subsequence of the column

name, which here is the first two characters.

DOM-READ is another variant of Domino that selects values from a

database that is used separately from the testing process and is populated
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for the schema. The motivation for this customisation of Domino is similar

to that of AVM-LM: readable values from an existing database should make

test data values easier to follow in the INSERT statements that contain them.

For the purposes of this study, the databases populator is used that is a Java

library called DataFactory [146], which fills string fields with English words.

The test for DOM-READ in Figure 4.2(b) is similar to that of DOM-RND’s

except that it features either English words or word-like subsequences for

length-constrained fields (i.e., “sidekick” and “ba”).

While AVM-D and DOM-RND have previously appeared in both the

literature [7] and Chapter 3, AVM-LM, DOM-COL, and DOM-READ are

new techniques designed for this study of test input comprehension.

4.3.2 Measuring Comprehension

Program comprehension, the task of reading and understanding programs,

is a complex cognitive task [147]. It often involves understanding a system’s

behaviour through the development of either general-purpose or application-

specific software knowledge [148]. This chapter uses multiple-choice ques-

tions to measure this human knowledge and identify comprehension factors.

While some studies use multiple-choice questions to assess problem-solving

skill [149], others report that performance on a multiple-choice quiz corre-

lates with knowledge of a written text [150]. In comparison to open-ended

short-answer essays, multiple-choice questions are normally more reliable be-

cause they constrain the responses [151]. Overall, this prior work shows that

multiple-choice questions can surface a human’s understanding and problem-

solving skills.

4.3.3 Research Questions

With the goal of identifying the factors that make SQL test cases under-

standable, we designed a human study to focus on answering the following

two research questions:

RQ1: Success Rate in Comprehending the Test Cases. How suc-

cessful are testers at correctly comprehending the behaviour of schema test

cases generated by automated techniques?
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RQ2: Factors Involved in Test Case Comprehension. What are the

factors of automatically generated SQL INSERT statements that make them

easy for testers to understand?

4.3.4 Experimental Set-up

Schemas and Generators. To generate tests, the publicly available Schema-

Analyst tool [14] is used, which already provides an implementation of the

AVM-D and DOM-RND techniques for database schema testing. The DOM-

COL and DOM-READ (and their value-initialising libraries) and AVM-LM

(and its language model) are added to SchemaAnalyst , making the enhanced

tool, as shown in Figure 4.3, available for download at SchemaAnalyst GitHub1

repository. Using SchemaAnalyst , tests are generated for the BrowserCookies

schema in Figure 4.1 and NistWeather schema in Figure 4.2, applying each

of the five test generation techniques. These database schemas are selected

because, taken together, they have the five main types of integrity constraint

(i.e., primary keys, foreign keys, CHECK, NOT NULL, and UNIQUE) and different

data types (e.g., integers, text, and constrained strings).

Coverage
Criterion

Schema

Test Data Generation

Generation
Function

AVM-D
DOM-
RND

DOM-
COL

DOM-
READ

Test
Data

AVM-LM

Schema
Test Suite

Calls a Value Library

Uses Enhances

Figure 4.3: The inputs and outputs of the enhanced SchemaAnalyst tool.

Test Cases. The SchemaAnalyst was configured to generate test suites by

fulfilling a coverage criterion that produces tests that exercise each integrity

constraint of the schema with INSERT statements that are (a) accepted, be-

cause the test data in the INSERT statements satisfies the integrity constraint

along with any other constraints that co-exist in the same table, and (b) con-

tains an INSERT statement that is rejected, because test data in it violates the

integrity constraint (while satisfying all other constraints) [7]. We selected

1https://github.com/schemaanalyst/schemaanalyst
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one example of a test that satisfies each different type of integrity constraint

(e.g., primary keys and foreign keys) and one example of a test case that

violates each type of integrity constraint for each relational schema.

When there were multiple test cases to choose from (because, for example,

the schema involves multiple CHECK constraints), we selected one at random.

BrowserCookies involves at least one of each of the main five types of in-

tegrity constraint, while NistWeather involves all the main types of integrity

constraint except a UNIQUE. As such, the set of test cases used for the ques-

tionnaire consisted of ten test cases for BrowserCookies and a further eight

for NistWeather — to satisfy and violate each of the integrity constraint

types — generated by each of the five techniques, resulting in a total of 90

test cases overall. SchemaAnalyst was configured to generate test cases suit-

able for database schemas hosted by the PostgreSQL DBMS. PostgreSQL

was selected as its behaviour is generally accepted as closest to the SQL

standard [152, 153].

I then incorporated the generated test cases in a comprehension task

delivered by a web-based questionnaire system, as further described in Sec-

tion 4.3.5.

Pilot Trial. The number of questions, test cases, and schemas were carefully

chosen using a pilot trial. The trial revealed that when participants were

given more than two schemas they got confused and could not remember

schema properties, which is not realistic. I also noted that humans completed

the tasks in less than an hour when given tests covering all of the integrity

constraints in a schema like the ones in Figures 4.1 and 4.2.

4.3.5 Design of the Human Study

Web-Based Questionnaire Supporting Two Studies. I created a

web application to allow human participants to answer questions about the

automatically generated test cases. Each question has its own individual web

page featuring a specific test. Figure 4.4 gives a screenshot of the system that

shows the schema for which SchemaAnalyst generated the test case at the

top of the page, with the INSERT statements making up the test underneath.
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Figure 4.4: Screenshot showing how the survey system displays a question.

The questionnaire then required the participants to select the first INSERT

statement of the test case, if any, that is rejected by the DBMS because it

violates one of more integrity constraints of the schema. If the test is designed

to satisfy all of the integrity constraints, none of the INSERT statements will

fail, whereby participants should select “None of them”. The goal is for

participants to focus on the test inputs, acting as oracles for these tests that

do not have assertion statements. When a participant could not decide on

the answer, a “I don’t know” option was provided for them to select, thereby

preventing them from having to select a response at random to continue to

the next question. Importantly, adding the “I don’t know” option helped to

prevent guessing from influencing the results.

To answer the RQs, we designed a human study based on this question-

naire. In the first part, referred to as the “silent” study, participants answered

the questionnaire under “exam conditions” (i.e., they were not allowed to in-

terrupt other participants or confer). This allowed me to obtain a relatively

large set of quantitative data from the questionnaire in a short amount of
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time. The second part took the form of a “think aloud” study in which we

collected more detailed and qualitative information from a smaller number

of participants. The participants did not receive the correct answers to any

of the questions, which might have influenced their answers to questions in-

volving later test cases. Importantly, this type of mixed design is often used

to validate quantitative results [154].

BrowserCookies NistWeather

A column is presented to a group (Grp) as a questionnaire comprised of tests from each data generator

W
ith
in

Between

AVM-D

AVM-LM

DOM-RND

DOM-COL

DOM-READ

Grp 1 Grp 2 Grp 3 Grp 4 Grp 5 Grp 1 Grp 2 Grp 3 Grp 4 Grp 5

PK NN FK CC UQ

NN FK CC UQ PK

FK CC UQ PK NN

CC UQ PK NN FK

UQ PK NN FK CC

PK NN FK CC

NN FK CC PK

FK CC PK NN

CC PK NN FK

PK NN FK CC

Figure 4.5: The mixed study design with two within-subjects variables (i.e.,
a schema and a data generator) and one between-subjects variable (i.e., a
test case).

The Silent Study (SS). Designed to answer RQ1, this study involved 25

participants recruited from the student body at the University of Sheffield,

studying Computer Science (or a related degree) at either the undergradu-

ate or PhD level. As part of the recruitment and sign-up process, potential

participants completed an assessment in which they had to say whether four

INSERT statements would be accepted or rejected for a table with three con-

straints. Participates were not invited if they got more than one answer

wrong, ensuring that we included capable participants with adequate SQL

knowledge. The web-based questionnaire asked the level of SQL experience of

each participant, which varied between less than a year for nine participants

to over five years for two. I designed this quiz to focus on the understand-

ability of test inputs and not the understandability of basic SQL commands.
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I assigned each participant to one of five groups randomly, such that there

were five participants in each group. The study had two within-subject vari-

ables (i.e., the database schemas and the test case generation techniques) and

one between-subject variable (i.e., the specific test cases themselves) [155],

as shown in Figure 4.5. In the figure, each test case represents a question

and is denoted by an integrity constraint’s test (i.e., a Primary Key (“PK”),

Foreign Key (“FK”), UNIQUE constraint (UQ), NOT NULL constraint (NN), or

CHECK constraint (CC)). The hashed box shows that this schema did not have

a UNIQUE test. This show all groups answered questions involving an ade-

quate test case created by each test generation technique for each of the two

schemas and a specific integrity constraint. I also assigned a test made by a

generator to precisely one group, resulting in five responses per test. Since

each cell in Figure 4.5 represents a separate test for satisfying and violating

each constraint, this means that there were 450 data points in total, with

250 for BrowserCookies and 200 for NistWeather. Although two questions

were added at the start of a question set so that participants could practice

and get familiar with each schema, we did not analyse the responses to these

questions. Each participant was financially compensated with £10, encour-

aging them to do their best to understand the schema tests and complete

the questionnaire in under an hour.

The Think Aloud Study (TAS). This study was also designed to answer

RQ2, recruiting five new individuals to complete the questionnaire, assigning

each to their own group and allowing full coverage of the questions in the

questionnaire. Participants were asked to say their thought processes aloud,

a technique commonly used in the HCI research community for studying hu-

man cognitive processes in problem-solving tasks [156]. This protocol allows

for the inferences, reasons, and decisions made by participants to be surfaced

when they complete an assignment [157]. We performed this study, prompt-

ing participants to say “why” they had chosen an answer if they had not

already verbalised their reasoning.

Audio recording of each participant’s session were made and manually

transcribing it to text afterwards. Following this, all of these statements are

analysed. When at least three of the five participants said the same thing,

100



4.3. METHODOLOGY CHAPTER 4

this chapter reports it as a “key observation” in the answer to RQ2.

The five participants comprised three additional Computer Science PhD

students from the University of Sheffield and two industry participants who

each had two years of experience. With these five participants, I restricted

myself to prompting them with a “why?” question to get them to reveal their

thought processes, without any further interactions. A sixth participant

was recruited and performed the TAS in a randomly assigned group. In

contrast to the first five participants, the sixth participant was asked direct

questions inspired by comments that others made. This sixth participant

was a developer from a large multi-national corporation with over 10 years

of software development experience, including with the SQL. As such, this

participant is referred to as the “experienced industry engineer” and was not

counted among the official TAS participants. Instead, RQ2 answer uses the

expert as an additional source of comments and reported alongside the first

five participants.

4.3.6 Threats to Validity

External Validity. The selection of schemas for this chapter’s study is

a validity threat because those chosen may yield results that are not be ev-

ident for real schemas. To mitigate this threat, two schemas are selected

that feature all the integrity constraints and data types commonly evident

in schemas [22]. Since they may not represent those often used in practice,

the tests used in the study are also a validity threat. To address this matter,

an open-source automated test data generation tool was used, SchemaAna-

lyst [14], and configured to create effective tests according to a recommended

adequacy criterion [7]. This decision guaranteed that the study’s participants

considered tests that can exercise all of a schema’s integrity constraints as

both true and false. The use of a few relational schemas and tests is also a

validity threat. It is worth noting that we purposefully limited the number of

these artefacts to ensure that participants could complete the questionnaire

in a reasonable amount of time, thereby mitigating the potentially negative

effects of fatigue. Since no previous human studies have been done in this

area and the categorising of test comprehension factors, this study therefore
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considered the first and began with a small-scale experiment using a small

number of participants. Given the relatively small number of total data

points, a statistical power calculation was used to see the percentage chance

of detecting differences in the human responses to the questionnaire.

Internal Validity. The potential for a learning effect is a validity threat

that could arise when participants become better at answering questions as

the questionnaire progresses, due to their experience with prior tasks. This

threat was mitigated with randomising the presentation order for questions

and schemas. The “think aloud” (TAS) experiment also had threats that

we attempted to mitigate. To ensure that all study participants had a uni-

form experience, the people in the TAS had to abide by a restricted form

of interaction with me, ensuring that they did not inappropriately discover

facets of the comprehension task. Since participants in a think aloud may be

naturally reluctant to verbalise their thought process, they are instructed to

“stream” their thoughts during their completion of the questionnaire. An-

other potential validity threat is that the majority of the participants in the

studies were students. However, the TAS included two industrialists and an

expert who had technique rankings that were similar to those arising from

the silent studies with the students. This trend suggests that it is acceptable

to use students to identify the factors that make SQL tests understandable,

in broad confirmation of prior results in software engineering [158].

Construct Validity. The measurement of a subjective concept like un-

derstandability is also a validity threat. To assess test understandability, we

determined how successful human testers were at identifying which INSERT

statement, if any, would be rejected by the database because it violated an

integrity constraint — a viable proxy to understandability that we could ac-

curately calculate. Yet, a study of this nature raises other concerns since

participants might not be accustomed to using the questionnaire application

to determine the outcome of a SQL test case. It is also possible that testers

might have better knowledge of a database schema that they designed. To

overcome both of these final concerns, the study included two practice ques-

tions with responses that were not recorded.
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4.4 Answers to the Research Questions

RQ1: Success Rate in Comprehending the Test Cases. Table 4.1

shows the number of correct and incorrect responses for RQ1. A response is

correct if a participant successfully selected the first INSERT that was rejected

by the DBMS, or the “None” option, if all the INSERT statements are accepted.

The “I do not know” option was not selected by participants in response to

any of the questions in the silent study (SS).

Table 4.1: Correct and Incorrect Answers for the Silent Study

Technique Correct Incorrect Percentage Rank
Responses Responses Correct

AVM-D 76 14 84% 1
AVM-LM 65 25 72% =3
DOM-COL 67 23 74% 2
DOM-RND 55 35 61% 5
DOM-READ 65 25 72% =3

Tests generated by AVM-D were most easily comprehended: participants

correctly responded 84% of the time. Conversely, tests produced by DOM-

RND were the most misunderstood: participants only correctly responded

61% of the time for this method. AVM-LM, DOM-COL, and DOM-READ,

which all employ operations to produce more readable strings, achieved sim-

ilar numbers of correct responses between 72 and 74%.

The Fisher Exact test was performed on the results on each pair of tech-

niques, which revealed a statistically significant difference between AVM-D

and DOM-RND, with a p-value < 0.001. However, at the same alpha-level of

0.05, there were no statistically significant differences between the other tech-

niques. A post-hoc test called “Power of Fisher’s Exact Test for Comparing

Proportions” was also used to compute the statistical power of Fisher’s Exact

test [159]. This test shows that, with 90 responses each for DOM-RND and

AVM-D, there will be a 93% chance of detecting a significant difference at

the 0.05 significance level, assuming that the response score is 84% and 61%

for AVM-D and DOM-RND, respectively. For the other test data generators,
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a post-hoc test calculates that there is a 50% or less chance of detecting a

significant difference, suggesting the need for more human participants.

Figure 4.6 shows the numbers of correct and incorrect responses for each

test case. Each stacked bar of the plot corresponds to a specific test case. The

horizontal-axis labels designate which schema the test case was generated

for (either BrowserCookies, denoted by the “BC” prefix, or NistWeather,

denoted by the “NW” prefix). These are suffixed by the test case type – either

the satisfaction (“S”) or violation (“V”) of a specific integrity constraint (a

primary key (“PK”), foreign key (“FK”), UNIQUE constraint (UQ), NOT NULL

constraint (NN), or CHECK constraint (CC)). This plot reveals that participants

had particular trouble with DOM-RND and identifying test cases where there

was no rejected INSERT statement for the BrowserCookies schema, as shown in

the figure by the bars labelled with the “BC-S-” prefix. These are test cases

designed to exercise an integrity constraint such that all data in the INSERT

statements is successfully entered into the database. All of the questions

involving these test cases were answered incorrectly for DOM-RND. Similarly,

participants struggled with these types of test cases for AVM-LM, DOM-

COL, and DOM-READ: they correctly answered 5, 9, and 6 questions out

of 25, respectively. However, for AVM-D, participants did not encounter

the same issues, answering 18 out of 25 questions correctly. The ratio of

correct/incorrect answers is more or less similarly evenly distributed for other

test types, although even for these remaining types of tests, DOM-RND

remains the weakest performer in terms of correct responses.

In conclusion for RQ1, the silent study showed that participants seem to

most easily comprehend the behaviour of the test cases generated by AVM-D,

as evidenced by the fact that they answered the most questions correctly

for test cases generated by this technique. In contrast, the most difficult

test cases to understand were those generated by DOM-RND. The other

techniques, that fall in between these two extremes, have a similar influence

on the human comprehension of schema tests.

A Think-aloud study was designed with the aim of finding out more about

these potential differences in the minds of the human participants, the results

of which is discuss next.
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RQ2: Factors Involved in Test Case Comprehension. The TAS re-

sulted in fewer overall responses as there were only five participants. Yet,

Table 4.2 shows the recorded answers follow a similar pattern to those given

by participants for RQ1: AVM-D produces tests that are understood the

best, with DOM-RND the worst, AVM-LM and DOM-COL falling between

the two, and DOM-READ tying AVM-D in this study. The main purpose of

the TAS was to surface what participants thought about the tests for which

they answered questions. There were seven key observations (KOs) made by

three or more of the five participants, each of which is discuss next.

Table 4.2: Correct and Incorrect Answers for the Think Aloud Study

Technique Correct Incorrect Percentage Rank
Responses Responses Correct

AVM-D 16 2 89% =1
AVM-LM 14 4 78% 4
DOM-COL 15 3 83% 3
DOM-RND 12 6 67% 5
DOM-READ 16 2 89% =1

n Confusing Behaviour of Foreign Keys (KO1) and CHECK Constraints (KO2)

with NULL. When NULL is used on columns without NOT NULL constraints but

with other integrity constraints, participants tended to think that the INSERT

statement should be rejected. All five stated this for foreign keys, while four

commented they thought this was true of CHECK constraints. Yet, this is not

the behaviour defined by the SQL standard [160].

One participant admitted that they “think it is easier to just look at the

ones that have a NULL to see if they are rejected first”. While it was easy

for the participants to spot NULLs, they found it confusing to judge how they

would behave when interacting with the schema’s other integrity constraints.

For example, one participant stated that “the path [a FOREIGN KEY column in

the BrowserCookies schema] is NULL which is not going to work, so I will stop

thinking there and judge [INSERT statement] four to be the faulty statement.”

Another participant said that a “CHECK constraint should be a NOT NULL by

default” even when the constraint involved columns that could be NULL.
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The experienced industry engineer stated the following when he encoun-

tered a NULL on a FOREIGN KEY column: “the schema does not allow it” and on

another question that “it should fail the FOREIGN KEY because of the NULL [in

one of the compound foreign key columns] and the fact that value does not

exist [the other foreign key column value in the referenced table]”. He also

debated with himself on the issue of whether CHECK constraints should not

allow a NULL as he was “not sure about the boolean logic around NULLs — I do

not think NULL is equal to zero and I do not think NULL is greater than NULL”.

He asked himself “can I treat a NULL as zero?”. After answering the question

with “I do not know”, I asked him “Do you think NULLs in CHECK constraints

are a bit confusing?”. He answered “Yes, I am very wary with NULL”. After

completing the survey, he made the following observation: “In a work situa-

tion, I would have looked up how NULL is interpreted in a logical constraint.

I did not find them hard to read but I do not know how the DBMS is going

to interpret a NULL”.

To conclude this KO, NULL is confusing for testers, and the frequency of

its use in tests is a factor for comprehension.

n Negative Numbers Require More Comprehension Effort When Used in

CHECK Constraints (KO3). Negative numbers confused four participants when

the column is numeric and used within a boolean logic of a CHECK. Participants

repetitively checked negative numbers when they were compared together.

A participant reported that negative numbers were more difficult than pos-

itive numbers because “it takes more time to do mental arithmetic” when

they are in comparisons. Another participant said negative numbers “are

not realistic”.

The experienced industry engineer also commented on negative numbers

when he was prompted after answering a survey question with them. He

stated “they are harder, slightly, to think about but it is OK and I can

reason about them”. For negative numbers with primary keys he said: “It

feels that you would not use a negative value on a primary key”.

To conclude this KO, the use of negative numbers increases the compre-

hension effort for database schema test cases.

n Randomly Generated Strings Require More Comprehension Effort to Com-
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pare (KO4). Four think-aloud participants said that randomly-generated

strings are harder to work with than readable or empty strings. One partic-

ipant referred to such strings as “garbage data”. They went on to say that

random strings are “harder when you are thinking of primary and foreign key

[string columns], as you had to combine them, and there will be one letter

difference, and it will be easier if it is real words”. In particular, DOM-

RND generates random string values, as shown in Figures 4.1(b) and 4.2(b).

Comparing the similarity of values that have small differences requires more

attention. One participant stated that small differences with characters are

“trickier” when trying to review duplicates and references. After completing

the survey, the experienced industry engineer said “the one I liked least is

random values” (i.e., data generated by DOM-RND). Of the data generated,

he stated “these are horrible, they are more distinct . . . but they do not mean

anything. At least [readable strings], I can understand. But for this I had to

compare each character”.

Because they are both “more readable” and “pronounceable”, partici-

pants also preferred non-random strings (e.g., those produced by DOM-COL,

DOM-READ, and AVM-LM).

Concluding this KO, humans prefer readable, realistic strings to randomly-

generated ones when understanding schema tests.

n It is Easy to Identify When NULL Violates NOT NULL Constraints (KO5). NULL

was confusing for participants when used with foreign keys and CHECK con-

straints, but as would be expected, their behaviour is straightforward to

identify when used with NOT NULL constraints. Three participants made this

comment. One participant stated after he finished the questions that “the

NOT NULL constraints are the easiest to spot [violation of NOT NULL], followed

by PRIMARY KEY constraints”. Another participant commented on a test case

that did not involve NULL: “nothing is NULL, so it is easy to see the ones [INSERT

statements] that are NULL to see if they will be rejected”.

To conclude this KO, it is clear that NULL has differing effects on test case

comprehension, depending on the context in which it appears. When used

with NOT NULL constraints, human testers thought that the behaviour of a test

was obvious.
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n Empty Strings Look Strange (KO6), But They Are Helpful (KO7). The

AVM-D technique uses empty strings as the initial value for string columns

in INSERT statements, only modifying them as required by the goal of the test

case, as illustrated by the examples in Figures 4.1(b) and 4.2(b).

When a question involving a test case generated by AVM-D was revealed

to one of the participants, he said “this is difficult”. However, he changed his

mind afterward, saying that one could see the “differences and similarities

between INSERTs”, which helped him to identify parts of the INSERT statements

that affected the behaviour of the overall test case.

Another participant stated that a test case with default values was “a

good one” because “zeros are easy to read”. However, when the same par-

ticipant first encountered empty strings he said that they were “weird”. The

experienced industry engineer liked empty strings because “they are easy to

skip over to get to the important data”. Reflecting on test effectiveness, he

also said “empty strings are boundary values that need to be tested”.

To conclude this KO, empty strings help to denote unimportant data, an

crucial cue in SQL test comprehension.

The answer to RQ2 includes many thought-provoking observations. Par-

ticipants raised issues concerning the use of NULL (KOs 1, 2 and 5), suggesting

its judicious use in test data generation. There were positive comments about

default values (KO7), readable strings (KO4), and unenthusiastic comments

about negative numbers (KO3) and random strings (KO4). In the subsequent

discussion section these factors will be explored.

4.5 Discussion

There are several factors that influence the understanding of automat-

ically generated SQL tests, as evident from the think aloud study. This

section investigates the frequency of these factors in the test cases gener-

ated by each method, explaining whether they aid or hinder successful test

comprehension.
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Frequency of NULL. Table 4.3 shows the median, mean, and total occur-

rences of NULL in the 18 test cases generated by each technique for the two

schemas used in the study. Test cases generated by AVM-D did not have

many NULLs (5 in total) compared to the other techniques, which involved

20 or more occurrences, with 39 for DOM-READ. AVM-D’s tests had the

highest comprehension rate in the silent study: 84% of questions involving

them were answered correctly, as shown in the table. Conversely, test gen-

eration techniques leading to many occurrences of NULL (e.g., DOM-RND

and DOM-READ) had the lowest comprehension rates. The TAS revealed

that participants got confused with NULLs on columns involving integrity con-

straints, but which did not also have NOT NULL constraints defined on them.

This suggests two strategies: (1) generate NULLs in these scenarios, helping

testers to understand the behaviour of NULL in schemas and test edge cases

that detect more faults, as reported in the previous chapter or (2) limit the

use of NULL in order to expedite the human oracle process.

Negative Numbers. Table 4.3 shows the median, mean, and total occur-

rences of negative numbers in test cases generated by each technique. DOM-

COL generates numeric values through the use of sequential integers, and

therefore did not produce test cases with any negative numbers. AVM-D’s

test cases only contained two occurrences of negative numbers, while other

techniques involved 20 or more occurrences. AVM-D and DOM-COL were

two of the best performers in terms of test case comprehension for RQ1,

but there is not a significant difference in the number of questions that par-

ticipants correctly answered between DOM-COL and the other techniques.

Therefore, the data gives weak evidence that negative numbers affect test case

comprehension; however, negative numbers are important to test boundaries,

and as such the decision to include them needs to balance thoroughness of

the testing process with human comprehension of test cases.

Repetitious Values. TAS participants commented that the AVM-D’s use

of many empty strings helped them to identify the important parts of the test

case. Critically, the smaller the number of distinct values in a test case, the

smaller the amount of information the human had to understand. Table 4.3

shows that AVM-D involved the smallest number of distinct values in the
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test cases generated (e.g., 68), while the number of distinct values for the

other techniques was more or less similar (e.g., approximately 200). The

frequency of string values follows an inverse pattern. AVM-D’s test cases

received the highest percentage of correctly comprehended test cases. Once

again, the results suggest that repetitious values are a positive factor for the

database schema tests. Moreover, unlike the other factors (i.e., the use of

NULL or negative numbers), repeating values or using suitable defaults (e.g.,

empty strings or zero values) for unimportant aspects of a test case may not

limit a human tester’s ability to understand a schema test’s behaviour.

Default values showed to be beneficial, especially empty strings and zeros

in this study. This was because empty strings helped participants to skip to

the important data and remove the task of comparing characters which can

be a tedious and error-prone task.

Table 4.3 shows that AVM-D have a low distinct values, which means it

has very low unique values compared to other techniques. Such low distinct

values can help testers to review important data and skip values that are

not related to the test requirements. Hence, such low distinct values helped

participants to see similarities between different INSERT statements, which

made it easier to identify issues. This is why users also got high scores

when encountering default values. However, empty strings where reported

to be “weird” by the think aloud experiment but that did not discourage the

participants to get higher scores.

Table 4.3 shows the word frequency that do not including empty strings,

that are generated by the techniques. We have not included empty strings

as we want to review readable values. The mean word frequency shows

that DOM-RND has the lowest word frequency and AVM-D has the highest.

Which means that DOM-RND has high number of unique strings generated

per test case than AVM-D, that is very low distinct values. Which mean

it harder to spot differences between string values and the think aloud par-

ticipants reported that they had harder time comparing characters between

string values that are random. This results shows equally generated values

(i.e. default values) has higher chance to be read easily than unique values

that might confuses the tester.
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Readable Values. I developed three techniques to generate non-random,

human-readable strings (e.g., AVM-LM, DOM-COL, and DOM-READ). The

results for RQ1 do not suggest that this was the most important factor in test

case comprehension. While these techniques did not produce test cases with

the highest comprehension rate, they were also not the worst. In the TAS of

RQ2, participants agreed that random strings were hard to understand, and

therefore preferred readable strings. The experienced industry engineer was

asked about the different types of strings produced by AVM-LM, DOM-COL,

and DOM-READ. He said the following of DOM-READ: “. . . easy to com-

pare them because I can read them. [I see] distinct values, but I prefer nouns

and adverbs”; of strings generated by the AVM-LM: “nice because they are

pronounceable”; of strings generated by DOM-COL: “[values are] easy to cor-

relate” with column names. However, he also stated that DOM-COL should

have “visually different words” to help distinguish between different values.

Overall, while human-readable values seem helpful, the results suggest that

they are not critical to SQL test case comprehension.

The responses to RQ1 and RQ2 and the results in Table 4.3 highlight

the factors that influence human comprehension of schema tests. The re-

sults suggest that the frequency of NULLs, existence of negative numbers,

repetition of data values, and presence of readable values can influence the

understandability of automatically generated tests. This means that both

manual testers and the creators of automated testing tools should consider

these issues as they may influence whether humans can understand tests and

effectively complete testing tasks.
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4.6 Summary

This chapter presented a study of the factors that make SQL test cases

understandable for human testers and revealed the followings:

1. NULL is confusing for testers. Testers find the behaviour of NULL difficult

to predict when used in conjunction with different integrity constraints such

as foreign keys and CHECK constraints, suggesting the need for their judicious

use.

2. Negative numbers require testers to think harder. Testers pre-

fer positive numeric values, although, from a testing perspective, negative

numbers should not be avoided altogether.

3. Simple repetitions for unimportant test values help testers. If

only the important data values in the test case vary, while all others are held

constant, a tester can easily focus on the non-trivial aspects of a test case to

understand its behaviour.

4. Readable string values. Testers prefer to work with human-readable

strings rather than randomly generated strings.

Therefore, this chapter evaluated and identified factors to help lower the

qualitative human oracle cost. However, test data generators can generate

many tests depending on the coverage criteria and the number of integrity

constraints with a schema. Also, many test cases within a test suite can take

long time to run when schemas change. Therefore, generated test suite can be

reduced using reduction techniques to help both the human tester, lowering

the quantitative human oracle cost, and help with regression testing (i.e.,

old tests ran on changed code). Hence, the following chapter will empirically

evaluate reduction techniques, that are general purpose, in the context of

database schema testing. Also, creating a new technique that reduce test

suite by discarding and merging redundant test cases.
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Chapter 5

STICCER: Fast and Effective

Database Test Suite Reduction

Through Merging of Similar

Test Cases

The content of this chapter is based on the submitted and accepted work dur-

ing this PhD, which will be published and presented in the International Con-

ference on Software Testing, Verification and Validation (ICST) 2020 [161].

5.1 Introduction

The previous chapter investigated understandability factors associated with

automagically generated test cases and recommended minimising the random

values, use of NULLs and negative numbers, while repeating values in INSERT

statements. These recommendations will help testers inspect generated tests

and easily act as an oracle. However, automated techniques can generate

many tests that are required to be inspected and executed to identify faults.

This will increase testers inspection efforts and waste time awaiting results.

Therefore, this chapter will investigate reduction techniques for database

schema test suites.

Many real-world database applications contain complex and rapidly evolv-
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ing database schemas [35, 22, 133], suggesting the need for efficient ap-

proaches to regression testing. Since these schemas contain many tables,

columns, and integrity constraints, state-of-the-art automated test data gen-

erators for schemas can generate numerous tests that cover many test re-

quirements [16, 17]. One approach to the regression testing of a database

schema involves re-running the automatically generated tests after a schema

modification, with follow-on steps that ensure the test suite’s continued effec-

tiveness by adequacy assessment through both coverage and mutation anal-

ysis [136]. The prohibitive cost of repeated test suite execution and test

adequacy assessment suggests the need for test suite reduction methods that

can minimise the test suite to those tests that are essential for maintaining

the schema’s correctness during its evolution.

Automatically generated schema tests construct complex database states

that are often intertwined, thereby leading to test dependencies that are not

explicitly captured by the requirement that the test was designed to cover.

Since traditional test suite reduction methods (e.g., [25, 26, 27]) discard tests

only when they cover the same requirements, they are not well-suited to re-

ducing test suites for database schemas. Since Section 5.6’s results show

that these traditional reducers overlook up to 539 opportunities for test data

merging in a complex schema like iTrust. Thus, this chapter presents a novel

approach to test suite reduction, called Schema Test Integrity Constraints

Combination for Efficient Reduction (STICCER), that discards tests that

redundantly cover requirements while also merging those tests that produce

similar database states. STICCER creates a reduced test suite, thus decreas-

ing both the number of database interactions and restarts and lessening the

time needed for test suite execution and mutation analysis.

Using the same previous 34 relational database schemas (in Chapter 3)

and test data generated by two state-of-the-art methods, we experimentally

compared STICCER to two greedy test suite reduction techniques and a

random method. The results show that reduced test suites produced by

STICCER are up to 5X faster than the original test suite and 2.5X faster than

reduced suites created by the traditional methods, often leading to significant

decreases in mutation analysis time. STICCER’s tests always preserve the
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coverage of the test suite and rarely lead to a drop in the mutation score, with

a maximum decrease in fault detection of 3.2%. In summary, this chapter’s

contributions are as follows:

1. A novel test suite reduction method, called STICCER, that quickly

and effectively reduces database test suites by discarding and merging

redundant schema tests.

2. Traditional test suite reduction methods implemented in the context

of database schema testing.

3. An empirical study of STICCER’s effectiveness when it reduces test

suites from two state-of-the-art test data generators, compared to two

traditional reducers and a random baseline, and using two schemas.

The results highlight: (i) the limitations of existing methods, (ii) the

decrease in tests and database interactions, (iii) the impact on the

mutation score, and (iv) the change in the time taken for test execution

and mutation analysis.

To support the replication of this chapter’s experimental results and to

facilitate the testing of relational database schemas, the proposed techniques

are implemented into SchemaAnalyst [145] and the procedures into scripts.

Replication instructions are available in Appendix B.3.

5.2 Motivation

Following the same consistency of the previous chapter, Figure 5.1 shows

examples of test cases for the BrowserCookies and generated by AVM-D (part

b(i)) and DOM-RND (part b(ii)). The test requirement for the AVM-D test

case is to satisfy the UNIQUE constraint of the schema involving name, host and

path, while the goal of DOM-RND’s requirement is to violate it. For each

test, assuming an initially empty cookies table, “setup” INSERT statements

(*-S1 and *-S2) are needed to put the database into the required state for

testing the constraint — since uniqueness cannot be tested unless there is

already some data in the database for comparison purposes.

In both cases, the S2-suffixed statement inserts data for the cookies table,

but since it has a foreign key to places, a prior INSERT (*-S1) must first be
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(i) AVM-D generated test case to satisfy the compound UNIQUE key

A-S1
INSERT INTO places(host, path, title, visit count, fav icon url)

VALUES ('', '', '', 0, '')

A-S2
INSERT INTO cookies(id, name, value, expiry, last accessed, creation time, host, path)

VALUES (0, '', '', 0, 0, 0, '', '')

A-A1
INSERT INTO places(host, path, title,visit count, fav icon url)

VALUES ('a', '', '', 0, '')

A-A2
INSERT INTO cookies(id, name, value, expiry, last accessed, creation time, host, path)

VALUES (1, '', '', 0, 0, 0, 'a', '')

(ii) DOM-RND generated test case to violate the compound UNIQUE key

D-S1
INSERT INTO places(host, path, title, visit count, fav icon url)

VALUES ('aqrd', 'xj', 'vnobtpvl', 0, 'dmnofpe')

D-S2
INSERT INTO cookies(id, name, value, expiry, last accessed, creation time, host, path)

VALUES (0, 'ddfvkxnjg', '', 0, -801, -890, 'aqrd', 'xj')

D-A1
INSERT INTO places(host, path, title,visit count, fav icon url)

VALUES ('vkjdkfc', 'xxfp', 'tp', -640, 'mdewsfaw')

D-A2
INSERT INTO cookies(id, name, value, expiry, last accessed, creation time, host, path)

VALUES (261, 'ddfvkxnjg', 'euer', NULL, NULL, NULL, 'aqrd', 'xj')

Figure 5.1: Test case examples for the BrowserCookies relational database
schema in Figure 4.1.

made to that table. This is so that the test does not fail before the UNIQUE con-

straint can be tested, as violation of the foreign key is not the focus of these

particular tests. Following these “setup” INSERTs are statements referred to

as the “action” INSERTs, since they perform the actual test (*-A2) — or sup-

port it through ensuring that the foreign key relationship to the places table

can be maintained (*-A1). A-A2 inserts a different combination of values for

name, host, and path to A-S2, ensuring that the integrity constraint is satis-

fied, while D-A2 inserts the same values as D-S2, so that the constraint is

ultimately violated.

The coverage criteria for testing integrity constraints necessitate the cov-

erage of many test requirements. Especially, the combination of coverage

criteria, such as the “Clause-Based Active Integrity Constraint Coverage”

(ClauseAICC), “Active Unique Column Coverage” (AUCC), and “Active

Null Column Coverage” (ANCC) that are they strongest in finding faults.

Although SchemaAnalyst automates the process of generating test cases to

satisfy those test requirements, the resultant test suites can still be lengthy,

further manipulating database state in an intertwined fashion. As such, the

combination of coverage criteria that the experiments in Section 5.6 use to

generate the test suites. This chapter investigates ways to reduce the size of

these test suites while maintaining their coverage.
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5.3 Test Suite Reduction

The task of producing a reduced test suite is equivalent to the minimal

set cover problem, which is NP-complete [118]. However, several techniques

are capable of effectively reducing test suite size in a way that is useful to

developers. In chapter 2, three reduction techniques were reviewed and are

implemented in SchemaAnalyst for this chapter result’s section. The three

reduction techniques are explained in Chapter 2 and they are as follows:

• A random reduction technique that randomly select test cases until all

test requirements are covered.

• A greedy technique that reduced test suites by selecting test cases that

cover most test requirements.

• The HGS technique that was developed by Harrold, Gupta, and Soffa [25]

and uses set cardinality to reduce test suites.

5.4 The STICCER Approach

The more fault-finding and powerful a coverage criteria is, the more test re-

quirements it involves, and the test suites needed to satisfy all of the those

test requirements become larger as a result. For example, the BrowserCook-

ies schema in Figure 4.1a has ten integrity constraints. A basic coverage

criterion that simply satisfies and violates each constraint would therefore

have 20 test requirements, The more complex combination of ClauseAICC,

ANCC and AUCC, with higher fault revealing power [7], has 71. Although

SchemaAnalyst automates the generation of test cases, the test suites can

become large as a result of the number of test requirements must satisfy:

SchemaAnalyst treats each test requirement as a separate “target” for test

case generation, unless the test requirement is a duplicate or subsumed by

some other.

As explained in the last section, and as shown by Figure 5.1, each test

case involves a setup “cost”, i.e., INSERT statements that are needed to get
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the database into some state required for the test requirement. For instance,

in Figure 5.1, the database needs to have some data in it for the UNIQUE con-

straint to be properly tested, else there will be nothing in the database to test

the “uniqueness” of the inserted data that forms the last INSERT statement

of the test. Since the table of interest involves a foreign key, data needs to

be into the referenced table as well, otherwise the test will fail for reasons

other than the UNIQUE constraint that it is supposed to test. Furthermore, the

database state must be reset following each test so that it does not “pollute”

any following tests and introduce unintended behaviour and/or flakiness that

might compromise testing [162].

Test Case 1 (t1)
host path title visit count fav icon url

t1S1 'A' 'B' 'C' 0 'D' 3

t1A1 'A' 'Y' 'T' 0 'L' 3

Test Case 2 (t2)
host path title visit count fav icon url

t2S1 'A' 'Y' 'X' 0 NULL 3

t2A1 'X' 'Y' 'T' 1 'L' 3

Merged Test Case
host path title visit count fav icon url

t1S1 'A' 'B' 'C' 0 'D' 3

t1A1 'A' 'Y' 'T' 0 'L' 3

t2A1 'X' 'Y' 'T' 1 'L' 3

Merge

Figure 5.2: An example STICCER merging of two test cases with the same
test coverage behaviour. The test cases involve the places table of the
BrowserCookies schema. The tick marks indicate the data is successfully
admitted into the database.

The first observation was that integrity constraint tests often share com-

mon sequences of setup INSERT statements that could be shared across dif-

ferent test cases to reduce setup/teardown time when running the test suite,

resulting in fewer overall INSERT statements for a human to understand when

maintaining the test suite. For example, Figure 5.2 shows two test cases,

t1 and t2, designed to test the inclusion of the two columns of a compound
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primary key belonging to the places table of the BrowserCookies schema in

Figure 5.1. The first, t1, tests the uniqueness of the host column while t2

tests the uniqueness of the path column. As the figure shows, the setup part

of t2 can be thrown away (statement t2S1), with the “action” part (statement

t2A1) appended to the end of t1. The new, merged test case covers both test

requirements of the original two tests.

The second observation was that some INSERT statements pertaining to

foreign keys in a test case are redundant and can be removed. Take the

example of Figure 4.1b(ii) and the test case generated by DOM-RND. Here,

the test requirement is to violate the UNIQUE constraint of the schema. This

involves two INSERT statements to the cookies table (D-S2 and D-A2), with

the second INSERT (D-A2) replicating the data values for the columns involved

in the constraint of the first (D-S2), so that they clash with those already in

the database. Because the cookies has a foreign key to the places table, the

test case involves INSERT statements to that table also (D-S1 and D-A1) —

one to support each INSERT to cookies. This is to ensure data is present to

satisfy the foreign key relationship (since violating this constraint would mean

that the test requirement for this test would not be fulfilled). Yet, in this

particular case D-A1 is redundant. Since the columns of the UNIQUE constraint

are also involved in the foreign key, and both INSERT statements to cookies

must have the same data for those columns, those INSERT statements both

rely on D-S1 to fulfil the foreign key relationship. Note that this is not

always case, since the corresponding INSERT to the places table is needed for

the AVM-D test case in part b(i), as the test requirement there is to satisfy

the unique constraint, and as such D-S2 and D-A2 need to be distinct, which

in turn means the foreign key values must also be distinct.

To handle both of these issues as part of an approach to reduce the size

of relational database schema integrity constraint tests, a technique was im-

plemented and called “STICCER”, which stands for “Schema Test Integrity

Constraints Combination for Efficient Reduction”. STICCER builds on the

standard greedy approach to test suite reduction by merging tests (or “stick-

ing” them together) — thereby sharing setup statements (and the associated

teardown costs following the test) — and by removing redundant INSERT
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Input:
OTS , the set of tests in the original test suite;
TR, a set of test requirements;
S : t→R, mapping tests t∈OTS to the requirements R they cover, R⊆TR
Output: RTS , a reduced test suite (RTS ⊆ OTS)

Step 1: Ensure test suite is free of redundant INSERT statements ;

1 OTS ← removeRedundantInserts(OTS);

Step 2: Do greedy reduction on the original test suite (OTS) ;

2 RTS ← ∅;
3 RTS ← Greedy(OTS, S) # The algorithm presented in Fig 2.20b ;

Step 3: Iterate through the reduced test suite, merging test cases where feasible ;

4 for t1 ∈ RTS do
5 for t2 ∈ RTS do
6 if checkMerge(t1, t2) then
7 t1 ← merge(t1, t2);
8 RTS ← RTS − {t2};
9 end

10 end

11 end

Figure 5.3: Overview of the STICCER algorithm

statements.

The overall algorithm for STICCER, as is shown by Figure 5.3, works as

follows: The first step removes redundant INSERT statements from the existing

set of test cases, through a function called removeRedundantInserts.

This function checks all INSERT statements made to foreign key tables, and

ensures that the foreign keys are actually referenced by other INSERTs in the

test. If they are not, those INSERT statements are redundant, and are cut out

of the test case under consideration.

STICCER then performs a greedy reduction on the test suite as a sec-

ond step, before moving into the test case merging stage. STICCER iterates

through the test suite comparing each test t1 with each other test t2. STIC-

CER then checks for a potential merge through a function called check-

Merge. The primary role of checkMerge is to assess if the proposed

merged test will cover the same test requirements as the original two tests.

If the first test, t1, leaves the database state in such a way that the behaviour

of the “action” INSERT statements (i.e., t2A1 in the example of Figure 5.2)

will behave differently after merging (i.e., the merged test does not cover the

same test requirements as t1 and t2 combined), checkMerge will reject
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the potential merge. STICCER continues iterating through the test suite,

checking the remaining tests with the newly created test for further merge

possibilities. To help ensure that STICCER does not produce overly-long,

unwieldy tests that are difficult to understand and maintain checkMerge

will only merge tests if the following, further conditions are met:

1. The coverage requirements involve the same database table. check-

Merge will not merge two tests if they are designed to test integrity con-

straints belonging to different tables. Each test must focus on the integrity

constraints of one table only.

2. The tests are intended to both satisfy or both violate aspects of the

schema. To simplify the intentions of each test, and make it easier to main-

tain and understand, each merged test will only attempt to satisfy the in-

tegrity constraints of a particular schema table, or violate them. This way,

the human tester/maintainer knows what type of behaviour to expect from

the INSERT statements of each of the final tests — that is, whether the data

in them is intended to be accepted by the DBMS, or whether they are all

supposed to be rejected.

3. The tests both involve database setup, or they both do not. Some tests

do not involve any database setup at all (e.g., CHECK constraints, where the

predicate is only concerned with the current row of data, rather than the

state of the database), and these tests should not be merged together with

those that do.

If checkMerge permits a merge of tests, a function called merge then

actually performs the merge, removing the setup INSERT statements from t2,

and appending it to the end of t1. This test may undergo further merges

with other tests in the suite as they are considered in turn by STICCER.

STICCER is implemented into SchemaAnalyst , which has functionality

to statically analyse what test requirements are covered by a test case (e.g.,

the predicates in Section 2.3.5), and utilised of this to check merged tests

when implementing the presented technique.
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5.5 Empirical Evaluation
This section evaluates STICCER by comparing it to other reduction tech-

niques in an empirical study that seeks to answer the following three research

questions:

RQ1: Reduction Effectiveness. How effective is STICCER at reducing

the number of test cases and INSERTs within each test case, compared to other

test suite reduction techniques, while preserving the test requirements of the

original suite?

RQ2: Impact on Fault Finding Capability. How is the fault-finding

capability of the test suites affected following the use of STICCER and other

test suite reduction techniques?

RQ3: Impact on Test Suite and Mutation Analysis Runtime. How

are the running times of the reduced test suites and subsequent mutation

analysis affected by test suite reduction?

5.5.1 Methodology

To evaluate STICCER, the experiments are configured the same as in Chap-

ter 3 using the same diverse set of 34 schemas. The test suites were generated

using AVM-D and DOM-RND with the strongest coverage criterion combi-

nation (ClauseAICC, ANCC, and AUCC), as it has a strong fault-finding

capability. Using the SchemaAnalyst framework, the test suites were gen-

erated with the well-known SQLite as the target DBMS. Furthermore, the

experiments are repeated 30 times with 100,000 iterations for each test re-

quirement as in Chapter 3.

To answer RQ1, STICCER will be compared at reducing the test suites

generated by SchemaAnalyst with implementations of the Random, Greedy,

and HGS methods (introduced in Section 2.4 and iterated in Section 5.3). To

ensure fairness of comparison with STICCER, the implementations of these

techniques also removed redundant INSERT statements from test suites (using

the removeRedundantInserts function discussed in Section 5.5.1). I also

calculated the effectiveness of reduction for the test suite size and number of

INSERTs using Equation 5.1.
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(1− No. of test cases in the reduced test suite

No. of test cases in the original test suite
)× 100 (5.1)

The results will report the median values of this equation for each reduc-

tion method for the 30 test suites generated for each schema with the two test

generation methods, and calculate statistical significance and effect sizes as

detailed in the next section. Finally, reporting the number of merges STIC-

CER was capable of to reduce test suites for the two different test generation

techniques, AVM-D and DOM-RND.

To answer RQ2, the fault-finding capability of the reduced test suites

will be investigated using mutation analysis. For this, the mutation analysis

techniques implemented into SchemaAnalyst is used, which adopt Wright

et al.’s [101] mutation operators for integrity constraints. These operators

add, remove, and exchange columns in primary key, unique, and foreign key

constraints, invert NOT NULL constraints, remove CHECK constraints and mutate

their relational operators. The mutation score will be calculated for each

reduced test suite, a percentage of mutants that are “killed” (i.e., detected)

by the tests.

To answer RQ3, times needed by each reduction algorithm are tracked to

reduce test suites, and the time needed to perform mutation analysis using

the reduced suites.

All the experiments were performed on a Linux workstation running

Ubuntu 14.04 with a 3.13.0–44 GNU/Linux 64-bit kernel, quad-core 2.4GHz

CPU, and 12GB of RAM. Also, using SQLite version 3.8.2 with “in-memory”

mode, following the prior experiments in Chapter 3.

5.5.2 Statistical Analysis

Because the techniques are stochastic, and because recording wall-clock

timings for the experiment is potentially subject to interferences that can-

not be controlled (e.g., operating system interrupts), thus experiments are

repeated 30 times. As assumptions about the normality of the resulting dis-

tributions cannot be made, non-parametric statistical measures are applied,

including the Mann-Whitney U-test and the Â effect size metric of Vargha
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and Delaney [143] as recommended by Arcuri and Briand in their guide to

statistics and software engineering experiments [142]. In the following tables

of the results section, we reported if a technique was statistically better or

worse to some other by formatting the statistics for those techniques in bold,

using the “F” symbol if the secondary technique was significantly worse and

the “�” symbol if it was significantly better, and an asterisk if the effect size

was large (i.e., Â < 0.29 or > 0.71), following the suggested cut-offs from

Vargha [143].

5.5.3 Threats to Validity

External Validity. The empirical study used a diverse set of schemas taken

from past studies [17, 7]. While these schemas support the claims made in

the following sections, it is impossible to claim that they are representative

of all schemas — yet obtaining such a suitably representative set is equally

difficult. Nevertheless, the set of schemas used come from a variety of sources

and have a range of size and complexity.

Internal Validity. The stochastic behaviour of the test data gener-

ators (and the possibility of results are obtained by chance and are thus

unrepresentative) and the use of wall-clock timings, which are subject to in-

terferences that are out of my control. To mitigate both these issues, the

experiments were repeated 30 times. Also, following the advice of Arcuri

and Briand [142] to mitigate errors in the statistical analysis of the results,

for example by using non-parametric hypothesis tests.

Finally, threats arising from defects in the implementation of STICCER

and the reduction techniques were controlled with checking the results on

selected or all schemas, where appropriate. For example, the techniques

studied in this chapter aim to reduce test suites while maintaining test cov-

erage. Therefore, all reduction was achieved without lowering test coverage

with respect to the original test suites concerned (and this was indeed the

case).

Construct Validity. The measure of reduction effectiveness is based

on the number of test cases and INSERTs following Yoo and Harman [119].
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However, other measurement such as the test suite execution times is not

reported but the mutation analysis timings showcase the efficiency gains of

reduced test suites.
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5.6 Experimental Results

5.6.1 RQ1: Reduction Effectiveness

Figure 5.4 shows the median number of test cases merges that STICCER

was able to make with test cases generated by the AVM-D and DOM-RND.

The highest figure is 539 merges for the iTrust schema, with test suites gen-

erated by DOM-RND. The iTrust schema is the largest that was studied

(see Appendix A), with the highest number of integrity constraints (134).

The schema with the next highest number of merges is BookTown, with 70

merges, for test suites generated by DOM-RND. BookTown’s original test

suite size is 269. The smallest number of merges was 2 for Person, for test

suites generated by AVM-D, which has an original test suite size of 20. Fig-

ure 5.4 shows the distribution of merge opportunities that were unavailable

to the other, traditional reduction techniques we applied to database scheme

test suites, which only remove test cases on the basis of overlapping coverage

requirements.

Table 5.1 shows the median effectiveness of each of the reduction tech-

niques at decreasing the number of test cases for each schema in each of

the 30 test suites generated by AVM-D and DOM-RND respectively. Ta-

ble 5.2 shows the effectiveness of each reduction technique at reducing the

overall number of SQL statements (i.e., INSERTs) in those reduced suites. The

“F” symbol indicates that a technique’s reduction score was significantly less

than STICCER, while “�” indicates that it was significantly higher. The “∗”
symbol in both table denotes a large effect size for a technique when com-

pared with STICCER. The numbers in brackets indicate the median number

of test cases/INSERTs in reduced suites as a fraction of those in the original,

unreduced test suite.

As the summary statistics show, STICCER was the most effective at

reducing test suites, achieving up to 93% for StackOverflow schema, and

a minimum 37% for JWhoisServer for test suites generated using AVM-D.

For test suites generated by DOM-RND, STICCER achieved a maximum

reduction of 89% with NistDML182 and a minimum of 58% for Iso3166.

It is worth noting that this minimum figure is greater than the maximum
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achievable with Random for DOM-RND produced test suites, and only 6%

lower than the maximums achieved by Greedy and HGS, respectively. STIC-

CER created reduced test suites that were statistically significantly smaller

than the original test suites and those reduced by the other methods for all

database schemas and with a large effect size.

Table 5.2 shows that the reduction in test cases achieved by STICCER

was not the result of naively concatenating SQL statements from each con-

stituent test case — STICCER also reduced the number of overall INSERT

statements in the resulting test suites. As Table 5.2 shows, the average re-

duction in the number of INSERTs (i.e., the constituent statements making up

each test case) that STICCER achieved was greater than any of the other

three techniques studied.

On average, STICCER is more effective with test suites generated by

DOM-RND than AVM-D, a fact also shown by Figure 5.4. This is because

the default values used by AVM-D are repeated across INSERT statements,

which makes them more difficult to merge them together across different test

cases. The repeated values inadvertently trigger primary key and UNIQUE con-

straint violations when the same values appear for different INSERT statements

from different test cases for particular columns. This results in a combined

test case with different coverage requirements compared to its constituent

originals — test cases that will be rejected by STICCER.

Comparing the average of the median reduction scores for each schema,

HGS is the next most effective reduction technique following STICCER.

STICCER achieves an average reduction of 66% and 74% for test suites

generated by AVM-D and DOM-RND, respectively, while HGS achieves com-

paratively lower scores of 46% and 50%. HGS also performed worse overall

with test suites generated by AVM-D compared to DOM-RND, but the dif-

ferences we observed were not as marked as those with STICCER. It seems

that DOM-RND is capable of producing test cases that cover more distinct

sets of requirements than AVM-D, and with less of an intersect with other

test cases, thereby making them more amenable for techniques based on

removing redundant test cases to reduce.
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Greedy was the third best performer, achieving marginally less reduc-

tion to overall test suite size than HGS. As expected, the baseline Random

technique was the poorest performer.

In conclusion for RQ1, STICCER is the most effective at reducing the

number of test cases and the overall number of INSERT statements in a test

suite. Importantly, STICCER does this while preserving the coverage of the

original test suite.

5.6.2 RQ2: Impact on Fault Finding Capability

Table 5.3 shows the median mutation scores for all the reduction and test

generation techniques where a difference was recorded for one of the reduc-

tion techniques with respect to the original test suite (OTS). The “F” symbol

in the table means that significance tests show that a technique’s test suite

obtained a significantly lower mutation score compared to the OTS. Perhaps

surprisingly, differences were only observed for one of the reduction tech-

niques for eight of the 34 schemas — for the rest, the same mutation score

was recorded. For each of these schemas, differences were only experienced

with test suites generated by AVM-D.

Table 5.3: Median Mutation Scores
Scores are expressed as percentage of mutants killed by the test suites concerned. “OTS” refers to the
original, unreduced test suites.

AVM-D DOM-RND

Schemas OTS STICCER Random Greedy HGS OTS STICCER Random Greedy HGS

BrowserCookies 86.5 F86.5 86.5 F86.5 F86.5 96.6 96.6 96.6 96.6 96.6
FrenchTowns 83.3 ∗F80.3 ∗F80.3 ∗F80.3 ∗F81.8 95.5 95.5 95.5 95.5 95.5
iTrust 83.6 ∗F83.6 ∗F83.6 ∗F83.6 ∗F83.6 99.2 99.2 99.2 99.2 99.1
NistWeather 93.8 ∗F90.6 93.8 ∗F90.6 93.8 100.0 100.0 100.0 100.0 100.0
NistXTS749 92.0 92.0 F92.0 92.0 ∗F88.0 94.0 94.0 94.0 94.0 94.0
RiskIt 89.3 89.3 F89.3 89.3 ∗F88.8 99.5 99.5 99.5 99.5 99.5
UnixUsage 98.2 98.2 98.2 98.2 ∗F97.3 100.0 100.0 100.0 100.0 100.0
WordNet 87.4 ∗F86.3 F87.4 ∗F86.3 ∗F86.3 99.0 99.0 99.0 99.0 99.0

For test suites generated by AVM-D, STICCER’s reduced test suites had

a mutation score significantly worse than the OTS for five schemas. Although

statistically significant, the different does not register to the first decimal

point for two schemas (BrowserCookies and iTrust) and the difference is at

most 3.2% (for NistWeather). Random and Greedy were also significantly
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worse for five schemas with the AVM-D. Greedy performed almost identically

to STICCER. Given that STICCER performs greedy reduction as one of its

initial steps, this points to the loss of fault detection capability being down

to test cases that were removed with duplicate due to coverage requirements,

rather than test case merging. Finally, HGS was statistically significantly

worse compared to the OTS for the highest number of schemas, namely

eight in total. That is because HGS selects test cases that have the least

diversity (e.g., more INSERTs with more default values) than Greedy.

For STICCER, the results show that merging of test cases does not affect

the reduced test suite fault detection that was produced from the greedy

technique. For STICCER and greedy, there are two schemas where test

suites were originally generated by AVM-D that achieved lower scores after

reduction — FrenchTowns and NistWeather. The differences are significant

but not substantial. That is because the selected tests contain less distinct

values that lower the capability of finding faults. For instance, changing

column of a FOREIGN KEY will likely not fail tests as most values are equal and

can be linked with parent tables. Or, changing a column of the compounded

UNIQUE constraint will not be detected as values are equal and there will be

no change of behaviour.

In all cases, DOM-RND generated suites are more robust to the reduction,

likely because of diversity of test values that it generates. Conversely, the

re-use of “default” values for AVM-D means that the loss of test cases and

INSERTs through reduction results in a small loss of fault-finding capability.

In conclusion for RQ2, mutation scores of test suites were more or less

preserved following reduction. While some test suites experienced a drop

in mutation score, the difference was not substantial (3.2% maximum). Test

suites generated by DOM-RND did not experience any loss of mutation score

following the application of any of the reduction techniques.
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Table 5.4: Median Mutation Analysis Times (Seconds) for STICCER versus
the Original Test Suite

STICCER times are broken down into “RT” (time to reduce test suites), and “MT” (time for mutation
analysis with STICCER), with the total compared to the original test suite (OTS) for a fair comparison.

AVM-D DOM-RND

OTS STICCER OTS STICCER

Schemas Total RT MT Total Total RT MT Total

ArtistSimilarity 0.09 0.12 0.05 ∗�0.17 0.10 0.13 0.05 ∗�0.18
ArtistTerm 0.54 0.14 0.22 ∗F0.37 0.54 0.14 0.22 ∗F0.36
BankAccount 0.45 0.17 0.19 ∗F0.36 0.46 0.16 0.19 ∗F0.34
BookTown 36.19 0.94 16.17 ∗F17.11 36.50 1.07 10.85 ∗F11.92
BrowserCookies 2.21 0.37 0.94 ∗F1.31 2.34 0.37 0.73 ∗F1.09
Cloc 0.27 0.15 0.07 ∗F0.22 0.28 0.15 0.09 ∗F0.25
CoffeeOrders 2.96 0.31 1.20 ∗F1.51 2.98 0.29 1.05 ∗F1.34
CustomerOrder 9.74 0.80 6.68 ∗F7.47 9.78 0.84 4.56 ∗F5.40
DellStore 8.04 1.42 1.93 ∗F3.35 8.40 1.46 3.22 ∗F4.68
Employee 0.34 0.20 0.13 F0.32 0.36 0.18 0.12 ∗F0.30
Examination 4.42 1.06 1.39 ∗F2.45 4.48 1.11 1.00 ∗F2.12
Flights 1.60 0.30 0.61 ∗F0.91 1.68 0.41 0.68 ∗F1.09
FrenchTowns 2.43 0.23 1.46 ∗F1.69 2.44 0.23 1.23 ∗F1.46
Inventory 0.10 0.12 0.05 ∗�0.17 0.10 0.12 0.04 ∗�0.17
IsoFlav R2 9.80 0.70 2.83 ∗F3.52 10.20 0.75 2.72 ∗F3.47
Iso3166 0.04 0.11 0.02 ∗�0.13 0.05 0.11 0.03 ∗�0.13
iTrust 2297.86 150.17 959.31 ∗F1109.48 2330.02 157.23 428.57 ∗F585.80
JWhoisServer 8.91 1.64 5.62 ∗F7.25 9.34 1.86 3.88 ∗F5.74
MozillaExtensions 25.52 2.02 6.62 ∗F8.64 26.61 2.38 5.39 ∗F7.78
MozillaPermissions 0.23 0.15 0.08 0.23 0.24 0.15 0.07 ∗F0.22
NistDML181 0.36 0.15 0.11 ∗F0.26 0.38 0.15 0.12 ∗F0.28
NistDML182 14.60 1.93 2.22 ∗F4.15 14.99 2.00 2.43 ∗F4.43
NistDML183 0.28 0.14 0.09 ∗F0.23 0.29 0.14 0.10 ∗F0.25
NistWeather 0.74 0.22 0.29 ∗F0.51 0.76 0.23 0.25 ∗F0.48
NistXTS748 0.08 0.12 0.04 ∗�0.16 0.08 0.11 0.04 ∗�0.15
NistXTS749 0.39 0.17 0.20 F0.37 0.40 0.17 0.16 ∗F0.33
Person 0.16 0.10 0.09 ∗�0.19 0.16 0.15 0.07 ∗�0.22
Products 1.04 0.14 0.42 ∗F0.57 1.06 0.18 0.44 ∗F0.62
RiskIt 44.40 1.41 23.15 ∗F24.57 45.91 1.59 18.90 ∗F20.49
StackOverflow 5.58 0.93 0.97 ∗F1.90 5.76 1.16 1.42 ∗F2.58
StudentResidence 0.43 0.16 0.20 ∗F0.36 0.44 0.14 0.17 ∗F0.32
UnixUsage 12.25 0.92 6.21 ∗F7.13 12.34 0.95 3.83 ∗F4.79
Usda 15.55 1.39 2.78 ∗F4.17 16.44 1.52 4.15 ∗F5.68
WordNet 3.89 0.37 1.86 ∗F2.23 3.93 0.38 1.69 ∗F2.07

5.6.3 RQ3: Impact on Test Suite and Mutation Anal-

ysis Runtime

Table 5.4 shows the median time for performing reduction with STICCER

and mutation analysis with the resulting test suites, compared to performing

mutation analysis with just the OTS. The “�” symbol in the table means that

STICCER required a statistically significantly longer time to run than the

OTS, while “F” denotes the reverse. In general, STICCER is capable of sub-

stantial time savings for large schemas with large numbers of integrity con-
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straints and test requirements. The largest saving is for the largest schema,

iTrust, with a saving of approximately 16 minutes. Savings of 20 seconds are

possible with BookTown, and RiskIt. For the smallest five schemas by the

number of columns, STICCER performed statistically worse. In practice,

however, that difference is negligible, always coming in at less than a second.

Table 5.5: Median Mutation Analysis Times (Seconds) for STICCER versus
the other Reduction Techniques

The “F” symbol means that significance tests show that the technique required a significantly longer time
than STICCER, while “�” indicates the technique needed a significantly shorter time than STICCER.

AVM-D DOM-RND

Schemas STICCER Random Greedy HGS STICCER Random Greedy HGS

ArtistSimilarity 0.05 ∗F0.07 ∗F0.07 ∗F0.06 0.05 ∗F0.07 ∗F0.07 ∗F0.07
ArtistTerm 0.22 ∗F0.38 ∗F0.38 ∗F0.33 0.22 ∗F0.39 ∗F0.37 ∗F0.37
BankAccount 0.19 ∗F0.32 ∗F0.31 ∗F0.28 0.19 ∗F0.29 ∗F0.28 ∗F0.25
BookTown 16.17 ∗F22.89 ∗F22.05 ∗F19.10 10.85 ∗F22.37 ∗F20.75 ∗F19.11
BrowserCookies 0.94 ∗F1.12 ∗F1.02 ∗F0.98 0.73 ∗F1.27 ∗F1.12 ∗F1.04
Cloc 0.07 ∗F0.17 ∗F0.16 ∗F0.15 0.09 ∗F0.18 ∗F0.17 ∗F0.15
CoffeeOrders 1.20 ∗F1.86 ∗F1.88 ∗F1.68 1.05 ∗F1.81 ∗F1.81 ∗F1.57
CustomerOrder 6.68 ∗�6.47 ∗F7.13 ∗�5.88 4.56 ∗F6.32 ∗F7.02 ∗F5.68
DellStore 1.93 ∗F5.27 ∗F5.15 ∗F4.68 3.22 ∗F5.02 ∗F4.71 ∗F4.53
Employee 0.13 ∗F0.21 ∗F0.20 ∗F0.21 0.12 ∗F0.19 ∗F0.16 ∗F0.16
Examination 1.39 ∗F2.34 ∗F2.32 ∗F2.16 1.00 ∗F2.08 ∗F1.80 ∗F1.69
Flights 0.61 ∗F0.85 ∗F0.72 ∗F0.71 0.68 ∗F0.95 ∗F0.87 ∗F0.84
FrenchTowns 1.46 ∗F1.59 ∗F1.52 ∗F1.55 1.23 ∗F1.63 ∗F1.62 ∗F1.54
Inventory 0.05 ∗F0.07 ∗F0.07 ∗F0.06 0.04 ∗F0.07 ∗F0.06 ∗F0.06
IsoFlav R2 2.83 ∗F5.51 ∗F5.24 ∗F5.01 2.72 ∗F5.04 ∗F4.33 ∗F4.04
Iso3166 0.02 ∗F0.03 ∗F0.03 ∗F0.03 0.03 ∗F0.03 ∗F0.03 ∗F0.03
iTrust 959.31 ∗F1367.85 ∗F1251.95 ∗F1223.85 428.57 ∗F1273.12 ∗F1155.09 ∗F1117.88
JWhoisServer 5.62 ∗F5.88 ∗F5.73 ∗�5.48 3.88 ∗F5.81 ∗F5.56 ∗F5.29
MozillaExtensions 6.62 ∗F12.35 ∗F10.22 ∗F12.74 5.39 ∗F11.75 ∗F9.89 ∗F9.81
MozillaPermissions 0.08 ∗F0.16 ∗F0.15 ∗F0.15 0.07 ∗F0.14 ∗F0.13 ∗F0.12
NistDML181 0.11 ∗F0.20 ∗F0.19 ∗F0.18 0.12 ∗F0.22 ∗F0.18 ∗F0.18
NistDML182 2.22 ∗F7.14 ∗F6.50 ∗F6.31 2.43 ∗F7.54 ∗F6.24 ∗F5.85
NistDML183 0.09 ∗F0.17 ∗F0.17 ∗F0.17 0.10 ∗F0.18 ∗F0.16 ∗F0.17
NistWeather 0.29 ∗F0.45 ∗F0.41 ∗F0.41 0.25 ∗F0.46 ∗F0.42 ∗F0.41
NistXTS748 0.04 ∗F0.06 ∗F0.05 ∗F0.05 0.04 ∗F0.05 ∗F0.05 ∗F0.05
NistXTS749 0.20 ∗F0.24 ∗F0.24 0.21 0.16 ∗F0.25 ∗F0.22 ∗F0.22
Person 0.09 ∗F0.12 F0.10 ∗F0.10 0.07 ∗F0.11 ∗F0.11 ∗F0.10
Products 0.42 ∗F0.64 ∗F0.61 ∗F0.55 0.44 ∗F0.68 ∗F0.63 ∗F0.59
RiskIt 23.15 ∗F25.53 ∗F25.79 ∗�22.77 18.90 ∗F26.43 ∗F24.60 ∗F21.52
StackOverflow 0.97 ∗F3.15 ∗F3.00 ∗F2.97 1.42 ∗F2.73 ∗F2.53 ∗F2.48
StudentResidence 0.20 ∗F0.28 ∗F0.27 ∗F0.26 0.17 ∗F0.28 ∗F0.25 ∗F0.25
UnixUsage 6.21 ∗F6.97 ∗F7.52 ∗F6.30 3.83 ∗F7.57 ∗F6.96 ∗F5.91
Usda 2.78 ∗F8.89 ∗F8.60 ∗F9.34 4.15 ∗F9.72 ∗F7.50 ∗F7.33
WordNet 1.86 ∗F2.45 ∗F2.21 ∗F2.07 1.69 ∗F2.44 ∗F2.28 ∗F2.09

Table 5.5 compares STICCER with the other reduction techniques. The

results show that STICCER test suites generated with DOM-RND ran signif-

icantly faster than all reduced test suite by other techniques. STICCER was

over 2.5 times faster than the other techniques for iTrust schema. STICCER

was generally, but not always faster than other reduction techniques for tests

suites generated by AVM-D. Since the reduction techniques were less suc-

cessful at reducing AVM-D-generated test suites, there is less to differentiate

their performance.
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In conclusion for RQ3, the results show that, in general, test suites reduced

by STICCER are fast to run compared to the OTS and those reduced by other

techniques. For the largest schema, STICCER-reduced test suites were up

to five times faster to run mutation analysis with, compared to the OTS.

5.7 Summary

Since many real-world database applications contain complex and rapidly

evolving database schemas [35, 22, 133], there is the need for an efficient

way to regression test these systems. While the automatically generated

test suites created by tools like SchemaAnalyst [14] mitigate the challenges

associated with manually testing a database schema’s integrity constraints,

the numerous, often interwoven, generated tests make repeated testing and

test adequacy assessment time consuming. This chapter presents a test suite

reduction technique, called Schema Test Integrity Constraints Combination

for Efficient Reduction (STICCER), that systematically discards and merges

redundant tests, creating a reduced test suite that is guaranteed to have the

same coverage as the original one. STICCER advances the state-of-the-art in

test suite reduction because, unlike traditional approaches, such as Greedy

and HGS, it identifies and reduces both the overlap in test requirement cov-

erage and the database state created by the tests.

Using 34 relational database schemas and test data created by two test

generation methods, this chapter experimentally compared STICCER to

greedy, HGS, and a Random method. These results show that STICCER

significantly outperforms the other techniques at decreasing test suite size,

while also lessening the overall number of database interactions (i.e., the SQL

INSERT statements) performed by the tests. The results further reveal that

the reduced test suites produced by STICCER are up to 5X faster than the

original test suite and 2.5X faster than reduced suites created by greedy,

HGS, and Random, often leading to significant decreases in mutation anal-

ysis time. STICCER’s tests always preserve the coverage of the test suite

and rarely lead to a drop in the mutation score, with a maximum decrease

in fault detection of 3.2%.
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Since HGS show to reduce test suites further than greedy, this can help

the merging process to further reduce the test suite. Thus, STICCER inte-

grated with HGS can produce a test suite that is more efficient than these

evaluated in this chapter. Intuitively, reduced test suite are faster to inspect

by testers making HGS reduced test suites more preferable for the evalu-

ation process compared to other reduction methods. Because STICCER

reduce and merge tests producing fewer equivalent but long tests that might

require more effort to evaluate. Therefore, the next chapter will explore the

HGS combined with STICCER, and conduct a human study to evaluate the

testers’ inspection efforts of differently reduced tests.
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Chapter 6

Can Human Testers Effectively

Inspect Reduced Versions of

Automatically Generated SQL

Test Suites?

The content of this chapter is based on the published work during this PhD

in the 1st International Conference on Automation of Software Test (AST

2020) [163].

6.1 Introduction

The previous chapter introduced the STICCER reduction technique that was

effective at reducing test suites using a merging mechanism. It worked by

first reducing test suites using Greedy and subsequently merged with STIC-

CER. This resulted with test suites that ran nearly 2.5 times faster than test

suites reduced by traditional techniques, such HGS and Greedy. Also, the

STICCER reduced test suites that ran up to 5 times faster than the original

test suite. However, the results showed that the HGS technique reduced test

suites further than the Greedy technique. Therefore, this chapter aims to

present a new hybridisation of STICCER and HGS, instead of Greedy.

Many schema modifications force developers to test their changes and re-

running the automatically generated tests, with follow-on steps that ensure

the test suite’s continued effectiveness by adequacy assessment through both
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coverage and mutation analysis [136]. Therefore, testers will reduce generated

test suites to expedite regression testing and might inspect these tests that

are either only reduced or merged, as stated in Section 2.2.4. Therefore, two

questions raises: (1) Can STICCER further reduce HGS test suites? (2) Are

shorter test cases reduced using HGS more effective for testers to inspect

against the merged and longer test cases?

This chapter presents a variant STICCER technique, called STICCER-

HGS, that merges the HGS reduced test suites. With this technique, the

chapter will show two studies: (1) a computational study that evaluate both

STICCER variants; (2) a human study that evaluate testers inspection ef-

fort on both HGS and STICCER-HGS reduced test suites. The latter study

is motivated with STICCER-HGS’s merged tests compared to only HGS re-

duced tests. One set of tests are long which we speculate that tester will have

harder to inspect compared to only reduced short tests. Hence, conducting a

human pilot study that evaluate the quantitative human oracle cost on HGS

and STICCER-HGS reduced test suites.

Using 34 relational database schemas, two state-of-the-art test data gener-

ators, and the two hybridised and two traditional test suite reduction meth-

ods, this chapter’s Computational Study finds that, while the hybridized

methods outperform the stand-alone use of either Greedy or HGS, there

is, surprisingly, no significant benefit to using HGS instead of Greedy in

STICCER. Since this chapter’s focus is on the benefits that may arise from

combining HGS and STICCER, the Human Study asked 27 participants

to act as testers who had to manually inspect test suites that had been re-

duced by either STICCER-HGS or HGS. This chapter’s Human Study reveals

that, compared to those produced by HGS, the reduced test suites made by

STICCER-HGS help humans to complete test inspection tasks faster, but

not more accurately. Along with confirming the benefits that accrue from

hybridising STICCER with either greedy or HGS, this chapter’s two studies

suggest that, while test suite reduction may make certain testing tasks — like

assessing test suite adequacy through mutation analysis — more efficient, it

will not always benefit the humans testers who must inspect the reduced test

suites.
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In summary, this chapter’s contributions are as follows:

1. A test suite reduction method, called STICCER-HGS, that takes ad-

vantage of shorter test suites and merge them.

2. A Computational experiment using 34 schemas and two state-of-the-art

test data generators to compare the reduction effectiveness of STICCER-

HGS against STICCER and other reduction technique.

3. A human study that compare testers inspect effort with STICCER-

HGS and HGS reduced test suites.

To support the replication of this chapter’s experimental results and to

facilitate the testing of relational database schemas, the proposed techniques

are implemented into SchemaAnalyst [145] and the procedures into scripts.

Replication instructions are available in Appendix B.3.

6.2 The STICCER-HGS Approach

The HGS method in the previous chapter on average achieved a reduction of

46% and 50% for AVM-D and DOM-RND generated test suites, respectively.

More effective than the greedy method that only achieved 43% and 48%

reduction for both test data generators. Hence, the HGS may benefit the

STICCER technique compared to the greedy method, merging shorter test

suites. This introduces the STICCER-HGS variant that merges the reduced

test suite with HGS. The technique is similar to the original variant, replacing

the greedy method with the HGS technique, specifically in line 2 of Figure 5.3.

The following section will compare the reduction methods for their effec-

tiveness, fault-finding capabilities, and duration of mutation analysis, answer-

ing the first three research questions. This is to ensure that the new variant

is either equally or more effective than the original STICCER, preparing for

the human study. Afterwards, two techniques that produced the shortest

test suites will be evaluated, comparing the reduced and merged tests with

a human study while answer the last two research questions.
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6.3 The STICCER-HGS Computational Study

The aim of this computational study is to answer the following three research

questions:

RQ1: Reduction Effectiveness. How does STICCER-HGS compare at

reducing test suites to the original STICCER, HGS, and greedy?

RQ3: Reduction and Mutation Analysis Runtime. How does the

fault-finding capability of test suites reduced by STICCER-HGS compare to

those reduced by the original STICCER, HGS, and greedy?

RQ3: Reduction and Mutation Analysis Runtime. How does the

overall time taken to (a) reduce test suites and then (b) perform mutation

analysis on them compare when using either STICCER-HGS or the original

STICCER as the test suite reduction technique?

6.3.1 Methodology

The SchemaAnalyst tool [14] was used to generate test suites with both

DOM-RND and AVM-D for each of our subject schemas detailed in Ap-

pendix A. Following Chapter 5 experimental procedure, SchemaAnalyst was

configured both test data generators to fulfill the “ClauseAICC+ANCC+AUCC”

combination of coverage criteria (introduced in Section 2.3.5), with a termi-

nation criterion of 100,000 test data evaluations per test requirement (should

test data not be found earlier than this limit). The SchemaAnalyst frame-

work was also configured to generate test suites for the well-known SQLite

DBMS, following the previous chapter procedure. The reason for using this

combined coverage criterion was that it been reported as the strongest to

detect seeded faults [7]. Since both DOM-RND and AVM-D are based on

random number generation, SchemaAnalyst was set to repeat test generation

30 times. Then, STICCER-HGS, STICCER, HGS, and greedy are used to

reduce each of the test suites, recording the execution time taken. Studying

the adequacy assessment process for the reduced test suites, we next used

SchemaAnalyst to run mutation analysis on each of them, applying Wright et

al.’s mutation operators [101], again recording the time taken.
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To answer RQ1, STICCER-HGS is compared at reducing the test suites

generated by SchemaAnalyst with implementations of the original STICCER

method (introduced in Section 5.4). Reduction effectiveness was calculated

for test suite size and the number of INSERTs using Equation 5.1.

The results report the median values of this equation for both methods

for the 30 test suites generated for each schema with the two test generation

methods, and calculate statistical significance and effect sizes as detailed in

Section 5.5.2.

To answer RQ2, the fault-finding capability of the reduced test suites

using mutation analysis is investigated. For this, the mutation analysis

techniques implemented into SchemaAnalyst is used, which adopt Wright

et al.’s [101] mutation operators for integrity constraints. Calculating the

mutation score for each reduced test suite as a percentage of mutants that

are “killed” (i.e., detected) by the test suites. The scores will be then com-

pared to the original test suites to evaluate the maintaining of fault-finding

capabilities.

To answer RQ3, times needed to reduce each test suite is tracked, and

the time needed to perform mutation analysis using the reduced suites.

This section’s experiments were performed on the same Linux workstation

as in Chapter 3 and Chapter 5. Similarly, we applied Chapter 5 statistical

analysis in Section 5.5.2. Furthermore, this section’s threats to validity and

threats mitigations are the same as Section 5.5.3. To summarise, the first

threat is the schema sets that may not generalize claims. To mitigate this

threat, schemas in database testing research is used that are diverse, how-

ever it is difficult to obtain a set that is generalizable. Another threat is the

stochastic behaviour and the timing measures of both the test data genera-

tors and mutation analysis which can be unpredictable. This is mitigated by

repeating the experiments 30 times and the use of non-parametric hypothe-

sis tests as recommended by Arcuri and Briand [142]. The implementation

defects might be present in the code-base that is mitigated with applying

unit tests.

It is also possible that the ordering of test cases passed to STICCER for

merging could be a considered a potential threat to validity, as this could
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affect which test cases are merged with one another, and hence the results

we obtain. Yet, we experimented with randomizing and reversing the order

of test cases passed to STICCER from HGS (“irreplaceable” tests first) and

Greedy (most test-requirement-covering tests first), but did not observe sig-

nificant differences in the results. Therefore, we continued to use the default

order of tests provided by the reduction techniques prior to merging.
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6.3.2 Answering RQ1 through RQ3

RQ1: Reduction Effectiveness

Tables 6.1 and 6.2 show the median reduction effectiveness of each technique

at decreasing the number of test cases for each schema and the total num-

ber of statements (i.e., database INSERTs) in the test cases of the test suites,

respectively. In both table, the “F” denote that the reduction techniques

score was significantly less reduced than the STICCER-HGS, while “�” in-

dicates STICCER-HGS is significantly higher. The “∗” symbol denotes a

large effect size between STICCER-HGS and other techniques. The num-

bers in brackets indicate the median tests/INSERTs reduced within over the

unreduced tests/INSERTs.

Both tables report effectiveness for test suites generated by AVM-D and

DOM-RND, because, as the tables reveal, the reduction techniques vary in

performance depending on which test generation technique was initially used.

Overall, four different trends are observed in the two tables, which will be

explained next.

Firstly, STICCER-HGS significantly outperforms HGS and greedy, re-

gardless of initial test generation technique, just as the original STICCER

did in the previous chapter’s study. Table 6.1 shows that STICCER-HGS

is significantly better than HGS and greedy at reducing the number of test

cases for all schemas, while Table 6.2 shows that STICCER-HGS also signif-

icantly reduces the total number of statements in the tests suites compared

to HGS and greedy, for all but a few schemas.

Secondly, STICCER-HGS is, overall, more effective at reducing DOM-

RND-generated test suites than those made by AVM-D. Table 6.1 shows an

overall reduction mean of 72% with DOM-RND-generated test suites, com-

pared to 67% with AVM-D-generated suites. As we previously observed in

Chapter 5, the same is true for the original STICCER, where the averages

are 74% with DOM-RND compared to 66% with AVM-D. This phenomenon

is explained and centred on the data values that each test data generator

typically generates. AVM-D repeats “default” values such as empty strings

and zero numerical values, aiming to keep test cases as simple as possible.

However, this frustrates technique’s attempts to merge INSERT statements,
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Successful Merge of Domino Test Cases
id last name first name gender date of birth

t1 -458 'ada' 'djd' 'Male' '2008-06-10'3
t2 0 'ib' 'edvbewwyg''Other' '1992-03-17'3

Unsuccessful Merge of AVM-D Test Cases
id last name first name gender date of birth

t1 0 '' '' 'Male' '2000-01-01'3
t2 0 '' '' 'Other' '2000-01-01'7

Figure 6.1: STICCER’s Attempts to Merge Test Cases

since the use of the same values across different test cases can inadvertently

trigger primary key and UNIQUE constraint violations when two tests are com-

bined. Figure 6.1 illustrates this phenomenon with an example. One of the

test requirements that needs to be preserved by the merged test case in this

instance are unique values for the gender field. Yet, the re-use of zero as

an id value for the two tests that are attempting to merge in the AVM-D

case results in a primary key violation. As such, the merged test case is not

equivalent to the two original test cases, where the database state would have

been reset between their execution.

The issue of test case diversity also helps to explain the third and fourth

trends that we observe: STICCER-HGS is better, overall, at reducing AVM-D-

generated test suites compared to the original STICCER— but conversely,

the original STICCER is better, overall, at reducing DOMINO-generated

test suites. Both of these phenomena are seen in the summary averages of

Tables 6.1 and 6.2 — and also when comparing the respective number of

schemas STICCER-HGS is significantly better at reducing compared to the

original STICCER, and vice versa. In the AVM-D case, its choice of repeti-

tious values hinder merging, resulting in the ultimate winner being strongly

correlated to the effectiveness of the original reduction technique used — that

is, HGS in the case of STICCER-HGS, which is more effective than greedy,

used by the original STICCER. However, the merging technique can work

more effectively with the diverse test cases generated by DOM-RND, and fur-

thermore, it seems that the larger reduced test suites supplied by Greedy add

to this diversity, allowing the merge mechanism to operate more effectively.
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Hence, the original STICCER performs significantly better than STICCER-

HGS in more cases than it does not for DOM-RND-generated test suites. In

the cases that it does not, STICCER-HGS has the advantage of leveraging

the more effective reduction provided by HGS. The “lift” of diversity that

the original STICCER gets from less effective Greedy reduction can be seen

for the AVM-D-generated test suites also, resulting in STICCER-HGS not

being significantly better for every database schema.

The BookTown database schema provides a good illustration of both of

these two trends. As shown in Table 6.1, the unreduced test suite has 269

test cases, which, in the AVM-D case are reduced to 144 and 167 test cases

by HGS and Greedy respectively, and then further to 100 and 113 test cases

following merging. The STICCER technique can reduce the test suite by

more test cases in its merging phase for the original greedy-STICCER (54, as

opposed to 44 achieved by STICCER-HGS), but the initial advantage given

to STICCER-HGS by virtue of using HGS for reduction prior to merging is

not completely overturned. Conversely, in the DOM-RND case, the original

test suite size is reduced to 138 and 156 test cases by HGS and Greedy,

respectively. However, because of the larger, more diverse pool of test cases

produced by DOM-RND, the original STICCER technique overturns the

initial advantage of HGS, reducing the test suite down to a final size of 87

test cases, as opposed to 94 for STICCER-HGS.

In conclusion for RQ1, like the original STICCER before it, STICCER-

HGS significantly outperforms both HGS and greedy. The results show that

STICCER-HGS is more effective with test suites generated using AVM-D,

while the original STICCER is more effective for test suites generated with

Domino. In general, STICCER’s merging is more effective with the diverse

test data values in DOM-RND-generated test cases, and works better with

the slightly larger pool of test cases that Greedy tends to provide to the test

merging mechanism.
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Table 6.3: Median Mutation Scores

Percentages of detected mutants by the test suites. All the reduced test suites are compared to original,
unreduced test suites (OTS).

AVM-D DOM-RND

Schemas OTS STICCER-HGS STICCER Greedy HGS OTS STICCER-HGS STICCER Greedy HGS

BrowserCookies 86.5 ∗F86.0 F86.5 F86.5 ∗F86.2 96.6 96.6 96.6 96.6 96.6
FrenchTowns 83.3 ∗F80.3 ∗F80.3 ∗F80.3 ∗F81.1 95.5 95.5 95.5 95.5 95.5
iTrust 83.6 ∗F83.6 ∗F83.6 ∗F83.6 ∗F83.6 99.2 99.1 99.2 99.2 99.1
NistWeather 93.8 93.8 ∗F90.6 ∗F90.6 93.8 100.0 100.0 100.0 100.0 100.0
NistXTS749 92.0 ∗F88.0 92.0 92.0 ∗F88.0 94.0 94.0 94.0 94.0 94.0
RiskIt 89.3 ∗F88.8 89.3 89.3 ∗F88.8 99.5 99.5 99.5 99.5 99.5
UnixUsage 98.2 ∗F97.3 98.2 98.2 ∗F97.3 100.0 100.0 100.0 100.0 100.0
WordNet 87.4 ∗F86.3 ∗F86.3 ∗F86.3 ∗F86.3 99.0 99.0 99.0 99.0 99.0

RQ2: Fault Finding Capability

Table 6.3 show the median mutation scores for all techniques compared to

the original test suite. The “F” symbol in the table indicate that the reduced

tests are significantly obtained lower mutation score compared to the OTS.

Similar to the original STICCER results in Chapter 5, the differences

were only observed for eight of the two schema and experienced with test

suites generated by AVM-D. The rest of schemas are redacted as they show

no statistical significant differences.

In all cases, DOM-RND test suites are more robust for reduction, likely

because of the diversity of test values that it generates. The results also show

that both STICCER variants are identical with DOM-RND.

AVM-D-generated test suites, without the benefit of the same extent of

diversity, did suffer in decreases in mutation score after reduction. AVM-D-

generated and STICCER-HGS-reduced test suites received significantly worse

mutation scores for seven schemas (each accompanied by a large effect size)

than the original test suite, although the differences were not greater than 4%.

Both STICCER’s variants obtained similar mutation scores to their baseline

reduction techniques (i.e., Greedy and HGS) against OTS. That is, the orig-

inal STICCER scored significantly worse than the OTS for five schemas the

same as greedy with equal scores. STICCER-HGS and HGS were signifi-

cantly worse than OTS with equal in the number of schema with equal scores

in seven of the eight. The FrenchTowns test suite reduced using STICCER-
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HGS scored 0.8% worse than the HGS, with a p-value of 2.08 × 10−10 and

large effect size. This is due to removing INSERTs while merging and lower

test data diversity. Obtaining significantly lower fault detection of exchang-

ing FOREIGN KEY and UNIQUE constraints.

In conclusion for RQ2, DOM-RND-generated test suites did not change

mutation score following reduction. AVM-D-generated suites did incur de-

creased scores, but only for seven schemas and not > 4%.

Table 6.4: Median Reduction and Mutation Times (Seconds) for STICCER-
HGS versus the original STICCER

Times for STICCER-HGS and STICCER are broken down into “RT” (reduction time), and “MT” (mu-
tation analysis time), with the MTs and totals statistically compared.

AVM-D DOM-RND

STICCER STICCER-HGS STICCER STICCER-HGS

Schemas RT MT Total RT MT Total RT MT Total RT MT Total

ArtistSimilarity 0.12 0.05 0.17 0.04 0.05 ∗F0.09 0.13 0.05 0.18 0.05 0.05 ∗F0.10
ArtistTerm 0.14 0.22 0.37 0.06 0.22 ∗F0.29 0.14 0.22 0.36 0.05 0.23 ∗F0.28
BankAccount 0.17 0.19 0.36 0.09 F0.18 ∗F0.27 0.16 0.19 0.34 0.08 �0.20 ∗F0.28
BookTown 0.94 16.17 17.11 0.90 ∗F14.20 ∗F15.10 1.07 10.85 11.92 1.04 ∗�11.46 ∗�12.50
BrowserCookies 0.37 0.94 1.31 0.34 0.92 1.26 0.37 0.73 1.09 0.38 0.72 1.09
Cloc 0.15 0.07 0.22 0.07 0.07 ∗F0.14 0.15 0.09 0.25 0.08 ∗�0.12 ∗F0.20
CoffeeOrders 0.31 1.20 1.51 0.25 1.21 ∗F1.46 0.29 1.05 1.34 0.22 ∗�1.14 1.35
CustomerOrder 0.80 6.68 7.47 0.70 ∗F6.22 ∗F6.92 0.84 4.56 5.40 0.76 ∗F4.35 ∗F5.10
DellStore 1.42 1.93 3.35 1.68 F1.86 ∗�3.54 1.46 3.22 4.68 1.75 ∗�3.37 ∗�5.12
Employee 0.20 0.13 0.32 0.15 ∗�0.14 ∗F0.29 0.18 0.12 0.30 0.14 0.11 ∗F0.25
Examination 1.06 1.39 2.45 1.72 1.37 ∗�3.09 1.11 1.00 2.12 1.73 �1.06 ∗�2.79
Flights 0.30 0.61 0.91 0.20 0.61 F0.81 0.41 0.68 1.09 0.37 �0.71 1.08
FrenchTowns 0.23 1.46 1.69 0.12 �1.51 1.62 0.23 1.23 1.46 0.14 1.23 ∗F1.37
Inventory 0.12 0.05 0.17 0.04 ∗F0.04 ∗F0.08 0.12 0.04 0.17 0.05 0.04 ∗F0.09
IsoFlav R2 0.70 2.83 3.52 0.88 2.82 ∗�3.70 0.75 2.72 3.47 0.96 2.79 ∗�3.75
Iso3166 0.11 0.02 0.13 0.03 0.02 ∗F0.06 0.11 0.03 0.13 0.04 0.03 ∗F0.06
iTrust 150.17 959.31 1109.48 653.16 ∗F936.61 ∗�1589.77 157.23 428.57 585.80 634.77 ∗�522.86 ∗�1157.63
JWhoisServer 1.64 5.62 7.25 1.90 ∗F5.39 7.29 1.86 3.88 5.74 2.11 ∗�4.28 ∗�6.39
MozillaExtensions 2.02 6.62 8.64 5.16 ∗�6.95 ∗�12.12 2.38 5.39 7.78 5.26 ∗�6.36 ∗�11.62
MozillaPermissions 0.15 0.08 0.23 0.09 ∗�0.10 ∗F0.18 0.15 0.07 0.22 0.08 ∗�0.10 ∗F0.18
NistDML181 0.15 0.11 0.26 0.07 ∗F0.10 ∗F0.18 0.15 0.12 0.28 0.08 ∗F0.12 ∗F0.20
NistDML182 1.93 2.22 4.15 3.64 ∗�2.43 ∗�6.07 2.00 2.43 4.43 3.66 ∗�2.59 ∗�6.25
NistDML183 0.14 0.09 0.23 0.06 F0.09 ∗F0.15 0.14 0.10 0.25 0.07 0.10 ∗F0.17
NistWeather 0.22 0.29 0.51 0.15 ∗�0.30 F0.45 0.23 0.25 0.48 0.18 ∗�0.26 F0.44
NistXTS748 0.12 0.04 0.16 0.04 ∗�0.04 ∗F0.08 0.11 0.04 0.15 0.04 0.04 ∗F0.08
NistXTS749 0.17 0.20 0.37 0.10 ∗F0.18 ∗F0.28 0.17 0.16 0.33 0.08 0.17 ∗F0.25
Person 0.10 0.09 0.19 0.03 0.09 ∗F0.12 0.15 0.07 0.22 0.08 ∗�0.08 ∗F0.16
Products 0.14 0.42 0.57 0.08 0.42 F0.50 0.18 0.44 0.62 0.12 0.44 ∗F0.56
RiskIt 1.41 23.15 24.57 1.85 ∗F21.23 ∗F23.08 1.59 18.90 20.49 1.93 ∗F18.22 F20.15
StackOverflow 0.93 0.97 1.90 1.34 ∗F0.93 ∗�2.27 1.16 1.42 2.58 1.51 ∗�1.74 ∗�3.25
StudentResidence 0.16 0.20 0.36 0.09 0.20 ∗F0.29 0.14 0.17 0.32 0.07 0.17 ∗F0.24
UnixUsage 0.92 6.21 7.13 1.04 ∗F5.69 ∗F6.73 0.95 3.83 4.79 1.07 ∗�4.15 ∗�5.22
Usda 1.39 2.78 4.17 1.88 ∗F2.71 ∗�4.59 1.52 4.15 5.68 2.02 ∗�5.31 ∗�7.33
WordNet 0.37 1.86 2.23 0.34 ∗F1.77 ∗F2.11 0.38 1.69 2.07 0.29 ∗�1.77 2.07

RQ3: Reduction and Mutation Analysis Runtime
Table 6.4 shows the median mutation and reduction time for both STICCER-

HGS and the original STICCER. The “�” symbol in the table means that

STICCER-HGS required a statistically significantly longer time to run than

the STICCER, while “F” denotes the reverse.
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The results show many significant differences in times recorded for STICCER-

HGS and the original STICCER, the vast majority only correspond to a

couple of seconds, and therefore are almost practically negligible.

The exception to this is the iTrust schema, which has the largest original

test suite of 1517 test cases. Here, the overheads of the additional algorithmic

complexity of HGS compared to Greedy are evident. HGS took a median of

11 minutes to reduce the AVM-D-generated test suites for the iTrust schema,

compared to only 2 minutes with greedy reduction. As shown by Table ??,

following merging this results in smaller AVM-D-generated test suites on

average for STICCER-HGS compared to the original STICCER (631 test

cases as opposed to 646), but the DOM-RND-generated test suites are larger

(297 as opposed to 231). Unsurprisingly, mutation analysis times follow

the reduced test suite sizes, since the larger the test suite, the more work

mutation analysis has to do. Overall, the additional time taken by HGS for

the AVM-D-generated test suites is not sufficiently recovered in mutation

analysis for the smaller suites of STICCER-HGS, resulting in the original

STICCER recording a significantly faster time with AVM-D and DOM-RND

test suites.

In conclusion for RQ3, although our experiments record many significant

differences in timing, they are almost negligible in practical terms, except for

the largest schema, iTrust. For this schema, STICCER-HGS was significantly

slower for both AVM-D and the DOM-RND-generated test suites. In the

AVM-D case, STICCER-HGS produces smaller test suites, but the additional

time HGS needs to do this is not recovered in the savings made by mutation

analysis.

Overall Conclusions of the Computational Study. The evidence sug-

gests that STICCER’s merging mechanism works better with the diverse

DOM-RND-generated tests, and the slightly larger set of tests to choose

from that arise from using Greedy. Yet, the results for each schema are more

nuanced. For some schemas, the more heavily reduced test suites produced

by HGS more than outweigh a slightly less efficient secondary merging phase

for STICCER-HGS, particularly with those test suites generated by AVM-D.

The results of mutation analysis show a slight degradation of mutation
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scores for test suites initially generated by AVM-D for all reduction tech-

niques, but no loss of mutant killing power for test suites generated by DOM-

RND. This evidence suggests that STICCER’s merging mechanism does not

sacrifice fault-finding capability.

In terms of execution time, we find that STICCER-HGS produced compa-

rable timings to the greedy based STICCER for reduction and the subsequent

mutation analysis. Timings were marginally faster with STICCER-HGS for

smaller database schemas, yet the greedy-based STICCER had the upper

hand with the largest schemas, because of the additional time required by

HGS to reduce suites in the first phase.

HGS and STICCER-HGS reduce test suites effectively compared to other

techniques and resulting in the shortest test suites. This make the both

technique more appealing for testers to inspect reduced tests and reason

with fewer failed tests, lowering the human oracle cost. This however re-

quire an investigation of testers’ inspection efforts either with short tests

(i.e., HGS produced), or equivalent fewer tests that are long (i.e., produced

by STICCER-HGS). The following section will eventuate tester’s efforts to

inspect differently reduced test suites using a human study.

6.4 The Human Study

6.4.1 Methodology

To investigate the effect of STICCER’s test case merging mechanism on hu-

man oracle cost, a Human Study was designed in which participants acted

as “testers” who had to manually inspect test suites that had been processed

by STICCER. As a control, the (unmerged) test suites reduced by HGS was

chosen, as they, in general, represent the smallest non-merged test suites,

thereby making them suitable for the scope of a human study. As such,

to allow for a direct comparison, we chose to use STICCER-HGS over the

greedy-based STICCER to study the effect of test merging. A relational

database test case attempts to satisfy or violate an integrity constraint with

INSERT statements that are either accepted or rejected by the DBMS. There-
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fore, in this study participants had to read a test case and identify the INSERT

statement(s) that would be rejected. We measured their accuracy and effi-

ciency (i.e., time duration) while they performed this task, with the aim of

answering two research questions:

RQ4: Test Inspection Accuracy. How accurate are humans at inspecting

the merged and reduced tests produced with STICCER-HGS compared to

the reduced and non-merged tests made by HGS?

RQ5: Test Inspection Duration. How long does it take for humans to

inspect the merged and reduced tests produced by STICCER-HGS compared

to the reduced and non-merged tests made by HGS?

Experimental Set-up

Schemas and Generators. We generated test suites using AVM-D and

DOM-RND for the schemas ArtistSimilarity, Inventory, NistXTS748, and

Person, as listed in Table A.1, and applied both HGS and STICCER-HGS.

We deliberately picked these schemas to ensure all different types of integrity

constraint were represented and a variety of data types, while also ensuring

relatively small test suite sizes (i.e., under 30 test cases) so that the test

suites used would be feasible for a human to inspect during the study in a

reasonable amount of time.

Therefore, this study includes four schemas, two test data generators, and

two reduction techniques.

Table 6.5: The Relational Database Schemas For The Human Study

Integrity Constraints

Schema Tables Columns Check Foreign Key Not Null Primary Key Unique Total

ArtistSimilarity 2 3 0 2 0 1 0 3
Inventory 1 4 0 0 0 1 1 2
NistXTS748 1 3 1 0 1 0 1 3
Person 1 5 1 0 5 1 0 7

Total 5 15 2 2 6 3 2 15

Test Suites were generated using SchemaAnalyst on SQLite, and using the

ClauseAICC+ANCC+AUCC coverage criterion combination with the mu-
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tated versions of each schema. In the study, we asked participants to assess

these test suites with respect to the original schemas. We used mutants

rather than original schemas for test suite generation to introduce a degree

of randomness in the accept/violate pattern of the INSERT statements of each

suite, enabling a fairer comparison between their merged and reduced ver-

sions. We randomly selected the mutant schemas summarized in Table 6.6

from a pool of mutants generated using the operators of Wright et al. [136].

Table 6.6: Selected Mutated Schemas

Schema AVM-D DOM-RND

ArtistSimilarity Added a NOT NULL to a new column Added a NOT NULL to a new column
Inventory Changed the column of a UNIQUE Changed the column of a UNIQUE
NistXTS748 Added a new UNIQUE to a new column Added a single-column primary key
Person Removed primary key Changed primary key to another column

The Web-Based Questionnaire. To measure the accuracy and duration of

human inspection, we integrated both the original schema and the mutant’s

tests into a web questionnaire. Each test case forms an individual “question”,

where participants are asked to select the INSERT statements in each test

that the DBMS would reject. If the participant believed that none of the

INSERTs should be rejected, they could select an option entitled “None of

them”. If a participant could not decide, then they could select the “I don’t

know” option. Our thinking behind both options was to prevent random

guessing that could negatively influence the results. Furthermore, to prevent

confounding results, we also added a mechanism that deselects checkboxes if

an option was selected that would contradict another option. For instance,

if a participant selected a series of INSERTs and then continued to pick either

“I don’t know” or “None of them” (i.e., they seemingly changed their mind),

then the INSERTs are deselected, or vice versa.

At the end of questionnaire, participants were presented with an online

exit survey that asked about the schemas that they thought to be the easiest

and hardest to inspect. The participants could also provide general feedback

regarding the questionnaire, ultimately helping us to analyze the results and

further characterize a human’s perception of the database schemas and their

reduced test suites.
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The Human Study Procedure. This study recruited 31 participants to

answer this section’s research questions. The participants are from the stu-

dent body at the University of Sheffield, studying Computer Science (or a

related degree) at either the undergraduate or PhD level. As part of the

recruitment and sign-up process, potential participants completed an assess-

ment in which they had to say whether four INSERT statements would be

rejected for a table with three constraints. Participates were not invited

if they got more than one answer wrong, ensuring that the human study

included capable participants with adequate SQL knowledge.

Both Table 6.8 and Table 6.7 shows the participants’ demographics. Show-

ing SQL experience are varied between less than a year for four participants to

over four years for eight. Even with all participants gaining such experience

through academia, it was shown that it influenced programmers performance

positively according to Diestes et al. [164]. Note four of the participants were

removed from this study. The first two removed participants answered the

questions wrongly, with accepted INSERTs rather than rejected statements.

The other two removed participants used the same participant code, which

we assume was a typo. Therefore, the recorded answers only showed one

participant with no background question answered while the other missed

answering a schema because it was already submitted.

Table 6.7: Participants
Eduction Levels

Level Participants

Postgraduate - Masters 1
Postgraduate - PhD 8
Undergraduate - Year 1 1
Undergraduate - Year 2 3
Undergraduate - Year 3 8
Undergraduate - Year 4 6

Table 6.8: Participants
SQL Knowledge Length

Years Participants

≤ 1 4
2 7
3 8
4 4
5+ 4

The study had two within-subject variables (i.e., the database schemas

and the generation techniques) and one between-subject variable (i.e., the

specific reduced test suites), as shown in Figure 6.2. We assigned partici-

pants randomly to one of four groups, so that there were at least six partici-
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pants in each group. Each group inspected each schema with each test suite,

reduced by either HGS or STICCER-HGS. Each participant was financially

compensated with £5 cash and £10 book voucher, encouraging them to do

their best to understand the schema tests and complete the questionnaire in

under an hour.

AVM-D DOM-RND

Group HGS STICCER-HGS HGS STICCER-HGS

1 Schema 1 Schema 3 Schema 2 Schema 4
2 Schema 2 Schema 4 Schema 1 Schema 3
3 Schema 3 Schema 1 Schema 4 Schema 2
4 Schema 4 Schema 2 Schema 3 Schema 1

Figure 6.2: Selected Mutated Schemas

To answer RQ4, we calculated participants’ test inspection accuracy

scores based on the number of failing INSERT statements correctly selected

over all the INSERTs (i.e., those that the DBMS accepted or rejected). We re-

port the accuracy score’s descriptive statistics (i.e., minimums, maximums,

means, and medians).

To answer RQ5, we reported the same descriptive statistics for the dura-

tion of time that a human took to inspect each test suite.

Unfortunately, due to the small sample of participants and database

schemas, we cannot reliably apply statistical significance tests. We leave

this as an item for future work.

Threats to Validity of the Human Study

External Validity. The threat of selected schemas and its generated tests

may provide results that are not evident for real schemas. This was mit-

igated by randomly selected four schemas that include common integrity

constraints and data types in SQL schemas [22]. The latter was addressed

using an open-source tool to generate tests, SchemaAnalyst [14], with the

effective and recommend adequacy criterion [7]. This guaranteed that tests

exercise all the integrity constraints as true and false. The selection of few
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relational schemas and tests were intentionally limited to ensure participants

could complete the questionnaire in a reasonable time, also mitigating the po-

tential negative effects of fatigue. Since no previous human studies compared

reduced test suites and their human oracle cost, this study can be considered

the first that is a small-scale with few participants. This results in fewer

data points and did not yield statistical significant difference. Therefore, the

following sections only rely upon descriptive statistics with low confidence

in this chapter’s claims, and in future we recommend replicating this study

with larger data points to ensure there is statistical power.

Internal Validity. Participants can become better at answering ques-

tions as the questionnaire progresses which a potential learning effects and

threat to internal validity. This was mitigated with randomizing the pre-

sentation order for questions and schemas. The majority of participants are

students which can be considered another threat, however this can acceptable

and in broad confirmation of prior results in software engineering [158].

Construct Validity. Measuring the tests understanding is subjective

and a threat to the construct validity that was addressed by determining

how successful human testers were at identifying which INSERT statement are

rejected by the database violating an integrity constraint. Another threat is

that the participants might not be accustomed to the questionnaire interface

to determine the outcome of a SQL test case. Thus, this was addressed

with a simple tutorial prior to the actual questionnaire, showing concepts of

testing integrity constraints and the study’s procedure. It is also possible

that testers might have better knowledge of a database schema that they

designed than the participants. Therefore, participants were able to study

the schema understand it before showing the schema’s test suite (i.e., the

questions).
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6.4.2 Answering RQ4 and RQ5

RQ4: Test Inspection Accuracy

Table 6.9 shows the descriptive statistics for the accuracy scores of and time

duration by the participants for each test suite that they evaluated. On

average, participants were more accurate with the test suites reduced by HGS

compared to STICCER-HGS. The mean difference in accuracy, however, for

test suites was only as large as 15.2% (for the Inventory schema with the

test suite generated by AVM-D), with the largest median difference as 13.0%

(again for Inventory with the test suite generated by AVM-D). Overall, no

clear pattern emerges, and it would seem that the smaller test suites that

were reduced and merged by STICCER-HGS do not give it an advantage

over HGS. This suggests that testers prefer smaller, focused test cases as

much, if not more than, fewer but potentially more complex test cases.

In conclusion for RQ4, the smaller test suites reduced and merged by

STICCER-HGS give it no clear advantage over test suites reduced by HGS

only, suggesting that fewer, but longer, tests do not necessarily improve the

accuracy of humans when they inspect test cases.

RQ5: Test Inspection Duration

Table 6.9 shows the duration descriptive statistics of each test suite inspec-

tion. For 10 of the 16 schema-test generator combinations, the participants

were faster with test suites reduced and merged with STICCER-HGS, as

opposed to simply being reduced with HGS. This table also shows that that

the overall mean and median averages favor STICCER-HGS. These results

suggest that participants can process the smaller number of test cases of-

fered by STICCER-HGS more quickly, on the whole, even if they cannot do

it more accurately. Given that STICCER-HGS test cases are longer, due to

the merging, it would seem that there is more opportunity for participants

to make mistakes, and/or become over-confident in their analysis.

To help understand the inspection speed of tests suites using STICCER-

HGS, the exit survey used that indicate some schemas were easier to inspect

based on their properties (i.e., data types).
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In conclusion for RQ5, the evidence suggests that, compared to durations

with tests from HGS, participants were faster at inspecting the smaller test

suites reduced and merged by STICCER-HGS.

Overall Conclusions of the Human Study. The results from this study

suggest that, while human testers are not more accurate at analysing a

smaller number of longer tests, there is some evidence that they are faster.

One explanation for this is that a tester may subconsciously spend the same

amount of time on a test, regardless of its length, therefore being faster

overall with smaller test suites. Yet, this constant amount of time is a dis-

advantage for comparatively longer tests, as there is more to inspect, and

as such aspects of these test cases may be overlooked, leading to mistakes.

Although interesting, these results suggest the need for a large-scale study.

6.5 Summary

Since Chapter 5 work proposed STICCER, a hybrid method that combined

greedy test suite reduction with a merging approach for database schema

testing, this chapter presents both a computational and a human study in-

vestigating a new hybridisation that combines STICCER-based merging with

test suite reduction by the Harrold-Gupta-Soffa (HGS) method.

Considering four test suite reduction methods (i.e., greedy, HGS, STIC-

CER, and STICCER-HGS), two test data generators (i.e., AVM-D and Domino),

and two database schemas, this chapter’s Computational Study answered

three research questions. Focused on assessing the capability of these re-

duction methods to quickly decrease a test suite’s size while preserving its

mutation adequacy, the Computational Study reveals that, while there are

benefits to using either greedy or HGS in combination with STICCER, nei-

ther greedy-based STICCER nor STICCER-HGS are a strictly dominant

method. That is, although there was prior evidence showing that HGS was

superior to greedy at reducing database schema test suites, the surprising

conclusion of this study is that there is no significant benefit to hybridising

STICCER with HGS instead of greedy.
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Incorporating 27 participants who had to manually inspect reduced test

suites and answer questions about their behaviour, the Human Study inves-

tigated the influence that STICCER’s test case merging mechanism has on

human oracle costs. Since this chapter’s focus is on the benefits attributable

to HGS, this study compared HGS to STICCER-HGS, answering two re-

search questions. This chapter’s Human Study reveals that, compared to

those produced by HGS, the reduced test suites of STICCER-HGS may help

humans to perform test inspection faster, but not always more accurately.

Overall, the STICCER technique is recommended for fault-finding effi-

ciency and effectiveness. The technique also enables testers to efficiently

inspect the generated test suites (i.e., evaluating the behaviour of the tests

and its schema). However, testers must know that this technique can hinder

the accuracy of inspecting test cases.
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Conclusion and Future Work

This thesis aimed to answer a high-level research question on what are the

strategies that efficiently generate cost-effective database schema tests? That

is to investigate and improve test data generators regarding effectiveness,

efficiency, and fault-finding capabilities. Also, improving the test data gen-

erators to support testers with ease of inspection (i.e., lowering the human

oracle cost) and reducing such tests for efficiency. Therefore, the thesis main

objectives are as follows:

• To empirically evaluate the effectiveness and efficiency of a domain-

specific test data generator against the state-of-the-art search-based

technique (Chapter 3).

• To perform a human study to find understandability factors of auto-

matically generated SQL tests (Chapter 4).

• To empirically evaluate and improve traditional test suite reduction

methods in the context of database schema testing (Chapter 5).

• To perform a human study to identify testers’ inspection efforts with

differently reduced test suites (Chapter 6).

7.1 Summary of Contributions

The thesis achieved the mentioned aims and objectives with addressing sev-

eral challenges and answering the following research questions:
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1. How do domain-specific operators improve test data generators effec-

tiveness and fault detection? How efficient are these operators at util-

ising the random technique for generating test data compared to the

state-of-the-art search-based techniques?

2. How can different automatically generated test data influence the un-

derstanding of test cases and their expected behaviour? Moreover,

which factors of these different test data are helpful for testers?

3. How do different test suite reduction techniques improve the efficiency

of running mutation analysis while maintaining fault-finding capabili-

ties? How do the merging of automatically generated test cases improve

efficiency of running mutation analysis?

4. How effective do testers inspect differently reduced SQL test suites?

Therefore, the following are a summarisation of each chapter answering

these research questions.

Chapter 3: “DOMINO: A Fast and Effective Test Data Generator”

This chapter presented a technique that uses domain-specific operators

and random search to generate test data, called Domino (i.e., referred to as

DOM-RND because it used random values). The empirical evaluation showed

that DOM-RND was significantly efficient at generating test data and had

equal coverage to AVM-D (i.e., the state-of-the-art search-based technique

that uses default values). The DOM-RND also generated more diverse test

data because of random values and significantly effective at finding faults

compared to AVM-D. However, comparing the fault-finding capabilities of

DOM-RND and AVM-D is unfair because of different initialised values. Thus,

an AVM variant that uses random value, called AVM-R, was also compared

to DOM-RND showing nearly equal fault detection between DOM-RND and

AVM-R. Although the two techniques detected different faults because of the

different values generated were selected with different methods. This inves-

tigation leads to implementing a hybridisation technique to generate suited

test data for CHECK constraints, combining DOM-RND and AVM-R. However,

results showed that the hybrid technique was less efficient at generating test

data and no more effective at detecting faults.
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Chapter 4: “What Factors Make SQL Test Cases Understandable

For Testers?”

This chapter provided results of a conducted human study with two AVM

variants, three Domino variants, and two schemas. The human study was

conducted with two groups. A silent study group that provides quantita-

tive results and a think-aloud group that provides qualitative results. The

variants test data generators produce data as follows: (1) random values; (2)

default values that use empty strings for characters and constants for numeric

values; (3) values from a language model used by Afshan et al. [69], com-

bined with a search-based technique, Alternating Variable Method (AVM);

and (4) reused values derived from either column names or a library of read-

able values. Therefore, the techniques are AVM-D, AVM-LM (Language

Model), DOM-RND, DOM-READ (uses a library of readable values), and

DOM-COL (it uses column names). The human study revealed factors that

influence test data understandability, such as NULLs are confusing, negative

numbers require harder thinking, simple repetition for unimportant test val-

ues help testers, and testers prefer human-readable strings. Considering all

of these factors can improve the qualitative human oracle cost of generated

tests.

Chapter 5: “STICCER: Fast and Effective Database Test Suite

Reduction Through Merging of Similar Test Cases”

This chapter presented a novel approach to test suite reduction called

“STICCER”, which stands for “Schema Test Integrity Constraints Combination

for Efficient Reduction”. The technique discards redundant tests using a

Greedy algorithm while also merging them. This technique was able to pro-

vide test suites with decreased database interactions and restarts, resulted

in faster test suite executions and mutation analysis. The empirical evalu-

ation with 34 database schemas and compared with three general-purpose

reduction technique (i.e., Random, Greedy, and HGS) showed that STIC-

CER significantly outperformed all the techniques and the original test suite.

That is, STICCER produced test suite that ran 5X and 2.5X faster than the

original test suite and the reduced test suite of other techniques, respectively.
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Chapter 6: “Can Human Testers Effectively Inspect Reduced Ver-

sions of Automatically Generated SQL Test Suites?”

The first part of this chapter empirically evaluated a variant STICCER

technique that merges tests of HGS test suites, called STICCER-HGS. The

results showed that STICCER-HGS show no significant benefit when com-

pared to the original STICCER. Although prior evidence showing that HGS

was superior to greedy at reducing database schema test suites.

The second part of this chapter conducted a human study that reviewed

which of the reduced test suites, comparing HGS and STICCER-HGS, effec-

tively enable testers to inspect tests regarding accuracy and efficiency. The

human study had 27 participants, four schemas, and two test data generators

(AVM-D and DOM-RND). The results revealed that the reduced test suites

of STICCER-HGS, compared to those produced by HGS, may help humans

to perform test inspection faster, but not always more accurately.

7.2 Limitations
This thesis includes some limitations in its empirical studies. For instance,

the third chapter only compared the Domino technique to one search-based

technique (i.e., AVM). However, there many other search-based techniques

and constraint solvers to be compared with Domino. Therefore, the claims

of the effectiveness and efficiency of Domino are only superior to AVM.

The use of using mutation analysis as a proxy to faults is also another

limitation. In the absence of real faults or the history of faults, one might use

mutation analysis, although mutants might not represent real-world faults

and would not be detected as mutants.

The human studies presented include a limitation that it recruited a low

number of participants and did not yield statistical significance, relying only

on aggregated results. Therefore, it resulted in low confidence of our claims.

Another limitation of the human studies is relying on small schemas as sub-

jects, and while they might include most integrity constraints, they might

not represent larger real-world schemas. Therefore, for future work, we rec-

ommend the use of larger and many schemas with more participants to yield

reliable statistical significance.
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7.3 Future Work

This section presents several recommendations for future work.

7.3.1 NoSQL (Non-Relational Database) Testing

With the rise of non-relational (NoSQL) databases in software development [2],

I recommend devising software testing methods for such databases. The data

generators with their reduction techniques and understandability factors can

be applied into NoSQL. However, there might be properties that need to be

observed for understandability compared to these found in this thesis.

7.3.2 Test Data Generation

Given the efficiency and effectiveness of DOM-RND, I recommend to experi-

mentally compare it to methods that leverage constraint solvers [165]. These

techniques are showing some promise to be efficient and effective in find-

ing optimal solutions such as Microsoft Z3 SMT Solver. Furthermore, the

use of methods such as evolutionary algorithms [166], and other hybrid ap-

proaches [167] should be evaluated. For traditional programs, I recommend

the investigation and implementation of domain-specific operators test data

generators. That is, utilising a random technique while learning from the

inefficiencies of search-based methods. Another future work is to develop an

automated method that quickly generates focused and effective tests for a

wide variety of data-driven programs, like those that use relational databases

or NoSQL data stores.

7.3.3 Test Comprehension

The findings of Chapter 4 guidelines could be used for developing new test

data generators for database schemas and, when appropriate, traditional

programs. The goal is to develop tools that automatically generate tests

containing data values that are both understandable to humans and effective

at finding faults.
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The human studies conducted in this thesis should also be conducted for

traditional programs and identify the understandability factors that influence

test comprehension. Moreover, the human studies should be replicated with

many participants and maybe in a controlled fashion to either strengthen

this thesis claims or refute them.

I would also recommend the use of visualisation techniques for test suites

to be more comprehended. For instance, test cases can have a commented

ASCII generated tables of the INSERTs, which might allow testers to navigate

the test data better and efficiently rather than reading INSERT statements.

That also would require a human study to evaluate its influence on test

comprehension.

7.3.4 Test Suite Reduction

Given these promising results STICCER, I recommend enhancing this method

so that it operates in a multi-objective fashion, explicitly balancing testing

goals like decreasing the test suite size while maximising its mutation score.

Also, it provides a path toward implementing multi-objective evolutionary

algorithms as an extension of the first future work.

Since STICCER has proven effective at reducing database schema test

suites, I recommend that future research investigate ways in which this can

be adapted to the reduction of the test suites for traditional programs that

manipulate complex state in other formats. This would improve the efficiency

regression testing for programs and might lower the flakiness of tests.

Also, I would recommend that conducting more human studies should be

prevalent in the software testing community, such as using human studies

to formulate the costs of the oracle problem. For instance, estimating the

costs and benefits of using test data generators in a software development

environment or continuous testing.
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7.4 General Conclusions

Relational databases are critical for software systems. Testing the database

schema that defines integrity constraints is crucial to ensure the consistency

and coherency of storing data. Since manual schema testing is labour-

intensive and error-prone, automated techniques enable the generation of

test data. Although these generators are well-established, they require to

be practical for testers to use. Therefore, the first contribution of this thesis

evaluated the Domino technique (optimised random generator) against well-

established methods (e.g., AVM) empirically. The second contribution was

identifying understandability factors of schema tests using a human study.

Thirdly, this thesis proposed and evaluated a novel approach that reduces

and merge tests against traditional reduction methods. Finally, the thesis

studies testers’ inspection efforts with differently reduced tests using a human

study. Overall, this thesis work provided an effective and efficient test data

generator that can be configured for understandability and reduced for per-

formance and ease of inspection. Therefore, helping practitioners to adopt

automated test data generators in practice.

169



CHAPTER 7.4. GENERAL CONCLUSIONS

170



Appendices

171





Appendix A

Schema Subjects Table and

Sources
The set of subject schemas in Table A.1 are drawn from a range of sources.

ArtistSimilarity and ArtistTerm are schemas that underpin part of the Mil-

lion Song dataset, a freely available research dataset of song metadata [168].

Cloc is a schema for the database used in the popular open-source appli-

cation for counting lines of program code. While it contains no integrity

constraints, test requirements are still generated since the coverage criterion

I used incorporates the ANCC and AUCC criteria, discussed in Section 2.3.5.

IsoFlav R2 belongs to a plant compound database from the U.S. Department

of Agriculture, while iTrust is a large schema that was designed as part of

a patient records medical application to teach students about software test-

ing methods, having previously featured in a mutation analysis experiment

with Java code [169]. JWhoisServer is used in an open-source implemen-

tation of a server for the WHOIS protocol (http://jwhoisserver.net).

MozillaExtensions and MozillaPermissions are part of the SQLite databases

underpinning the Mozilla Firefox browser. RiskIt is a database schema

that forms part of a system for modelling the risk of insuring an individ-

ual (http://sourceforge.net/projects/riskitinsurance), while Stack-

Overflow is the underlying schema used by the popular programming question

and answer website. UnixUsage is from an application for monitoring and

recording the use of Unix commands and WordNet is the database schema

used in a graph visualiser for the WordNet lexical database. Other sub-

jects were taken from the SQL Conformance Test Suite (i.e., the six “Nist–”

schemas), or samples for the PostgreSQL DBMS (i.e., DellStore, French-

Towns, Iso3166, and Usda, available from the PgFoundry.org website). The

remainder were extracted from papers, textbooks, assignments, and online

tutorials in which they were provided as examples (e.g., BankAccount, Book-

Town, CoffeeOrders, CustomerOrder, Person, and Products).
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Table A.1: The 34 Relational Database Schemas Studied

Integrity Constraints

Schema Tables Columns Check Foreign Key Not Null Primary Key Unique Total

ArtistSimilarity 2 3 0 2 0 1 0 3
ArtistTerm 5 7 0 4 0 3 0 7
BankAccount 2 9 0 1 5 2 0 8
BookTown 22 67 2 0 15 11 0 28
BrowserCookies 2 13 2 1 4 2 1 10
Cloc 2 10 0 0 0 0 0 0
CoffeeOrders 5 20 0 4 10 5 0 19
CustomerOrder 7 32 1 7 27 7 0 42
DellStore 8 52 0 0 39 0 0 39
Employee 1 7 3 0 0 1 0 4
Examination 2 21 6 1 0 2 0 9
Flights 2 13 1 1 6 2 0 10
FrenchTowns 3 14 0 2 13 0 9 24
Inventory 1 4 0 0 0 1 1 2
Iso3166 1 3 0 0 2 1 0 3
IsoFlav R2 6 40 0 0 0 0 5 5
iTrust 42 309 8 1 88 37 0 134
JWhoisServer 6 49 0 0 44 6 0 50
MozillaExtensions 6 51 0 0 0 2 5 7
MozillaPermissions 1 8 0 0 0 1 0 1
NistDML181 2 7 0 1 0 1 0 2
NistDML182 2 32 0 1 0 1 0 2
NistDML183 2 6 0 1 0 0 1 2
NistWeather 2 9 5 1 5 2 0 13
NistXTS748 1 3 1 0 1 0 1 3
NistXTS749 2 7 1 1 3 2 0 7
Person 1 5 1 0 5 1 0 7
Products 3 9 4 2 5 3 0 14
RiskIt 13 57 0 10 15 11 0 36
StackOverflow 4 43 0 0 5 0 0 5
StudentResidence 2 6 3 1 2 2 0 8
UnixUsage 8 32 0 7 10 7 0 24
Usda 10 67 0 0 31 0 0 31
WordNet 8 29 0 0 22 8 1 31

Total 186 1044 38 49 357 122 24 590
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Appendix B

Replication – Running

Experiments and Performing Data

Analysis
This appendix explains how to run test generation experiments and data

analysis with SchemaAnalyst and its data analysis package written in the R

language for statistical computation. It will help others to use SchemaAna-

lyst , replicating the experiments of this thesis.

B.1 Chapter 3 Experiments

Since it is implemented in the Java language, SchemaAnalyst is cross plat-

form. It uses the Gradle tool to manage its building, testing, and dependen-

cies. Testers can follow the instructions at the tool’s GitHub repository1 and

a previous tool paper [14] to learn how to install and run SchemaAnalyst .

As these resources do not show how to experimentally evaluate SchemaAn-

alyst , this paper explains how to run experiments using a provided Python

script called runExperiments.py. Because SchemaAnalyst ’s search-based test

generation methods are stochastic, testers can parameterize this script with

the number of trials and a random seed in addition to giving the name of a

test data generator, DBMS, and the schema under test. These are the steps

for configuring and running the experiments:

1. Install SchemaAnalyst and one or more DBMSs.

2. Edit the config/database.properties file so that it provides the access

details for each of the DBMSs.

3. Run the Gradle compile command, ./gradlew compile, to install all of

SchemaAnalyst ’s dependencies.

4. Set the CLASSPATH to point to the tool’s build directory.

1https://github.com/schemaanalyst/schemaanalyst

175



CHAPTER B B.1. CHAPTER 3 EXPERIMENTS

5. Modify scripts/runExperiments.py to configure the experiment (e.g.,

specify the number of trials).

An experimenter now runs the Python script, performing mutation analy-

sis on tests generated by SchemaAnalyst , thereby generating the results files.

Located in the results/ directory, these files include:

1. mutationanalysis.dat with basic test generation and mutation informa-

tion for each run;

2. mutanttiming.dat with details for each schema mutant both killed and

alive;

3. alive mutant/ a directory with files and directories furnishing details

about each run of data generation and mutation analysis, with notes

about every live mutant.

Analysing Results. The R package2 is provided to replicate the paper’s

data and tables [17]. Researchers can use devtools [170] to download and

install the replication package and then take these steps:

1. Load the empirical results from prior experiments with:

mutants <- dominoR::read analysis()

analysis <- dominoR::read mutants()

2. To re-generate the tables in our main paper [17], a researcher can run

the R package’s functions (e.g.,dominoR::table generator coverage), fol-

lowing the provided instructions for details about inputs and outputs.

3. While the default format of the result tables is like that of our main pa-

per, researchers can modify the replication package’s code to customize

table output as needed.

4. To support the generation of tables with different entries, the results

analysis functions can be parameterized to, for instance, compute either

mean or median values.

2https://github.com/schemaanalyst/domino-replicate
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B.2 Chapter 4 Experiments

Django Survey Web Application3. This web application enables you to

customise questionnaires depending on your requirements. This It includes

two small applications that are used for Chapter 4 and 6 human studies, polls

and controlled, respectively. In contains code highlighter and different types

of questions (e.g., multiple choices, drop-downs, and textboxes). Participant

groups (e.g., control and treatment) or any other design. The application is

dependent on the following requirements:

• Python 2.7

• pip

• virtualenv

Installation Instructions. All the dependencies are wrapped using virtualenv

and written into ‘requiremnts.txt‘. Therefore, two directories are required,

one for dependencies and the other for the application. Follow the below

instructions using Linux commands to run the application:

1. mkdir survey

2. cd survey

3. Create and activate the virtual environment:

(a) virtualenv envi

(b) source envi/bin/activate

4. Clone the repo:

(a) mkdir djsurvey

(b) cd djsurvey

(c) git clone https://github.com/aalshrif90/djsurvey .

5. Install dependencies and run the web application (Run these in the

‘djsurvey’ directory):

(a) pip install -r requirements.txt

(b) python manage.py runserver

In the browser, type this URL ‘127.0.0.1:8000’ to start with your experiment.

3https://github.com/aalshrif90/djsurvey
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B.3 Chapter 5 and 6 Experiments

Similar to ‘Chapter 3 Experiments’ Section, all the reduction techniques are

provided and integrated in the SchemaAnalyst repository. The

SampleReductionExperimentRunner.sh script is also provided within the main

root directory of the repository. Following the SchemaAnalyst installations,

this script will run the mutation analysis 30 times for each reduction tech-

nique and the non-reduction for only three schemas. If you want to run the

other schemas, please configure the script to run these for you.

The output of the experiment (i.e., mutation analysis) will be located in

the ‘results’ directory and can be used for your analysis.

Analysing Results. The R scripts in replication package package4 will help

you replicate the paper [161] analysis and tables. To generate the tables in the

paper execute the R/tables.R script (i.e., source(‘‘R/tables.R’’) in the R ses-

sion). This will output latex tables in the texTables directory and the merges

plots in the plots directory. To obtain the data frames for further analysis,

in the R session, execute the R/main.R script (i.e., source(‘‘R/main.R’’) in the

R session) and you will the mutationanalysis data frame.

If you have new data that was generated by SchemaAnalyst reduction

techniques, copy the generated results directory to the R project root direc-

tory. Then, in the R/main.R change the results path to point to the results/

directory. Re-run the R/tables.R script to generate the tables and plots.

B.4 Summary

To conclude, this explained both how to easily run experiments with Schema-

Analyst and to perform data analysis with an R package and scripts. This

supports the reproduction of prior experimental results and guides future

researchers who want to conduct their own analyses of schema testing meth-

ods. We invite practitioners and researchers to use the test generators and

mutation analysis methods provided by SchemaAnalyst .

4https://github.com/schemaanalyst/sticcer-replicate
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[96] C. de la Riva, M. J. Suárez-Cabal, and J. Tuya, “Constraint-based

Test Database Generation for SQL Queries,” in Proceedings of the 5th

International Workshop on the Automation of Software Test, pp. 67–

74, ACM, 2010.
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[140] J. Tuya, M. J. Suárez-Cabal, and C. de la Riva, “Mutating Database

Queries,” Information and Software Technology, vol. 49, no. 4, pp. 398–

417, 2007.

[141] S. Poulding and J. A. Clark, “Efficient Software Verification: Statistical

Testing Using Automated Search,” Transactions on Software Engineer-

ing, vol. 36, no. 6, 2010.

[142] A. Arcuri and L. Briand, “A Hitchhiker’s Guide to Statistical Tests for

Assessing Randomized Algorithms in Software Engineering,” Software

Testing, Verification and Reliability, vol. 24, pp. 219–250, May 2014.

[143] A. Vargha and H. D. Delaney, “A Critique and Improvement of the

CL Common Language Effect Size Statistics of McGraw and Wong,”

Journal of Education and Behavioral Statistics, vol. 25, no. 2, 2000.

[144] A. Alsharif, G. M. Kapfhammer, and P. McMinn, “What Factors Make

SQL Test Cases Understandable For Testers? A Human Study of Auto-

matic Test Data Generation Techniques,” in Proceedings of the 35th In-

ternational Conference on Software Maintenance and Evolution, 2019.

194



[145] SchemaAnalyst Repository, “SchemaAnalyst Test Data Generation

Tool.” https://github.com/schemaanalyst/schemaanalyst.

[146] A. Gibson, “Generate Test Data with DataFac-

tory.” https://www.andygibson.net/blog/article/

generate-test-data-with-datafactory/comment-page-1/, 2011.

[147] S. Letovsky, “Cognitive processes in program comprehension,” Journal

of Systems and Software, vol. 7, no. 4, 1987.

[148] A. Von Mayrhauser and A. M. Vans, “Program Comprehension During

Software Maintenance and Evolution,” Computer, vol. 28, no. 8, 1995.

[149] A. A. Rupp, T. Ferne, and H. Choi, “How Assessing Reading Com-

prehension with Multiple-Choice Questions Shapes The Construct: A

Cognitive Processing Perspective,” Language Testing, vol. 23, no. 4,

2006.

[150] Y. Ozuru, S. Briner, C. A. Kurby, and D. S. McNamara, “Comparing

Comprehension Measured by Multiple-Choice and Open-Ended Ques-

tions,” Canadian Journal of Experimental Psychology, vol. 67, no. 3,

2013.

[151] D. R. Bacon, “Assessing Learning Outcomes: A Comparison of

Multiple-Choice and Short-Answer Questions in a Marketing Context,”

Journal of Marketing Education, vol. 25, no. 1, 2003.

[152] PostgreSQL, “SQL Conformance.” https://www.postgresql.org/

docs/9.5/static/features.html.

[153] DigitalOcean, “SQLite vs MySQL vs PostgreSQL: A Comparison Of

Relational Database Management Systems.” https://goo.gl/mrZSG4,

July 2017.

[154] J. W. Creswell, R. Shope, V. L. Plano Clark, and D. O. Green, “How

Interpretive Qualitative Research Extends Mixed Methods Research,”

Research in the Schools, vol. 13, no. 1, 2006.

195

https://github.com/schemaanalyst/schemaanalyst
https://www.andygibson.net/blog/article/generate-test-data-with-datafactory/comment-page-1/
https://www.andygibson.net/blog/article/generate-test-data-with-datafactory/comment-page-1/
https://www.postgresql.org/docs/9.5/static/features.html
https://www.postgresql.org/docs/9.5/static/features.html
https://goo.gl/mrZSG4


[155] G. Charness, U. Gneezy, and M. A. Kuhn, “Experimental Methods:

Between-Subject and Within-Subject Design,” Journal of Economic

Behavior & Organization, vol. 81, no. 1, 2012.

[156] J. Nielsen, T. Clemmensen, and C. Yssing, “Getting Access to What

Goes on in People’s Heads? Reflections on The Think-Aloud Tech-

nique,” in Proceedings of the 2nd Nordic Conference on Human-

Computer Interaction, 2002.

[157] M. W. van Someren, Y. F. Barnard, and J. A. Sandberg, The Think

Aloud Method: A Practical Approach to Modelling Cognitive. Academic

Press, 1994.

[158] M. Höst, B. Regnell, and C. Wohlin, “Using Students as Subjects: A

Comparative Study of Students and Professionals in Lead-Time Impact

Assessment,” Empirical Software Engineering, vol. 5, no. 3, 2000.

[159] Y. Xia, J. Sun, and D.-G. Chen, “Power and Sample Size Calculations

for Microbiome Data,” in Statistical Analysis of Microbiome Data with

R, Springer, 2018.

[160] ANSI/ISO/IEC International Standard – ISO/IEC 9075-2:2011,

“Database Language SQL — Part 2: Foundation (SQL/Foundation),”

2011.

[161] A. Alsharif, G. M. Kapfhammer, and P. McMinn, “STICCER: Fast and

Effective Database Test Suite Reduction Through Merging of Similar

Test Cases,” in International Conference on Software Testing, Verifi-

cation and Validation (ICST 2020) (To Appear), 2020.

[162] A. Gyori, A. Shi, F. Hariri, and D. Marinov, “Reliable Testing: Detect-

ing State-Polluting Tests to Prevent Test Dependency,” in Proceedings

of the 24th International Symposium on Software Testing and Analysis,

2015.

[163] A. Alsharif, G. M. Kapfhammer, and P. McMinn, “Hybrid methods for

reducing database schema test suites: Experimental insights from com-

196



putational and human studies,” in Proceedings of the 1st IEEE/ACM

International Conference on Automation of Software Test, 2020.

[164] O. Dieste, A. M. Aranda, F. Uyaguari, B. Turhan, A. Tosun, D. Fucci,

M. Oivo, and N. Juristo, “Empirical Evaluation of The Effects of Ex-

perience on Code Quality And Programmer Productivity: An Ex-

ploratory Study,” Empirical Software Engineering, vol. 22, no. 5,

pp. 2457–2542, 2017.

[165] S. Khalek and S. Khurshid, “Systematic Testing of Database Engines

Using a Relational Constraint Solver,” in Proceedings of the 4th Inter-

national Conference on Software Testing, Verification and Validation,

2011.

[166] P. Tonella, “Evolutionary Testing of Classes,” in Proceedings of the

International Symposium on Software Testing and Analysis, 2004.

[167] P. McMinn and M. Holcombe, “Evolutionary Testing Using an Ex-

tended Chaining Approach,” Evolutionary Computation, vol. 14, no. 1,

2006.

[168] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The Mil-

lion Song Dataset,” in Proceedings of the 12th International Conference

on Music Information Retrieval, 2011.

[169] B. Smith and L. Williams, “An Empirical Evaluation of the MuJava

Mutation Operators,” in Proceedings of the 3rd International Workshop

on Mutation Analysis, 2007.

[170] “Devtools.” https://github.com/hadley/devtools.

197

https://github.com/hadley/devtools

	Dedication
	Abstract
	Acknowledgement
	Publications
	Glossary of Terms
	Introduction
	Overview
	Motivation
	Thesis Aim and Objectives
	Contributions of this Thesis
	Thesis Structure

	Literature Review
	Introduction
	Software Testing
	Overview
	White-box Software Testing
	Automated Test Data Generation
	Mutation Analysis
	Test Data Evaluation (The Oracle)

	Database Management Systems (DBMS)
	Relational Databases Basics
	DBMS Testing
	Database Interaction Testing
	Query Testing
	Schema Testing
	Schema Test Data Generation
	Schema Mutation Analysis

	Limitations and Research Gaps
	Search-Based Test Data Generation Inefficiencies
	Test Comprehension
	Test Suite Size

	Summary

	DOMINO: A Fast and Effective Test Data Generator
	Introduction
	Motivation
	The Domino Test Data Generator
	DOMINO-RANDOM Empirical Evaluation
	Methodology
	Experimental Results

	The Hybrid Domino-AVM Method
	Domino-AVM Empirical Evaluation

	Summary

	What Factors Make SQL Test Cases Understandable For Testers?
	Introduction
	Motivation
	Methodology
	Automated Test Case Generation Techniques
	Measuring Comprehension
	Research Questions
	Experimental Set-up
	Design of the Human Study
	Threats to Validity

	Answers to the Research Questions
	Discussion
	Summary

	STICCER: Fast and Effective Database Test Suite Reduction Through Merging of Similar Test Cases
	Introduction
	Motivation
	Test Suite Reduction
	The STICCER Approach
	Empirical Evaluation
	Methodology
	Statistical Analysis
	Threats to Validity

	Experimental Results
	RQ1: Reduction Effectiveness
	RQ2: Impact on Fault Finding Capability
	RQ3: Impact on Test Suite and Mutation Analysis Runtime

	Summary

	Can Human Testers Effectively Inspect Reduced Versions of Automatically Generated SQL Test Suites?
	Introduction
	The STICCER-HGS Approach
	The STICCER-HGS Computational Study
	Methodology
	Answering RQ1 through RQ3

	The Human Study
	Methodology
	Answering RQ4 and RQ5

	Summary

	Conclusion and Future Work
	Summary of Contributions
	Limitations
	Future Work
	NoSQL (Non-Relational Database) Testing
	Test Data Generation
	Test Comprehension
	Test Suite Reduction

	General Conclusions

	Appendices
	Schema Subjects Table and Sources
	-0.5emReplication – Running  Experiments and Performing Data Analysis
	Chapter 3 Experiments
	Chapter 4 Experiments
	Chapter 5 and 6 Experiments
	Summary


