
Mariana Araújo Cabeda

Bachelor in Computer Science

Automated Test Generation Based
on an Applicational Model

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Informatics Engineering

Adviser: Miguel Carlos Pacheco Afonso Goulão,
Assistant Professor, Faculdade de Ciências
e Tecnologia da Universidade Nova de Lisboa

Co-adviser: Pedro Lema Santos, Quality Owner,
OutSystems

Examination Committee

Chairperson: Doutor António Maria L. C. Alarcão Ravara
Raporteur: Doutor João Carlos Pascoal de Faria

September, 2018

Automated Test Generation Based
on an Applicational Model

Copyright © Mariana Araújo Cabeda, Faculty of Sciences and Technology, NOVA Univer-

sity Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Acknowledgements

I would like to start off by thanking the Faculty of Sciences and Technology from the New

University of Lisbon and, in particular, the Informatics Department, for over the course

of these last five years, giving me the fundamental tools that will now allow me to start

my professional career. Thank you to OutSystems for providing a scholarship for this

dissertation.

I definitely need to thank my advisers, Miguel Goulão and Pedro Santos, for mentoring

me through this work. This dissertation is a result of your efforts as well, so thank you.

Thank you to everyone at OutSystems for all the support presented. I’ve felt like part

of the team since day one and had a blast going to work every day. The way everyone is

always willing to help is like no other and I’ve learned so much by working with all of

you.

Also, thank you to my friends and colleagues, in particular to my fellow thesis com-

panions, Giuliano and Miguel, for the morning coffees and the after lunch snooker games,

this has been an intensive work year but we also found time to have some fun and cut the

stress off a bit.

Last, but most importantly, I must thank my parents. I would need much more than

this one page to thank you, so I’ll summarize. Thank you for all the incredible sacrifices

you made in order to provide me with the choice to be who I wanted, setting up no

boundaries and no limits for what I could achieve, teaching me about independence,

hard work and to never be afraid of anything. I will forever be grateful to you. To my

grandmother, who I know would be incredibly proud of this moment. To my dog Tobias,

who has been a source of happiness and destruction in our house. And also, I suppose,

for no particular reason, to my brother.

v

“The most exciting phrase to hear in science, the one that
heralds discoveries, is not ‘Eureka!’ but ‘Now that’s funny. . . ’”

– Isaac Asimov

Abstract

Context: As testing is an extremely costly and time-consuming process, tools to auto-

matically generate test cases have been proposed throughout the literature. OutSystems

provides a software development environment where with the aid of the visual OutSys-

tems language, developers can create their applications in an agile form, thus improving

their productivity.

Problem: As OutSystems aims at accelerating software development, automating the

test case generation activity would bring great value to their clients.

Objectives: The main objectives of this work are to: develop an algorithm that gen-

erates, automatically, test cases for OutSystems applications and evaluates the coverage

they provide to the code, according to a set of criteria.

Methods: The OutSystems language is represented as a graph to which developers can

then add pieces of code by dragging nodes to the screen and connecting them to the graph.

The methodology applied in this work consists in traversing these graphs with depth and

breadth-first search algorithms, employing a boundary-value analysis to identify the test

inputs and a cause-effect graphing to reduce the number of redundant inputs generated.

To evaluate these test inputs, coverage criteria regarding the control flow of data are

analysed according to node, branch, condition, modified condition-decision and multiple

condition coverage.

Results: This tool is able to generate test inputs that cover 100% of reachable code

and the methodologies employed help greatly in reducing the inputs generated, as well

as displaying a minimum set of test inputs with which the developer is already able to

cover all traversable code. Usability tests also yield very optimistic feedback from users.

Conclusions: This work’s objectives were fully met, seen as we have a running tool

able to act upon a subset of the OutSystems applicational model. This work provides

crucial information for assessing the quality of OutSystems applications, with value for

OutSystems developers, in the form of efficiency and visibility.

Keywords: Software testing, Software test automation, Software test coverage, OutSys-

tems, Visual Programming Language, OutSystems applicational model.

ix

x

Resumo

Contexto: Uma vez que testar software é um processo extremamente dispendioso e

demorado, ferramentas que automatizam a geração de casos de teste têm vindo a ser

propostas ao longo da literatura. A Outsystems oferece um ambiente de desenvolvimento

de software onde, com a ajuda da linguagem visual OutSystems, os developers conseguem

criar as suas aplicações de forma ágil, melhorando a sua produtividade.

Problema: Sendo que a OutSystems pretende acelerar o desenvolvimento de software,

automatizar a tarefa de geração de casos de teste teria imenso valor para os seus clientes.

Objectivos: Idealizar e desenvolver um algoritmo que gera, automaticamente, casos

de teste para aplicações OutSystems, suportando a avaliação de cobertura que esses testes

oferecem ao código, com um conjunto de critérios.

Métodos: A linguagem OutSystems é representada através de um grafo ao qual os

developers podem adicionar pedaços de código arrastando nós para o ecrã e conectando-

os ao grafo. A metodologia utilizada neste trabalho consiste em atravessar estes grafos,

com recurso à pesquisa em largura e profundidade, aplicando uma análise dos valores

de fronteira para identificar os valores de input, e grafismo de causa efeito de forma a

reduzir o número de inputs redundantes gerados. Para avaliar estes valores de input, os

critérios de cobertura sobre o fluxo de controlo de dados são avaliados sobre: nós, ramos,

condições, condições-decisões e múltiplas condições.

Resultados: Esta ferramenta gera valores de input que cobrem 100% do código alcan-

çável e as metodologias aplicadas reduzem o número de inputs gerados, apresentando

ainda um conjunto mínimo com o qual o developer é capaz de cobrir todo o código alcan-

çável. Os testes de usabilidade obtiveram feedback positivo por parte dos utilizadores.

Conclusões: Os objetivos deste trabalho foram prontamente alcançados, uma vez que

temos uma ferramenta capaz de agir sobre um subconjunto do modelo da OutSystems.

Este trabalho oferece informação crucial para avaliar a qualidade de aplicações OutSys-

tems, com valor para os developers OutSystems, sob a forma de eficiência e visibilidade.

Palavras-chave: Testes de Software, Automatização de Testes, Cobertura de Testes, ...

OutSystems, Linguagem de Programação Visual, Modelo aplicacional da OutSystems.

xi

Contents

List of Figures xvii

List of Tables xix

Listings xxi

Acronyms xxiii

1 Introduction 1

1.1 Context and description . 1

1.2 Motivation . 2

1.3 Objectives . 3

1.4 Key contributions . 3

1.5 Structure . 4

2 Background 5

2.1 OutSystems . 5

2.1.1 OutSystems platform . 5

2.1.2 Language . 7

2.1.3 Application testing . 10

2.2 Testing overview . 11

2.2.1 Testing techniques . 11

2.2.2 Testing activities . 12

2.2.3 Testing levels . 12

2.2.4 Test design techniques . 13

2.2.5 Manual and automatic testing . 15

2.3 Test automation . 15

2.4 Coverage criteria . 17

2.4.1 Control flow coverage . 17

2.4.2 Data flow coverage . 19

2.4.3 Summary . 22

2.5 Testing over graphs . 23

2.5.1 Introduction to graph theory . 23

xiii

2.5.2 Graph traversal . 24

3 Related work 27

3.1 Tools and techniques . 27

3.1.1 Code-based testing . 27

3.1.2 Model-based testing . 29

3.2 Prioritization of test cases . 32

3.3 Summary . 33

4 Implementation 35

4.1 Algorithm . 35

4.1.1 Architecture . 37

4.1.2 The test object . 37

4.1.3 Data types and expressions . 38

4.1.4 Graph traversal . 40

4.1.5 Process nodes . 41

4.1.6 Coverage evaluation . 55

4.1.7 Expected output . 61

4.1.8 Warnings evaluation . 62

4.1.9 Test case prioritization . 64

4.1.10 Optimizations . 65

4.2 PoC with dummy model . 65

4.3 Tool applied to the OutSystems model . 68

5 Evaluation 71

5.1 Algorithm execution . 71

5.2 Usability experiment . 74

5.2.1 SUS . 74

5.2.2 Results analysis . 76

6 Conclusions 79

6.1 Contributions . 80

6.2 Future work . 80

Bibliography 83

A Detailed test results 93

A.1 Algorithm execution . 93

A.2 Usability experiment . 95

A.3 Graph and questions . 95

A.3.1 Graph A . 95

A.3.2 Graph B . 97

xiv

B Documents referenced 99

C ..VL/HCC paper 107

I OS Language Overview 111

II Test Automation Tools 117

II.1 Tools . 117

II.1.1 Proprietary software tools . 117

II.1.2 Open source software tools . 118

xv

List of Figures

2.1 Overview of the main components of the OutSystems platform and the archi-

tecture of the Platform Server [52]. 6

2.2 OutSystems platform overview [76]. 8

2.3 Example of a code trace from Service Studio. 8

2.4 Different testing levels [9]. 13

2.5 Subsumption relations among control flow coverage criteria [5]. 20

2.6 Subsumption relations among coverage criteria regarding uses and defs [85]. 22

2.7 BFS execution example. 25

2.8 DFS execution example. 26

4.1 Example of a graph procedure in OutSystems to be traversed over the course

of this chapter. 36

4.2 Structure of the developed algorithm. 37

4.3 OutSystems language nodes representing the different variable types. 38

4.4 Graph traversal shows a depth-first behaviour from the standpoint of each

singular thread. 40

4.5 Graph traversal shows a breadth-first behaviour from the standpoint of the

entire algorithm where the different colours represent multiple threads. . . . 41

4.6 Traversal starts processing the Start node. 42

4.7 Processing an Assign node. 44

4.8 Processing an If node. 47

4.9 Graph after processing the If node. 48

4.10 Processing a Switch node. 51

4.11 Graph after processing the Switch node. 51

4.12 Graph after processing the node of identifier 5. 52

4.13 Processing a Unsupported node. 53

4.14 The graph and algorithm’s state after traversal of node with identifier 7. . . . 53

4.15 The graph and algorithm’s state after traversal of node with identifier 9. . . . 54

4.16 The graph and algorithm’s state while processing the last couple nodes and

after the end of traversal of this graph. 55

4.17 Final test objects after graph traversal. 56

xvii

4.18 Graph characteristics: set of all nodes, branches, simple conditions and deci-

sions found in the graph. 56

4.19 Nodes covered by each of the test objects generated by this algorithm. 57

4.20 Branches covered by each of the test objects generated by this algorithm. . . 58

4.21 Test cases per condition. 59

4.22 Truth tables for each decision, showing if there is a test object that is able to

vouch for said entry. 60

4.23 Test cases per decision. 60

4.24 Dead code and paths covered by each test object. 63

4.25 The order by which the code is covered if test cases from each path are executed

sequentially from left to right. 66

4.26 XML file snippet from the graph being used as example. 66

4.27 Structure of this PoC. 67

4.28 Proof of concept (PoC) interface screenshot. 68

4.29 Structure of the tool implemented for ServiceStudio. 69

4.30 Screenshot of ServiceStudio where the command to call the tool can be seen. 69

4.31 Tool window with results from this example. a) shows the initial state of the

window and b) after expanding all fields. 70

5.1 Scatter plot comparing the amount of top test cases presented against the total

test cases generated by this tool. 72

5.2 Percentage represented by the top test cases over the total amount of test cases

generated. 73

5.3 Scatter plot comparing the amount of total test cases generated for this tool

against what would be generated if not for cause-effect graphing. 73

5.4 Percentage of correct answers for both methods. 75

5.5 SUS distribution. 77

A.1 Top test cases results. 93

A.2 Total test cases generated. 94

A.3 Total test cases generated without cause-effect graphing. 94

A.4 Graph A. 96

A.5 Graph B. 97

I.1 Processes tab in Service Studio. 111

I.2 Interface tab in Service Studio. 112

I.3 Logic tab in Service Studio. 113

I.4 Data tab in Service Studio. 116

xviii

List of Tables

2.1 List of nodes to be analysed for the test case generation with a simple descrip-

tion and the number of incoming and outgoing nodes. 9

2.2 Overview of all coverage criteria defined in this chapter. 23

3.1 Quick overview of the work presented in this chapter. 34

4.1 Expected values for the output variable. 62

4.2 Values used to identify the test object who covers more code and will be the

first presented to the developer. 65

4.3 Results from the next step of prioritization. 65

5.1 Risk evaluation according to cyclomatic complexity [41]. 72

5.2 For each question on the usability tests, the correct answer rate for both the

original method (manual analysis) and for the tool. 75

5.3 SUS meaning [7, 13]. 76

5.4 Mean SUS answer for each question. 76

5.5 SUS descriptive statistics. 76

A.1 Detailed results obtained for each tested graph. 95

B.1 List of documents utilized in the making of this report. 99

II.1 List of proprietary software test automation tools [92]. 117

II.2 List of some of the popular open sources software test automation tools [92]. 118

xix

Listings

1 Breadth-First algorithm [98] . 24

2 Depth-First algorithm [98] . 26

3 Process data types . 39

5 Process Start node . 42

6 Process Assign . 43

8 Auxiliary functions . 46

9 Process Switch . 49

10 Process Unsupported . 52

11 Process End . 54

xxi

Acronyms

BDD Behavior-driven development.

BFS Breadth-first search.

BPT Business Process Technology.

DFS Depth-first search.

FAQ Frequently Asked Questions.

JAXB Java Architecture for XML Binding.

JSON JavaScript Object Notation.

JSP JavaServer Pages.

OCL Object Constrained Language.

PoC Proof of concept.

SDG Sequence Diagram Graph.

SUS System Usability Scale.

TDD Test-driven development.

TPLs Textual Programming Languages.

UI User Interface.

UML Unified Modeling Language.

VL/HCC IEEE Symposium on Visual Languages and Human-Centric Computing.

VPLs Visual Programming Languages.

XML eXtensible Markup Language.

xxiii

xxiv

C
h
a
p
t
e
r

1
Introduction

This chapter will focus on introducing this thesis, starting with a description and con-

textualization of the problem along with its motivations, followed by the objectives and

contributions. Lastly, the chapter concludes with an overview regarding the structure of

the remaining document.

1.1 Context and description

Software testing is a main process of software development. It is a quality control activity

performed during the entire software development life-cycle and also during software

maintenance [92]. Two testing approaches that can be taken are manual or automated.

In manual testing, the activities are executed by a human sitting in front of a computer

carefully going through the application, trying various usage and input combinations,

comparing the results to what the expected behaviour should be, reporting defects. Man-

ual tests are repeated often during development cycles for source code changes and other

situations like multiple operating environments and hardware configurations [92].

According to Dustin et al. [24] the definition for software test automation refers to the

automation of software testing activities including the development and execution of test

scripts, validation of testing requirements, and the use of automated testing tools. One

clear beneficial aspect of automation is its ability to run more tests with less time when

compared to manual testing, which increases productivity.

In this context, there are already a number of tools that allow automated testing over

Textual Programming Languages (TPLs) (a list of some of those tools can be consulted in

Annex II), but the same variety does not apply to Visual Programming Languages (VPLs).

VPLs refer to any programming language that lets users create programs by manipu-

lating the program elements graphically rather than by specifying them in a text editor

1

of source code [48]. With advantages including making programming more accessible,

in particular, to reduce the difficulties that beginners face when they start programming,

pure VPLs also come with their own set of struggles, particularly when problems demand

more flexibility than visual programming could offer.

With this in mind, tools such as OutSystems use a pragmatic mix of both visual and

text-based programming, allowing developers to create software visually by drawing

interaction flows, UIs and the relationships between objects, but also supplementing

it with hand-written code where that’s the best thing to do. This model is well suited

to the needs of modern software development. Low-code tools reduce the complexity

of software development bringing us to a world where a single developer can create

rich and complex systems in an agile1 way, without the need to learn all the underlying

technologies [88].

When confronted with the task of testing, the users developing in OutSystems have

access to some tools that automate the process of test case execution but, in order to

expedite the testing process, there is still a need for a tool that automizes the generation

of the test cases themselves.

1.2 Motivation

A program is tested in order to add some value to it. This value comes in the form of

quality and reliability, meaning that errors can be found and afterwards removed. This

way, a program is tested, not only to show its behaviour but also to pinpoint and find as

many errors as possible. Thus, there should be an initial assumption that the program

contains errors and then test it [61].

Therefore, a valid definition for testing is [61]:

Testing is the process of executing a program

with the intent of finding bugs.

As humans, we tend to be goal-oriented, so properly defining our goals has a major

psychological effect [61]. If our goal is to prove that a program has no errors, we will steer

subconsciously toward this goal, selecting test data that, will probably never cause the

program to fail. On the other hand, if our goal is to show that a program is defective, our

test data will have a higher probability in successfully finding errors. The latter approach

will add more value to the program than the former [61].

A test case that finds a new bug can hardly be considered unsuccessful; rather, it

has proven to be a valuable investment. An unsuccessful test case is one that causes a

program to produce the correct result without finding any errors [61].

1Agile is a methodology that anticipates the need for flexibility and applies a level of pragmatism to
the delivery of the finished product. The OutSystems Agile Methodology addresses the need for speed and
continuous change, delivering applications that truly respond to business needs [81].

2

Almost two decades ago, Weyuker et al. [105] pointed out that the most skilled soft-

ware testers used to change jobs within their companies because a career in software

testing was not considered advantageous enough for most professionals, raising the ques-

tion of “how demotivated has a software tester to be to abandon their career and follow another
path in software development process?”.

A recent survey [90] concerning work-related factors that influence the motivation

of software testers shows that they are strongly motivated by a variety of work, creative

tasks, recognition for their work and activities that allow them to acquire new knowledge.

Nowadays, there is a high need for quick-paced delivery of features and software to

customers, so automating tests is of the utmost importance. One of its several advantages

is that it releases the software testers of the tedious task of repeating the same assignment

over and over again, freeing up testers to other activities and allowing for a variety in the

work as well as opening space for creativity, being these some of the factors concluded

in [90] said to improve software testers motivation at work.

As OutSystems aims at rapid application development, the automation of the test case

generation activity, based on their applicational model, along with coverage evaluation,

will be of great value to developers using OutSystems.

1.3 Objectives

The main objective of this work was to ideate and develop an algorithm to allow the gen-

eration of test scripts in an automated manner over the low-code OutSystems language,

not including the actual execution of said tests. This language is defined as being a visual

programming language, with some accents of textual language whenever that is the best

approach, in order to have the conveniences of VPLs, but still be a functional and scalable

language.

Another goal was to provide the ability to evaluate the coverage that the proposed

solution can provide the code, according to several coverage criteria that will be detailed

in the following chapters.

Finally, the viability of implementing this tool on top of the OutSystems main plat-

form, the Service Studio, was analysed, evaluating the solution in terms of performance

as the code grows in complexity since this will be the primary challenge as the test cases

are expected to grow exponentially.

1.4 Key contributions

At the end of this thesis, there is a running tool, related to a sub-set of the OutSystems

applicational model, able to automatically generate the test scripts for the selected code,

and this tool is running on top of the OutSystems’ development environment. This work

lays the foundation to have test coverage on applications made in OutSystems.

3

This feature will bring value to people developing applications in OutSystems, both

internally, within the company, and also externally, to customers.

Complementing this tool, its implementation is documented in a published paper [15]

(see Appendix B) for the IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC) of 2018.

Outside of OutSystems, it is also expected that this work will contribute to further

advance the state of the art of automated testing techniques, namely over VPLs.

1.5 Structure

The remainder of this thesis is organized as follows:

• Chapter 2 - Background: here the focus is on the research that was performed, being

the main topics the OutSystems platform, testing, automated testing, coverage

criteria over graphs and graph traversal algorithms;

• Chapter 3 - Related work: this chapter presents some tools and techniques that

relate to the context of this thesis, in this case, focused on the automatic generation

of tests;

• Chapter 4 - Implementation: depicts the algorithm conceptualized as well as details

the implementation of both the PoC and the tool applied to the OutSystems model;

• Chapter 5 - Evaluation: presents the results obtained for this work, both by the

execution of the tool as well as from usability tests performed;

• Chapter 6 - Conclusions: concludes this dissertation with a quick overview of the

work produced as well as identifies what can be the future of the tool hereby pre-

sented;

• Appendix A - Detailed test results: further details the results recorded and the

structure of the usability tests performed;

• Appendix B - Documents referenced: this appendix depicts all documents refer-

enced throughout the present report, informing the main topics it approaches and

the chapters it is referenced on;

• Appendix C - VL/HCC paper: shows the paper submitted and accepted for the

VL/HCC conference of 2018 focused on the work produced by this dissertation;

• Annex I - Test Automation Tools: contains a high-level overview of the OutSystems

language;

• Annex II - Test Automation Tools: here are listed some tools that already exist for

test automation, both open-source and proprietary.

4

C
h
a
p
t
e
r

2
Background

This chapter provides background context related to this dissertation, covering: the Out-

Systems platform, software testing overview (both manual and automated), coverage

criteria applicable over graphs, graph theory and finally, graph traversal algorithms.

2.1 OutSystems

OutSystems is a software company whose primary focus relies on improving the produc-

tivity and simplifying the day-to-day life of IT professionals. The OutSystems platform

was developed with a strong focus on performance, scalability, and high-availability and

can be used to create web and mobile applications. The OutSystems language allows

users to develop at a higher abstraction level, without the need to worry over low-level

details related to creating and publishing applications [52, 82].

2.1.1 OutSystems platform

Figure 2.1 depicts the main components of the OutSystems platform and the architec-

ture of the Platform Server where the components of the typical 4-tier web application

architecture are represented in white, which the OutSystems platform complements with

an extra set of services and repositories displayed in red. Service Studio and Integration

Studio, the two products which compose OutSystems Development Environment, are

desktop tools that interact with the Platform Server via Web services [52].

2.1.1.1 Service Studio

Service Studio is an environment where business developers assemble and change web

and mobile business applications using visual models with a drag-and-drop paradigm.

5

Figure 2.1: Overview of the main components of the OutSystems platform and the archi-
tecture of the Platform Server [52].

This tool also enables the modeling of UIs, Business Processes, Business Logic, Databases,

Integration Components, SAP BAPIs [91], SOAP and REST Web Services, Security Rules,

and Scheduling activities. Service Studio embeds a full-reference checking and self-

healing engine that assures error-free, robust change across all application components.

When the developer publishes an application, Service Studio saves a document with

the application model and sends it to the Platform Server [52].

2.1.1.2 Integration Studio

In Integration Studio, developers can create components to integrate existing third-party

systems, microservices, and databases, or even extend OutSystems with their own code.

After the deployment of these components, they will be available to reuse by all

applications built with OutSystems. Developers use Visual Studio to code integration

components and can take advantage of existing ASP.NET [58] libraries.

When publishing a component, the development environment compiles it with a

standard ASP.NET [58] compiler. The generated DLLs are sent to the Platform Server [76].

2.1.1.3 Platform Server

The Platform Server components take care of all the steps required to generate, build,

package, and deploy native ASP.NET [58] and Java web applications on top of a Microsoft

6

stack, Oracle WebLogic [67] or JBOSS [40], using a set of specialized services [76]:

• Code generator: takes the application modeled in the IDE and generates native

ASP.NET [58] code, allowing the generation of applications that are optimized for

performance, are secure and run on top of standard technologies;

• Deployment services: these services deploy the generated ASP.NET [58] application to

a standard web application server, ensuring an application is consistently installed

on each front-end of the server farm;

• Application services: manage the execution of scheduled batch jobs, providing asyn-

chronous logging services to store events like errors, audits performance metrics.

2.1.2 Language

As it has already been briefly mentioned in previous sections, the OutSystems language

allows developers to experience the benefits of VPLs but also takes into account the fact

that VPLs have a set of disadvantages associated, and the most concerning are [97]:

• Extensibility: visual languages allow developers to do a limited set of things easily,

but the edge cases are too difficult or even impossible to achieve. Tools should give

more power, instead of limiting the developers;

• Slow code: every developer who has faced performance problems knows how hard

they are to diagnose and overcome. Visual languages can be leaky abstractions,

generating slow code which is impossible to optimize.

With all of this in mind, the OutSystems language uses a pragmatic mix of both visual

and text-based programming, supplementing the visual with text-written code where

that is the best thing to do.

Figure 2.2 shows a visual representation of the OutSystems platform, where from

Service Studio (2.1.1.1), the code created passes on to a Code Generator encapsulated

in a file. This contains all the graph information and the application logic. This code

containing elements which constitute OutSystems’ model, is the input to the algorithm

meant to be developed during the course of this thesis.

The model for Service Studio comprises of a multitude of components that include

a set of UI elements (widgets - text, container, link, etc), processes (Business Process

Technology (BPT) - activities, timers, etc), amongst others (themes, entities, etc). Annex I

contains a high-level overview of the OutSystems language.

For the course of this work, only the application logic behind client/server actions

and events will be considered.

7

Figure 2.2: OutSystems platform overview [76].

2.1.2.1 Nodes

Figure 2.3 shows a logic flow in the OutSystems language, illustrated by a set of nodes

that come together to form a graph representing a given method, function, procedure, etc.

These nodes represent blocks of code that the developer can add to the graph as desired.

Figure 2.3: Example of a code trace from Service Studio.

8

Considering the extension and complexity of the model provided by OutSystems, only

a subset of the existing nodes will be evaluated in this thesis, as the time allocated for

this work would not suffice. Table 2.1 displays a list of the most pertinent information

regarding the selected node types: visual representation, behavior description and num-

ber of incoming and outgoing branches. Although incomplete, this list comprises a very

interesting set of elements which are the most important for exercising decision flows, a

starting point for future work.

Table 2.1: List of nodes to be analysed for the test case generation with a simple descrip-
tion and the number of incoming and outgoing nodes.

Description In : Out

If
...

...
...

...
...

.. ...
This node presents the typical behaviour of an if code block,
with his Boolean condition and the outgoing flows accord-
ing to the condition result, weather it is True or False.
Contrary to some programming languages where the False
branch can be omitted, in OutSystems, both branches are
defined.

...

...

...

... 1:2

Sw
it

ch
...

...
...

...
...

...
..

...
This switch block analysis each decision and the flow will
continue through the decision it verifies as true.

...

... 1:N

A
ss

ig
n

...
...

...
...

...
...

..

...
This block assigns a value (or object) to a variable. Each
assign node can comprise of multiple assignments

...

... 1:1

Se
rv

er
A

ct
io

n
...

...

This block represents the collapse of another graph that will
contain code corresponding to an action to be executed on
the server-side of the application.

1:1

9

2.1.3 Application testing

Due to the nature of visual development and continuous integrity validation built into

OutSystems1, users do not need to worry about the underlying technical challenges, given

the abstractions that OutSystems provides, which makes it less error prone [79].

Regardless, testing is a fundamental part of any software. OutSystems’ approach is

to keep their platform open so it is compatible with the tools developers typically use.

This way, testing is integrated in the continuous delivery cycle so there are not losses in

productivity [71].

There are some tools available that allow the execution of tests for applications created

in OutSystems. Something that is still missing, is a tool that can generate the test cases

themselves, offering a coverage analysis and this, what the present dissertation proposes.

2.1.3.1 Unit Testing Framework

The Unit Testing Framework [84] provides a complete framework for implementing,

executing and managing unit tests.

Teams find this approach particularly effective for calculation engines and business

service components. Having a good set of unit tests for a system can help greatly when it

is time to change or refactor a system [79].

2.1.3.2 Behavior Driven Development Framework

Test-driven development (TDD) is an evolutionary approach that requires the writing of

automated tests prior to developing functional code in small, rapid iterations [47].

Behavior-driven development (BDD) was originally developed by North [63] in re-

sponse to issues in TDD. It is focused on defining fine-grained specifications of the

behaviour of the targeting system, in a way that they can be automated, allowing devel-

opers to focus the creation of tests for the most critical use cases [79]. The aim goal of

BDD is to get executable specifications of a system [63, 99].

The BDD Framework [83] is an open source component the developer can adapt to its

own needs, but already provides: creation of test scenarios and steps conformant to BDD

principles; support for multiple tests in the same page and the final statistics (number of

successful/failed tests); amongst other features.

2.1.3.3 Functional, UI and Regression Testing

For functional and regression testing in web applications, OutSystems recommends the

use of Selenium [95], but any strategy currently used to test traditional web applications

apply as well.

1Continuous Integration is a software development practice where work is integrated frequently. Each
integration is verified by an automated build to detect integration errors as quickly as possible [32]. For this,
OutSystems employed a validation engine - TrueChange [78] -, that assures robust and error-free changes
across all applications and their modules.

10

Additionally, there is Test Automator [101], a browser (Selenium-based) and unit

(WebService-based) regression testing tool that helps guarantee the quality of solution

development by automating the execution of tests over the application.

2.2 Testing overview

Developing a large software system is an extremely complex and error-prone process. A

fault might occur at any stage of development and it must be identified and treated as

early as possible in order to stop its propagation. Quality engineers must be involved in

the development process since the very early stages up beyond the product deployment

all the way through maintenance and post-mortem analysis [8].

Testing plays an important role in achieving and assessing the quality of a software

product. On the one hand, we are able to improve the quality of the products as we

continuously test, find a defect and fix it, all during development. On the other hand, we

also assess how good our system is when we perform system-level tests before releasing a

product [50].

2.2.1 Testing techniques

The term testing refers to a full range of test techniques, even quite different from one

another, and embraces a variety of aims [9].

2.2.1.1 Static techniques

The distinction between static and dynamic techniques depends on whether the software

is executed or not. Static techniques are based solely on the (manual or automated)

examination of project documentation, of software models and code, and other related

information about requirements and design. Thus static techniques can be employed all

along development, and their earlier usage is, of course, highly desirable.

Traditional static techniques include [9]:

• Software inspection: a very popular software inspection process was created by

Michael Fagan and is referred to as the Fagan inspection. It is a structured process of

trying to find defects in development documents such as programming code, spec-

ifications, designs, and others during various phases of the software development

process. Fagan Inspection defines a process as a certain activity with a pre-specified

entry and exit criteria and then, inspections can be used to validate if the output of

the process complies with the exit criteria specified for the process [28, 29];

• Algorithm analysis and tracing: the process in which the complexity of algorithms

employed and the worst-case, average-case and probabilistic analysis evaluations

can be derived.

11

2.2.1.2 Dynamic techniques

Dynamic techniques obtain information about a program by observing executions. In

contrast to static analysis, which examines a program’s text to derive properties that

hold for all executions, dynamic analysis derives properties that hold for one or more

executions by examining the running program. While dynamic analysis cannot prove

that a program satisfies a property, it can detect violations of properties and also provide

useful information to programmers about the behavior of their programs [6, 9].

2.2.2 Testing activities

In order to test a program, one must perform a sequence of testing activities, namely [50]:

1. Identify an objective to be tested: this will define the intention, or purpose, of the de-

signing of the test cases to ensure said objective is successfully met by the software;

2. Select inputs: the selection of test inputs can be based on the requirements specifi-

cation of the software, the source code or our expectations. Test inputs are selected

by keeping the test objective in mind;

3. Compute expected outcome: without running the program, one must already have an

understanding of what the expected outcome should be, and that can be done from

an overall, high-level understanding of the test objective and the specification of

the program under test;

4. Execute the program: we must setup the execution environment accordingly and

execute the program with the selected inputs, observing the actual outputs;

5. Analyse the test result: finally, having executed the test, the last testing activity is

to analyse the result, comparing the actual outcome with the expected one and

assigning a verdict to the program.

2.2.3 Testing levels

Testing can be performed at different levels involving the complete system, or only parts

of it, throughout its lifecycle. A software system goes through several stages of testing

before it is actually deployed [9], some of which are characterized next:

1. Unit level: here, individual program units, such as procedures, functions, methods

or classes are tested, in isolation;

2. Integration level: in general terms, integration is the activity of aggregating software

pieces to create a larger component. Integration testing aims at testing these larger

components to guarantee that the pieces that were tested in isolation can now work

together as a whole;

12

3. System level: this level includes a wide spectrum of testing, being a critical phase in

a software development process because of the need to meet a tight schedule close

to the delivery date, to discover most faults and to verify that fixes are working and

have not resulted in new faults;

4. Acceptance level: after the completion of the system-level testing, the product is

delivered to the customers that perform their own series of tests, based on their

expectations for the system. The objective of acceptance testing is to measure the

quality of the product, rather than searching for the defects, which is the objective

of system-testing.

The first three levels of testing are performed by a number of different stakeholders

in the development organization, whereas acceptance testing is usually performed by the

customers.

There is a type of testing that is usually performed throughout the lifecycle of a system,

whenever a component of the system is modified, called regression testing. The main

idea is to ensure that the modification did not introduce any new faults in the portion

that was not subject to modification.

Figure 2.4: Different testing levels [9].

2.2.4 Test design techniques

Three broad concepts in testing, based on the sources of information for test design, are

white-box, black-box, and grey-box testing [25].

2.2.4.1 White-box

In white-box or structural testing, the source code for the system is available to the tester

and the test cases are selected based on the implementation of the software. The objective

here is to execute specific parts of the software, such as specific statements, branches or

paths. The expected results are evaluated under a set of coverage criteria, just as the ones

depicted in section 2.4.

13

2.2.4.2 Black-box

In black-box or functional testing, the tester does not have access to the internal details

of the software that is thus treated as a black box. The test bases are selected based on

the requirements or design specification of the system under test. Functional testing

emphasis relies on the external behavior of the software.

Commonly used black-box methodologies are detailed next.

Equivalence Partitioning .

Equivalence partitioning is a technique in which the input domain of a problem is divided

into a finite number of equivalence classes such that it can be reasonably assumed that a

test derived from a value of each class is equivalent to a test derived from any other value

from the same class.

This technique aims at defining test cases that uncover classes of errors, thereby re-

ducing the total number of test cases that must be developed, as some of them would

prove to be redundant [25, 61].

Boundary-value analysis .

Boundary-value analysis focuses more on testing on boundaries, or where they are chosen.

It includes minimum, maximum, just inside/outside boundaries, error values, and typical

values [25]. It differs from equivalence partitioning in two aspects [61]:

1. Instead of selecting any element in an equivalence class as being representative,

boundary-value analysis requires that one or more elements be selected such that

each edge of the equivalence class is the subject of a test;

2. Instead of just focusing on the input conditions, test cases are also derived by con-

sidering the result space (output equivalence classes).

Cause-effect graphing .

In this technique, testing starts by creating a graph and establishing the relationship

between effects and its causes. Identity, negation, logic OR and logic AND are the four

basic symbols which express the interdependency between cause and effect [25].

Cause-effect graphing has a beneficial side effect in pointing out incompleteness and

ambiguities in the specification.

Error guessing .

The basic idea behind error guessing consists in writing test cases based on possible or

error-prone situations. These can be identified both by intuition and experience and in-

clude classic cases as the number 0 as input or “none” and “one” when a variable number

of inputs or outputs can be present. Another idea is to identify test cases associated with

assumptions that the programmer might have made when reading the specification [61].

14

2.2.4.3 Grey-box

Grey-box testing can be derived from the previous two and is a technique to test the

application with limited knowledge of the internal working of an application and also

has the knowledge of fundamental aspects of the system.

Commonly employed grey-box methodologies are depicted next.

Matrix Testing .

This testing technique starts by defining all the variables that exist in the software. Each

variable will have an inherent technical and business risk associated and can be used with

different frequency during its’ lifecycle. All this information is summarized in tables

from which then the design of test cases is derived [25].

Regression Testing .

In this technique, if there are new changes made to the software, there is a selection of

already executed test cases that are then re-executed in order to check if the change in

the previous version has regressed other aspects of the program in the new version [25].

This technique is done to make sure that new code changes do not have undesired side

effects over already existing functionalities.

2.2.5 Manual and automatic testing

Testing work can be roughly divided into automatic and manual testing, as follows [34]:

• Manual testing: a human tester takes the role of an end user and executes the features

of a given software under test to ensure its behaviour is as expected;

• Automatic testing: the use of special software to control the execution of tests and

the comparison of actual outcomes with predicted outcomes.

2.3 Test automation

It is unproductive to test software manually, since the thousands of scenarios human

testers generate are vulnerable to inaccurate results, and manual tests are also slow and

difficult to repeat. In addition, a manual approach might not be the most effective in

finding certain defects. Therefore, test automation aims to have the actions that enhance

the quality of the product done constantly in an effort to make the software as error-free

as possible by the time it goes out on the market.

These actions may include: development of test cases; selection of inputs and compu-

tation of outputs; evaluations after the scenarios are run, among others. Thanks to test

automation, total product quality and efficiency can be greatly increased in the major

software development processes, with versions delivered much faster, less staff assigned

for manual testing and fewer software errors [27].

15

But, although we may see test automation as a solution to decrease testing costs and

to reduce cycle time in software development, if it is not applied at the right time and

context with the appropriate approach, it might fail [34].

In test automation, we have four basic components: testers, (test automation) tools,

test cases, and the system under test. Test engineers interact with the test automation

tools and develop test cases which are then executed using the chosen test automation

tool. The tests exercise the system under test and the tool provides test reports for humans

to interpret. Even though the introduction of test automation often increases the cost of

creating tests, the cost of re-running them decreases [42].

Test automation provides us with a great amount of advantages [22, 92]:

• Saves time and money: tests have to be repeated during development cycles to ensure

software quality and so every time source code is modified, such tests must be re-

peated to ensure no bugs were accidentally introduced into the code. Repeating the

tests manually is costly and time-consuming, as testers could be focused on other

tasks such as dealing with more complex features. After their creation, automated

tests can be run multiple times with decreased cost and at a much faster pace com-

pared to manual tests as it can reduce the time to run said tests from days to hours,

and saving time translates directly into saving money;

• Improves consistency of test results: even the most expert tester will make mistakes

during monotonous manual testing. Automated tests perform the same steps pre-

cisely every time they are executed and never forget to record detailed results;

• Provides the ability to perform tests that are very difficult to execute manually thus
increasing test coverage: automated software testing tools can look inside an appli-

cation and see memory contents, data tables, file contents, and internal program

states to determine if the product is behaving as expected, easily executing thou-

sands of different complex test cases during every test run providing coverage that

is impossible with manual tests. These tools can also simulate tens, hundreds or

even thousands of virtual users interacting with the network, software and web

applications, something that was also extremely difficult to do with manual testing;

• Team morale improves: as there is no more need to spend time executing repetitive

tasks, automated software testing gives teams time to spend on more challenging

and rewarding projects, allowing team members to improve their skill sets and

confidence and, in turn, they pass those gains on to their organization.

There are also some risks/difficulties associated with the automation of software test-

ing activities [22, 92]:

• Tools cost and learning curve: testing automation lays heavily on top of the tools

that are used. A careful consideration needs to be made in whether to purchase a

licence for a proprietary software tool, or adapting a pre-existing open source one

16

or even, developing a completely different type of tool. Along with this, learning

how to manipulate the chosen tool also introduces an extra cost. A list with both

proprietary and open source tools is available in Annex II;

• Unrealistic expectations from the tool: having unrealistic expectations from the tool

is a risk that may lead to schedule and cost seepage;

• Maintenance of the automation scripts: maintaining the scripts may prove to be ex-

pensive. For a large project, the volume of test data might be high and it requires a

good structure to maintain all the test data.

2.4 Coverage criteria

Software test coverage is a measure used to describe the degree to which the source code

of a program is executed when a particular test suite runs. A program with high test

coverage, measured as a percentage, has had more of its source code executed during

testing which suggests it has a lower chance of containing undetected software bugs

compared to a program with low test coverage.

In terms of coverage over graphs, it is usual to divide these criteria into two types:

control flow coverage criteria and data flow coverage criteria. Control flow criteria uses the

control structure of a program to develop the test cases. Data flow criteria are based on

the flow of data through the software artifact represented by the graph.

A general definition for graph coverage can be enunciated as follows: given a set TR
of test requirements for a graph criterion C, a test set T satisfies C on graph G if, and only

if, for every test requirement tr in TR, there is at least one test path p in path(T) such that

p meets tr [5].

2.4.1 Control flow coverage

Control flow coverage, or structural coverage as it is also called in literature, refer to

white-box methodologies and they include: node, branch and path coverage [5, 50, 104].

Node coverage .

Node coverage - also referred to statement or segment coverage -, refers to executing

individual program statements and observing the outcome. We say we have 100% node

coverage if all the statements have been executed at least once in all of our test cases

combined. Complete node coverage is the weakest coverage criterion in program testing.

Before moving on to the next few coverage criteria, it might be useful to define and

distinguish the concepts of condition and decision:

17

• Condition is a simple Boolean expression, meaning that it cannot be broken down

into simpler Boolean expressions. For example, the following expressions are con-

ditions:

1: A == B

2: C

• Decision is a Boolean expression composed of conditions and zero or more Boolean

operators. A decision without a Boolean operator is a condition. For example, the

following expressions are decisions:

1: A && B

2: (A && B) || C

Decision Coverage .

A decision - also known as edge or branch - is an outgoing edge from a node. Having full

decision coverage means selecting a number of paths such that every decision is included

in at least one path.

Condition coverage .

Full condition coverage states that each possible outcome of each condition occurs at least

in one test case, meaning that all conditions are, at least one time, true and false.

Modified condition-decision coverage .

After the introduction of decision and condition coverage, modified condition-decision

coverage refers that every condition in a decision that has been shown to independently

affect that decision’s outcome must be tested by varying just that condition while holding

fixed all other possible conditions.

Multiple condition coverage .

In multiple condition coverage, or conditional combination coverage, all possible combi-

nations of conditions should be evaluated.

Multiple condition coverage implies branch, condition, condition-decision and modi-

fied condition-decision coverage, which will have an exponential blow-up (2number_of _conditions)

and some combinations may be infeasible.

Path Coverage .

Here, all possible paths in the graph are taken into account. However, a program may

contain a large or even infinite number of paths. A very common example is when we

have cycles within the graph, where complete path coverage is not feasible since each

cycle iteration will originate a new path.

In order to try to get as close as possible to complete path coverage, there are also

other path coverage criteria based definitions. The most common include [5]:

18

• Prime Path Coverage.

Before defining what a prime path is, there is a need to introduce the definition of

a simple path.

A path from ni to nj is said to be simple if no node appears more than once in the

path, with the exception of the first and last nodes that may be identical. This means

that simple paths have no internal loops, although the entire path itself may be a

loop. These paths are very useful given that any path can be created by composing

simple paths.

Even small programs may have a very large number of simple paths. For a simple

path coverage criterion we would like to avoid enumerating the entire set of simple

paths and, instead, list only the maximal length simple paths, to which we call a

prime path [5].

A path from ni to nj is called a prime path if it is a simple path and does not appear

as a proper sub-path of any other simple path.

Therefore, the prime path coverage criterion is defined as having all prime paths

show up in at least one test case. This way, we can say we have reached 100% prime

path coverage.

– Simple Round Trip Coverage.

A round trip path is a prime path of nonzero length that starts and ends at

the same node. In simple round trip coverage, it is required that the test cases

contain, at least, one round-trip path for each reachable node in the graph that

begins and ends a round-trip path [5].

– Complete Round Trip Coverage.

In complete round trip coverage, it is required that all round-trip paths for

each reachable node in the graph are tested.

• Specified Path Coverage.

In specified path coverage, instead of requiring all paths, it is only considered a

specified set of paths. For example, these paths might be given by a customer in the

form of usage scenarios.

Figure 2.5 presents the subsumption relations between the control flow coverage

criteria previously introduced, i.e., indicates which criteria are assumed to be covered

once other criterion is reached. For example, when decision coverage is reached, it is

implied that node coverage is also covered, and so on.

2.4.2 Data flow coverage

Data flow analysis focuses on how variables are bound to values, and how these variables

are to be used. Just as one would not feel confident about a program without executing

19

Figure 2.5: Subsumption relations among control flow coverage criteria [5].

every statement in it as part of some test, one should not feel confident about a program

without having seen the effect of using the value produced by each and every computation.

Traversing all paths does not guarantee that all errors will be detected. We must be aware

that path selection criteria cannot ensure that a set of test data capable of uncovering all

errors will be chosen, as it was demonstrated in [85, 86].

2.4.2.1 The Rapps and Weyuker Family of Criteria

Both Rapps and Weyuker have defined a family of coverage criteria based on definitions

and uses of variables. The first reports of said criteria can be consulted in [85, 86].

Their idea was that in order to test a software correctly, we should focus on the flows

of data values and try to ensure that the values created at one point in the program are

not only created but also used correctly. This is done by focusing on definitions and uses
of values. A definition (def) is a location where a value for a variable is stored into memory.

A use is a location where a variable’s value is accessed. These data flow testing criteria

use the fact that values are carried from defs to uses. These are called the du-pairs - also

known as definition-uses, def-use, and du associations and the idea is to exercise du-pairs
in various ways [5].

Each variable occurrence is classified as being a definitional, computation-use, or

predicate-use occurrence. Those are referred to as def, c-use and p-use, respectively. Since

defs have already been defined, the definitions of both c and p-use are as follow:

• p-uses occurs when a variable is used to evaluate wheater a predicate is true or false;

• c-uses occurs when a variable is used to compute the value of other variables, or

output values.

Here are some examples [85, 86]:

20

• y = f (x1, ...,xn)⇒ c-use of variables x1, ...,xn and def of y;

• read x1, ...,xn ⇒ def of variables x1, ...,xn;

• print x1, ...,xn ⇒ c-uses of variables x1, ...,xn;

• if p(x1, ...,xn) then goto m ⇒ p-uses of variables x1, ...,xn.

An important concept when discussing data flow criteria is that a def of a variable

may or may not reach a particular use. The most obvious reason would be because no

path goes from the definition to any use. But, a more subtle reason is that the variable’s

value may be changed by another def before it reaches the use. Thus, a path from li to lj is

said to be def-clear with respect to variable v if no location between li and lj changes the

value [85].

.

Next, the definitions of All-Defs, All-P-Uses, All-C-Uses/Some-P-Uses, All-P-Uses/Some-

C-Uses, All-Uses, and All-du-Paths Coverage will be introduced.

All-Defs Coverage .

This criterion is satisfied if, for every variable defined, there is a path included in at least

one of our test cases, that goes from the definition to a use. In a more informal way, each

def reaches at least one use.

All-P-Uses Coverage .

Here, we need to have, in at least one of our test cases, a path from every variable defini-

tion to the set of all its p-uses.

All-C-Uses/Some-P-Uses Coverage .

To accomplish all-c-uses/some-p-uses coverage it is required that every c-use of all vari-

ables defined must be included in some path of our test cases. If there is no such c-use,

then some p-use of the definition of the variable must be included. Thus to fulfill this

criterion, every definition which is ever used must have some use included in the paths

of the test cases, with the c-uses particularly emphasized.

All-P-Uses/Some-C-Uses Coverage .

Similar to the previous criteria, only here we put the emphasis on the p-uses, and therefore,

every p-use of all variables defined must be included in some path of our test cases. If

there is no p-use, then some c-use must be included.

All-Uses Coverage .

All-uses criterion is satisfied if, for every definition of a variable, there is a path in our

test cases that includes a def-clear path from the definition to all its uses, both c-uses and

21

p-uses. In a more informal manner, this one requires that each def reaches all its possible

uses.

All-du-Paths Coverage .

This one requires that each def reaches all possible uses through all possible du-paths.

Figure 2.6 shows the subsumption relations, this time, between the criteria introduced

by Rapps and Weyuker.

Figure 2.6: Subsumption relations among coverage criteria regarding uses and defs [85].

2.4.2.2 Ntafos’ Required k-Tuples Criteria

Ntafos uses data flow information to overcome the shortcomings of using control flow

information alone to select paths defining a class of path selection criteria, based on

data flow analysis, the Required k-Tuples. These criteria require that a path set cover

chains of alternating definitions and uses, called k-dr interactions. A k-dr interaction

propagates information along a sub-path that is called an interaction sub-path for the

k-dr interaction [3, 19].

2.4.2.3 Laski’s and Korel’s Criteria

Laski and Korel define criteria that emphasize the fact that a given node may contain uses

of several different variables, and that each use may be reached by several definitions

occurring at different nodes. These criteria are concerned with selecting sub-paths along

which the various combinations of definitions reach the node and they are referred to as

the Context Coverage and Ordered Context Coverage criterion [19].

2.4.3 Summary

To recapitulate, all the coverage criteria introduced in this section are named in Table 2.2.

22

Table 2.2: Overview of all coverage criteria defined in this chapter.

Control Flow
Data Flow

Rapps & Weyuker Ntafos Laski & Korel

N
od

e

B
ra

nc
h

C
on

d
it

io
n

.M
od

ifi
ed

co
nd

it
io

n-
d

ec
is

io
n

.

M
u

lt
ip

le
co

nd
it

io
n

Pa
th

P
ri

m
e

Pa
th

Si
m

p
le

R
ou

nd
Tr

ip

C
om

p
le

te
R

ou
nd

Tr
ip

Sp
ec

ifi
ed

Pa
th

A
ll

-D
ef

s

A
ll

-P
-U

se
s

A
ll

-C
-U

se
s/

So
m

e-
P-

U
se

s

A
ll

-P
-U

se
s/

So
m

e-
C

-U
se

s

A
ll

-U
se

s

A
ll

-d
u

-P
at

hs

R
eq

u
ir

ed
k-

tu
p

le
s

C
on

te
xt

O
rd

er
ed

C
on

te
xt

2.5 Testing over graphs

This section starts with an introduction to graph theory, followed by some graph traversal

algorithms.

2.5.1 Introduction to graph theory

As it was already covered in section 2.1, the OutSystems programming language is a

visual language that represents the generated code visually through graphs, hence why

we need a more in-depth understanding on how we can cover and traverse graphs.

A graph G=(V, E) is defined by a set of vertices V, and contains a set of edges E.

Several fundamental properties of graphs impact the choice of data structures used to

represent them and the algorithms available to analyse them. The first step in any graph

problem is to classify the graphs that are being dealt with according to a set of properties,

including [98]:

• Undirected vs Directed: a graph is said to be undirected if edge (x,y) ∈ E implies that

(y,x) ∈ E, that is, there is no direction imposed over the flow in the edges;

• Weighted vs Unweighted: each edge (or vertex) in a weighted graph is assigned a nu-

merical value, implying that said edge or vertex has a certain cost or gain associated

with its traversal. In unweighted graphs there is no cost distinction between the

various edges and vertices;

• Cyclic vs Acyclic: this property refers to the existence (or not) of cycles in the graph;

• Implicit vs Explicit: certain graphs are not explicitly constructed and then traversed,

but build as they are used. Because there is no need to store the entire graph, it

is often easier to work with an implicit graph than explicitly construct it prior to

analysis;

23

• Labeled vs Unlabeled: each vertex is assigned a unique name or identifier in a labeled

graph to distinguish it from all others. In unlabeled graphs, no such distinctions

are made;

• Connected vs Disconnected: a graph is said to be connected if there is a path between

every pair of nodes. In a connected graph there are no unreachable nodes.

2.5.2 Graph traversal

There are two primary graph traversal algorithms: Breadth-first search (BFS) and Depth-

first search (DFS). The breadth-first algorithm (2.5.2.1), along with the depth-first (2.5.2.2),

are probably the most simplistic uninformed search procedures. For certain problems, it

makes no difference which one is used, but in others the distinction is crucial. The differ-

ence between these two algorithms lays in the order in which they explore vertices. This

order depends completely upon the container data structure used to store the discovered
vertices.

2.5.2.1 Breadth-First

Breadth-first’s traversal proceeds uniformly outward from the start node, exploring the

neighbour nodes layer-wise, after which moving towards the next-level neighbour nodes [98].

One interesting guarantee BFS provides, is that when a goal node is found, the path

expanded is of minimal length to the goal. A disadvantage of this solution is that it

requires the generation and storage of a tree whose size is exponential in the depth of the

shallowest goal node [62].

A pseudo-code for this algorithm can be seen in Algorithm 1.

Algorithm 1 Breadth-First algorithm [98]

1: procedure BFS(G, s)
2: for each vertex u ∈ V [G]− s do
3: state[u] = “undiscovered”
4: p[u] = nil, i.e. no parent is in the BFS tree

5: state[s] = “discovered”
6: p[s] = nil
7: Q = s
8: while Q , ∅ do
9: u = dequeue[Q]

10: process vertex u as desired
11: for each v ∈ Adj[u] do
12: process edge (u,v) as desired
13: if state[v] = “undiscovered” then
14: state[v] = “discovered”
15: p[v] = u
16: enqueue[Q, v]

17: state[u] = “processed”

24

Figure 2.7 illustrates a run of the BFS algorithm over a graph, with the insight of the

associated data structures and it’s modification alongside the running of the algorithm.

An example applying the BFS algorithm over a directed graph is shown in Figure 2.7.

Figure 2.7: BFS execution example.

The Uniform-cost search [23], proposed by Dijkstra, is a variant of BFS in which all

the branches in the graph have an associated cost and nodes are expanded outward from

the starting node along the “contours” of equal cost rather than along contours of equal

depth. If the cost of all arcs in the graph are identical, then uniform-cost is the same as

breadth-first search [62].

2.5.2.2 Depth-First

DFS is one of the most versatile sequential algorithm techniques known for solving graph

problems. Tarjan [100] and Hopcroft and Tarjan [43] first developed depth-first algo-

rithms for connected and biconected components of undirected graphs, and strong com-

ponents of directed graphs.

DFS generates the successors of a node, just one at a time and, as soon as a successor is

generated, one of its successors is generated and so on. To prevent the search process from

running away toward nodes of unbounded depth from the start node, a depth bound can

be set, making it so that no successor is generated whose depth is greater than the depth

bound (it is presumed that not all nodes lie beyond the depth bound) [62].

This algorithm only requires part of the search tree consisting of the path currently

being explored and traces at the yet fully expanded nodes along that path to be saved.

The memory requirements are thus linear in depth bound. A disadvantage of DFS is that

when a goal is found, we are not guaranteed to have a minimal length path. Another

25

problem is that we may have to explore a large part of the search space even to find a

shallow goal if it is the only goal and a descendant of a shallow node expanded late [62].

A valid pseudo-code for this algorithm can be seen in Algorithm 2.

Algorithm 2 Depth-First algorithm [98]

1: procedure DFS(G, u)
2: state[u] =“discovered”
3: process vertex u if desired
4: for each v ∈ Adj[u] do
5: process edge (u,v) if desired
6: if state[v] = “undiscovered” then
7: p[v] = u
8: DFS(G,v)

9: state[u] =“processed”

Figure 2.8 illustrates a run of DFS over a directed graph.

Figure 2.8: DFS execution example.

The computational complexity of DFS was investigated by John Reif [87] that consid-

ered the complexity of computing the depth-first search, given a graph and a source. A

decision version of the problem (testing whether some vertex u occurs before some vertex

v in this order) is P-complete, meaning that it is “a nightmare for parallel processing”.

26

C
h
a
p
t
e
r

3
Related work

In the context of this thesis, the research upon the related work already documented will

be focused on the topic of automatic test generation techniques and tools. The prioritiza-

tion of the test cases will also be a subject of interest in this chapter.

3.1 Tools and techniques

There are two main approaches used to generate test cases automatically: from source

code, and from requirements and design specification. These two introduce the following

topics of code-based testing (3.1.1) and model-based testing (3.1.2) [16].

3.1.1 Code-based testing

Code-based (or white-box) testing derives the test cases directly from the system source

code. Some of its advantages include [25]:

1. It is able to reveal errors in hidden code;

2. Maximum coverage can be obtained while writing test scenarios.

There are also some disadvantages [21]:

1. Is not capable of executing the behavioural aspects of the system;

2. Is not suitable for component-based software development, because the source code

may not be available to the developer.

Some tools and techniques developed for code-based testing will be introduced next.

27

3.1.1.1 TestEra (2001)

TestEra [54] automates the generation of test data and evaluates correctness criteria for

Java programs using Alloy [4], a specification language to describe structures, to formu-

late the invariants of inputs and properties for a Java program. As a result, it produces

Java inputs that infringe on any of the criteria evaluated.

This tool starts by specifying the inputs for the Java program through Alloy. Then,

Alloy Analyser [46] generates all non-isomorphic1 instances for that specification. These

represent the test cases for the program. After their execution, the output registered is

traced back to Alloy, and the Analyser checks the input and output against the given

criteria.

TestEra focuses on exposing as many errors as possible, without producing false pos-

itives. For this, completeness may be compromised and errors missed, but the ones

reported are clear counterexamples to violated properties.

3.1.1.2 DART (Directed Automated Random Testing) (2005)

DART [35] starts by automatically extracting the interface of a C program. From the

interfaces, a test driver is generated and random testing is applied. Finally, dynamic

analysis is performed in order to evaluate how the program behaves under random testing

and new test inputs are generated directing the execution of the program over alternative

paths.

This approach can be performed completely automated on any C program that com-

piles and it exposes errors such as program crashes, assertion violations, and non-termination.

It also addresses the main limitation hampering unit testing, namely the need to write

test driver and harness code to simulate the external environment of a software applica-

tion [35].

3.1.1.3 Boshernitsan’s et al. tool for testing based on software agitation (2006)

Boshernitsan et al developed and documented a tool based on software agitation [11]. This

is a unit testing technique that generates test cases dynamically, integrates sets of input

data against the test cases, thus “agitating” them, and then, analyses the results.

The authors implemented software agitation in a testing tool called Agitator [1] and

the technique employed is: (1) write code→ (2) agitate→ (3) display observations→ (4)

review results→ (5) define tests.

This tool is able to produce test cases that achieve up to 80.2% code-coverage percent-

age. The coverage metrics used represent statement and condition coverage [11].

1A relation between objects is classified as isomorphic when they show equality in their composition.
Non-isomorphism classifies objects that are structurally different [55].

28

3.1.1.4 Fraser’s whole test suite generation using genetic algorithms (2013)

Fraser proposes a model where whole test suites are generated with the objective of reach-

ing all defined goals while maintaining the size of these suites as small as possible [33].

This can be accomplished through the use of genetic algorithms in the task of searching.

This approach advantages include the fact that the number of infeasible targets in the

code will not affect its efficacy.

This methodology was then evaluated by the author against the traditional approach

that targets each testing goal independently over open source libraries and the results

showed that it was able to obtain up to 188 times the branch coverage, with up to 62%

smaller test suites [33].

3.1.2 Model-based testing

Model-based (or black-box) testing derives test cases from an abstract model of software,

including formal specifications and semi-formal design descriptions such as Unified Mod-

eling Language (UML) diagrams. Automatically generating test cases directly from design

models has several benefits which include [26, 94, 103]:

1. As requirements evolve, time is saved by only updating the model compared to

updating the entire test suite, as they tend to be much larger;

2. The improper specification of requirements is a major source of system problems.

Model-based testing helps exposing these requirement issues;

3. As the test cases are generated before the code, developers have the possibility to use

them as they develop the code, thus reducing the iterations between development

and testing, further saving resources.

Disadvantages [26, 103]:

1. Its effectiveness depends on the expertise and experience of those creating the model

and selecting the test selection criteria;

2. If requirements change and the model is not updated, the tests will yield a signifi-

cant amount of errors;

3. Models of any non-trivial software functionality can grow beyond manageable lev-

els. Almost all other model-based tasks, such as model maintenance, non-random

test generation and achieving coverage criteria, are affected in this scenario.

Model-based testing is gaining its popularity in both research and in industry. As

systems are increasing in complexity, more systems perform mission-critical functions,

and dependability requirements such as safety, reliability, availability, and security are

vital to the users of these systems [94].

29

Therefore, researchers have used the analysis and design models such as UML for test

case generation. These models are very popular because UML is a solution of standard-

ization and utilization of design methodologies [21].

Tools and techniques for model-based testing developed within the past decade follow

next.

3.1.2.1 QuickCheck (2002)

QuickCheck [17, 18] is a random testing tool2 where specifications are used directly for

both the test case generation and as oracle. Here, the tester provides a set of properties

and then, a large number of test cases are randomly generated in an attempt to find some

that contradict these properties. Recent versions of QuickCheck automatically reduce test

cases that fail, seeing as having “noise” in the input tests makes it harder to understand

the failure, reporting a set of “minimal” test inputs. The original implementation of

QuickCheck was concerned with Haskell [39] programs; later re-implementations exist

for a number of languages, including Java, C, C++, amongst others [18].

3.1.2.2 Korat (2002)

Korat [12, 59] automatically tests a program based on Java predicates [64]. For that, it

generates all non-isomorphic3 inputs, up to a given small size, for which the predicate

is valid, meticulously searching the bounded input space of the predicate but doing

so efficiently, by monitoring the predicate’s executions, trimming large portions of the

search space. For this constraint-based generation of structurally complex test inputs

for Java programs, Korat takes: a predicate that specifies the desired structural integrity

constraints and an initialization that bounds the desired test input size.

Korat then enforces the method on each test case and uses the method’s post-condition

as a test oracle to validate each output.

3.1.2.3 Sarma’s et al. automatic test case generation from UML sequence diagram

(2007)

Sarma et al. [93] proposed a method that generates test cases from UML [102] sequence

diagrams. The approach consists in transforming a sequence diagram into a sequence

diagram graph and supplying the graph’s nodes with the necessary information to com-

pose test vectors. This graph is then traversed to generate test cases based on a coverage

criteria and a fault model. These are suitable for system testing and to detect interac-

tion and scenario faults. Scenario faults happen when, for a given operation scenario,

2The basis of random testing consists in identifying the input domain, selecting test points independently
from this domain and then to execute the program on these inputs (that constitute a random test set). The
results are then compared to the program specification [38].

3See footnote 1.

30

the sequence of messages does not pursue the desired path due to inaccurate condition

evaluation, anomalous termination, etc.

3.1.2.4 Sawant and Shah’s automatic generation of test cases from UML models

(2011)

Sawant and Shah [94] presented a technique for generation of test cases based on UML [102]

diagrams such as use case, class and sequence diagrams, and then transforming it into

a Sequence Diagram Graph (SDG) [93], where each node stores the necessary informa-

tion for the test case generation. A data dictionary is presented in the form of Object

Constrained Language (OCL) [37]. The UML diagrams are created with the aid of tools

such as MagicDraw [53] and Rational Rose [44] and then exported to eXtensible Markup

Language (XML) [20] format. The XML file is then parsed to provide the extraction of

different nodes of the graph and the generation of all sets of scenarios from start to end

nodes. These sets of scenarios along with the use case template and OCL data dictionary

are traversed using BFS (2.5.2.1) for the generation of test cases.

3.1.2.5 Dalai’s et al. test case generation for concurrent object-oriented systems

using combinational UML models (2012)

Dalai et al. [21] proposed an approach to generate test cases for concurrent object-oriented

software systems using the combinational features of UML [102] sequence and activity

diagrams in order to obtain higher coverage and to provide fault detection capability. The

diagrams are first converted into graphs and then a sequence-activity graph is generated

by combining the features of both these diagrams. The graph is then traversed with the

following methodology: wherever a fork node is encountered, BFS (2.5.2.1) is applied,

while DFS (2.5.2.2) is used for the remainder nodes. Activity path coverage criterion is

used for the generation of test cases.

3.1.2.6 Chouhan’s et al. test case generation based on activity diagram for mobile

application (2012)

Chouhan et al. [16], developed a test case generation model based on UML activity di-

agrams for mobile applications, starting with the construction of an intermediate table

called the activity dependency table that contains the following columns: name of the

activity, dependency nodes, in degree value, dependent nodes and out degree values. The

table automatically generates a directed graph called activity dependency graph that will

then be examined with the DFS (2.5.2.2) algorithm in order to extract all the possible

test cases. These generated test cases should go through all the branches in the activity

diagram.

As for coverage criteria, this approach applies a hybrid coverage criterion as the com-

bination of branch, full predicate and basic path coverage criteria along with cyclomatic

complexity criterion. Cyclomatic complexity was introduced by McCabe in 1976 [56]

31

as a metric to measure program flow-of-control. The cyclomatic complexity is based on

determining the number of linearly independent paths in a program module, suggesting

that the complexity increases with this number and reliability decreases. This complexity

can be computed using the number of edges (E) and the number of nodes (N) and the

formula used to calculate it [51]:

CC = E −N + 2

3.2 Prioritization of test cases

Due to the magnitude that some test suites have, systems require a large amount of time

and resources to execute all test cases. One of the main concerns in software testing lies

on how to execute these tests in the most efficient way and that is the main objective of

test case prioritization [60].

Test case prioritization means setting priority to every test case from a test case suit

and executing the test cases in descending order. This technique helps in minimizing

testing time and increases testing efficiency, which reduces cost and provides earlier

identification of high-risk defects, seen as higher risk test cases are executed first, also

providing better resource utilization [96].

Different techniques that prioritize test cases aim at maximizing some defined func-

tion or objective [89]. Some of those techniques are presented next.

Seth and Anand’s prioritization of test case scenarios from UML sequence diagrams

(2012) .

Seth and Anand [96] proposed a technique for prioritization of test cases that will first

generate test cases from UML sequence diagrams and prioritize them based on: (a) prior-

itization on depending upon depth: the more objects are covered, the higher the priority

will be, (b) prioritization depending on the number of parameters: the more parameters

involved, the higher the priority, (c) prioritization depending on code coverage and lastly,

(d) the combination of all.

Then, priority is set according to any of the previous options and the test cases with

higher priority are scheduled to be tested first.

Fernandez-Sanz and Misra’s prioritization of test cases from UML activity diagrams

(2012) .

Fernandez-Sanz and Misra proposed an approach for the generation of a complete

test case suite from UML activity diagrams [30]. The authors prioritized said test cases by

using the risk each test case represents over the software as the main parameter. This risk

value is defined through several measures, including the propability of a certain function

being used and its importancy for the system. This information is then gathered and each

test case is assigned a value by which they are prioritized and the test cases considered to

present higher risk to the software are tested first [30].

32

Results obtained by the authors showed that over 70 software professionals recognized

the advantages of this method [30].

3.3 Summary

All of the techniques previously introduced provide a good overview over the ideas that

have been presented in the research field over the past couple decades.

Both code-based and model-based approaches have the ability to influence the work

produced by this dissertation given that the OutSystems applicational model represents

both a model and the actual source code for the applications. More specifically, the ability

to reach coverage goals - for the specific context of this work, the ability to be able to

reach all traversable graph with the generated test inputs -, as well as, from model-based

approaches, the use of both BFS and DFS algorithms to traverse graphs. These ideas were

indeed concretized in the implementation of both the PoC and the tool produced (see

chapter 4).

For the tools presented, Korat in particular, has some similarities with the tool hereby

developed, specifically in the idea of reducing the test case load by generating all non-

isomorphic inputs. In a parallel manner, the tool developed is applying cause-effect

graphing, where test inputs are only generated if they verify the context into which they

came to be, i.e., if a test input is identified in a trace of code that it would never reach, it

is discarded.

Furthermore, the ideas for prioritization of test cases inspire the work behind the

combination of multiple factors such as in [96] with the intent of trying to display first

the most pertinent test cases to the developer.

Table 3.1 presents a quick summary of each tool and technique.

33

Table 3.1: Quick overview of the work presented in this chapter.

Work Year Summary

Code-based

TestEra [54] 2001
Given a set of correctness criteria, it generates test
inputs that violates them.

DART [35] 2005

Identifies the external interfaces for the program
and a random test driver is generated simulat-
ing the most general environment visible to the
program.

[11] 2006
Tool based on software agitation that combines
the results of research in test-input generation and
dynamic invariant detection.

[33] 2013
Obtains more coverage with smaller test suites by
applying generic algorithms.

Model-based

QuickCheck
..... [17, 18]

2002
Randomly generates test cases that contradicts the
properties that the functions should fulfill.

Korat
[12, 59]

2002
Automatically generates all non-isomorphic in-
puts for which the predicates return true.

[93] 2007
Uses UML sequence diagrams from which a graph
is generated that is then traversed to generate the
test cases.

[94] 2011
Uses UML diagrams to generate a graph that is
then traversed using BFS to generate the test cases.

[21] 2012

Uses UML sequence and activity diagrams to gen-
erate a graph that is traversed with a mix algo-
rithm with both BFS and DFS in order to generate
the test cases.

[16] 2012

Uses UML activity diagrams to construct a table
that generates a graph that is then traversed with
DFS algorithm to extract all the test cases. Uses a
hybrid coverage criteria of: branch, full predicate,
basic path and cyclomatic complexity.

Prioritization
[96] 2012

Prioritizes the test cases depending on depth,
the number of parameters, code coverage or a
combination.

[30] 2012 Prioritizes the test cases in order of software risk.

34

C
h
a
p
t
e
r

4
Implementation

This chapter describes the algorithm developed during this dissertation and presents both

the PoC and the tool implemented. Its organization is as follows:

• Section 4.1 - Algorithm: explains all details associated with the development of the

algorithm that was implemented in the following tools;

• Section 4.2 - PoC with dummy model: this PoC was implemented resorting to a

simplified version of the OutSystems applicational model;

• Section 4.3 - Tool applied to the OutSystems model: shows the algorithm imple-

mented directly over the OutSystems development environment, the Service Studio,

this time using the OutSystems model.

4.1 Algorithm

Figure 4.1 represents a graph that will be traversed step-by-step over the course of this

chapter in order to explain the strategies employed in the algorithm to generate all the

different input combinations.

This is a simple graph comprising of the nodes this algorithm supports: Assign, If and

Switch, some of the most important regarding the execution of logic flows for server and

client actions in OutSystems applications.

The remainder of this section is organized as follows:

• Subsection 4.1.1 - Architecture: shows the architecture of the algorithm;

• Subsection 4.1.2 - The test object: description of this fundamental object that aids

in the graph traversal;

35

Figure 4.1: Example of a graph procedure in OutSystems to be traversed over the course
of this chapter.

• Subsection 4.1.3 - Data types and expressions: details how the values to be tested

are selected according to the data types and expressions supported;

• Subsection 4.1.4 - Graph traversal: methodology employed to traverse the graph;

• Subsection 4.1.5 - Process nodes: explains how each type of node is processed;

• Subsection 4.1.6 - Coverage evaluation: describes the strategies employed in order

to evaluate the coverage criteria applied in this algorithm;

• Subsection 4.1.7 - Expected output: the expected output values for a procedure are

evaluated and presented to the developer as well;

• Subsection 4.1.8 - Warnings evaluation: shows how warnings are computed;

• Subsection 4.1.9 - Test case prioritization: the test cases are presented prioritized,

i.e., the ones considered to bring more risk to the code are presented first;

• Subsection 4.1.10 - Optimizations: introduces some optimizations that have been

made to the algorithm in order to save resources.

36

4.1.1 Architecture

The algorithm starts by receiving the model as input to be evaluated and the graph is

then traversed according to both the graph traversal algorithms of breadth (subsubsec-

tion 2.5.2.1) and depth-first (subsubsection 2.5.2.2) search. The different input combina-

tions are generated through the mechanisms of boundary-value analysis (section 2.2.4.2)

and cause-effect graphing (section 2.2.4.2). This last mechanism is applied in order to

reduce the number of redundant test cases that, otherwise, would be generated. Af-

ter the traversal is finished, the produced test coverage is calculated according to node,

branch, condition, modified condition-decision and multiple condition coverage (subsec-

tion 2.4.1). Finally, all results are presented to the user in a graphical user interface.

Figure 4.2 shows a component diagram representing the architecture of the algorithm.

Figure 4.2: Structure of the developed algorithm.

4.1.2 The test object

A test object is a fundamental component in this algorithm. It will follow a specific path

during graph traversal and record a set of interesting information, such as the different

input combinations that would follow said path, the traversed decisions and whether

they were met or not, and all the branches (and consequently, all the nodes) that path

37

covers. All of this up until an End node is reached, from which point the test object is

then marked as final.

This is an essential object that not only aids in the graph traversal process but also con-

tains the information that allows for the computation of warnings and coverage obtained

during the traversal. This way, the graph only needs to be traversed one time and by the

end of it, all information can be determined by looking at each generated test object.

The distinction between input variables/parameters and others (local and output

variables/parameters) must be made. This results from the fact that only input variables

can be instrumented from outside of the scope of a function, while the remainder results

from either computations using other variables, or default values. Figure 4.3 shows the

icons that the OutSystems language uses to distinguish these different types of variables.

Figure 4.3: OutSystems language nodes representing the different variable types.

In summary, the information stored in the test object is:

(1) Test cases: set of all the input combinations generated that would follow the path

traversed by this object;

(2) Dependencies: a map connecting a variable to other variables it depends on. This

is specially important for non-input variables in order to be able to test them by

manipulating the input variables they depend upon;

(3) Branches: a set that will track the branches which comprise the traversed path. From

here, the nodes covered by this path are also available;

(4) Decisions passed: contains the decisions that this test object covered during its path

traversal and was met by its test cases;

(5) Decisions failed: the decisions that this test object covered but were not met by its

test cases.

Summarily, while traversing the graph, for each different path encountered, a new

test object will be generated and once the traversal is finished, the total number of test

objects will correspond to the number of independent paths found. Each test object will

contain multiple input combinations and the set of all those combinations will define

all the input combinations generated needed to cover all reachable code according to

boundary-value analysis (section 2.2.4.2) and cause-effect graphing (section 2.2.4.2).

4.1.3 Data types and expressions

Three basic data types are currently taken into account: Integers, Booleans and Strings.

Thus far, no other data types are being considered for a matter of complexity.

38

Algorithm 3 represents the pseudocode which defines the values to be tested for each

data type, according to the following definitions:

• For Integers, the values to be evaluated follow the methodology of boundary-value

analysis (see section 2.2.4.2). Therefore, the values to be tested are the ones just

inside/outside boundaries and the boundary itself. Example: For the condition:

var1 > 5, the generated values for var1 would be: 4, 5 and 6. These values are not

influenced by the operator, only by the value, which in this example was 5;

• For Booleans, both the True and False values will be evaluated;

• For Strings, the values to be tested will consist of the String itself, a different String

(randomly generated and different from the original) and the empty String.

Algorithm 3 Process data types

1: function ProcessInteger(int)
2: prev← {int − 1}
3: next← {int + 1}
4: return {prev, int,next}
5:

6: function ProcessBoolean(.)
7: return {T rue, False}
8:

9: function ProcessString(string)
10: random← generateDif f RandomString(string)
11: return {string, random, “”}

In this work, complex expressions that involve comparing variables to other variables

are not yet being considered. This comes from the fact that, by following the current

generation mechanism, for example, if we have condition I > I2 (both integer variables),

the values {I2− 1, I2, I2 + 1} would be generated. To be able to express these values into

actual input combinations for variable I , it would be required that I2 would have values

defined by the end of this algorithm’s execution. And that might not happen.

A way to overcome this issue could be by also employing the error guessing mecha-

nism (see section 2.2.4.2) where the key values for each data type that normally bring in

problems would also be tested.

In short, this algorithm currently supports three of the most simple data types (Integer,

Boolean and String) as well as simple expressions, such as the following:

Attributions:

1. I = I2

2. S = “abc”

Decisions:

1. I > 24 or J = 3

2. S = “abc” and T = “hij”

39

4.1.4 Graph traversal

The traversal begins at the Start node, progressively following outgoing flows until either

an End node is reached or a cycle is detected.

During traversal, whenever a new node is found, after being processed according to

its own node type (see subsection 4.1.5), its outgoing flows are added to a shared queue.

This shared queue is composed by blocks containing both a test object (subsection 4.1.2)

and the node that represents the outgoing flow. From this queue, a defined set of threads

can then pull blocks and continue the traversal. This way, the work is parallelised in an

effort to reduce processing time.

With this approach, both the breadth-first (subsubsection 2.5.2.1) and depth-first (sub-

subsection 2.5.2.2) algorithms are employed. From a single thread standpoint, the work

is performed in a depth-first manner. From the graph’s general point of view, all threads

traverse the branches simultaneously, mimicking a breath-first approach. Figure 4.4 and

Figure 4.5 represent the technique described.

Figure 4.4: Graph traversal shows a depth-first behaviour from the standpoint of each
singular thread.

The traversal is marked as finalized when after all threads finish their current execu-

tion and the shared queue is empty, thus not providing any more work for any thread.

After this, the results are compiled and sent back to the developer.

Algorithm 4 shows the pseudocode for the graph traversal and it is divided into two

distinct processes:

1. The graph traversal itself that consists in launching a set of threads and initializ-

ing the shared queue from where each thread will pull work and start/continue

traversal;

40

2. The code executed by each thread to process the different node types.

Figure 4.5: Graph traversal shows a breadth-first behaviour from the standpoint of the
entire algorithm where the different colours represent multiple threads.

4.1.5 Process nodes

As it has been previously discussed (see subsection 2.1.2), the OutSystems applicational

model is rather extensive and it would not be possible to analyse and evaluate every

aspect of it. Therefore, this thesis focus is on the logic side of the applications, i.e., the

client-server actions. This way, the main nodes subject to analysis in the prototype are

the Assign, If and Switch nodes, as these are very important to exercise logic flows for

OutSystems applications.

4.1.5.1 Start

Every procedure in OutSystems launches with a Start node, which is the beginning of the

flow for this procedure.

When a Start node is encountered, a new test object is created containing simply the

outgoing link from this Start. Then, a new block is added to the shared queue, comprising

this new test object and the identifier of the outgoing node of this Start.
Algorithm 5 shows the pseudocode to process a Start node.

Example: .

This traversal starts with an empty sharedQueue and receives the variables and pa-

rameters the graph defines as well as its Start node.

The algorithm will then take as input this Start node, get the link connecting it to the

next node in the flow and creates a new block to add to the shared queue. This block will

41

Algorithm 4 Graph traversal

1: sharedQueue = {.}
2: checkedOutT estObjects = {.}
3:

4: function Traversal(threads, startNode, allV ariables)
5: call processStart(startNode, sharedQueue)
6: for each t in threads do
7: t.run()

8: if traversalFinished then
9: calcAndShowResults()

10:

11: function Run(.) . Code to be executed by each thread
12: while traversalNotFinished do
13: if notEmpty(sharedQueue) then
14: {testObj,nextNode} ← removeFirst(sharedQueue)

15: switch nextNode.type() do
16: case IF: call ProcessIf(testObj, nextNode, sharedQueue)

17: case SWITCH : call ProcessSwitch(testObj, nextNode, sharedQueue)

18: case ASSIGN : call ProcessAssign(testObj, nextNode, sharedQueue)

19: case END: call ProcessIf(testObj, checkedOutT estObjects, sharedQueue)

20: case def ault: call ProcessUnsupportedNode(testObj, nextNode, sharedQueue)

Algorithm 5 Process Start node

1: function ProcessStart(startNode, sharedQueue)
2: branch← getLink(startNode)
3: nextNode← getOutgoing(branch)
4: newT estObject← {branch}
5: sharedQueue← sharedQueue∪ {newT estObject, nextNode}

comprise a test object whose only content so far will be the branch that has been traversed

(1→ 2).

This first stage of traversal ends by adding this block to the sharedQueue, after which

a set of threads can start to try to pull work from. Figure 4.6 represents the state of the

traversal after this initial step alongside the internal representation of this first block

added to the shared queue.

Figure 4.6: Traversal starts processing the Start node.

42

4.1.5.2 Assign

An Assign node is used for the purpose of assigning some value to a variable, and this can

be of the form of another variable or a simple value. Thus, the following attributions are

valid according to the variable types:

Integer :

1. I = I2;

2. I = 5;

String :

1. S = S2;

2. S = “word”;

Boolean :

1. B = B2;

2. B = False;

As each Assign node can comprise multiple assignments, that must also be taken into

account.

During graph traversal, whenever an Assign node is reached, for each assignment

it contains, it simply records this assignment as a dependency in the test object that is

following traversal.

Algorithm 6 Process Assign

1: function ProcessAssign(testObject, assignNode, sharedQueue)
2: branch← getLink(assignNode)
3: nextNode← getOutgoing(branch)
4:

5: for each attribution in getAttributions(assignNode) do
6: variable← getLef tSideAttribution(attribution)
7: value← getRightSideAttribution(attribution)
8: dependency← {variable,value}
9: testObject← testObject ∪ {dependency}

10:

11: call addSharedQueue(testObject, branch, nextNode)

Example: .

In the last section, the Start node was processed and as a result, the sharedQueue was

left off with one block available to be pulled by any thread.

After pulling this block, the next node field points to the Assign of identifier 2. It

contains a single assignment, L← A, indicating that the local variable L shall take in the

value of the input variable A. As explained, the only step involved in an Assign is to add

its assignments as dependencies to the current test object.

Figure 4.7 shows the state of the algorithm before, during and after this Assign node

is processed.

4.1.5.3 If

An If node consists of a typical if-then-else block in most programming languages. It con-

tains a decision and, in OutSystems, always has two outgoing flows specifically defined

43

Figure 4.7: Processing an Assign node.

for the two possible outcomes: True and False.

When an If node is reached, the following steps are executed:

1. Add to a map all the values needed to be tested for each variable:

a) Add the values already in the current test object test cases;

b) Add all the values required to evaluate the current decision, dividing it into

its set of simple conditions and retrieving the values according to the method-

ologies explained in Data types and expressions;

2. To the map defined in 1, check if there are values needed to be tested for non-input

variables and if so, verify if it depends upon an input variable, affecting the values

to that variable instead;

3. At this point, there is a map containing all the candidate values to be tested for the

decision under evaluation. The next step is to take these values and compute all its

possible combinations thus generating all necessary test cases;

4. Now, with all the possible test cases defined in 3, each one will be tested in order to

check if it meets the past decisions of the current test object. If it fails one decision,

the test case is immediately discarded. This step is essential in employing a cause-

effect behaviour in the traversal (see section 2.2.4.2);

5. The test cases that survive the step 4 are then tested in order to check if they meet

the decision currently under test. The test cases will then be grouped into the ones

that meet this decision and the ones that do not, as they will follow different paths

from now on.

6. Now, for each of the groups defined:

a) A new test object is created by copying the contents of the current test object

(except the test cases it contained), and adding the set of test cases newly gen-

erated along with the next branch to be traversed. After this, before adding

44

this test object to the queue, it is verified if the next node in this particular

path has already been processed by this test object. If it has, the test object

is immediately marked as final and will not be added to the queue. This hap-

pens because a cycle is detected and seeing as complex expressions are not yet

supported (see subsection 4.1.3), it would not be possible to break this cycle

during traversal. This way, a warning is set to the developer warning him that

a cycle is induced and so he should pay attention. If no cycle is detected, the

test object is added to the shared queue.

Algorithm 7 also shows in greater detail the steps previously introduced.

Algorithm 7 Process If

1: function ProcessIf(testObject, if Node, sharedQueue)
2: branchFalse← getLinkFalse(if Node)
3: branchT rue← getLinkT rue(if Node)
4: decision← getDecision(if Node)
5: varV alues← {.} . associates a variable with the values to be tested for it.
6: varV alues← varV alues∪ addV aluesFromT estCases(testObject)
7: varV alues← varV alues∪ getV aluesT oEvaluate(decision)
8: . end of step 1
9: for each var in varV alues do

10: if notInputVariable(var) then
11: values← varV alues[var]
12: if dependsOnInput(var) then
13: varV alues← varV alues \ {var,values}
14: inputV ar← getDependency(var)
15: tuple← {inputV ar,values}
16: varV alues← varV alues∪ tuple
17: . end of step 2
18: testCases← combineAllV arV alues(varV alues)
19: . end of step 3
20: prevDecisions← getP reviousDecisions(testObject)
21: testCases← call passesPrevDecisions(prevDecisions, testCases)
22: . end of step 4
23: trueT estCases← {} ... f alseT estCases← {}
24: for each test in testCases do
25: if notPasses(test, .decision then
26: f alseT estCases← f alseT estCases∪ test
27: else
28: trueT estCases← trueT estCases∪ test
29: . end of step 5

30: call createTOandAddSharedQueue(testObject, trueT estCases, branchT rue,
31: decision, true)
32: call createTOandAddSharedQueue(testObject, f alseT estCases, branchFalse,
33: decision, f alse)
34: . end of step 6

45

Algorithm 8 shows some auxiliary functions to be used when most nodes are processed

and are thus here gathered.

Algorithm 8 Auxiliary functions

1: function createTOandAddSharedQueue(testObject, testCases, branch,
decision, passed)

2: newT estObject← copyT estObject(testObject)
3: newT estObject← newT estObject ∪ testCases
4: newT estObject← newT estObject ∪ {decision,passed}
5: nextNode← {getOutgoing(branch)}
6: call addSharedQueue(newT estObject, branch, nextNode)

7: function addSharedQueue(testObject, branch, nextNode)
8: if containsNode(testObject,nextNode) then
9: testObject← testObject ∪ branch

10: call yieldCycleWarning(testObject,branch)
11: else
12: testObject← testObject ∪ branch
13: sharedQueue← sharedQueue∪ {testObject,nextNode}
14: function passesPrevDecisions(prevDecisions, testCases)
15: for each test in testCases do
16: for each prevD in prevDecisions do
17: if notPasses(test, .prevD) then
18: testCases← testCases \ {test}
19: function yieldCycleWarning(testObject, branch)
20: yieldWarning(′A cycle was detected regarding the link:′ + branch)
21: setFinishedTO(testObject)

.

.

Example: .

After processing the first Assign, this example continues by pulling the only block in

the shared queue that points to an If node as the next one to be processed.

For step 1, as the current test object does not have any test cases defined, the values to

evaluate will result from the ones retrieved from the decision L > 10.and.B = “abc′′. This

decision’s simple conditions are L > 10 ; B = “abc′′ and thus the values to evaluate for this

decision are the following:

valuesT oT est← { L = {9, 10, 11},
B = {“abc”, “rand1”, “”}}

Step 2 identifies that there is an non-input variable with values to evaluate, L, and

verifies that it does depend on the input variable A, thus transferring these values to A,

and now we have:

valuesT oT est← { A = {9, 10, 11},
B = {“abc”, “rand1”, “”}}

46

Step 3 now computes all combinations between variables and values to test, generating

the following test cases:

TC1 = [A = 9,B =“abc”] TC2 = [A = 9,B =“rand1”] TC3 = [A = 9,B =“”]

TC4 = [A = 10,B =“abc”] TC5 = [A = 10,B =“rand1”] TC6 = [A = 10,B =“”]

TC7 = [A = 11,B =“abc”] TC8 = [A = 11,B =“rand1”] TC9 = [A = 11,B =“”]

Step 4 does not remove any of the test cases previously defined as there are still no

decisions saved onto the test object used in this traversal.

Step 5 will now group the combinations generated by if they meet the decision L >

10.and.B = “abc′′ or not. Thus, in this case only TC7 meets the decision and will continue

on traversal following the true branch (3 → 4), while the remainder do not meet the

decision and shall continue through the false branch (3→ 5).

Finally, step 6 creates a test object for each group, adding to both the contents of the

current test object, supplementing it with the appropriate set of test cases and the branch

that those test objects will next traverse. These test objects will be encapsulated in a block

each to be added to the shared queue, pointing to the correct node to be next processed,

thus finishing the process of this If node.

Figure 4.8 represents the state of the algorithm during the traversal of this node and

Figure 4.9 shows the final state of the graph.

Figure 4.8: Processing an If node.

47

Figure 4.9: Graph after processing the If node.

4.1.5.4 Switch

The Switch node receives multiple decisions that the developer wants to verify and the

flow of information will then take the path whose decision it meets. If none does, in the

OutSystems language, the value otherwise is also explicitly defined.

Thus, a Switch node can be perceived as a sequence of if-then-else blocks and is

processed in a similar way to the one already described for an If .

Just like for If nodes, the values to evaluate are found by first getting all the ones

already in the test object and then, in the If node the values for the decision would be

identified but seeing as a switch node can have multiple decisions defined, the values for

each of those decisions are also added.

After this step, the execution continues by following the same steps already defined

for If nodes (see 2, 3, 4). After step 4, each one of these test cases is evaluated against each

one of the decisions. If it meets a decision, it shall follow its path. If it does not meet any

decision, then it shall follow the otherwise path. The test cases are then grouped according

to the decision they verify and a test object per group is created, always maintaining the

information already retrieved over the course of the traversal of the current test object.

These test objects are finally added to the shared queue, if no cycles are detected.

Algorithm 9 also shows in greater detail the mechanism described.

Example: .

After processing the If node, a thread now pulls the first element from the queue, that

contains the test object TO2 and points towards the node of identifier 4, a Switch node

that will now be processed.

The first step is to identify the values to test, by first getting the values already in the

test cases present in TO2 and then identifying all the values to test from the decisions

defined in the Switch (A = 10 and C), thus we have:

48

Algorithm 9 Process Switch

1: function ProcessSwitch(testObject, switchNode, sharedQueue)
2: decisions← getDecisions(switchNode)
3: varV alues← {}
4: for each decision in decisions do
5: vals← getV aluesT oEvaluate(decision)
6: varV alues← varV alues∪ vals
7: testCases← combineAllV arV alues(vaV alues)
8: testCases← call passesPrevDecisions(prevDecisions, testCases)
9: groups← {} . maps the decisions to the set of test cases that shall follow that

decisions’s path
10: otherwiseT cs← {}
11: for each tc in testCases do
12: if matchesDecision(tc,decisions) then
13: d← decisionMatched(tc,decisions)
14: groups[d]← groups[d]∪ tc
15: else
16: otheriseT cs← otherwiseT cs∪ tc
17: for each {decision, tCs} in groups do
18: branch← getLink(decision,switchNode)
19: call createTOandAddSharedQueue(testObject, tCs,branch,decision, true)

20: branchOtherwise← getOtherwiseLink(switchNode)
21: call createTOandAddSharedQueue(testObject,otherwiseT cs,branchOtherwise,
22: decision, f alse)

1. From TO2: A = {11}, ..B = {“abc”}

2. From {A = 10}: A = {9,10,11}

3. From {C}: C = {T rue,False}

Final values to evaluate: A = {9,10,11}..B = {“abc”}..C = {T rue,False}
Having all the variables and values to evaluate, just like for the If , it is verified if any

of those variables are non-input. Contrarily to the last example, here we have all input

variables and thus no mapping needs to take place.

Now, in Step 3 the combination of all test cases is computed:

TC1 = [A = 9, ..B =“abc”, ..C = T rue] TC2 = [A = 9, ..B =“abc”, ..C = False]

TC3 = [A = 10, .B =“abc”, .C = T rue] TC4 = [A = 10, .B =“abc”, .C = False]

TC5 = [A = 11, .B =“abc”, .C = T rue] TC6 = [A = 11, .B =“abc”, .C = False]

Having all combinations, we will then check if they are valid in this point of the path,

by testing them against previous passed/failed decisions that have been encountered

over the current path. TO2 has recorded that the decision {L > 10.and.B =“abc”} was

previously met therefore, when evaluating each of the test cases TC1,T C2,T C3 and TC4

do not meet that decision, meaning that they are combinations that would never reach

49

this point of traversal, so they are removed from the set of test cases to evaluate, where

TC5 and TC6 remain for this Switch.

The next step is to then group the remaining two test cases according to the path they

will follow, whether that is any of the Switch decisions, or the defined otherwise branch.

As both concern the variable A with the value 11, the branch that verifies the decision

A = 10 will actually have no test cases to follow that path. If we look closely at the

composition of this graph, we can see that the previous If node traversed required that

for its true branch, the condition L > 10 had to be true, and we also saw that the local

variable L receives the value of the input variable A, meaning that actually, the condition

A > 10 needs to be true in order to reach the Switch node, thus it will never be possible

to have any combination of input traversing the Switch branch that requests for A = 10!

We now already know that that branch and following path will become unreachable and

will yield dead code. Let’s see the confirmation from the algorithm’s result closer to the

end of this chapter.

So, checking each TC5 and TC6, we already know that none will verify the condition

A = 10, but for the condition C, we have TC5 that contains the C = T rue and will,

therefore, follow that branch. TC6, on the other hand, claims C = False and will then not

verify any Switch decision, following the otherwise branch.

Finally, just as before, for each group of generated test cases, a test object will be

created and added to the queue.

Figure 4.10 and Figure 4.11 show the state of the algorithm and graph during the

traversal of this Switch node.

Continuing this example, the next element to be pulled by the shared queue points

towards the node of identifier 5, an Assign. As assigns have been previously exemplified,

we’ll go over this one briefly.

For the Assign node, the only step that takes place is to add the dependencies it

encapsulates back into the current test object (TO3) and then tries to push it back to the

end of the queue. After adding the dependency and before adding the block back into the

queue, it is verified if a cycle is encountered, by checking if the next node to be followed

by TO3 would be a node already traversed in its path. That node has the identifier 3

and it is confirmed that it has indeed been processed by this test object before. Thus, the

traversal of this test object is stopped and it is marked as finished.

Figure 4.12 now shows the state of the traversal after processing the node with identi-

fier 5.

4.1.5.5 Unsupported Node

The reasoning behind the choice of the initial set of nodes currently supported by this

algorithm was previously depicted. As procedures developed in OutSystems normally

have much more complexity in terms of the variety of the nodes used, and in order

not to block the evaluation of more complex procedures, this algorithm “bypasses” not

50

Figure 4.10: Processing a Switch node.

Figure 4.11: Graph after processing the Switch node.

51

Figure 4.12: Graph after processing the node of identifier 5.

supported nodes by simply jumping over to their outgoing flows. If the node contains

multiple outgoing flows, the test object following the Unsupported node will be multiplied

in order to have one test object per each outgoing flow (i.e., one test object per independent

path).

Algorithm 10 shows the pseudocode to process an Unsupported node.

Algorithm 10 Process Unsupported

1: function ProcessUnsupportedNode(testObject, unsupportedNode, sharedQueue)
2: outgoings← getLinks(unsupportedNode)
3: for each out in outgoings do
4: newT estObject← copyT estObject(testObject)
5: if containsBranch(testObject,branch) then
6: call yieldCycleWarning(testObject,branch)
7: else
8: newT estObject← newT estObject ∪ out
9: nextNode← {getOutgoing(out)}

10: sharedQueue← sharedQueue∪ {newT estObject,nextNode}

Example: .

Pulling the first element of the queue, we now have TO4 and the pointer to the node of

identifier 8, a node that is not of the type Assign, If nor Switch and is thus a not supported

node type.

Therefore, the only step to take here is to get the outgoing link for this node (it only

contains one {8→ 9}), add it to TO4 and add this test object back to the end of the queue,

encapsulated in a block along with a pointer to the node of identifier 9.

Figure 4.13 shows the state of traversal after processing this Unsupported node.

52

Figure 4.13: Processing a Unsupported node.

Continuing the example, the next block to pull from the queue contains the test object

TO5, and points to the node of identifier 7, an Assign node. Again, its assignment is

saved onto the test object as a dependency, its outgoing link added as a branch traversed

(7→ 11) and the block comprising of TO5 and the identifier 11 is again added to the end

of the queue.

Figure 4.14 shows both the graph and the algorithm’s state after processing this node.

Figure 4.14: The graph and algorithm’s state after traversal of node with identifier 7.

Up next, we have in the queue the block comprising of TO4 and the node 9, another

Assign node. Again, the same step of adding both the assignment and the outgoing link

to the test object and adding it back to the end of the queue takes place.

Figure 4.15 shows both the graph and the algorithm’s state after processing this node.

53

Figure 4.15: The graph and algorithm’s state after traversal of node with identifier 9.

4.1.5.6 End

The End node marks the end of execution for a particular path in the procedure. In order

to have a correct flow of information, all paths must begin with a Start node and finish

with an End.

For End nodes, the only step executed is to add the test object onto a set of test objects

marked as finalized. These finished test objects represent paths that have reached an

end after the algorithm’s traversal of the graph. In a correct procedure, the number of

finished test objects would coincide with the number of independent paths in the graph.

Situations such as traces of unreachable branches will reduce the overall number of test

objects.

Algorithm 11 shows the pseudocode to process an End node.

Algorithm 11 Process End

1: function processEnd(testObject, checkedOutT estObjects)
2: checkedOutT estObjects← checkedOutT estObjects∪ testObject

Example: .

The next block in the queue contains the test object TO5 and points to an End node,

thus the test object is marked as final. The same happens for the last block in the queue,

containing TO4 and pointing to the node 12 (also an End node).

Here we arrive at the end of traversal for this example. The way coverage criteria

and warnings are computed is explained in the next sections, as well as the final results

presented to the user. Figure 4.16 shows these last two blocks being processed and the

final state of the test objects checked out.

54

Figure 4.16: The graph and algorithm’s state while processing the last couple nodes and
after the end of traversal of this graph.

4.1.6 Coverage evaluation

To evaluate the coverage obtained by the entire set of test cases defined, and also to be able

to pinpoint the exact percentage of coverage provided by a selected few, some important

information is stored in the test objects (subsection 4.1.2). This way, by analysing the

final results, these percentages can be easily computed without the need to traverse the

graph once more.

Example: .

Figure 4.17 shows the final state of the test objects that reached the end of traversal for

the graph that has been used as example throughout this chapter. These test objects will

now help calculate the following coverage criteria and in identifying the final warnings

to the developer.

Figure 4.18 presents the characteristics of the graph that are also used to compute the

coverage criteria presented next.

4.1.6.1 Node

To compute the percentage of node coverage (see section 2.4.1) obtained by the test cases

selected (or by all of them), the algorithm will pick from each test object the nodes it

reaches by checking the branches covered and compares these with the entirety of nodes

the graph contains.

Example: .

The following examples will show how the different coverage criteria are calculated for

the full set of test objects generated. The same methodology is applied when the coverage

55

Figure 4.17: Final test objects after graph traversal.

Figure 4.18: Graph characteristics: set of all nodes, branches, simple conditions and
decisions found in the graph.

is calculated for only a sub-set of the test cases identified (each test case is mapped back

to its parent test object and the set of test objects selected are then analysed).

As explained, to calculate node coverage, the nodes the set of test objects cover are

identified and checked against the total set of nodes the graph contains.

Thus, TO3 covers the following nodes: 1, 2, 3, 5; TO4 covers: 1, 2, 3, 4, 8, 9, 12 and

TO5 covers: 1, 2, 3, 4, 7, 11. In total, the following nodes are covered by the full set of

test objects generated during graph traversal: 1, 2, 3, 4, 5, 7, 8, 9, 11, 12 (ten nodes).

Comparing this with the number of nodes the graph contains, we see the graph has

twelve nodes, meaning that we will not have 100% node coverage.

Node coverage :
nodes covered in test objects

total nodes
⇒ 10

12
= 0.83(3) ≈ 83%

56

Figure 4.19: Nodes covered by each of the test objects generated by this algorithm.

The total node coverage obtained in this example is 83%. Because it is less than 100%,

we already know that something is probably not right with this graph. In the warnings

section we will revise this topic.

Figure 4.19 represents graphically the nodes covered by the set of test objects gener-

ated.

4.1.6.2 Branch

In a very similar manner to node coverage, branch coverage (see section 2.4.1) is also

computed directly through the information already stored in the test objects, comparing

it to the full set of branches in the graph in order to calculate a percentage.

Example: .

Similarly to node coverage, here the branches covered by each of the test objects

are identified and thus we have that TO3, T O4 and TO5 cover the following branches:

({1→ 2}, {2→ 3}, {3→ 5}, {3→ 4}, {5→ 3}, {4→ 7}, {4→ 8}, {7→ 11}, {8→ 9}, {9→ 12})
(ten branches). Figure 4.20 represents this information graphically.

Branch coverage :
branches covered in test objects

total branches
⇒ 10

12
= 0.83(3) ≈ 83%

Just as before, here the test objects cover ten out of twelve branches so we will have

83% for branch coverage.

4.1.6.3 Condition

Condition coverage (see section 2.4.1) verifies if all individual conditions present on the

graph are evaluated for both its True and False values.

To evaluate the percentage of condition coverage, the set of all conditions in the graph

is analysed for each test case that reaches said condition in the path it covers, and the

amount of conditions that are both evaluated for the values True and False are marked as

fulfilling condition coverage. The ratio of conditions evaluated and the conditions that

are not evaluated will represent the final condition coverage percentage.

57

Figure 4.20: Branches covered by each of the test objects generated by this algorithm.

Example: .

Figure 4.18 showed the full set of conditions for the graph used as example: {L >

10}, {B =“abc”}, {A = 10} and {C}. We also know that the local variable L, after the first

node, depends on the input variable A, thus we can say instead that we have the condition:

{A > 10}.
The input combinations generated are now divided according to the conditions they

cover, and tested whether they meet or not the condition (we only need to check if there

are, for each condition, two test cases where one meets the condition and the other does

not) so we have:

• For the condition A > 10: [A = 9, .B =“abc”]→ F

[A = 11, .B =“abc”]→ T

• For the condition B =“abc”: [A = 11, .B =“rand1”]→ F

[A = 11, .B =“abc”]→ T

• For the condition C: [A = 11, .B =“abc”, .C = False]→ F

[A = 11, .B =“abc”, .C = T rue]→ T

• For the condition A = 10: [A = 11, .B =“abc”, .C = False]→ F

[A = 11, .B =“abc”, .C = T rue]→ F

Here, there is no test case that meets this condition, so condition coverage is not

verified for A = 10.

Condition coverage :
conditions covered
total conditions

⇒ 3
4

= 0.75 = 75%

In total, there are four conditions in the graph and only three verify the criterion, thus

leaving us with 75% condition coverage.

Figure 4.21 shows the test cases per condition and the conditions that verify condition

coverage.

58

Figure 4.21: Test cases per condition.

4.1.6.4 Modified condition-decision

To calculate modified condition-decision coverage (see section 2.4.1), this algorithm starts

by identifying the test cases that cover each decision (i.e., that pass through said decision

over the path they traverse). Then, for each decision, each test case will represent an

entry for that decision’s truth table and for the entries generated, it will be verified if this

criterion is held. For that, it is required for each individual variable to affect the result of

the decision, i.e., checking if by fixing the values of all other variables and switching only

the value of one variable at a time, the result of the decision changes.

The percentage is calculated by checking the number of decisions whose set of test

cases verify modified condition-decision coverage against the full set of decisions.

Example: .

In a similar manner to the previous criterion, here we also start by grouping the test

cases we have by the decisions they cover (before they were grouped by the conditions).

Then, for each group, we test if they verify this criterion is met.

For that, a truth table is drawn for each decision, based on the results provided by

each of the test cases available. Figure 4.22 shows the entries, for each decision, that are

able to be drawn based on the test cases generated. It can be seen that for the decisions

{L > 10 and B =“abc”}; and {C}, the entire truth tables are generated, meaning that this

criterion will be covered for both of those decisions. For A = 10, we have only one entry,

for when this decision turns false. Because we are not able to check the case for when

the condition A = 10 changes the value of the overall decision (as this is a decision with

only one condition, the full table needs to be drawn in order to have modified condition-

decision coverage).

Figure 4.23 shows the test cases per decision and the decisions that verify modified

condition-decision coverage.

Modif ied condition− decision coverage :
decisions covered
total decisions

⇒ 2
3

= 0.66(6) ≈ 66%

59

Figure 4.22: Truth tables for each decision, showing if there is a test object that is able to
vouch for said entry.

Figure 4.23: Test cases per decision.

Again, the decision A = 10 does not verify this criterion, so we have two out of three

decisions which results in around 66% for modified condition-decision coverage.

4.1.6.5 Multiple condition

For multiple condition coverage (see section 2.4.1), all possible combinations of condi-

tions in each decision are analysed, as if a truth table would be drawn for each decision.

So, in order to evaluate the percentage of condition coverage, for each decision, a truth

table is generated through the test cases that cover said decision (similarly to modified

condition-decision) and it is compared to the total number of decisions that have a full

truth table generated against the number of total decisions in the graph.

.

60

Example: .

Already having the test cases grouped by decision from the previous criterion (Fig-

ure 4.23), each of these test cases will correspond to an entry in the truth table relative

to the decision. If we have all the different entries required covered by, at least, one test

case, then said decision is marked as fulfilling multiple decision coverage.

Figure 4.22 shows the truth tables for each decision, associating for each entry a test

case, if it verifies said entry. Just like for the previous couple criteria, the decision A = 10

will not verify this criterion, while the remainder decisions do.

Multiple condition coverage :
decisions covered
total decisions

⇒ 2
3

= 0.66(6) ≈ 66%

Again we have two out of three decisions verifying this criterion thus resulting in 66%

for multiple condition coverage.

4.1.7 Expected output

This algorithm also produces the expected output for the procedure. In OutSystems,

output variables are defined and used in order to return values. There are no explicit

statements for this (such as, for some programming languages, the return statement). In-

stead, output variables are defined, receive values through Assign nodes and then always

return the state they hold when the procedure terminates.

To identify these output values, after traversal is finished, for each test case, the de-

pendencies for the output variables are searched and the expected value is computed

accordingly.

Example: .

This example contains one output variable, O. After traversal, for each test object, its

dependencies are identified and the expected values for O are calculated.

Starting with TO3, it contains the dependency {O← L} and since we also know that

{L← A}, each test case for TO3 will return for O the value it has stored for A. If no value

for A is found (or if the output variable did not have any dependency for this path), the

expected value presented for O would be N.D. (not defined).

Since all other test objects have the same dependencies, for every test case generated,

the output variable will simply take the value received by A.

61

Table 4.1: Expected values for the output variable.

Test case Expected output
{A=9, B="abc"} {O=9}
{A=9, B="rand1"} {O=9}
{A=9, B=""} {O=9}
{A=10, B="abc"} {O=10}
{A=10, B="rand1"} {O=10}
{A=10, B=""} {O=10}
{A=11, B="rand1"} {O=11}
{A=11, B=""} {O=11}
{A=11, B="abc", C=False} {O=11}
{A=11, B="abc", C=True} {O=11}

4.1.8 Warnings evaluation

Along with the definition of the full set of test cases and expected output values, this

algorithm can also identify some warnings that the user should take into account. These

include the identification of variables that are defined but never used, traces of code

that are never reached due to the combination of different decisions that made them

unreachable, and cycles that might never break.

4.1.8.1 Unused variables

To check if a variable is unused, the set of variables that all test objects found over its

traversal is checked against the set of all the variables defined within the graph. The

result is computed by a simple difference between sets.

Example: .

Recalling the example (Figure 4.1), we see that it has defined variables of all types:

input (A, B, C), local (L, U) and output (O). By checking the variables involved in both

attributions and while evaluating decisions, we see that all but the local variable U are

used at some point in that graph. Thus U is never used and a warning regarding that

variable is presented to back the developer.

4.1.8.2 Dead code

As the algorithm consists in the full traversal of the graph, the existence of dead code is

evaluated by checking when the full suite of test objects cannot reach certain paths.

This way, knowing all the branches defined in the graph and all the ones reached by

the test objects, the branches that are not reachable are easily identified and pointed out

to the developer.

.

62

Figure 4.24: Dead code and paths covered by each test object.

Example: .

While calculating branch coverage (subsubsection 4.1.6.2), it was noticed that only

ten out of the twelve branches in the graph are traversed. We are now going to identify

those that are never reached, by comparing both the sets of the entire branches covered

in the paths traversed by the test objects, and the ones defined by the graph.

The three test objects checked out by the end of traversal are able to cover the fol-

lowing branches: ({1→ 2}, {2→ 3}, {3→ 4}, {3→ 5}, {4→ 8}, {4→ 7}, {5→ 3}, {7→
11}, {8→ 9}, {9→ 12}). Comparing that to the set of all branches defined, we can see that

{4→ 6} and {6→ 10} are never reached. Looking closely at the procedure (Figure 4.1), we

can see that those branches represent the outgoing path from the decision A = 10, that

we had identified before would never be true and would thus never have a test object

continuing traversal through that path.

Here we have confirmed that those branches are indeed dead code and can never

be reached for any input combination. Figure 4.24 shows in the graph these branches

alongside the path each test object does cover.

4.1.8.3 Cycles

As explained, since the algorithm cannot, currently, identify if a cycle is ever stopped or

not, when one is found, a warning is produced so the developer knows and can analyse

its conditions more carefully.

63

Cycles are detected by verifying, after processing a node, if its outgoing link points

towards a node already processed by the current test object’s path. If this is verified, that

test object is marked as final and a warning is raised.

Example: .

We’ve already identified a cycle in this example when the Assign node with identifier 5

had the outgoing link (5→ 3) which points to the If node that had already been processed

by the test object that was currently traversing that path. Thus it was marked as a warning

that from the False branch of the If node, a cycle exists.

4.1.9 Test case prioritization

The order by which the test cases are presented to the developer is of the utmost impor-

tance (see section 3.2). Thus, the final test suite generated is prioritized according to two

criteria:

1. They are first organized in terms of the combined coverage they provide for both

branches and nodes;

2. If the previous results in ties when multiple items have the same priority, the second

criteria takes into account the number of decisions the path traversed by this test

case encounters.

This prioritization is also complementary, meaning that when the first “best” test case

is found, the second test case to be displayed is the one that, together with the first one,

helps to cover more nodes and branches. The same goes for the third pick and so on. This

means that the first x test cases presented are the ones that will cover the most nodes and

branches and no other combination of x test cases will be able to cover more code.

Example: .

In this example, as we had seen before, after graph traversal we were left with three

test objects. For each of those, we’ll start by calculating both the node and branch coverage

they provide to the code.

We also know that the entire graph contains 12 nodes and 12 branches, so we will use

that to calculate the following coverages. We have also seen the nodes and branches each

test object checked out covers, in both Figure 4.19 and Figure 4.20, respectively.

Table 4.2 shows, for each test object, the percentage of nodes and branches they cover.

These values are summed up in order to find out the test object that covers more nodes

and branches. We can see that TO4 is the winner for this first step of the prioritization,

and as there is no other test object with the same accumulated value, there is no need

to also verify the number of conditions each path covers. If ties were detected, the tie

breaker would be the number of decisions covered in the path traversed, if that would

64

also result in a tie, then it would be considered that the test objects involved in that tie

offer the same risk to the code and the choice would be randomly applied.

Table 4.2: Values used to identify the test object who covers more code and will be the
first presented to the developer.

Test object Node coverage Branch coverage Total accum.

TO3 4
12 ≈ 33% 4

12 ≈ 33% 66
TO4 7

12 ≈ 58% 6
12 = 50% 108

TO5 6
12 = 50% 5

12 ≈ 41% 91

So, TO4 is marked as the first test object. This means that the following path of the

code is already covered: ({1→ 2}, {2→ 3}, {3→ 4}, {4→ 8}, {8→ 9}, {9→ 12}).
The next step is to now calculate the coverage that TO3 and TO5 offer to the code not

yet covered by TO4. Table 4.3 shows the results for this step where it is visible that TO5

covers most of the remaining code and is thus marked as the second most important test

object. As we only have TO3 left, that will be the third in the line.

Table 4.3: Results from the next step of prioritization.

Test object Node coverage Branch coverage Total accum.

TO3 1
12 ≈ 8% 2

12 ≈ 16% 24
TO5 2

12 = 16% 2
12 ≈ 16% 32

Finally, to actually present these results to the user, one randomly picked test case

from the test object TO4 will appear first, followed by one from TO5 and then TO3. The

remainder test cases from each test object will be randomly ordered. Figure 4.25 shows

the order by which the code is covered.

4.1.10 Optimizations

Some optimizations have taken place in order to allow a better management of both

memory and time resources. For this, there are two main mechanisms being employed:

• Parallelism: the work is being parallelised in an effort to reduce the time the algo-

rithm runs;

• Cause-effect: with this methodology the number of test cases produced is reduced

significantly, thus saving memory resources.

4.2 PoC with dummy model

A PoC was first developed in order to verify if the algorithm shown could be implemented

over a model like OutSystems. For that, a simplified version of the model was created,

65

Figure 4.25: The order by which the code is covered if test cases from each path are
executed sequentially from left to right.

Figure 4.26: XML file snippet from the graph being used as example.

only containing the supported nodes.

This simple model consists of two objects: nodes and links. Each link connects two

nodes and each node contains a set of information according to its type. Figure 4.26

shows a snippet of the XML file that models the graph used as example.

Figure 4.27 represents the structure for this PoC. It receives the XML representation

of the model and converts it to Java objects with the Java Architecture for XML Binding

(JAXB) [68] API. Then, having these objects, the algorithm executes. After traversing the

graph and calculating the coverage criteria, Java Servlets [65] request the results from the

algorithm’s API and report them to the JavaServer Pages (JSP) [66] that instantiate the

interface that developers can then interact with.

Figure 4.28 shows the user interface for this PoC, using the graph that has been used

throughout this chapter, where:

66

Figure 4.27: Structure of this PoC.

(A) shows the procedure with unreachable branches highlighted in red. In green are

highlighted the branches covered by the selected test cases (in this case they are all

selected and thus all branches but the unreachable are marked as green);

(B) allows the developer to choose the procedure it wishes to evaluate;

(C) contains a selectable list of the input combinations generated (all selected at first);

(D) presents the meaningful warnings;

(E) complements the visual representation of the unreachable branches, as they can

also be seen in a textual form;

(F) depicts the results obtained for the multiple coverage criteria evaluated, according

to the test selected cases;

(G) the most complex criteria can be hidden from view.

67

Figure 4.28: PoC interface screenshot.

Figure 4.28 also shows the results obtained from this example. This prototype did not

include the expected output results feature, as it was only implemented later on, as part

of the tool described in the following section.

4.3 Tool applied to the OutSystems model

This tool was implemented directly over the OutSystems development environment, Ser-

vice Studio. Figure 4.29 shows the structure of this tool. The model exists in Service

Studio intrinsically, and it is used as input by the tool. The algorithm, implemented in

C#, begins its execution and the final results are presented in a dialog, which is a view

built upon web technologies, in particular, HTML, Typescript (incl. React) and CSS.

A paper [15] further describing this tool can be seen in Appendix B and a video

(available here1) presents a screen-cast of a execution scenario.

Figure 4.31 a) shows the user interface for this tool, presenting the results for the

example used through this chapter, where the following fields correspond to:

(A) generated input combinations. These initial combinations represent a minimum set

of test cases necessary to reach maximum node and branch coverage, meaning that

1https://youtu.be/8GsY8NTNXdk

68

https://youtu.be/8GsY8NTNXdk

Figure 4.29: Structure of the tool implemented for ServiceStudio.

Figure 4.30: Screenshot of ServiceStudio where the command to call the tool can be seen.

69

Figure 4.31: Tool window with results from this example. a) shows the initial state of the
window and b) after expanding all fields.

they represent one test case from each test object and are prioritized between each

other according to the methodology explained in subsection 4.1.9;

(B) the expected output variables for each input combination;

(C) the remaining generated input combinations can be expanded by clicking over this

field;

(D) warnings found for the evaluated procedure;

(E) the coverage obtained for the different criteria according to selected items. When a

percentage is highlighted in green, it means that it is the highest value recorded for

that criterion and selecting further items will never increase it;

(F) a help button which opens a menu listing the Frequently Asked Questions (FAQ).

These questions explain what each field of the window represents. It also clarifies

some questions that were considered to be problematic while this tool was under

usability tests (see section 5.2).

70

C
h
a
p
t
e
r

5
Evaluation

In order to test this tool, two main tests were performed. First, the algorithm was executed

over multiple graphs from where values such as the number of top test cases found, the

total number of test cases generated and what would the total number of test cases be if

cause-effect graphing was not implemented. Then, usability tests were also carried out

by users with varying degrees of expertise in testing.

Both tests were applied over the tool developed for Service Studio (see section 4.3)

and obtained results and feedback are now discriminated.

5.1 Algorithm execution

The algorithm was executed over 24 graphs and the following data was retained:

• Total number of test cases generated by the algorithm;

• Number of “top test cases”, i.e., the set of minimum test cases necessary to reach all

independent paths in the graph;

• Number of test cases that would be generated if not for the implementation of cause-

effect graphing.

Each of the graphs is identified by its cyclomatic complexity, a software metric used

to indicate the complexity of a program. It is a quantitative measure of the number of

linearly independent paths1 through a program’s source code and relates to the control

graph of the program, indicating the risk level for each procedure [41, 56]. It can be

computed using the control flow graph of the program with CC = E −N + 2, where CC is

1Paths are linearly independent if every path contains an edge not included in any other path. Thus,
linearly independent paths are a sub-set of all independent paths in a graph [31].

71

Cyclomatic Complexity Risk Evaluation

1-10
Simple code
Without much risk

11-20
More complex code
Moderate risk

21-50
Complex code
High risk

>50
Untestable
Very high risk

Table 5.1: Risk evaluation according to cyclomatic complexity [41].

the cyclomatic complexity, E refers to the edges and N to the nodes [56]. Table 5.1 shows

the risk levels associated with the cyclomatic complexity of a graph.

Figure 5.1 and Figure 5.2 show the comparison, for each graph, of the amount of

generated test cases against the top test cases that are first presented to the user where,

with a smaller amount of the test case suite, all independent paths in the graph can be

tested. These figures show the incredible difference between the size of these sets and

how helpful this feature can be for developers that, simply put, may not be able to test

every single scenario for their applications. This smaller set of test cases can provide a

very important assurance to the software, helping developers prioritizing the tests they

execute.

Figure 5.1: Scatter plot comparing the amount of top test cases presented against the total
test cases generated by this tool.

Figure 5.3 presents the improvement in the number of test cases generated by applying

cause-effect graphing. This mechanism allows us to minimize the number of test cases

72

Figure 5.2: Percentage represented by the top test cases over the total amount of test cases
generated.

generated, knowing that the remainder correspond to redundant situations that would

not provide new information to the developer seeing as they would simply traverse paths

with input combinations already contemplated in the smaller set of presented test cases.

Figure 5.3: Scatter plot comparing the amount of total test cases generated for this tool
against what would be generated if not for cause-effect graphing.

Without the application of cause-effect graphing, using the example presented in

73

Implementation (see Figure 4.1), after processing the Switch node with identifier 4, the

following input combinations were generated:

TC1 = [A = 9, ..B =“abc”, ..C = T rue] TC2 = [A = 9, ..B =“abc”, ..C = False]

TC3 = [A = 10, .B =“abc”, .C = T rue] TC4 = [A = 10, .B =“abc”, .C = False]

TC5 = [A = 11, .B =“abc”, .C = T rue] TC6 = [A = 11, .B =“abc”, .C = False]

TC1,T C2,T C3 and TC4 were eliminated due to cause-effect (to reach the Switch node,

the decision L > 10 and B = “abc′′ had to be met). Would those test cases not have been

eliminated, we would have had generated four test cases that do not even reach the node

that produced those combinations, as they would follow an alternative path that already

had test cases generated for its boundary values (in this example, they would follow the

False branch of the If node). In this example, we saved just four test cases, but as we can

see in Figure 5.3, for larger examples, this can escalate pretty quickly.

More detailed results of these tests can be found in Appendix A.

5.2 Usability experiment

The usability of a product represents the interaction of the user with the system and can

be accurately measured by assessing user performance, satisfaction and acceptability. For

a software product, usability is the user’s view of software quality [10].

To evaluate how the user interface performed when tested by users, usability tests

took place for 40 different participants, 65% male and 35% female, ages between 21 and

30, with varying expertise in testing and each test took between 10 and 15 minutes.

The tests consisted in a two-part exercise where the user would receive a simple

action in OutSystems and then attempt to answer some questions revolving two main

scenarios: (1) manually calculating the results and (2) having the results provided by the

tool available.

The questions included whether the user was able to identify a minimum set of input

combinations that would cover each independent path in the graph, if he could order

them by the amount of code covered, and others. Appendix A details the graphs used,

the questions, expected answers and more detailed results for this test.

Table 5.2 lists the questions performed associated with the correct answer rate for

both the original method (manual) and this tool. Figure 5.4 also compares the percentage

of correct answers for both methods.

5.2.1 SUS

Complementing the comprehension questions, at the end of each usability test, the System

Usability Scale (SUS) test was presented to the participants regarding the developed tool.

SUS [14] is a simple, ten item scale that offers a global view of subjective assessments

of usability indicating the degree of agreement or disagreement with the statement on a

five point scale (1-Strongly disagree, 5-Strongly agree).

74

Question
Correct rate (%)
Original Tool

1. Identify a set of minimum test cases to cover all independent
paths of this action.

2.5 90

2. What is the percentage of branches and nodes the provided
input combinations offer to the code.

2.5 97.5

3. Can you order the set of minimum test cases defined by the
code covered.

2.5 75

4. What is the expected value for the output variable according to
the provided input combination?

100 100

5. Are there any possible errors in this trace of code that jump to
sight?

30 97.5

6. What is the maximum node and branch coverage possible to
obtain for this action?

32.5 97.5

7. Are there any paths unreachable? If so, which ones? 42.5 97.5

Table 5.2: For each question on the usability tests, the correct answer rate for both the
original method (manual analysis) and for the tool.

Figure 5.4: Percentage of correct answers for both methods.

Table 5.3 shows the meaning for SUS scores, that range between 0 and 100.

75

Score Rating

<25
Worst imaginable
Not acceptable

26-39
Poor
Not acceptable

50-52
Ok
Not acceptable

53-73
Good
Marginal

74-85
Excelent
Acceptable

86-100
Best imaginable
Acceptable

Table 5.3: SUS meaning [7, 13].

Question Mean answer
1. I think that I would like to use this system frequently. 4.6
2. I found the system unnecessarily complex. 1.175
3. I thought the system was easy to use. 4.45
4. I think that I would need the support of a technical person to be able
to use this system.

1.05

5. I found the various functions in this system were well integrated. 4.45
6. I thought there was too much inconsistency in this system. 1.35
7. I would imagine that most people would learn to use this system very
quickly.

4.35

8. I found the system very cumbersome to use. 1
9. I felt very confident using the system. 4.2
10. I needed to learn a lot of things before I could get going with this
system.

1.625

Table 5.4: Mean SUS answer for each question.

Table 5.4 shows the mean answer for each question, Figure 5.5 the distribution of

the results and Table 5.5 the descriptive statistics recorded, from which the mean SUS

obtained can be analysed. Through Table 5.3, we can in interpret that 90.875 is a very

promising result.

N Mean Std. Dev. Skew. Kurt.
Shapiro-Wilk
W p-value

40 90.875 6.138 -0.498 -0.227 0.947 0.060

Table 5.5: SUS descriptive statistics.

5.2.2 Results analysis

Throughout the usability tests, for the current method:

76

Figure 5.5: SUS distribution.

• The participants demonstrated enormous difficulties defining a minimum set of

input combinations to cover all independent paths. In most cases they would define

more tests than required (namely not thinking about cause-effect, they would simply

try out all possible combinations) and a few defined an insufficient set;

• Also when confronted with the prioritization question, the first instinct was to,

individually, see the nodes and branches each test case was covering, not taking

into account the fact that some tests would cover partially the same path;

• The participants also had trouble identifying that unreachable branches existed in

one of the graphs, and the unbreakable cycle in the other graph was also rarely

identified;

• Overall, for the current method, the biggest complaint from the participants was

on how time consuming and cumbersome it was to, manually, compute all those

results.

For the tool developed:

• The main problems identified were the bar where the coverage percentages were

presented, not standing out as much as it should, as some participants had difficul-

ties finding it;

• Same happened for the button that displayed the warnings;

• Some users also did not immediately interpret that the presented test cases were the

minimum set to reach all independent paths nor that they were already ordered;

77

• Overall, for most of the questions, the participants found the answer very quickly,

and the immediate feedback from the tool was on how much time and how much

effort this tool would minimize.

The final conclusions drawn from these tests tell us that the way the coverage is

displayed needs to be improved, as well as the idea that the initial test cases displayed

are a minimum set to cover all independent paths.

For the SUS, the result obtained is extremely satisfying, reassuring that we are on the

right path, not only for the interface design, but also for the importance and relevance of

this work.

78

C
h
a
p
t
e
r

6
Conclusions

Software testing is extremely labor-intensive and expensive, accounting for 50% of the

cost of software development [2, 49, 61] and one of the most difficult problems in testing

is finding a test data selection strategy that is both valid and reliable [36].

In industry, the selection of test data is generally a manual process and is usually

carried out by the tester. However, this practice is extremely costly, difficult and laborious.

Automation in this area has been limited [57].

OutSystems provides a low-code application delivery platform that simplifies every

stage of the app development and delivery process. OutSystems enables rapid, agile and

continuous development, delivery and management of web and mobile applications [70].

The automation of the test case generation activity matches perfectly with OutSys-

tems objectives, helping to further agilize the process of software development, bringing

incredible value for OutSystems developers.

This work had the following objectives: ideation and development of an algorithm that

generates the necessary test cases to reach traversable code in OutSystems applications’

logic, as well as provide a coverage evaluation over these test cases and, finally, implement

a PoC that would prove the viability of this solution.

All of the above were not only met but surpassed, seen as there is not only a PoC

but also a running tool that already yields extremely interesting results. This tool also

evaluates the generated test cases over a set of five coverage criterion, allowing their

prioritization that determines the way they are displayed to the end user.

The graphs used throughout this thesis produced very interesting results regarding

the optimization of the number of test cases that are generated as a whole. Not only that

but it actually went further by presenting to the developer a set of minimum test cases

that provide maximum node and branch coverage over the code, which can be of great

advantage in terms of managing time and effort in test implementation.

79

The user feedback gathered during the usability experiment was also very encour-

aging. It was noticeable, that the tool had a very positive impact in the mood of the

developers and in the way they would be more excited to approach the challenges know-

ing that they would already have a “helping hand”. Even though a couple of usability

issues were raised, they can be easily fixed and re-integrated back into the tool. The bulk

of the feedback was extremely positive.

6.1 Contributions

This dissertation complied the following contributions:

1. PoC with dummy model (section 4.2): provided the confirmation that the concept

implemented over a generic model and language was viable to be ported to the real

system and produce optimistic results;

2. Tool applied to the OutSystems model (section 4.3): even though its still a naive

approach, seen as only a small sub-set of the OutSystems model is covered, this

tool is already a very important stepping stone into bringing automated testing and

coverage analysis to OutSystems developers (for both clients and in-house users);

3. Paper for the VL/HCC of 2018 [45] with title “Automated Test Generation Based on a
Visual Language Applicational Model”: a paper [15] was submitted and accepted as a

showpiece for the VL/HCC conference of 2018, offering an opportunity to showcase

this tool to the VL/HCC community, helping us bring more exposure to the tool

and the work hereby presented. This paper can be consulted in Appendix B.

6.2 Future work

Even though the expectations originally put on this work were already surpassed, due to

the complexity and magnitude of the OutSystems model, as well as the testing activity

itself being quite cumbersome, important aspects were yet not covered within the time

allocated for this work and are now depicted in greater detail.

1. The “boundary dependency problem”: so far, the work presented relies on the boundary-

value analysis to identify the values we want to generate. Subsection 4.1.3 described

some of the issues that cannot be surpassed based solemnly on this methodology.

For example, let’s say we have two input variables of the same type, A and B and

the following decision is reached: A = B. For that, we would have to go to the input

variable B and get its values to evaluate them for A. But what if B does not yet have

any values? That can very easily happen and the solution in this work presented

does not yet cover these situations. A possible solution would be to also incorporate

error guessing (see section 2.2.4.2), where error-prone situations for a determinate

80

data type are evaluated. This way, for the example where B does not yet have any

values, we can start by testing the most problematic ones;

2. Complex expressions: this work currently supports relatively simple expressions

and more complex ones should also be taken into account such as algebraic ex-

pressions or external calls to procedures, amongst others. Seen as the main issue

arising from these expressions is the “boundary dependency problem”, the same idea

of adding more methodologies can also be taken into account;

3. Data types: more complex data types such as lists or objects would also be a very

interesting addition to this tool;

4. Expanding the model: OutSystems model is vast and even though we started by

tackling the logic behind user and server actions, much more is available through

this model, such as designing User Interface (UI), business processes, data models,

amongst others [72]. Supporting additional elements would bring incredible value

to the developer;

5. Cycles: The current approach simply identifies that a cycle is present and signals it

to the developer so that he can pay closer attention to it. A better approach would

be to actually verify the boundaries of that cycle, what is the minimum times it can

run, the maximum and if it is expected to break (recall in the example presented

in subsubsection 4.1.5.3, the cycle found would actually never break and thus the

warning presented to the developer should reflect that);

6. Test case execution: the automated execution of the test cases themselves, by com-

paring the result obtained with the expected output would also be a fabulous addi-

tion to this tool;

7. Integration testing: this work is focused on unit testing, but for the future, integra-

tion testing could be a very interesting complement for this work, ensuring a more

in-depth analysis for the developer.

81

Bibliography

[1] AgitarOne. Agitator. url: http://www.agitar.com/solutions/products/

software_agitation.html (visited on 02/13/2018).

[2] D. S. Alberts. “The economics of software quality assurance.” In: Proceedings
of the June 7-10, 1976, national computer conference and exposition. ACM. 1976,

pp. 433–442.

[3] J. G. W. Allen Kent. Encyclopedia of Computer Science and Technology: Volume 32 -
Supplement 17: Compiler Construction to Visualization and Quantification of Vortex-
Dominated Flows. 1nd. Marcel Dekker, 1995, pp. 284–287. isbn: 9780824722852.

[4] Alloy. Alloy: a language and tool for relational models. url: http://alloy.lcs.

mit.edu/alloy/ (visited on 09/05/2018).

[5] P. Ammann and J. Offutt. Introduction to Software Testing. 1st ed. New York, NY,

USA: Cambridge University Press, 2008, pp. 27–51. isbn: 978-0-511-39330-3.

[6] T. Ball. “The Concept of Dynamic Analysis.” In: SIGSOFT Softw. Eng. Notes 24.6

(Oct. 1999), pp. 216–234. issn: 0163-5948. doi: 10.1145/318774.318944. url:

http://doi.acm.org/10.1145/318774.318944.

[7] A. Bangor, P. Kortum, and J. Miller. “Determining What Individual SUS Scores

Mean: Adding an Adjective Rating Scale.” In: 4 (Apr. 2009), pp. 114–123.

[8] L. Baresi and M. Pezzè. “An Introduction to Software Testing.” In: Electronic
Notes in Theoretical Computer Science 148.1 (2006). Proceedings of the School of

SegraVis Research Training Network on Foundations of Visual Modelling Tech-

niques (FoVMT 2004), pp. 89–111. issn: 1571-0661. doi: https://doi.org/10.

1016/j.entcs.2005.12.014. url: http://www.sciencedirect.com/science/

article/pii/S1571066106000442.

[9] A. Bertolino and E Marchelli. “A Brief Essay on Software Testing.” In: Software
Engineering 1 (2005).

[10] N. Bevana, J. Kirakowskib, and J. Maissela. “What is Usability?” In: 4th Inter-
national Conference on Human-Computer Interaction. Stuttgart, Germany, 1991,

pp. 30–39. doi: 10.1109/QUATIC.2007.8.

83

http://www.agitar.com/solutions/products/software_agitation.html
http://www.agitar.com/solutions/products/software_agitation.html
http://alloy.lcs.mit.edu/alloy/
http://alloy.lcs.mit.edu/alloy/
https://doi.org/10.1145/318774.318944
http://doi.acm.org/10.1145/318774.318944
https://doi.org/https://doi.org/10.1016/j.entcs.2005.12.014
https://doi.org/https://doi.org/10.1016/j.entcs.2005.12.014
http://www.sciencedirect.com/science/article/pii/S1571066106000442
http://www.sciencedirect.com/science/article/pii/S1571066106000442
https://doi.org/10.1109/QUATIC.2007.8

[11] M. Boshernitsan, R. Doong, and A. Savoia. “From Daikon to Agitator: lessons and

challenges in building a commercial tool for developer testing.” In: Proceedings
of the 2006 international symposium on Software testing and analysis. ACM. 2006,

pp. 169–180.

[12] C. Boyapati, S. Khurshid, and D. Marinov. “Korat: Automated Testing Based on

Java Predicates.” In: Proceedings of the 2002 ACM SIGSOFT International Sym-
posium on Software Testing and Analysis. ISSTA ’02. Roma, Italy: ACM, 2002,

pp. 123–133. isbn: 1-58113-562-9. doi: 10.1145/566172.566191. url: http:

//doi.acm.org/10.1145/566172.566191.

[13] J. Brooke. “SUS: A Retrospective.” In: Journal of Usability Studies. Vol. 8. 2. 2013,

pp. 29–40.

[14] J. Brooke et al. “SUS-A quick and dirty usability scale.” In: Usability evaluation in
industry 189.194 (1996), pp. 4–7.

[15] M. Cabeda and P. Santos. “Automated Test Generation Based on a Visual Language

Applicational Model.” In: 2018 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). 2018, pp. 289–290. doi: 10.1109/VLHCC.2018.

8506582.

[16] C. Chouhan, V. Shrivastava, and P. S. Sodhi. “Test case generation based on activity

diagram for mobile application.” In: International Journal of Computer Applications
57.23 (2012).

[17] K. Claessen and J. Hughes. “Testing Monadic Code with QuickCheck.” In: SIG-
PLAN Not. 37.12 (Dec. 2002), pp. 47–59. issn: 0362-1340. doi: 10.1145/636517.

636527. url: http://doi.acm.org/10.1145/636517.636527.

[18] K. Claessen and J. Hughes. “QuickCheck: A Lightweight Tool for Random Testing

of Haskell Programs.” In: SIGPLAN Not. 46.4 (May 2011), pp. 53–64. issn: 0362-

1340. doi: 10.1145/1988042.1988046. url: http://doi.acm.org/10.1145/

1988042.1988046.

[19] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A Formal Evalua-
tion of Data Flow Path Selection Criteria. Tech. rep. Amherst, MA, USA, 1988,

pp. 1318–1332. url: http://www.ncstrl.org:8900/ncstrl/servlet/search?

formname=detail\&id=oai\%3Ancstrlh\%3Aumass_cs\%3Ancstrl.umassa_cs\

%2F\%2FUM-CS-1988-073.

[20] W. W. W. Consortium. eXtensible Markup Language (XML). url: https://www.w3.

org/XML/ (visited on 02/02/2018).

[21] S. Dalai, A. A. Acharya, and D. P. Mohapatra. “Test case generation for concurrent

object-oriented systems using combinational UML models.” In: Editorial Preface
3.5 (2012). doi: 10.14569/IJACSA.2012.030515.

84

https://doi.org/10.1145/566172.566191
http://doi.acm.org/10.1145/566172.566191
http://doi.acm.org/10.1145/566172.566191
https://doi.org/10.1109/VLHCC.2018.8506582
https://doi.org/10.1109/VLHCC.2018.8506582
https://doi.org/10.1145/636517.636527
https://doi.org/10.1145/636517.636527
http://doi.acm.org/10.1145/636517.636527
https://doi.org/10.1145/1988042.1988046
http://doi.acm.org/10.1145/1988042.1988046
http://doi.acm.org/10.1145/1988042.1988046
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail\&id=oai\%3Ancstrlh\%3Aumass_cs\%3Ancstrl.umassa_cs\%2F\%2FUM-CS-1988-073
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail\&id=oai\%3Ancstrlh\%3Aumass_cs\%3Ancstrl.umassa_cs\%2F\%2FUM-CS-1988-073
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail\&id=oai\%3Ancstrlh\%3Aumass_cs\%3Ancstrl.umassa_cs\%2F\%2FUM-CS-1988-073
https://www.w3.org/XML/
https://www.w3.org/XML/
https://doi.org/10.14569/IJACSA.2012.030515

[22] S. Desai and S. Abhishek. Software Testing : A Practical Approach. second. PHI

Learning Private Limited, Delhi, 2016, pp. 145–148. isbn: 978-81-203-5226-1.

[23] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs.” In: Numer.
Math. 1.1 (Dec. 1959), pp. 269–271. issn: 0029-599X. doi: 10.1007/BF01386390.

url: http://dx.doi.org/10.1007/BF01386390.

[24] E. Dustin, J. Rashka, and J. Paul. Automated Software Testing: Introduction, Manage-
ment, and Performance. Boston, MA, USA: Addison-Wesley Longman Publishing

Co., Inc., 1999. isbn: 0-201-43287-0.

[25] M. Ehmer and F. Khan. “A Comparative Study of White Box, Black Box and Grey

Box Testing Techniques.” In: 3 (June 2012), pp. 12–15.

[26] I. K. El-Far and J. A. Whittaker. “Model-based software testing.” In: Encyclopedia
of Software Engineering (2002).

[27] E. Çelik, S. Eren, E. Çini, and. Keleş. “Software test automation and a sample

practice for an enterprise business software.” In: 2017 International Conference on
Computer Science and Engineering (UBMK). 2017, pp. 141–144. doi: 10.1109/

UBMK.2017.8093583.

[28] M. E. Fagan. “Advances in software inspections.” In: IEEE Transactions on Software
Engineering SE-12.7 (1986), pp. 744–751. issn: 0098-5589. doi: 10.1109/TSE.

1986.6312976.

[29] M. E. Fagan. “Design and Code Inspections to Reduce Errors in Program De-

velopment.” In: Pioneers and Their Contributions to Software Engineering: sd&m
Conference on Software Pioneers, Bonn, June 28/29, 2001, Original Historic Con-
tributions. Ed. by M. Broy and E. Denert. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2001, pp. 301–334. isbn: 978-3-642-48354-7. doi: 10.1007/978-3-

642-48354-7_13. url: https://doi.org/10.1007/978-3-642-48354-7_13.

[30] L. Fernandez-Sanz and S. Misra. “Practical application of UML activity diagrams

for the generation of test cases.” In: Proceedings of the Romanian academy, Series A
13.3 (2012), pp. 251–260.

[31] D. Fotakis. “Congestion Games with Linearly Independent Paths: Convergence

Time and Price of Anarchy.” In: Theory of Computing Systems 47.1 (2010), pp. 113–

136. issn: 1433-0490. doi: 10.1007/s00224-009-9205-7. url: https://doi.

org/10.1007/s00224-009-9205-7.

[32] M. Fowler and M. Foemmel. “Continuous integration.” In: Thought-Works) http://www.
thoughtworks. com/Continuous Integration. pdf 122 (2006), p. 14.

[33] G. Fraser and A. Arcuri. “Whole test suite generation.” In: IEEE Transactions on
Software Engineering 39.2 (2013), pp. 276–291.

85

https://doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/BF01386390
https://doi.org/10.1109/UBMK.2017.8093583
https://doi.org/10.1109/UBMK.2017.8093583
https://doi.org/10.1109/TSE.1986.6312976
https://doi.org/10.1109/TSE.1986.6312976
https://doi.org/10.1007/978-3-642-48354-7_13
https://doi.org/10.1007/978-3-642-48354-7_13
https://doi.org/10.1007/978-3-642-48354-7_13
https://doi.org/10.1007/s00224-009-9205-7
https://doi.org/10.1007/s00224-009-9205-7
https://doi.org/10.1007/s00224-009-9205-7

[34] V. Garousi and M. V. Mäntylä. “When and What to Automate in Software Testing?

A Multi-vocal Literature Review.” In: Inf. Softw. Technol. 76.C (Aug. 2016),

pp. 92–117. issn: 0950-5849. doi: 10.1016/j.infsof.2016.04.015. url:

http://dx.doi.org/10.1016/j.infsof.2016.04.015.

[35] P. Godefroid, N. Klarlund, and K. Sen. “DART: directed automated random test-

ing.” In: ACM Sigplan Notices. Vol. 40. 6. ACM. 2005, pp. 213–223.

[36] J. B. Goodenough and S. L. Gerhart. “Toward a theory of test data selection.”

In: IEEE Transactions on Software Engineering SE-1.2 (1975), pp. 156–173. issn:

0098-5589. doi: 10.1109/TSE.1975.6312836.

[37] O. M. Group. Object Constraint Language is available from Object Management
Group’s web site. url: http://www.omg.org (visited on 02/02/2018).

[38] R. Hamlet. “Random testing.” In: Encyclopedia of software Engineering (2002).

[39] haskell. url: https://www.haskell.org/ (visited on 05/21/2018).

[40] R. Hat. JBoss. url: http://www.jboss.org/ (visited on 01/15/2018).

[41] I. Heitlager, T. Kuipers, and J. Visser. “A Practical Model for Measuring Main-

tainability.” In: 6th International Conference on the Quality of Information and Com-
munications Technology (QUATIC 2007). 2007, pp. 30–39. doi: 10.1109/QUATIC.

2007.8.

[42] D. Hoffman. “Cost Benefits Analysis of Test Automation.” In: (1999).

[43] J. Hopcroft and R. Tarjan. “Algorithm 447: Efficient Algorithms for Graph Manip-

ulation.” In: Commun. ACM 16.6 (June 1973), pp. 372–378. issn: 0001-0782. doi:

10.1145/362248.362272. url: http://doi.acm.org/10.1145/362248.362272.

[44] IBM. Rational Rose. url: https://www-03.ibm.com/software/products/pt/

rosemod (visited on 02/02/2018).

[45] IEEE Symposium on Visual Languages and Human-Centric Computing. url: https:

//vlhcc18.github.io/ (visited on 08/28/2018).

[46] D. Jackson, I. Schechter, and H. Shlyahter. “Alcoa: the alloy constraint analyzer.”

In: Proceedings of the 22nd international conference on Software engineering. ACM.

2000, pp. 730–733.

[47] D. Janzen and H. Saiedian. “Test-driven development concepts, taxonomy, and

future direction.” In: Computer 38.9 (2005), pp. 43–50.

[48] B. Jost, M. Ketterl, R. Budde, and T. Leimbach. “Graphical Programming Environ-

ments for Educational Robots: Open Roberta - Yet Another One?” In: 2014 IEEE
International Symposium on Multimedia. 2014, pp. 381–386. doi: 10.1109/ISM.

2014.24.

86

https://doi.org/10.1016/j.infsof.2016.04.015
http://dx.doi.org/10.1016/j.infsof.2016.04.015
https://doi.org/10.1109/TSE.1975.6312836
http://www.omg.org
https://www.haskell.org/
http://www.jboss.org/
https://doi.org/10.1109/QUATIC.2007.8
https://doi.org/10.1109/QUATIC.2007.8
https://doi.org/10.1145/362248.362272
http://doi.acm.org/10.1145/362248.362272
https://www-03.ibm.com/software/products/pt/rosemod
https://www-03.ibm.com/software/products/pt/rosemod
https://vlhcc18.github.io/
https://vlhcc18.github.io/
https://doi.org/10.1109/ISM.2014.24
https://doi.org/10.1109/ISM.2014.24

[49] B. Korel. “Automated software test data generation.” In: IEEE Transactions on
Software Engineering 16.8 (1990), pp. 870–879. issn: 0098-5589. doi: 10.1109/

32.57624.

[50] P. T. Kshirasagar Naik. Software testing and quality assurance: theory and practice.

first. Wiley, 2008, pp. 7–17 , 96–101. isbn: 978-0-471-78911-6.

[51] P. A. Laplante. What every engineer should know about software engineering. CRC

Press, 2007, p. 176. isbn: 978-0-8493-7228-5.

[52] A. Lima. OutSystems Platform - Architecture and Infrastructure Overview. Tech. rep.

2015. url: https://www.outsystems.com/home/document-download/178/8/

0/0.

[53] N. Magic. MagicDraw. url: https://www.nomagic.com/products/magicdraw

(visited on 02/02/2018).

[54] D. Marinov and S. Khurshid. “TestEra: A novel framework for automated testing

of Java programs.” In: Automated Software Engineering, 2001.(ASE 2001). Proceed-
ings. 16th Annual International Conference on. IEEE. 2001, pp. 22–31.

[55] E. of mathematics. Isomorphism. url: http://www.encyclopediaofmath.org/

index.php?title=Isomorphism&oldid=21572 (visited on 09/05/2018).

[56] T. J. McCabe. “A complexity measure.” In: IEEE Transactions on software Engineer-
ing 4 (1976), pp. 308–320. doi: 10.1109/tse.1976.233837.

[57] P. McMinn. “Search-based Software Test Data Generation: A Survey.” In: Softw.
Test. Verif. Reliab. 14.2 (June 2004), pp. 105–156. issn: 0960-0833. doi: 10.1002/

stvr.v14:2. url: http://dx.doi.org/10.1002/stvr.v14:2.

[58] Microsoft. ASP.NET. url: https://www.asp.net (visited on 01/15/2018).

[59] A. Milicevic, S. Misailovic, D. Marinov, and S. Khurshid. “Korat: A Tool for

Generating Structurally Complex Test Inputs.” In: 29th International Conference on
Software Engineering (ICSE’07). 2007, pp. 771–774. doi: 10.1109/ICSE.2007.48.

[60] S. Mohanty, A. A. Acharya, and D. P. Mohapatra. “A survey on model based test

case prioritization.” In: International Journal of Computer Science and Information
Technologies 2.3 (2011), pp. 1042–1047.

[61] G. J. Myers and C. Sandler. The Art of Software Testing. John Wiley & Sons, 2004.

isbn: 0471469122.

[62] N. J. Nilsson. Artificial Intelligence: A New Synthesis. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 1998, pp. 131–135. isbn: 1-55860-467-7.

[63] D. North. Introducing BDD. 2006. url: https://dannorth.net/introducing-

bdd/ (visited on 02/15/2018).

[64] Oracle. Java Predicate. Oracle. url: https://docs.oracle.com/javase/8/

docs/api/java/util/function/Predicate.html (visited on 03/29/2018).

87

https://doi.org/10.1109/32.57624
https://doi.org/10.1109/32.57624
https://www.outsystems.com/home/document-download/178/8/0/0
https://www.outsystems.com/home/document-download/178/8/0/0
https://www.nomagic.com/products/magicdraw
http://www.encyclopediaofmath.org/index.php?title=Isomorphism&oldid=21572
http://www.encyclopediaofmath.org/index.php?title=Isomorphism&oldid=21572
https://doi.org/10.1109/tse.1976.233837
https://doi.org/10.1002/stvr.v14:2
https://doi.org/10.1002/stvr.v14:2
http://dx.doi.org/10.1002/stvr.v14:2
https://www.asp.net
https://doi.org/10.1109/ICSE.2007.48
https://dannorth.net/introducing-bdd/
https://dannorth.net/introducing-bdd/
https://docs.oracle.com/javase/8/docs/api/java/util/function/Predicate.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Predicate.html

[65] Oracle. Java Servlet Technology. url: https://www.oracle.com/technetwork/

java/index-jsp-135475.html (visited on 08/28/2018).

[66] Oracle. JavaServer Pages Technology. url: https://www.oracle.com/technetwork/

java/javaee/jsp/index.html (visited on 08/28/2018).

[67] Oracle. Oracle WebLogic. url: https://www.oracle.com/middleware/weblogic/

index.html (visited on 01/15/2018).

[68] E. Ort and B. Mehta. Java Architecture for XML Binding (JAXB). 2003. url: http:

//www.oracle.com/technetwork/articles/javase/index- 140168.html

(visited on 01/05/2018).

[69] OutSystems. Data. url: https://success.outsystems.com/Documentation/

11/Reference/OutSystems_Language/Data (visited on 12/10/2018).

[70] OutSystems. Executive Overview of OutSystems. url: https://files.mtstatic.

com/site_6602/3363/0?Expires=1536585167&Signature=X2CUZ73lRulz6heI0WF~3MnmbfqHQjr6qtEFJG-

54ZkKF~Ub9qtgCY--zL5vSjtYb-eXjH6yniUQVpgGIbJ4dz3M7s2v0ZKt3fEoXzXa4nG82FuXYJYJUPvYqKWtb2ZeIIHuGmhYm1o4MGL5FLJl0N9eRPr3WhI7MA872phchFQ_

&Key-Pair-Id=APKAJ5Y6AV4GI7A555NA (visited on 09/05/2018).

[71] OutSystems. How does OutSystems support testing and quality assurance? url:

https://success.outsystems.com/Evaluation/Lifecycle_Management/9_

How_does_OutSystems_support_testing_and_quality_assurance?origin=d

(visited on 02/15/2018).

[72] OutSystems. How OutSystems solves the problem. url: https://success.outsystems.

com/Evaluation/Why_OutSystems/02_How_does_OutSystems_solve_the_

problems_of_app_delivery (visited on 09/05/2018).

[73] OutSystems. Logic. url: https://success.outsystems.com/Documentation/

11/Reference/OutSystems_Language/Logic (visited on 12/10/2018).

[74] OutSystems. Mobile Interfaces. url: https : / / success . outsystems . com /

Documentation/11/Reference/OutSystems_Language/Mobile_Interfaces?

origin=d (visited on 12/10/2018).

[75] OutSystems. OutSystems Language. url: https://success.outsystems.com/

Documentation/11/Reference/OutSystems_Language (visited on 12/10/2018).

[76] OutSystems. OutSystems tools and components. url: https://success.outsystems.

com/Evaluation/Architecture/1_OutSystems_Platform_tools_and_components

(visited on 01/15/2018).

[77] OutSystems. Processes. url: https://success.outsystems.com/Documentation/

11/Developing_an_Application/Use_Processes/Processes?origin=d (vis-

ited on 12/10/2018).

[78] OutSystems. TrueChange™. url: https://www.outsystems.com/help/SErviceStudio/

9.0/app_life_cycle/TrueChange.htm (visited on 02/15/2018).

88

https://www.oracle.com/technetwork/java/index-jsp-135475.html
https://www.oracle.com/technetwork/java/index-jsp-135475.html
https://www.oracle.com/technetwork/java/javaee/jsp/index.html
https://www.oracle.com/technetwork/java/javaee/jsp/index.html
https://www.oracle.com/middleware/weblogic/index.html
https://www.oracle.com/middleware/weblogic/index.html
http://www.oracle.com/technetwork/articles/javase/index-140168.html
http://www.oracle.com/technetwork/articles/javase/index-140168.html
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Data
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Data
https://files.mtstatic.com/site_6602/3363/0?Expires=1536585167&Signature=X2CUZ73lRulz6heI0WF~3MnmbfqHQjr6qtEFJG-54ZkKF~Ub9qtgCY--zL5vSjtYb-eXjH6yniUQVpgGIbJ4dz3M7s2v0ZKt3fEoXzXa4nG82FuXYJYJUPvYqKWtb2ZeIIHuGmhYm1o4MGL5FLJl0N9eRPr3WhI7MA872phchFQ_&Key-Pair-Id=APKAJ5Y6AV4GI7A555NA
https://files.mtstatic.com/site_6602/3363/0?Expires=1536585167&Signature=X2CUZ73lRulz6heI0WF~3MnmbfqHQjr6qtEFJG-54ZkKF~Ub9qtgCY--zL5vSjtYb-eXjH6yniUQVpgGIbJ4dz3M7s2v0ZKt3fEoXzXa4nG82FuXYJYJUPvYqKWtb2ZeIIHuGmhYm1o4MGL5FLJl0N9eRPr3WhI7MA872phchFQ_&Key-Pair-Id=APKAJ5Y6AV4GI7A555NA
https://files.mtstatic.com/site_6602/3363/0?Expires=1536585167&Signature=X2CUZ73lRulz6heI0WF~3MnmbfqHQjr6qtEFJG-54ZkKF~Ub9qtgCY--zL5vSjtYb-eXjH6yniUQVpgGIbJ4dz3M7s2v0ZKt3fEoXzXa4nG82FuXYJYJUPvYqKWtb2ZeIIHuGmhYm1o4MGL5FLJl0N9eRPr3WhI7MA872phchFQ_&Key-Pair-Id=APKAJ5Y6AV4GI7A555NA
https://files.mtstatic.com/site_6602/3363/0?Expires=1536585167&Signature=X2CUZ73lRulz6heI0WF~3MnmbfqHQjr6qtEFJG-54ZkKF~Ub9qtgCY--zL5vSjtYb-eXjH6yniUQVpgGIbJ4dz3M7s2v0ZKt3fEoXzXa4nG82FuXYJYJUPvYqKWtb2ZeIIHuGmhYm1o4MGL5FLJl0N9eRPr3WhI7MA872phchFQ_&Key-Pair-Id=APKAJ5Y6AV4GI7A555NA
https://success.outsystems.com/Evaluation/Lifecycle_Management/9_How_does_OutSystems_support_testing_and_quality_assurance?origin=d
https://success.outsystems.com/Evaluation/Lifecycle_Management/9_How_does_OutSystems_support_testing_and_quality_assurance?origin=d
https://success.outsystems.com/Evaluation/Why_OutSystems/02_How_does_OutSystems_solve_the_problems_of_app_delivery
https://success.outsystems.com/Evaluation/Why_OutSystems/02_How_does_OutSystems_solve_the_problems_of_app_delivery
https://success.outsystems.com/Evaluation/Why_OutSystems/02_How_does_OutSystems_solve_the_problems_of_app_delivery
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Logic
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Logic
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Mobile_Interfaces?origin=d
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Mobile_Interfaces?origin=d
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Mobile_Interfaces?origin=d
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language
https://success.outsystems.com/Evaluation/Architecture/1_OutSystems_Platform_tools_and_components
https://success.outsystems.com/Evaluation/Architecture/1_OutSystems_Platform_tools_and_components
https://success.outsystems.com/Documentation/11/Developing_an_Application/Use_Processes/Processes?origin=d
https://success.outsystems.com/Documentation/11/Developing_an_Application/Use_Processes/Processes?origin=d
https://www.outsystems.com/help/SErviceStudio/9.0/app_life_cycle/TrueChange.htm
https://www.outsystems.com/help/SErviceStudio/9.0/app_life_cycle/TrueChange.htm

[79] OutSystems. Unit and regression testing with OutSystems. url: hhttps://success.

outsystems.com/Evaluation/Lifecycle_Management/9_How_does_OutSystems_

support_testing_and_quality_assurance/Unit_and_regression_testing_

with_OutSystems#Functional.2C_User_Interface.2C_Regression (visited on

02/15/2018).

[80] OutSystems. Web Interfaces. url: https://success.outsystems.com/Documentation/

11/Reference/OutSystems_Language/Web_Interfaces?origin=d (visited on

12/10/2018).

[81] OutSystems. OutSystems - Agile Methodology DataSheet. Tech. rep. 2010. url:

https://www.outsystems.com/home/downloadsdetail/25/75/.

[82] OutSystems. OutByNumbers - Benchmark Overview Report. Tech. rep. 2013. url:

http://www.outsystems.com/res/OutbyNumbers-DataSheet.

[83] J. Proença. BDDFramework. OutSystems. url: https://www.outsystems.com/

forge/component/1201/BDDFramework/ (visited on 02/15/2018).

[84] P. Ramos. Unit Test Framework. OutSystems. 2018. url: https://www.outsystems.

com/forge/component-details/387/Unit+Testing+Framework/ (visited on

02/15/2018).

[85] S. Rapps and E. J. Weyuker. “Data Flow Analysis Techniques for Test Data Selec-

tion.” In: Proceedings of the 6th International Conference on Software Engineering.

ICSE ’82. Tokyo, Japan: IEEE Computer Society Press, 1982, pp. 272–278. url:

http://dl.acm.org/citation.cfm?id=800254.807769.

[86] S. Rapps and E. J. Weyuker. “Selecting Software Test Data Using Data Flow In-

formation.” In: IEEE Trans. Softw. Eng. 11.4 (Apr. 1985), pp. 367–375. issn:

0098-5589. doi: 10.1109/TSE.1985.232226. url: http://dx.doi.org/10.

1109/TSE.1985.232226.

[87] J. H. Reif. “Depth-first search is inherently sequential.” In: Information Processing
Letters 20.5 (1985), pp. 229–234.

[88] M. Revell. What Is Visual Programming? 2017. url: https://www.outsystems.

com/blog/what-is-visual-programming.html (visited on 01/14/2018).

[89] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. “Test case prioritization:

An empirical study.” In: Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE
International Conference on. IEEE. 1999, pp. 179–188.

[90] R. Santos, C. C. de Magalhaes, J. Correia-Neto, F. Silva, and L. Capretz. “Would

You Like to Motivate Software Testers? Ask Them How.” In: Electrical and Com-
puter Engineering Publications. Vol. 114. Nov. 2017, pp. 95–104. doi: 10.1109/

ESEM.2017.16.

89

hhttps://success.outsystems.com/Evaluation/Lifecycle_Management/9_How_does_OutSystems_support_testing_and_quality_assurance/Unit_and_regression_testing_with_OutSystems#Functional.2C_User_Interface.2C_Regression
hhttps://success.outsystems.com/Evaluation/Lifecycle_Management/9_How_does_OutSystems_support_testing_and_quality_assurance/Unit_and_regression_testing_with_OutSystems#Functional.2C_User_Interface.2C_Regression
hhttps://success.outsystems.com/Evaluation/Lifecycle_Management/9_How_does_OutSystems_support_testing_and_quality_assurance/Unit_and_regression_testing_with_OutSystems#Functional.2C_User_Interface.2C_Regression
hhttps://success.outsystems.com/Evaluation/Lifecycle_Management/9_How_does_OutSystems_support_testing_and_quality_assurance/Unit_and_regression_testing_with_OutSystems#Functional.2C_User_Interface.2C_Regression
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Web_Interfaces?origin=d
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Web_Interfaces?origin=d
https://www.outsystems.com/home/downloadsdetail/25/75/
http://www.outsystems.com/res/OutbyNumbers-DataSheet
https://www.outsystems.com/forge/component/1201/BDDFramework/
https://www.outsystems.com/forge/component/1201/BDDFramework/
https://www.outsystems.com/forge/component-details/387/Unit+Testing+Framework/
https://www.outsystems.com/forge/component-details/387/Unit+Testing+Framework/
http://dl.acm.org/citation.cfm?id=800254.807769
https://doi.org/10.1109/TSE.1985.232226
http://dx.doi.org/10.1109/TSE.1985.232226
http://dx.doi.org/10.1109/TSE.1985.232226
https://www.outsystems.com/blog/what-is-visual-programming.html
https://www.outsystems.com/blog/what-is-visual-programming.html
https://doi.org/10.1109/ESEM.2017.16
https://doi.org/10.1109/ESEM.2017.16

[91] SAP. BAPI Programming Guide. url: https://help.sap.com/saphelp_nw70/

helpdata/en/e0/9eb2370f9cbe68e10000009b38f8cf/frameset.htm (visited on

01/15/2018).

[92] K. Saravanan and E. P. C. Prasad. “Open Source Software Test Automation Tools:

A Competitive Necessity.” In: Scholedge International Journal of Management and
Development 3.6 (2016), pp. 103–110. issn: 2394-3378. url: http://thescholedge.

org/index.php/sijmd/article/view/320.

[93] M. Sarma, D. Kundu, and R. Mall. “Automatic test case generation from UML

sequence diagram.” In: Advanced Computing and Communications, 2007. ADCOM
2007. International Conference on Advanced Computing and Communications. IEEE.

2007, pp. 60–67. doi: 10.1109/ADCOM.2007.68.

[94] V. Sawant and K. Shah. “Automatic Generation of Test Cases from UML Mod-

els.” In: IJCA Proceedings on International Conference on Technology Systems and
Management (ICTSM) 2 (2011), pp. 7–10.

[95] SeleniumHQ. Selenium. url: http://www.seleniumhq.org/ (visited on 02/15/2018).

[96] R. Seth and S. Anand. “Prioritization of Test Cases scenarios derived from UML

Diagrams.” In: International Journal of Computer Applications (0975-8887) 46.12

(2012).

[97] T. Simões. Visual Programming Is Unbelievable... Here’s Why We Don’t Believe In
It. 2015. url: https://www.outsystems.com/blog/visual-programming-is-

unbelievable.html (visited on 01/21/2018).

[98] S. S. Skiena. The Algorithm Design Manual. 2nd. Springer Publishing Company,

Incorporated, 2008, pp. 147–177. isbn: 1848000693, 9781848000698.

[99] C. Solis and X. Wang. “A study of the characteristics of behaviour driven devel-

opment.” In: Software Engineering and Advanced Applications (SEAA), 2011 37th
EUROMICRO Conference on. IEEE. 2011, pp. 383–387.

[100] R. Tarjan. “Depth-first search and linear graph algorithms.” In: SIAM Journal on
Computing 1.2 (1972).

[101] T. A. Team. Test Automator. OutSystems. 2015. url: https://www.outsystems.

com/forge/component-details/82/Test+Automator/ (visited on 02/15/2018).

[102] UML. Unified Modeling Language (UML). url: http://www.uml.org/ (visited on

02/06/2018).

[103] M. Utting and B. Legeard. Practical model-based testing: a tools approach. Elsevier,

2010.

[104] C. Wenjing and X. Shenghong. “A Software Function Testing Method Based on

Data Flow Graph.” In: 2008 International Symposium on Information Science and
Engineering. Vol. 2. 2008, pp. 28–31. doi: 10.1109/ISISE.2008.23.

90

https://help.sap.com/saphelp_nw70/helpdata/en/e0/9eb2370f9cbe68e10000009b38f8cf/frameset.htm
https://help.sap.com/saphelp_nw70/helpdata/en/e0/9eb2370f9cbe68e10000009b38f8cf/frameset.htm
http://thescholedge.org/index.php/sijmd/article/view/320
http://thescholedge.org/index.php/sijmd/article/view/320
https://doi.org/10.1109/ADCOM.2007.68
http://www.seleniumhq.org/
https://www.outsystems.com/blog/visual-programming-is-unbelievable.html
https://www.outsystems.com/blog/visual-programming-is-unbelievable.html
https://www.outsystems.com/forge/component-details/82/Test+Automator/
https://www.outsystems.com/forge/component-details/82/Test+Automator/
http://www.uml.org/
https://doi.org/10.1109/ISISE.2008.23

[105] E. J. Weyuker, T. J. Ostrand, J. Brophy, and R. Prasad. “Clearing a Career Path for

Software Testers.” In: IEEE Softw. 17.2 (Mar. 2000), pp. 76–82. issn: 0740-7459.

doi: 10.1109/52.841696. url: http://dx.doi.org/10.1109/52.841696.

91

https://doi.org/10.1109/52.841696
http://dx.doi.org/10.1109/52.841696

A
p
p
e
n
d
i
x

A
Detailed test results

This appendix details the results obtained for both the execution over multiple graphs

and the performed usability tests.

A.1 Algorithm execution

Table A.1 shows the number of test cases identified for each tested graph, as well as the

number of top test cases and what would have been the total test cases generated if not

for the implementation of cause-effect graphing. Figure A.1, Figure A.2 and Figure A.3

show the same results in bar charts.

Figure A.1: Top test cases results.

93

Figure A.2: Total test cases generated.

Figure A.3: Total test cases generated without cause-effect graphing.

94

CC Top test cases Total test cases Without cause-effect displayed

2 2 3 3 66%
4 4 7 7 57%
6 6 23 180 26%
8 8 30 183 26%

12 12 39 252 30%
13 14 59 2184 23%
16 22 176 11736 12%
22 30 57 5877 52%
23 26 77 13692 33%
24 34 65 7011 52%
25 36 67 10662 53%
27 37 71 13086 53%
32 46 106 6474 43%
38 56 128 8424 43%
40 60 138 8892 43%
49 70 306 11232 22%
50 74 334 12012 22%
54 94 660 21327 14%
56 98 670 21363 14%
58 104 754 58227 13%
60 118 922 67704 12%
61 154 1138 72618 13%
62 158 1194 75738 13%
63 178 1330 78234 13%

Table A.1: Detailed results obtained for each tested graph.

A.2 Usability experiment

This usability test consisted in two phases, where two different graphs would be used and

the users would be confronted with seven questions regarding the data they had available.

For one graph the user could use the tool, for the other, he could not and had to manually

produce the results.

A.3 Graph and questions

A.3.1 Graph A

Figure A.4 shows Graph A and next follow the questions and respective expected answers

for this graph.

95

Figure A.4: Graph A.

1. Identify a set of minimum test cases to cover all independent paths of this action.

Answer: Age=10; Age=11; Age=51; Age=5; Age=35; Age=32; Age=41, 7 indepen-

dent paths for this graph (this is one possible answer, others might be considered).

2. What is the percentage of branches the following test cases provide to the code:

a) Age = 5

b) Age = 11

c) Age = 32

Answer: 45%.

3. Can you order the set of minimum test cases defined by the code covered?

Answer: Same order as in 1.

4. What is the expected value for the output variable “Out” for the following input combi-
nation?

96

a) Age = 51

Answer: Out = 51.

5. Are there any possible errors in this trace of code that jump to sight?

Answer: Yes, there is a cycle regarding the link 2(Age>40) that may make the

execution infeasible.

6. What is the maximum node and branch coverage possible to obtain for this action?

Answer: Node = 100%, Branch = 100%.

7. Are there any paths unreachable? If so, which ones?

Answer: There are no paths unreachable in this graph.

A.3.2 Graph B

Figure A.5 shows Graph B and next follow the questions and respective expected answers

for this graph.

Figure A.5: Graph B.

97

1. Identify a set of minimum test cases to cover all independent paths of this action.

Answer: Data=rand1, Counter=2; Data=abc, Counter=32; Data=xyz, Counter=2;

Data=klm, Counter=2; Data=hij, Counter=2; Data=abc, Counter=2, 6 independent

paths for this graph (this is one possible answer, others might be considered).

2. What is the percentage of node the following test cases provide to the code:

a) Data = “abc”, Counter = 3

b) Data = “klm”, Counter = 2

Answer: 57%.

3. Can you order the set of minimum test cases defined by the code covered?

Answer: Same order as in 1.

4. What is the expected value for the output variable “Out” for the following input combi-
nation?

a) Data = “abc”, Counter = 32

Answer: Out = 32.

5. Are there any possible errors in this trace of code that jump to sight?

Answer: Yes, there is an unreachable branch from the Switch node to Action2
({Switch→ Action2}).

6. What is the maximum node and branch coverage possible to obtain for this action?

Answer: Node = 100%, Branch = 95%.

7. Are there any paths unreachable? If so, which ones?

Answer: Yes, the branch {Switch→ Action2} is unreachable.

98

A
p
p
e
n
d
i
x

B
Documents referenced

Table B.1 contains all the documents utilized in the making of this report, indicating

its title, authors, year of publication, the main topics it refers and the chapters such

document is cited on. The topics are represented by labels: (T) Testing, (A) Automatic

Testing, (C) Coverage Criteria, (G) Graphs, (O) OutSystems, (Te) Technologies, (R) Related

Work.

Table B.1: List of documents utilized in the making of this report.

Title Authors Year
Topics Chapters

T A C G O Te R 1 2 3 4 5 6

[92]

Open Source Soft-
ware Test Automa-
tion Tools: A Com-
petitive Necessity

K. Saravanan,
E. P. C. Prasa

2016

[104]

A Software Function
Testing Method
Based on Data Flow
Graph

C. Wenjing,
X. Shenghong

2008

[105]
Clearing a Career
Path for Software
Testers

Weyuker,
Ostrand,
Brophy,
Prasad

2000

[23]
A Note on Two Prob-
lems in Connexion
with Graphs

E. W. Dijkstra 1959

(T) Testing (A) Automatic Testing (C) Coverage Criteria (G) Graphs
(O) OutSystems (Te) Technologies (R) Related Work

Book Paper Online doc

99

Title Authors Year
Topics Chapters

T A C G O Te R 1 2 3 4 5 6

[48]

Graphical Program-
ming Environments
for Educational
Robots

B. Jost, Ket-
terl,
Budde, Leim-
bac

2014

[88]
What Is Visual Pro-
gramming?

M. Revell 2017

[81]
OutSystems - Ag-
ile Methodology
DataSheet

OutSystems 2010

[24]

Automated Software
Testing: Introduc-
tion, Management,
and Performance

E. Dustin, J.
Rashka, J. Paul

1999

[15]

Automated Test Gen-
eration Based on a
Visual Language Ap-
plicational Model

M. Cabeda,
P. Santos

2018

[61]
The Art of Software
Testing

G. J. Myers,
C. Sandler

2004

[34]

When and What
to Automate in
Software Testing? A
Multi-vocal Litera-
ture Review

V. Garousi,
M. V. Mäntylä

2016

[27]

Software test au-
tomation and a
sample practice
for an enterprise
business software

E. Çelik, S.
Eren,
E. Çini, Ö.
Keleş

2017

[8]
An Introduction to
Software Testing

L. Baresi,
M. Pezz

2006

[50]
Software testing and
quality assurance:
theory and practice

P. T. Kshi-
rasagar Naik

2008

[5]
Introduction to Soft-
ware Testing

P. Ammann,
J. Offutt

2008

[9]
Brief Essay on Soft-
ware Testing

A. Bertolino
E Marchelli

2005

[22]
Software Testing: A
Practical Approach

S. Desai
S. Abhishek

2016

[85]
Data Flow Analysis
Techniques for Test
Data Selection

S. Rapps
E. J. Weyuker

1982

(T) Testing (A) Automatic Testing (C) Coverage Criteria (G) Graphs
(O) OutSystems (Te) Technologies (R) Related Work

Book Paper Online doc

100

Title Authors Year
Topics Chapters

T A C G O Te R 1 2 3 4 5 6

[86]
Selecting Software
Test Data Using Data
Flow Information

S. Rapps
E. J. Weyuker

1985

[19]
A Formal Evaluation
of Data Flow Path Se-
lection Criteria

Clarke,
Podgurski,
Richardson,
Zeil

1988

[98]
The Algorithm De-
sign Manual

S. S. Skiena 2008

[6]
The Concept of Dy-
namic Analysis

T. Ball 1999

[3]
Encyclopedia of
Computer Science
and Technology

J. G. W. Allen
Kent

1995

[62]
Artificial Intel-
ligence: A New
Synthesis

N. J. Nilsson 1998

[82]
OutByNumbers
- Benchmark
Overview Report

OutSystems 2013

[52]

OutSystems Plat-
form - Architecture
and Infrastructure
Overview

A. Lima 2015

[40] JBoss R. Hat -
[67] Oracle WebLogic Oracle -

[76]
OutSystems tools
and components

OutSystems -

[58] ASP.NET Microsoft -

[91]
BAPI Programming
Guide

SAP -

[25]

A Comparative
Study of White
Box, Black Box and
Grey Box Testing
Techniques

M. Ehmer,
F. Khan

2012

[42]
Cost Benefits Analy-
sis of Test Automa-
tion

D. Hoffman 1999

[28]
Advances in soft-
ware inspections

M. E. Fagan 1986

(T) Testing (A) Automatic Testing (C) Coverage Criteria (G) Graphs
(O) OutSystems (Te) Technologies (R) Related Work

Book Paper Online doc

101

Title Authors Year
Topics Chapters

T A C G O Te R 1 2 3 4 5 6

[29]

Design and Code In-
spections to Reduce
Errors in Program
Development

M. E. Fagan 2001

[97]

Visual Programming
Is Unbelievable...
Here’s Why We
Don’t Believe In It

T. Simões 2015

[43]
Efficient Algorithms
for Graph Manipula-
tion

J. Hopcroft,
R. Tarja

1973

[100]
Depth-first search
and linear graph
algorithms

R. Tarjan 1972

[87]
Depth-first search is
inherently sequen-
tial

J. Reif 1985

[83] BDD Framework OutSystems -
[78] TrueChange OutSystems —-

[84]
Unit Test Frame-
work

P. Ramos 2018

[79]
Unit and regression
testing with OutSys-
tems

OutSystems —-

[63] Introducing BDD D. North 2006

[47]

Test-driven develop-
ment concepts, tax-
onomy, and future
direction

D. Janzen
H. Saiedian

2005

[99]

A study of the
characteristics of
behaviour driven
development

C. Solis
X. Wang

2011

[95] Selenium SeleniumHQ —-
[101]Test Automator T. A. Team 2015

[71]

How does OutSys-
tems support test-
ing and quality as-
surance?

OutSystems —-

(T) Testing (A) Automatic Testing (C) Coverage Criteria (G) Graphs
(O) OutSystems (Te) Technologies (R) Related Work

Book Paper Online doc

102

Title Authors Year
Topics Chapters

T A C G O Te R 1 2 3 4 5 6

[94]
Automatic Genera-
tion of Test Cases
from UML Models

V. Sawant,
K. Shah

2011

[37]
Object Constraint
Language

O. M. Group -

[53] MagicDraw N. Magic -
[44] Rational Rose IBM -

[20]
eXtensible Markup
Language (XML)

W. W. W. Con-
sortium

-

[21]

Test case genera-
tion for concurrent
object-oriented
systems using com-
binational UML
models

S. Dalai,
A. A. Acharya,
D. P. Mohapa-
tra

2012

[93]

Automatic test case
generation from
UML sequence
diagram

M. Sarma,
D. Kundu,
R. Mall

2007

[16]

Test case generation
based on activity di-
agram for mobile ap-
plication

Chouhan,
Shrivastava,
Sodh

2012

[56]
A complexity mea-
sure

T. J. McCabe 1976

[51]

What every engi-
neer should know
about software
engineering

P. A. Laplante 2007

[102]
Unified Modeling
Language (UML)

UML -

[11]

From Daikon to Ag-
itator: lessons and
challenges in build-
ing a commercial
tool for developer
testing

Boshernitsan,
Doong,
Savoia

2006

[96]

Prioritization of Test
Cases scenarios de-
rived from UML Di-
agrams

R. Seth
S. Anand

2012

(T) Testing (A) Automatic Testing (C) Coverage Criteria (G) Graphs
(O) OutSystems (Te) Technologies (R) Related Work

Book Paper Online doc

103

Title Authors Year
Topics Chapters

T A C G O Te R 1 2 3 4 5 6

[33]
Whole test suite gen-
eration

G. Fraser
A. Arcuri

2013

[30]

Practical application
of UML activity dia-
grams for the gener-
ation of test cases

Fernandez-
Sanz
Misra

2012

[1] Agitator AgitarOne —-

[12]
Korat: Automated
Testing Based on
Java Predicates

C. Boyapati,
S. Khurshid,
D. Marinov

2002

[64] Java Predicate Oracle —-

[54]

TestEra: A novel
framework for auto-
mated testing of Java
programs

D. Marinov, S.
Khurshid

2001

[17]
Testing Monadic
Code with
QuickCheck

K. Claessen, J.
Hughes

2002

[18]

QuickCheck: A
Lightweight Tool for
Random Testing of
Haskell Programs

K. Claessen, J.
Hughes

2011

[39] Haskell —- —-

[59]

Korat: A Tool for
Generating Struc-
turally Complex
Test Inputs

A. Milicevic,
S. Misailovic,
D. Marinov, S.
Khurshid

2007

[4]
Alloy: a language
and tool for rela-
tional models

—- —-

[55] Isomorphism
Encyclopedia
of mathemat-
ics

—-

[38] Random testing R. Hamlet 2002

[35]
DART: directed auto-
mated random test-
ing

P. Godefroid,
N. Klarlund,
K. Sen

2005

[103]
Practical model-
based testing: a
tools approach

M. Utting, B.
Legeard

2010

(T) Testing (A) Automatic Testing (C) Coverage Criteria (G) Graphs
(O) OutSystems (Te) Technologies (R) Related Work

Book Paper Online doc

104

Title Authors Year
Topics Chapters

T A C G O Te R 1 2 3 4 5 6

[26]
Model-based soft-
ware testing

I. El-Far, J.
Whittaker

2002

[46]
Alcoa: the alloy con-
straint analyzer

D. Jackson,
I. Schechter, H.
Shlyahter

2000

[68]
Java Architecture for
XML Binding (JAXB)

—- —-

[65]
Java Servlet Technol-
ogy

Oracle —-

[66]
JavaServer Pages
Technology

Oracle —-

[41]
A Practical Model
for Measuring Main-
tainability

I. Heitlager,
T. Kuipers, J.
Visser

2007

[31]

Congestion Games
with Linearly In-
dependent Paths:
Convergence Time
and Price of Anarchy

Fotakis, Dim-
itris

2010

[14]
SUS-A quick and
dirty usability scale

J. Brooke 1996

[10] What is Usability?
N. Bevana, J.
Kirakowskib, J.
Maissela

1991

[13]
SUS: A Retrospec-
tive

J. Brooke 2013

[7]

Determining What
Individual SUS
Scores Mean:
Adding an Adjective
Rating Scale

A. Bangor,
P. Kortum, J.
Miller

2009

[45]

IEEE Symposium on
Visual Languages
and Human-Centric
Computing

—- —-

[49]
Automated software
test data generation

B. Korel 1990

[2]
The economics of
software quality as-
surance

D. Alberts 1976

(T) Testing (A) Automatic Testing (C) Coverage Criteria (G) Graphs
(O) OutSystems (Te) Technologies (R) Related Work

Book Paper Online doc

105

Title Authors Year
Topics Chapters

T A C G O Te R 1 2 3 4 5 6

[36]
Toward a theory of
test data selection

J. Goode-
nough, S.
Gerhart

1975

[57]

Search-based Soft-
ware Test Data
Generation: A
Survey

P. McMinn 2004

[70]
Executive Overview
of OutSystems

OutSystems —-

[72]
How OutSystems
solves the problem

OutSystems —-

[90]

Would You Like to
Motivate Software
Testers? Ask Them
How

Santos,
Magalhaes,
Correia-Neto,
Silva, Capretz

2017

[32]
Continuous integra-
tion

M. Fowler
M. Foemmel

2006

[60]
A survey on model
based test case prior-
itization

S. Mohanty,
A. Acharya, D.
Mohapatra

2011

[89]
Test case prioritiza-
tion: An empirical
study

G. Rothermel,
R. Untch, C.
Chu, M. Har-
rold

1999

(T) Testing (A) Automatic Testing (C) Coverage Criteria (G) Graphs
(O) OutSystems (Te) Technologies (R) Related Work

Book Paper Online doc

106

Automated Test Generation Based on a
Visual Language Applicational Model

Mariana Cabeda
FCT/UNL

Lisboa, Portugal
Email: m.cabeda@campus.fct.unl.pt

Pedro Santos
OutSystems

Linda-a-Velha, Portugal
Email: pedro.santos@outsystems.com

Abstract—This showpiece presents a tool that aids OutSystems
developers in the task of generating test suites for their appli-
cations in an efficient and effective manner. The OutSystems
language is a visual language graphically represented through a
graph that this tool will traverse in order to generate test cases.

The tool is able to generate and present to the developer, in
an automated manner, the various input combinations needed to
reach maximum code coverage, offering a coverage evaluation
according to a set of coverage criteria: node, branch, condition,
modified condition-decision and multiple condition coverage.

Index Terms—Software test automation, Software test cov-
erage, OutSystems language, Visual Programming Language,
OutSystems applicational model.

I. DESCRIPTION

A. Introduction

The OutSystems [1] language, classified under Visual Pro-
gramming Languages (VPLs), allows developers to create
software visually by drawing interaction flows, UIs and the
relationships between objects. Low-code tools reduce the

complexity of software development bringing us to a world
where a single developer can create rich and complex systems
in an agile way, without the need to learn all the underlying
technologies [2]. As OutSystems aims at rapid application de-
velopment, automating the test case generation activity, based
on their applicational model, along with coverage evaluation,
will be of great value to developers using OutSystems.

Software testing is a quality control activity performed
during the entire software development life-cycle and also
during software maintenance [3]. Two testing approaches that
can be taken are manual or automated. While for manual
testing, the test cases are generated and executed manually
by a human sitting in front of a computer carefully going
through application screens, trying various usage and input
combinations; in automated testing both the tasks of generation
and execution of the test cases can be executed resorting to
tools. The tool hereby presented covers the aspect of the test
case generation and not its execution.978-1-5386-4235-1/18/$31.00 ©2018 IEEE

107

B. Tool

This showpiece introduces a tool that aims at generating, in
an automated manner, test cases for applications developed in
the visual language OutSystems.

The algorithm behind this tool takes on the visual source
code of an OutSystems application and generates all the
necessary input combinations so that the set of generated test
cases would be able to reach the entirety of its nodes and
branches, or detect and identify unreachable execution paths,
which in practice correspond to dead code.

As the OutSystems language is mainly visual and repre-
sented graphically through a graph, this tool resorts to graph
search algorithms, breadth and depth-first search, in order to
traverse these graphs and retain all necessary information.

Due to the extensibility of the OutSystems model, this tool
currently supports an interesting set of nodes related to the
logic behind client/server applications. Fig. 1 shows said nodes
integrated within a simple graph example.

Fig. 1. OutSystems language nodes considered in this work: Start node (A)
marks the start of a procedure; If node (B) expresses an if-then-else block
behaviour; Switch node (C) representing a switch block behaviour; Assign
node (D) indicating the attribution of values to variables; Execute Action node
(E) represents a call to another procedure; End node (F) marks the end of a
procedure. G) and H) represent input and local variables, respectively.

Along with the various input combinations that should be
tested in order to achieve maximum code coverage and the
identification of unreachable execution paths, it is also pro-
vided information on some warnings such as when variables
are defined but never used in the trace of code analysed.

Software test coverage is a measure used to describe the
degree to which the source code of a program is executed
when a particular test suite runs. This tool evaluates both the
overall test suite as well as subsets of it in terms of node,
branch, condition, modified condition-decision and multiple
condition coverage [4-6].

For this, the algorithm traverses the graph, from the Start
node consecutively following the nodes outgoing branches,
applying a cause-effect graphing methodology [7] in order
to reduce the generation of redundant combinations, and
employing a boundary-value analysis [7,8] whenever a new
decision point is reached in order to identify the values that
should be tested for each individual condition.

The final test suite generated is prioritized according to
two criteria: they are first organized in terms of the combined
coverage they provide for both branches and nodes; the second
criteria takes into account the number of decisions the path

corresponding to this test case encounters. This prioritization
is also complementary, meaning that when the first ”best” test
case is found, the second test case to be displayed is the one
that, together with the first one, helps to cover more nodes and
branches. The same goes for the third pick and so on. This
means that the first x test cases presented are the ones that will
cover the most nodes and branches and no other combination
of x test cases will be able to cover more code.

Fig. 2 shows the prototype for this tool, where the set of
test cases generated are displayed in (A), with some warnings
identified in (B) and the coverage results in (C).

Fig. 2. Tool prototype window (expanded image at: https://goo.gl/3yRWkA)

A program is tested in order to add some value to it. This
value comes in the form of quality and reliability, meaning
that errors can be found and afterwards removed. This way,
a program is tested, not only to show its behaviour but also
to pinpoint and find as many errors as possible. Thus, there
should be an initial assumption that the program may contain
errors and then test it [8].

Nowadays, there is a high need for quick-paced delivery of
features and software to customers, so automating tests is of
the utmost importance. One of its several advantages is that
it releases the software testers of the tedious task of repeating
the same assignment over and over again, freeing up testers to
other activities and allowing for a variety in the work as well
as opening space for creativity. These factors are claimed to
improve testers motivation at work [9].

As OutSystems aims at rapid application development, the
automation of the test case generation activity, based on their
applicational model, along with coverage evaluation, will be
of great value to developers using OutSystems.

This tool is also of relevance to the VL/HCC community
as it presents a solution for an issue that is very common
within the visual languages paradigm. As the development
of applications is still dominated by Textual Programming
Languages (TPLs), a number of tools already allow automated
testing over TPLs, but the same variety does not apply to
VPLs. Tools such as the one here presented help increase the
value brought by VPLs to developers.

108

II. PRESENTATION

This showpiece will be presented through video, showcasing
its features (available at: https://youtu.be/8GsY8NTNXdk) as
well as a demonstration that will involve the participation of
users, consisting on an interactive exercise where the user will
be able to experience the advantages brought on by this tool.
This demonstration will consist of a simple two-part exercise,
taking no longer than ten minutes, where one part will include
the tool and the other will not. The results and feedback
from this demonstration will be recorded for the purpose of
evaluation of the tool.

Complementing this demonstration, there will also be a
poster showcasing this tool’s features alongside a set of
experiments and corresponding results.

III. FUTURE WORK

This tool represents the introduction of automation of the
test case generation activity and respective coverage evaluation
within OutSystems applications. Therefore, some limitations
are still in place. The future for this tool starts by expanding
in terms of the types of nodes it supports for this language,
as well as the datatypes it is able to evaluate, as currently the
datatypes supported are the basic Integer, Boolean and Strings.

ACKNOWLEDGMENT

The authors would like to thank OutSystems for the support
presented throughout the development of this tool.

REFERENCES

[1] OutSystems https://www.outsystems.com/. Last accessed 12 July 2018
[2] OutSystems: OutSystems - Agile Methodology DataSheet. OutSystems

(2010) https://www.outsystems.com/home/downloadsdetail/25/75/. Last
accessed 11 May 2018

[3] K. Saravanan and E. Poorna Chandra Prasad: Open Source Software Test
Automation Tools: A Competitive Necessity. Scholedge International
Journal of Management Development 3(6), 103–110 (2016)

[4] C. Wenjing and X. Shenghong: A Software Function Testing Method
Based on Data Flow Graph. In: 2008 International Symposium on
Information Science and Engineering, pp. 28–31. IEEE, Shanghai, China
(2008) 10.1109/ISISE.2008.23

[5] Kshirasagar Naik, Priyadarshi Tripathy: Software testing and quality
assurance: theory and practice. 1st edn. Wiley (2008)

[6] Ammann, Paul and Offutt, Jeff: Introduction to Software Testing, pp.27–
51. 1st edn. Cambridge University Press, New York, NY, USA (1999)

[7] Ehmer, Mohd and Khan, Farmeena: A Comparative Study of White Box,
Black Box and Grey Box Testing Techniques. International Journal of
Advanced Computer Science and Applications 3, 12–15 (2012)

[8] Myers, Glenford J. and Sandler, Corey: The Art of Software Testing.
John Wiley & Sons (2004)

[9] Santos, Ronnie and C. de Magalhaes, Cleyton and Correia-Neto, Jorge
and Silva, Fabio and Capretz, Luiz: Would You Like to Motivate Soft-
ware Testers? Ask Them How. In: Electrical and Computer Engineering
Publications, pp. 95–104 (2008) 10.1109/ESEM.2017.16

109

A
n
n
e
x

I
OS Language Overview

The OutSystems platform allows developers to create end-to-end applications defining

logic, UI, databases, processes and more. The documentation for the full OutSystems

language can be found here [75].

Over the course of this appendix, the multiple tabs of Service Studio that allow for

the developer to create the multiple layers of their applications are presented.

Processes

Figure I.1: Processes tab in Service Studio.

111

Figure I.1 shows the tab for Processes in Service Studio where the user can define

and integrate business processes within their applications, based on activities which are

executed over the course of an entity life cycle [77].

.

Interface

Figure I.2 shows the Interface tab in Service Studio, used to define the user interfaces

of applications including screens and logic with them related. It also presents a multitude

of pre-built widgets that can be easily integrated into the screens. The displayed widgets

will vary depending on whether the user is developing a web or mobile application [74,

80].

Figure I.2: Interface tab in Service Studio.

Logic

Figure I.3 shows the Logic tab in Service Studio, where the user can develop the

server-side logic for their applications [73]. This is the focus of our work and so their

elements will be individually detailed next. The nodes supported by the algorithm hereby

presented are also featured and highlighted.

...Start1

Used to indicate the beginning of a procedure.

112

Figure I.3: Logic tab in Service Studio.

...Server Action

Invokes a call to other server action. Can receive input and return output parame-

ters according to its definition.

...Aggregate

Used to fetch data from the database resorting to an optimized query.

...SQL

Similarly to aggregates, it is used to fetch data from the database and here the user

specifies the required SQL query.

...If1

1Nodes covered by the algorithm presented by this work.

113

Contains a decision and decides on which way the flow shall progress according to

the decision turning true or false, having both outgoing branches explicitly defined.

...Switch1

Contains a set of decisions and the flow shall continue over the decision turned as

true. If none does, the information flow shall continue over the otherwise branch,

always explicitly defined.

...For Each

Iterates a specified path for each entry in a list.

...Assign1

Allows for multiple assignments where the value of a variable is set to another vari-

able or value.

...Record List to Excel

Used to convert a Record List into an Excel file.

...Excel to Record List

Similar to the previous but this one converts the contents of an Excel file into a

Record List.

...JavaScript Object Notation (JSON) Serialize

Converts either a Record or a List Record to a JSON structure.

...JSON Deserialize

Similarly to the previous it extracts the contents of a JSON object to either an Entity,

Record or List.

114

...Exception Handler

Captures and defines the behaviour that the program shall take after an exception

is thrown.

...Raise Exception

Throws an exception, ending the flow of the action.

...Comment

Used to add comments to the flow. They can be used as TODOs by activating a flag

and these will show up in TrueChange[78].

...Send Email

Sends an email with a structure predefined by the user.

...End1

Indicates the end of a procedure flow.

Data

Figure I.4 shows the Data tab in Service Studio, where the required data model for

the application is defined. In a similar manner to the Interface tab, Data will also look

slightly different for mobile and web applications [69].

115

Figure I.4: Data tab in Service Studio.

116

A
n
n
e
x

II
Test Automation Tools

II.1 Tools

Software testing tools are pieces of software which support the speedup of the testing

activity.

In summary, the tools available in the market regarding software automation can be

divided into two broad categories: Proprietary and Open Source Software Tools.

II.1.1 Proprietary software tools

These are the tools that require the purchase of a licence from the companies which

developed the tool to be used. On the Table II.1, we can see a list of proprietary software

test automation tools.

Table II.1: List of proprietary software test automation tools [92].

Vendor Product Name Key Supremacy Key Weakness

HP Unified Func-
tional Testing

Market Leader with string
presence in UI Automation

High license cost

IBM Rational Func-
tional Tester

Ease of Use and Mainte-
nance

Slow in innovation

Tricentis TOSCA Model Based Test Automa-
tion Framework

High license cost

Worksoft Certify Preferred for Packaged Ap-
plications Testing

Not reliable in Product Sta-
bility and Support

117

Oracle Oracle Appli-
cation Testing
Suite

Good Customer Service
and Support

Challenge to maintain
Scripts & does not support
mobile applications

SmartBear Test Complete Offers support for multi-
ple skill levels

No Support for Packaged
Applications

Ranorex GUI Test Au-
tomation

Straight forward licence
model

Complex UI object recogni-
tion

Progress Telerik Test
Studio

Supports Microsoft Tech-
nology applications

No Support for Packaged
Applications

Automation
Anywhere

Testing Any-
where

Strong customer support
and ease of use

Complex Licensing Ad-
ministration

Borland Micro Focus
SilkTest

Role-based testing Needs improvement to de-
liver unified test automa-
tion solution

TestPlant eggPlant Use of intelligent image
recognition algorithms

Difficult to maintain
scripts

Original
Software

TestDrive Code free approach Missing Mobile Testing

II.1.2 Open source software tools

Open Source testing tools have become competitive necessity to survive in the market

and IT companies are gaining maximum advantage by adopting them, so we will look

into them with further detail.

These are tools free of cost and the source code is available to modification/customiza-

tion. The main tools in this category are presented on Table II.2.

Table II.2: List of some of the popular open sources software test automation tools [92].

Vendor Product Name Key Supremacy Key Weakness

Apache Selenium Web Driver supporting multi-
ple browsers & multiple pro-
gramming languages

Supports only
web based appli-
cations

Apache Geb Using powerful Selenium
WebDriver APIs with simple
Groovy language

Specific to “Java
based applica-
tions”

Apache Windmill Recorder tool that allows writ-
ing tests with learning a pro-
gramming language

Supports only
Web environment

118

Tyto Software Sahi Simple JavaScript based
scripting tool with complete
API which can run parallel
scripts

User Interface is
confusing

BSD Watir (Web Appli-
cation Testing in
Ruby)

Supports Multiple OS & Sup-
ports playback of multiple
scripts

Supports only
ruby language

GitHub Protractor End to End framework for An-
gularJS Applications

Based on
JavaScript

Cucumber
Ltd.

Cucumber Based on Behavior Driven
Development, easy to write
scripts

Supports only
Web environment

GitHub SpecFlow Employs consisten Domain-
specific language and is user
friendly

Specific to .NET
based applica-
tions

Grant Street
Group

Tellurium Works adopting “UI Module”
approach

Supports only
Web environment

119

	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Context and description
	Motivation
	Objectives
	Key contributions
	Structure

	Background
	OutSystems
	OutSystems platform
	Language
	Application testing

	Testing overview
	Testing techniques
	Testing activities
	Testing levels
	Test design techniques
	Manual and automatic testing

	Test automation
	Coverage criteria
	Control flow coverage
	Data flow coverage
	Summary

	Testing over graphs
	Introduction to graph theory
	Graph traversal

	Related work
	Tools and techniques
	Code-based testing
	Model-based testing

	Prioritization of test cases
	Summary

	Implementation
	Algorithm
	Architecture
	The test object
	Data types and expressions
	Graph traversal
	Process nodes
	Coverage evaluation
	Expected output
	Warnings evaluation
	Test case prioritization
	Optimizations

	PoC with dummy model
	Tool applied to the OutSystems model

	Evaluation
	Algorithm execution
	Usability experiment
	SUS
	Results analysis

	Conclusions
	Contributions
	Future work

	Bibliography
	Detailed test results
	Algorithm execution
	Usability experiment
	Graph and questions
	Graph A
	Graph B

	Documents referenced
	C ..VL/HCC paper
	OS Language Overview
	Test Automation Tools
	Tools
	Proprietary software tools
	Open source software tools

