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Abstract 

Solubility screening is an essential, routine process that is often labour intensive. Robotic 

platforms have been developed to automate some aspects of the manual labour involved. 

However, many of the existing systems rely on traditional analytic techniques such as 

High Performance Liquid Chromatography or HPLC, which require pre-calibration for 

each compound and can be prohibitively expensive. In addition, automation is not 

typically end-to-end, requiring user intervention to move vials, establish analytical 

methods for each compound and interpret the raw data. We developed a closed-loop, 

flexible robotics system with integrated solid and liquid dosing capabilities that relies on 

computer vision and iterative feedback to successfully measure caffeine solubility in 

multiple solvents. After initial researcher input (<2 min), the system ran autonomously, 

screening five different solvent systems (20-80 min each). The resulting data matched 

values obtained using traditional manual techniques. 

 

Introduction 

Solubility is defined as the amount of a compound that will dissolve in a certain amount of 

solvent at a given temperature, when the system is in equilibrium. The ability to reliably 

screen solubility is fundamental to many areas of chemical research across industries, 

from pharmaceutical applications1,2,  where solubility is used for process development and 

solvent selection, to material science, where it limits formulation and processing 

parameters3–5. Common methods, which can be broadly categorized as the addition of 

‘excess solid’ or ‘excess solvent’ typically require researchers to perform incremental, 

manual tasks such as solid dosing that must be adjusted and repeated for each solute-

solvent system6.  

In the case of excess solid, solute is added until an excess is observed. The solution is 

allowed to equilibrate for a long incubation time and is then sampled and analyzed for 

composition using a variety of analytic techniques (e.g. gravimetric methods, titration, 

UV-spectrometry, or most commonly High Performance Liquid Chromatography or 

HPLC).  The excess solid method with filtration, also called ‘shake-plate’ or ‘slurry’, is 

known to provide the highest quality data. However, it additionally requires filtration or 

at-temperature centrifugation prior to analysis7, which can be challenging and further drain 

researcher time, thereby considerably slowing down the workflow8.  

In the excess solvent method, a titration-like procedure is in place where step addition of 

solvent continues until a fully dissolved state is observed. Composition of the solution and 

dissolution point are then typically measured using light scattering or imaging-based 

technology9. The excess solvent method is therefore advantageous in that it may remove 
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the need for pre-calibrated and expensive analytical methods like HPLC, but it comes at 

the cost of adding time-consuming experimental actions (step-addition of solvent). 

Recent advances in technology have enabled the development of automated robotic 

platforms10,11 that aid in decreasing hands-on time and increasing throughput7. While 

effective when applied to solubility screening7,12,13, most existing systems are only 

partially automated and still require human intervention and interpretation at many stages 

of the workflow. In addition, these systems continue to rely on analytical techniques that 

require expensive equipment and time-consuming method development as well as 

calibration prior to the solubility screen.  

The vast majority of automated systems rely on HPLC, the most common analytical 

instrument applied in excess solid strategies14–18. While reliable and a standard method for 

quantifying the amount of material in a solution, HPLC has several drawbacks -- the most 

important for high throughput and automation being that it requires calibration. A UV 

chromophore must be present on each set of test materials and researcher time is spent 

developing the customized methods necessary for accurate analysis.  

Other automated platforms have used in situ techniques for analysis. For example, Dinter 

et. al.19 have reported a solubility screening platform using a fiberoptic turbidity probe for 

qualitative solubility measurements, categorizing the solution as soluble, turbid or 

uncertain within a range. Other groups have reported using a UV plate reader for solubility 

measurements in both absorption and light scattering modes8,17. Dehring et. al. 20 

developed a system that uses stepwise addition of solvent and laser-based nephelometry 

for high throughput measurement of aqueous solubility. However, a human researcher is 

still required for solid dosing and visual checks. Image-based analysis in both the excess 

solid and excess solvent strategies has also been used. Stukelj et. al. 21–23 have reported an 

image-based single-particle- analysis method to measure amorphous solubility. Reus et. al. 
9 have used vision to determine clear points based on images taken by a ReactIR probe. 

While less time consuming and hands-on than HPLC, such methods still require 

calibration and the addition of a probe or controlled emission of light, which may not be 

accurate due to limited detection9.   

Here we present a modular, closed-loop robotic platform for automating solubility 

screening by combining a titration (excess solvent) method with simple computer vision. 

Unlike the majority of existing platforms, this system is HPLC-free, relying solely on 

images recorded by the webcam and a custom algorithm to monitor turbidity and 

determine when the solid material in a solution is dissolved. It runs in a fully-automated 

way, going all the way from setup to data after an initial user input (< 2min) without 

further intervention. No additional specialized knowledge or equipment is needed for 

analysis. Solubility is calculated to a narrow range through iterative feedback, without the 

need for calibration or human intervention. The platform’s design is purposefully modular, 

enabling its easy adaptation to other workflows such as crystallization and multi-solvent 

systems. In addition, the system can be accessed via remote desktop and a security 

camera, which easily allows the user to have a live view of the experiment or perform 

further development on the system remotely (see SI for further detail). 

To demonstrate the capabilities of our system, we used it to screen the solubility of 

caffeine in five different solvents: acetone, methanol, ethanol, water and acetonitrile. After 
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initial human input, the system ran uninterrupted for 36 hours and produced solubility 

values consistent with those obtained by other methods. 

 

Results  

Automation Platform Modules 

Our automated platform consists of five basic modules: 1) a robotic arm, 2) liquid dosing, 

3) solid dosing, 4) stirring and heating, and 5) computer vision (Fig. 1 A). Each module 

performs an essential component of solubility testing -- manipulating objects and dosing 

material, controlling reaction conditions, and analyzing particular solute/solvent 

combinations. While fully integrated and run from a master script, the modules are 

designed to function independently, thereby enabling easy reconfiguration or expansion to 

suit a given set of experimental conditions or needs. All modules are located atop a robotic 

deck (Fig. 1 B) equipped with additional hardware components and general-purpose tools 

that help the modules interact (refer to SI). 

N9 Robotic Arm 

The N9 is a customizable robotic platform with an arm equipped with a rotatable gripper 

and a probe, capable of 10μm repeatability and a maximum velocity of ~1 m/s. The arm 

consists of 3 elbows and can move in three dimensions. The gripper is used to transfer, 

uncap, and recap HPLC vials, and the probe is used to handle needles for liquid dosing. 

Different hardware modules are placed on the N9 deck and can be engaged by the arm to 

run experiments. 

Liquid dosing  

For liquid handling, a two-port Tecan Cavro syringe pump is connected to the N9 

controller. One port is connected to a solvent reservoir, and the other to the N9 probe, 

enabling sampling to and from any vial on the deck. The solvent reservoir can contain any 

solvent, acetonitrile in our case, and was used to prime the tubing line prior to any liquid 

dosing. The syringe for the pump could hold 1 mL and accurately deliver between 0.01 

mL to 0.95 mL. Solvents are located on the deck in vials capped by pre-slit septa to 

minimize solvent evaporation and contamination while allowing sampling with a needle 

on the end of the N9 probe. 

Solid Dispensing  

In a solubility screening workflow, it is important to accurately dose a specified amount of 

solid.  An on-deck solid dosing system extends the capabilities of an automated solubility 

screening platform. However, it is not common in automation procedures. For example, 

Alsenz et al. 16 developed a partially automated system and dissolved the solids in the 

beginning of the experiment to avoid this usually labour intensive step. In this platform, 

we make use of Quantos powder dosing system by Mettler Toledo. Aside from dosing, 

Quantos can also be used as a balance throughout the workflow for gravimetric feedback. 

This direct measurement of mass means that everything dispensed, both solids and liquids, 

can be accurately measured so that we can gravimetrically calculate solubility. For the 

solubility screens in this paper the dosing head of the Quantos was filled with caffeine. 
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(A) 

 
(B) 

 
 

Fig. 1. Automated solubility screening modules. (A), Modules on the platform including the 

specific equipment used, (B),  A front view of module positioning on the robotic deck. 

 

Stirring and Heating  

An IKA RCT digital stir plate is used to stir vials containing solvent and solute mixtures. 

The computer is connected to the stir plate via USB, and stir plate control is available via 

the IKA Python package developed by our group. The plate is also capable of heating but 

all the tests performed in this paper occurred at room temperature. To prevent the vials 

from moving on the plate as they are stirred, vials are placed in a vial holder called the 

“vision station”. The holder is designed with an open front to enable visual monitoring of 

the vial. 

Computer vision 

The computer vision component of the platform relies on HeinSight, an open-source 

Python package previously developed by our group to automate common laboratory tasks 

usually based on visual observation24. It is responsible for a key component in our 

automated workflow: monitoring and measuring turbidity. The turbidity module, 

specifically designed for the purpose of solubility screening, analyzes the turbidity of a 
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solution from recorded images without the need to build a reference library or additional 

calibration. Images captured by a basic webcam are processed using a custom algorithm 

that measures the average brightness of a given solute/solvent combination. Most image-

based turbidity detection methods rely on a standard comparison library that must be 

hand-built using laboratory instruments25. However, because turbidity is an optical 

property characterized by how the suspended and dispersed solids scatter light26, and most 

organic systems are composed of a clear solvent and a white solid, we were able to use 

this far simpler method to obtain a proxy value. The value output by our algorithm is then 

referenced against an image of pure solvent and a decision is made as to whether the 

solution is fully dissolved or not (Fig. 2). 

 

Fig. 2. Overview of HeinSight component of the computer vision module. The HeinSight 

turbidity code reads in images captured by a webcam and analyzes the pixels within a 

preselected region of interest to arrive at a proxy turbidity value. This value is then used to 

determine if a solution is 1) stable and 2) fully dissolved. Recorded images, turbidity data, 

and graphs of turbidity over time are saved as the output. In the turbidity graph the 

reference lines are graphed as a dashed red line, and when stability is found, the 

background area is shaded green. 

 

All turbidity monitoring takes place at a dedicated vision station consisting of a webcam, 

IKA stir plate, and custom vial holder (for more detail on the algorithm, control logic, and 

specific equipment used, see the Camera and Computer Vision Methods section of 

Materials and Methods). A stand-alone subgroup of scripts is responsible for regular 

vision checks to ensure that the robot arm is handling needles and vials as expected.  

Automated Workflow 

The modules are integrated in a closed-loop workflow that is designed to mimic how a 

human researcher would manually conduct experiments. Our automated solubility screen 

workflow was run via a Python script and each module was controlled using our custom 

code packages. There are three stages to the workflow: prepare, monitor, and process 

(Fig 3). In the preparation stage the researcher sets the experiment parameters and the 
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region of interest (ROI) to monitor turbidity for the rest of the workflow. After that, the 

N9 arm prepares a vial with the solid to dissolve and an initial volume of solvent and 

places it in the vision station. In the monitoring stage, the arm periodically adds a set 

volume of solvent into the vials while the webcam visually monitors the solution turbidity 

until it either looks fully dissolved or the maximum safe volume in the vial has been 

reached. Finally, in the processing stage the vial is weighed and cleaned up, data are 

processed to determine the solubility of the solute and solvent combination, and 

experiment parameters are automatically selected for the next experiment. 

 

Fig. 3. Automated workflow overview. (1) A fresh HPLC vial is uncapped and transferred to the 

Quantos where a pre-specified amount of solid is dispensed. The vial is then recapped and 

transferred to the vision station. (2) A pre-specified initial volume of solvent is dispensed 

into the vial with the solid and stir bar. The system starts stirring in (3). In (4), (5) and (6), 

turbidity monitoring takes place: computer vision is used to obtain a proxy measure for 

turbidity based on average brightness. The value is then passed into a control algorithm 

that determines when the solution is stable and fully dissolved. The value is said to be 

‘stable’ when turbidity is no longer changing and ‘dissolved’ when turbidity matches that 

of pure solvent. If the algorithm determines turbidity is stable but that the solution is not 

yet fully dissolved, the workflow loops back to (2) and more solvent is added. If it 

determines the solution is fully dissolved, the workflow proceeds to (7) where solubility is 

calculated based on solid mass and final solvent volume. In step (8), the used vial is 

returned to the tray and the system updates initial values in preparation for the next 

experiment. 
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To illustrate the applicability of this workflow, we used the N9 automated platform to 

determine the solubility of caffeine in a variety of common organic solvents (acetonitrile, 

water, acetone, ethanol, and methanol). The experiments were tested with various initial 

solid values to challenge the control algorithm. Fig. 4 shows the turbidity of caffeine in 

acetone over time. The sharp decreases in turbidity correspond to points when additional 

solvent was added because the solution was determined to be stable. If turbidity has not 

stabilized and a dissolved state has not been reached after a user set period (in this case, 15 

minutes),  the next addition of solvent is triggered regardless. This provides a level of 

flexibility for further studying solubility behaviour by allowing more dissolution time for 

slow dissolving material. 

 

 

Fig. 4. Turbidity of caffeine in acetone over time. Real-time turbidity values are shown in blue; 

the dotted red line indicates the dissolved reference (turbidity of pure solvent). The 

stepwise behavior in this experiment can be explained by the incremental addition of 

solvent. Following each addition, large particles are further broken down by stirring, 

which visually manifests as increased turbidity. This trend was observed for some solvents 

at certain initial volumes; different solvents and different initial volumes produced 

different trend lines. The control algorithm is programmed to trigger a short stir-burst as 

turbidity nears the dissolved reference to ensure there is no solid left undissolved. The 

final step around 100 min can be explained by this increase in rate. Once the turbidity 

value reaches a stable point near or consistently below the dissolved reference, monitoring 

ceases and the workflow continues to the processing portion of the workflow. 

Occasionally, the turbidity value will read below the dissolved reference due to 

fluctuations in lighting (for more information see SI). 

 

The control algorithm includes additional checks that account for similar experimental 

complexities. For example, once the turbidity value is within a specified range from that 

of the dissolved reference, the stir rate is increased for five minutes to ensure full 

dissolution of the solid. Turbidity monitoring continues and the algorithm then re-checks 

that a dissolved state has truly been reached. The platform ran for almost 2 days without 

any error or interruption. Table 1 contains the mean solubility values for 4 measurements 

done by our automated platform compared to solubility values found by two other 
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methods, namely the slurry method (HPLC analysis) and titration. The calculated standard 

error of the mean shows great precision and repeatability of the measurements done by the 

automated platform.  

Table 1.  Comparison of solubility values obtained by manual and automated 

methods 
 

Solvent Slurry (mg/ml) Titration 

1(mg/ml) 

Titration 

2(mg/ml) 

N9 avg. 

(mg/ml)  

standard error 

of the mean 

Acetonitrile 21.49 17.6 18.4 19.18  0.811 

Water 29.47 17 18.5 18.21  0.404 

Acetone 10.52 8.7 7 9.98  0.017 

Ethanol 4.04 5 4.5 5.37  0.059 

Methanol 9.14 8.9 6.6 8.36  0.81 

 

Duplication 

To further showcase the modularity and broad applicability of the developed workflow, 

we replaced the N9 with a 6-axis robotic arm. The Kinova Gen3 arm has 7 degrees of 

freedom and is equipped with a Robotiq 2F-85 gripper. Fig. 5 shows the system set-up 

with the new arm installed. Because the Kinova Gen3 is supported by a Python package, 

we were able to apply the master script previously used by N9 to run the solubility 

workflow to the new arm with minimal adaptation. Required changes included different 

code related to arm movement as well as a different liquid handling system. A regripping 

station was added to switch between horizontal and vertical gripping as needed. For liquid 

handling, reservoirs of solvents were connected to a selection valve and a pump, which 

was connected to a sampler. The sampler could be picked up by the gripper on the arm 

and sample or inject. For further detail on the sampler please refer to SI. 

Discussion  

Here we report on an automated solubility screening platform that uses our HeinSight 

computer vision system and a feedback algorithm to implement a titration ‘excess-solvent’ 

workflow. As proof of concept, we used the platform to find the solubility of caffeine in 

various solvents; however, the system can be used to screen the solubility of any solid 

with any other solvents. The purposefully modular design allows for easy adaptation and 

expansion to other robotic platforms or solubility study workflows. For the next iteration 

of the platform, we have developed a method to automate the exchange of the dosing head 

on the Quantos, thereby enabling the solubility screen to investigate multiple solute 

systems within a single workflow. The workflow could likewise be expanded for use in 

automated crystallization and binary solvent analysis. Furthermore, The modularity of this 

platform allows flexible automation via any available robotic arm with minimal 

adaptation. In summary, the modular robotic platform we developed can perform 

automated solubility screens with minimal material that might be expensive or in short 

supply such as when screening for pharmaceutical applications. We expect that the 
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platform can facilitate finding answers to solubility questions in industries dealing with 

novel materials that would otherwise be very costly. 

 

Fig. 5. Automated solubility screening modules, Kinova platform. 

 

 

Materials and Methods 

 

Materials  

Caffeine was purchased from Sigma Aldrich and was used without further purifications. 

Acetonitrile (≥99.9%), isopropanol (≥99.9%), acetone (≥99.9%), ethanol (≥99.9%), and methanol 

(≥99.9%) were purchased from Sigma Aldrich and used without further purifications.   

 

Consumable Materials of the platform 

Before running the automated system, the deck must be charged with desired solvents, 

clean empty HPLC vials with stir bars inside them and the solid of interest inside the Quantos 

powder dispensing head. The choice of HPLC vials are due to their convenient small size, 

matching the robot gripper size as well as reducing material waste. On the computer, there are 

CSV files which track the needles left, clean vials and solvent information such as name, density, 

index, etc. The user has to ensure these files are up to date prior to run. The consumable products 

include: BD PrecisionGlide needles (21G, 0.8mm x 25mm) , clean 2-HPLC vials (Life Science 

Labs) charged with stir bars (VP Scientific). Solvents and solid were refilled as well upon running 

out. 

Cameras/Vision Station 
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Any commercially available USB webcam can be used and controlled by the camera 

module located in our HeinSight Python package. For this particular application, 2-Logitech 

C920s were used - one for the vision station and one placed in the lab to provide a birds-eye view 

of the deck. The vision station consisted of an IKA RCT digital stir plate, a webcam, and a 

custom 3D printed vial holder.   

Robotic Methods 

This platform consists of a multipurpose robotic arm that can handle HPLC vials and 

needles. Liquid handling was performed using a Tecan Cavro syringe pump with a 1 mL syringe. 

Solid dosing was enabled using a Quantos, a Mettler Toledo balance. An IKA RCT digital stir 

plate was used to stir the mixtures and a webcam to capture images for computer vision. Other 

modules on the deck include: needle rack, waste bin and beaker, vial tray, vision station, and 

HPLC cap park station. 

Experiment parameters are set in the script, including the solvents to use, initial mass of 

solute and initial volume of solvent, step addition volume of solvent, and the stir rate. The N9 

solubility screening script is run, and immediately a reference vial of solvent is prepared. As the 

vial only contains solvent, it is used as a reference for what a completely dissolved solution looks 

like. The researcher is prompted to select a region in the image to normalize all turbidity 

measurements, and the region to monitor turbidity. The remainder of the workflow runs as below. 

Step 1: solid dose 

The arm takes a clean vial from the tray to the gripping station and uncaps the vial. The 

cap is temporarily parked on a pillar. The arm then transfers the vial to Quantos, which consists of 

a dosing head mounted on a z stage that can move close to the opening of the vial. There are 

different types of dosing heads to hold solids with different physical properties. A single dosing 

head contains a single solid, but the dosing head can be swapped out as needed to dose the solid 

of interest. Once the vial is placed inside Quantos the balance tares and starts dosing. Dosing 

capabilities of Quantos fall within 0.1 mg and 8 g, depending on the dosing head used. 

After dosing the Quantos z stage drives upwards, allowing the arm to enter the Quantos 

chamber and bring the vial back to the gripping station for recapping. Recapping uses torque 

feedback from the arm to tighten the cap by a single degree until the torque associated with a 

properly tightened cap is reached. For details on Quantos accessories and uncapping and 

recapping refer to the SI. 

Step 2: initial solvent dose 

Then the arm transfers the vial to the vision station and doses the initial volume of solvent 

into the vial. The syringe pump enables liquids to be drawn and dispensed precisely when there is 

a needle on the end of the probe. The arm can pick up a capped needle from the needle tray and 

uncap it using an uncapping tooth; for details on the uncapping tooth refer to the SI. To eliminate 

air bubbles in the line used to draw liquids, the line must first be primed by a backing solvent. 

Prior to drawing solvent into the lines for dosing a 50 µL air gap is drawn, part of which is 

injected into the solvent bottle the solvent is stored in to compensate for the volume to be drawn. 

This is a widely used method in medical procedures to avoid drawing air instead of solvent into 

the lines. The remaining air is kept to create distance between the drawn solvent and back solvent 

used to prime the line. After drawing in liquid a second air gap is drawn to prevent solvent from 

dripping out of the needle during arm movements until the solvent is dispensed.  

Step 3: computer vision screening and step addition of solvent 

While solution turbidity in the vial is monitored, the needle remains on the arm probe and 

is used to dose fixed volumes of solvent as directed by the computer vision module. These 
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additions of solvent comprise the step addition of solvent used to fully dissolve the solid in the 

vial with volumes ranging from 10 to 50 µL.  

Step 4 : transferring back vial and report generation  

Once the computer vision module identifies that the solid has fully dissolved in the vial or 

if the safe volume of the vial is reached, the arm then discards the needle and takes the vial to 

Quantos to weigh the vial. As the mass of just the vial and solid was previously measured, the 

mass and thus volume of solvent in the vial can be calculated directly. With the mass of solid and 

solvent known solubility can be gravimetrically determined. This also means that discrepancies 

between the volume that the script commanded the pump to dispense and the actual volumes 

dispensed are accounted for when calculating solubility. All the data gathered from the 

experiment is saved in a report file and key data are sent through Slack as real time updates. 

Step 5: determining the next experiment  

For the next experiment, the experiment parameters are discussed in the closed loop 

control logic section of the SI. The duration of each experiment varies depending on when the 

dissolved state or the safe solvent volume in the vial is reached. Since the maximum duration 

between each step addition of solvent was set to 10 minutes, the safe volume of the vial was set to 

1.2 mL, and the initial solvent volume added was 0.4 mL, the longest an experiment could take 

was approximately 90 minutes including arm movement time. 

 

Computer Vision Methods 

Turbidity Monitoring  

The HeinSight turbidity module is fully integrated into the automated workflow and 

includes the computer algorithm that determines control decisions based on visual input. Fig. 5 

shows how the steps involved in turbidity monitoring fit within the larger automated workflow.  

Step 1: Select the regions of interest 

Once the script is run, the user is prompted to select two regions of interest (ROI). The 

first, the reaction ROI, defines the area within which the algorithm will monitor turbidity and 

capture the dissolved reference. The second ROI, the normalization ROI, is used to normalize 

brightness for the turbidity value measurement as described in step 2 below (Fig. 6). Completion 

of the ROI step prompts the robot to fill a vial with pure solvent, which is transferred to the vision 

station and measured to obtain the dissolved reference value.  

Step 2: Capture image and measure turbidity 

Images are captured by the webcam and analyzed using a custom turbidity algorithm that 

proceeds in two steps: 1) pre-process and 2) calculate average brightness in the pre-selected ROI. 

To combat issues that may arise due to environmental changes in lighting, the average brightness 

in the ROI is normalized using a stable region in the image. While turbidity values for each image 

are recorded, the value used to determine stability (step 3) is an average across multiple 

consecutive images. This further reduces noise that may arise due to lighting changes or artifacts 

in the image.  

Step 3: Determine if stable 

A control algorithm checks for trends in turbidity values over time and determines if the 

solution is stable based on statistical features (mean, mode, standard deviation, and range) of the 

most recent turbidity measurements. If the solution is determined to be stable and has not yet 
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reached the dissolved reference or maximum volume, more solvent is added and monitoring 

continues.  

Step 4: Determine if dissolved 

If the solution is determined to be stable, the control algorithm checks for a fully dissolved 

state by comparing the current turbidity value to the dissolved reference. If “dissolved,” the 

algorithm triggers a stir burst to agitate any solute that may have settled at the bottom of the vial. 

Once turbidity has stabilized at the reference value or if the five most recent minutes of turbidity 

data are all below the reference value then the solution is classified as dissolved. Details of the stir 

burst and statistical requirements for determining stable and dissolved states can be found in the 

SI.  

 

Data 

A non-trivial advantage of using computer vision as our analytic technique is the ease of 

creating a visual record, which can be reviewed to help identify and explain trends or anomalies 

in the data. The HeinSight turbidity module automatically saves images from each run and 

converts them into a graph of turbidity vs time (Fig. 4). Turbidity values, ROI parameters, and the 

initial mass and volume for each solute/solvent combination that were set in the code, as well as 

final solubility determined are saved as CSV and JSON files that are automatically generated at 

the start of each run and continuously updated as more data is gathered.  
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Robotic Hardware 

Fig. S1 shows the rendered view of the deck. The robotic deck initially consisted of the robotic 

arm (N9, North Robotics, www.northrobotics.com), the arm controller box (C9, North Robotics, 

www.northrobotics.com, not shown in the picture) and the deck. The C9 includes pneumatic 

outlets to control both the gripper on the arm as well as the gripping station on the deck. The 

rest of the parts were added as they were needed to build the workflow. 

 

 
Fig. S1. Rendered illustration of the robotic deck. 
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Quantos accessories 

 

A Quantos Balance XPE205 (220 g capacity,  0.01 mg readability) with powder dosing unit and 

anti-static kit were purchased from Mettler Toledo. The Quantos enables dosing on a z-axis 

through a variety of dosing heads designed for different texture of solid and dosing values. 

BMNP and LNMP dosing heads used for the implementation of the caffeine solubility workflow. 

Quantos control was automated using a custom Python package developed by our group. Using 

this package, we were able automate taring, powder dosing and weighing as well as gain 

control over door position, z stage position and dosing commands. 

 

Z stage control 

A dosing gun was required to automatically approach the opening of the vial. An Arduino 

controller was used to drive the z stage by a mounted stepper motor.   The motor was mounted 

by a machined supporting plate and the assembly is shown in Fig. S2. As the z stage goes up 

to home position, it hits a limit switch mounted on inside Quantos. The switch mounting plates 

were waterjet cut from aluminium sheet and the assembly is shown in Fig. S3. Then, the 

number of steps needed to lower the stage to the right height is specified in the code.   

 
Fig. S2. Stepper motor assembly  
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Fig. S3. Limit switch assembly 

Vial holder and mounting plates 

A 3D printed HPLC vial holder was designed and placed inside the Quantos (Fig. S4). In order 

to insert vials inside Quantos with the arm, the Quantos was mounted on two auxiliary 

aluminium plates screwed into the deck and supported by a back foot. The aluminium plates 

were cut by waterjet. 

 

 
Fig. S4. Quantos vial holder 
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Uncapping  

The ability to uncap and recap the vial is a key capability in an automated platform. For our 

automated workflow, vials needed to be uncapped prior to solid dosing and recapped prior to 

turbidity monitoring due to the volatility of the solvents. For any uncapping and recapping, the 

vial was first moved to a separate static gripper to hold onto it. The N9 arm was capable of 

uncapping and recapping the vial caps by performing a simultaneous upward and rotational 

movement at high speed of 100 m/s, which enabled it to perform this movement in a second. In 

order to be able to park the cap so that the arm’s gripper was free to handle vials, a pillar was 

designed and 3D printed (Fig. S5). The cap was parked on this pillar after uncapping and was 

picked up right after uncapping. In order to ensure the vials were properly capped, we 

implemented torque feedback reading from the N9 arm’s gripper. First, the reading associated 

with properly recapping a vial was identified. Then that value was used as a threshold after the 

recapping step: if the torque read was smaller than the threshold, the arm’s gripper tightened 

the cap by a 1 degree rotation. The tightening continued until the torque threshold was reached.  

 

 
Fig. S5. HPLC cap parking pillar 

Vision station 

Our vision station is a custom designed and 3D printed vial holder (Fig. S6) placed on the stir 

plate to enable simultaneous stirring, imaging, and solvent addition. A collar acted as a stopper 



 5 

to keep capped vials in place when piercing through them with a needle to dose liquids. The 

open front enables seeing through the vial as it stirs. The collar has a 0.5 mm margin of freedom 

for vial placement and pickup by the N9 arm.  

 

 
Fig. S6. Vision station 

 

 

Remote Control and Development  

The system computer was accessed via Chrome remote desktop while a surveillance camera 

provided a visual of the platform’s actions during remote operation. Once the instruments were 

placed and their robot reach locations recorded, development and testing occurred remotely. 

Our system also made use of Slack, an online messaging platform, which enabled on-the-fly 

control of the system and provided real time monitoring capabilities along with updates and final 

reports (Fig. S7) for each experiment. Table S1 shows the programmed commands that can be 

sent via Slack to access and control the system during an active run.  
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Table S1. Slack commands for live control and manipulation of the system 

 

vial image Send the current image from camera aimed at vials in the 
vision station 

deck image Send the current image from camera aimed at the deck 

get needle Get and uncap a needle 

uncap needle Uncap a needle already on the probe 

dump needle Remove a needle 

main resume If the run paused at a specific point, use this to resume the 
run 

graph Send a graph of turbidity vs. time 

add solvent Add a step addition volume of solvent into a vial in the vision 
station 

clean up vial Clean up the current vial 

start next vial Start the next experiment, clean up the current vial if required 

don't start next vial Don’t start the next experiment 

roi Send the current image from camera with the region of 
interest drawn on the image aimed at the vision station 

change stir rate [number] Change the stir rate to the specified number 

set dissolved reference [number] Change the fully dissolved turbidity reference to the specified 
number 

turbidity video Send a video from all the images used to make turbidity 
measurements from the camera aimed at the vision station 
for the current run 

use next solvent  For the next run, use the next solvent in the sequence to test 

pause solvent addition Pause solvent addition 

resume solvent addition Resume solvent addition if paused 

pause monitoring Pause turbidity monitoring 

resume monitoring Resume turbidity monitoring if paused 
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Fig. S7. Sample report generated and sent through slack 

Vision Checks 

After picking up and uncapping or removing a needle, the N9 arm moves in front of a webcam 

for a visual needle check to ensure the action was completed correctly. This is done using the 

colour matcher and ROI modules in our HeinSight Python package. If the needle was not 

properly picked up and uncapped or removed, the automated workflow is paused and the 

researcher is notified to correct the situation via Slack. See the Visual Needle Detection section 

of SI for more detail. 

Visual Needle Detection 

Visual needle detection uses the colour matcher and ROI modules in our HeinSight Python 

package and allows for real time error handling/correction of needle pick up with Slack 

integration. The N9 will pick up a needle then move to a specific position on the deck where the 

webcam takes a photo. The colours in this photo are compared to a reference photo where the 

needle was picked up successfully (Fig. S10). If the average colour within the region where the 

needle is expected to be is similar to the colour in the reference photo, then it is concluded that 

the needle is on the N9 probe. In testing, we have seen that this method for checking for the 

needle is able to correctly detect when the needle was not picked, and when it was not 

uncapped successfully. 

Real time visual needle detection combined with Slack integration will prevent the script from 

continuing until a researcher has sent a Slack command that it can. In the case where a needle 

was not uncapped, picked up, or removed properly, this would be detrimental to the rest of the 

experiment, but through Slack the researcher can command the N9 arm to perform all these 

actions and then allow the script to resume.  
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The visual check only needs to be set up once before it can be used multiple times. For 

set up, the N9 needs to pick up a needle on the probe and bring it to the check location for three 

different needle states: capped, uncapped, and after the needle has been removed. Then the 

researcher is presented with the image where the needle is on the probe and is prompted to 

interactively select the region in the image that will be used for the needle check. Afterwards, a 

file with all the parameters for needle detection are saved, which can be loaded in for future use. 

The results of the needle detection on the three collected images are displayed to the user, and 

if the results from detection do not match up with the actual state, the researcher might have to 

adjust the needle detection parameters, lighting conditions, or the position the N9 goes to for the 

check. 

 

Sampleomatic and Liquid Handling Setup on Kinova 

When duplicating the workflow to use with the Kinova arm, a slightly different liquid handling 

system was implemented. Fig. S8 shows a diagram of the set-up. In this set-up, a number of 

solvent bottles are connected to a selection VICI valve, which is connected to a Tecan Cavro 

pump. In this system, instead of single use needles, a custom design sampler was used called 

the “sampleomatic” (Fig S9). The sampleomatic consists of a top and a base part. The top part 

consists of a needle, driven by an Arduino controlled motor, with a handle which enables the 

robot arm to pick it up. The base has a hole through and a drain outlet to allow flushing the line 

for rinsing the needle. The handle was initially designed for N9 gripper. As this was used with 

the Kinova arm setup, a different handle compatible with the Robotiq gripper was 3D printed 

and used.   

 

 

 
Fig. S8. Diagram of liquid handling system used in Kinova platform 
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Fig. S9. Sampleomatic assembly, top and base 

Uncapping vials with Kinova 

As mentioned earlier, uncapping HPLC vials on the N9 platform happened with the assistance 

of an on-deck vial gripper. In the new setup, O-ring press fit vial locations were used to grip the 

vial while the gripper on the arm performed the vertical twist motion for uncapping procedure. 

Due to the arm speed and limitation, the uncapping was broken down into a few movements, 

rotating about 90 degrees at a time until capping and uncapping was achieved. A screw top was 

used as a parking station for the caps.  
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(A) (B) 

  

(C) (D) 

  

Fig. S10. Needle cap and uncapping control with vision: (A), after unsuccessfully getting and 

uncapping a needle, a message was sent by the Slack app detailing the issue and prompting the 

researcher to take control to remedy the issue. (B), a command to uncap the needle was sent but it 

looks like there is an issue with trying to uncap the needle, most likely the cap was on too tight. (C), the 

command to remove the needle is sent and was executed successfully. (D), the command to get and 

uncap a needle was sent and was executed successfully, and the command to resume the experiment 

was sent. 
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Computer vision for turbidity, challenges 

There are limitations in our visual proxy measurement of turbidity. As the algorithm uses 

brightness as a proxy for turbidity, it works best when there is high contrast between the solution 

being measured and the background behind it. When the solution looks white when turbid, the 

contrast makes the algorithm give clear and turbid solutions distinct values. The algorithm 

always measures brightness in a fixed region of the image, so if the camera or the solution 

container shifts, the resulting measurements might not reflect the solution’s turbidity. For 

example, we observed that if the stir bar moved in and out of the region of interest this caused 

lots of noise and unreliable turbidity measurements. Light glare off the glass and the general 

lighting environment will also contribute to the turbidity measurement, so these are factors that 

need to be kept constant. 

 

Solubility data 

 

Table S2. Overall data from the runs with the N9 platform  

 

Solvent Mass solid (mg) Volume solvent (mL) Solubility (g/mL) 

acetone 8.23 0.82174463 0.0100152769 

acetone 8.51 0.82667509 0.0102942499 

acetone 8.14 0.80240202 0.0101445407 

acetone 8.05 0.84791403 0.00949388698 

water 7.29 0.4279123 0.01703669 

water 8.99 0.4892356 0.01837694 

water 8.35 0.444 0.01880631 

water 8.60 0.4609 0.01865915 

ethanol 4.71 0.85361217 0.00551773 

ethanol 4.53 0.84334601 0.00537146 

ethanol 4.55 0.87084918 0.00522479 

ethanol 4.29 0.79632446 0.00538725 

methanol 6.3 0.71163085 0.0088529 

methanol 6.9 0.77079646 0.00895178 
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methanol 6.16 0.79620733 0.00773668 

methanol 6.02 0.76207332 0.0078995 

acetonitrile 9.21 0.51272265 0.01796293 

acetonitrile 21.57 0.52697201 0.0215761 

acetonitrile 20.34 0.110005 0.01849 

acetonitrile 9.36 0.49987277 0.01872476 

 

 

For solubility screening, if the measurement of what a fully dissolved solution looks like is 

inaccurate, all ensuing decisions on when dissolution is achieved will be inaccurate. To remedy 

this, the turbidity measurement that indicates the fully dissolved state can be adjusted through 

Slack. As we use computer vision to measure turbidity, the images the algorithm uses are the 

same input that we would rely on to make decisions about turbidity ourselves.  

Turbidity monitoring dissolution point 

When the algorithm monitors turbidity the check to determine when the solution has fully 

dissolved happens in multiple stages. Samples are considered dissolved if the turbidity has 

stabilized at the reference value or if the five most recent minutes of turbidity are all below the 

reference value. To account for cases where large solid particles remain but do not contribute to 

the solubility measurement, the stir rate is increased to strongly agitate and break down any 

remaining chunks. After five minutes of strong stirring the stir rate is reduced back to the normal 

rate and the turbidity is monitored for another five minutes. After this second round of 

monitoring, the dissolution check is repeated. If the sample is considered dissolved, the 

workflow ill proceed to the clean-up stage. If not, then turbidity monitoring is resumed.  

Ambient light study 

The large number of windows in our laboratory lead to significant fluctuations in ambient light. 

To investigate the degree to which ambient light affects the turbidity value output by the 

algorithm, we used the system to monitor the turbidity of water at different time intervals 

throughout the day (Fig. S11). Fluctuations in sunlight and researchers moving around the 

benchtop set-up during daylight hours result in a far more inconsistent lighting environment than 

at night.  

 

Fig. S11 shows data gathered during each run along with an image of the ROI and 

normalization region selections. As expected, relatively turbidity varied less during the evening 

(top three graphs) than during the day (bottom graph). The increased variance in inconsistent 

lighting environments is a result of the turbidity algorithm’s reliance on brightness as a proxy for 
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turbidity. Measurements are thus most reliable when a consistent lighting environment can be 

ensured.   

 

The difference in turbidity values between each run can be explained by the different ROI and 

normalization region selections for each run. Because the determination of when a solution is 

dissolved is based on monitoring turbidity against a reference for each individual run, the 

turbidity inconsistency between runs does not introduce error.  

 

 
Fig. S11. Relative turbidity of H2O at different daylight intervals. For each graph a 

corresponding image of the vision station and with the ROI and normalization region annotated 

on the image are presented. The top three graphs correspond to evening runs. The bottom 

graph corresponds to a run conducted during the day when fluctuations in sunlight caused 

fluctuations in ambient light in the room. In the second top graph, Exp_2, the sharp increase at 

the end is due to the bright lock screen wallpaper of the computer when it was woken from 

sleep and used to stop the experiment; the computer directly faced the front of the vision 

station. For the third graph, Exp_3, there is a slight decrease at the end, which is likely due to 

the lock screen wallpaper. 

 

 



download fileview on ChemRxivPaper SI-final.pdf (917.73 KiB)

https://chemrxiv.org/ndownloader/files/25408787
https://chemrxiv.org/articles/preprint/Automated_Solubility_Screening_Platform_Using_Computer_Vision/13198688/1?file=25408787

	Item information
	solubility_paper_final.pdf
	Paper SI-final.pdf

