
Automated Transformation of Statements within Evolving Domain
Specific Languages

Peter Bell
SystemsForge

9/10 St Andrew Square
Edinburgh EH2 2AF

[44] 131.292.6240 (UK)
[1] 646.519.3505 (US)

pbell@systemsforge.com

Abstract. One of the biggest challenges in Domain Specific Modeling is handling the inevitable changes to
Domain Specific Language grammars (meta models) as they evolve over time. This paper starts by providing an
overview of our use case - a high volume Software Product Line using a databased concrete syntax for storing
large numbers of statements in a collection of external Domain Specific Languages.

It then outlines research in related fields - from API versioning to database migrations - that could be applied to
the problem of automating the transformation of statements between versions of a Domain Specific Language.
It then presents an initial partial catalog of potential transformations that could be used to automate the process
of transforming DSL statements at a tooling level, making it much easier for modelers to support evolutions in
their DSL grammars.

Categories and Subject Descriptors D.2.11 [Software Engineering]: Software Architecture: Languages

General Terms Design, Experimentation, Languages, Theory

Keywords Evolution, Versioning, Domain Specific Language, Model to Model Transformation, Meta Modeling, Language
Oriented Programming.

1. Introduction
Over time, most programming languages evolve. While General Purpose Languages (GPL's - Java, C#,
Ruby, etc.) generally evolve slowly, Domain Specific Languages (DSLs) often have to evolve rapidly to
keep up with a growing understanding of the domain concepts within a project. In addition, with wider
acceptance of Agile [1] programming practices it is particularly important for the development of DSLs
to be an Agile endeavor, allowing for experimentation and iterative design rather than attempting to
perfect the DSLs before starting to build a system.
There is not yet a rich literature on managing the evolution of DSLs, but there are many comparable
fields that can suggest patterns useful for managing changes in DSL grammars in an elegant manner.
This paper starts by providing an overview of the use case that is driving this work. It then looks at some
of the work in related fields from which inspiration can be drawn and then suggests an approach
strongly influenced by database migrations and refactoring style patterns for managing and partially
automating the transformation of DSL statements as the grammar they need to conform to evolves.
It is important to note that the focus of this paper is the automation of the process of transforming
statements within a DSL based on a known change to the grammar for that DSL. It is not concerned with
the separate topic of attempting to automate the process of extending the grammar for a DSL. The paper
is concerned with automating the evolution of the statements within the DSL rather than automating the
evolution of the DSLs.
2. Requirements
At SystemsForge, we generate custom web applications for Small to Medium Sized Businesses [5]. We
have developed a Software Product Line for developing applications using a combination of a Feature
Manager, a Decision Support System, a collection of DSLs for customization and an easy to extend

framework allowing for the addition of custom code where the DSLs are not yet rich enough to
implement a specific use case.
We store all of the DSL statements in a database for ease of reuse. Features are comprised of a collection
of essential and optional DSL statements. The Decision Support System allows non-technical users to
select optional statements by answering questions organized in a hierarchical decision tree. Our semi-
technical design partners can then add custom statements in any of the system DSLs to customize
applications without having to resort to programming in a GPL. For each project the essential, selected
optional and any custom metadata statements are merged into a collection of XML documents which are
then consumed by a dynamic framework that interprets the XML, merges it with any custom code and
provides the application functionality required.
With the goal of being able to generate thousands of applications a year, we need an automated manner
for handling the evolution of our DSLs as we will have hundreds of thousands of statements that will
need to be transformed to handle the evolving grammars of the languages in which they were written.
We have already developed a system for generating the database schemas for storing the statements
based on a grammar. More recently, our research has been focused on an automation-assisted approach
to transforming DSL statements based on changes in the DSL grammars. For our use case, we are
interested only in the evolution of external DSLs [7] - as opposed to internal [7] (sometimes called
embedded [10]) DSLs.
3. Research
We were not able to find a great deal of literature directly concerning approaches to automating DSL
statement evolution. There were two projects that looked promising. Gerardo de Geest is involved with
some work at Avanade on model:model transformations for DSLs using an XML concrete syntax.
Genvoca [4] is an interesting approach that looks at the idea of applying refinement functions to add
features to a language. It is focused on program evolution (both the interfaces and their
implementations), but the concept is equally relevant to DSL evolution.
In reviewing some currently available Language Workbenches [8], Microsoft DSL Tools [13] and
openArchitectureWare [14] did not appear to have any facilities designed for automating the migration
of models as the DSLs evolved. MetaEdit+ [11] [12], however, had what appeared to be a well thought
out built-in facility for automatically evolving models in concert with their associated meta-models.
When we looked a little further afield we found a number of approaches that could be applicable to
automating DSL statement evolution. Given that we store our metadata in a database and that a database
schema can be looked at as a type of grammar for a language with a databased concrete syntax, we
started by looking at approaches to evolving database schemas. Agile database techniques [2], database
refactoring [3] and the migrations [17] approach taken in Ruby on Rails all provided useful ideas.
An API can be considered a type of simple DSL, so we also investigated approaches to API versioning
[6]. Finally, we looked at some of the materials available relating to XML Schema evolution including
an online repository containing information on a range of approaches to schema evolution [16]. We also
felt that the approach taken in Refactoring [9] by cataloging a collection of specific patterns would fit
well with the problem space even though we are interested in changes that add to and remove from the
total functionality available as well as refactorings that simply implement the same functionality in a
different manner.

4. Initial Results
4.1 Types of Transformation
We decided to start by considering three key grammatical Items: Elements, Attributes (Properties
include whether they are required and their data type) and Relationships to sub-Elements (properties
include their Multiplicities). See Figure 1.

Figure 1. The SystemsForge Meta-grammar

The basic atomic units of transformations are; add, edit, copy, deprecate and delete.
Add - An Item (Element, Attribute or Relationship) can be added to a DSL to make it more

expressive.
Edit - An Item can have its name, Properties and/or Relationships changed, perhaps making an

Attribute optional or changing the multiplicity of a Relationship.
Copy - Information can be copied between Items. For example, as part of the "change Attribute

to Element" transformation, the values for an Attribute could be copied to the new Element to avoid data
loss within the transformation.

Deprecate - Deprecation is an important concept that allows for the expression of the intent to
Delete an Item in some future version. Some systems such as pure:variants [15] allow for multiple-levels
of deprecation. We have not yet determined how strictly we will implement deprecation, but initially we
plan on "warning" if deprecated Items are found in a statement and removing them from editing tools so
they cannot be added to new statements.

Delete - Occasionally it is necessary to remove an Element from a grammar.
While we are considering only five atomic units of transformation, in practice it is sometimes more
useful to consider higher-level transformations which may combine more than one atomic
transformation. For example, a common transformation is "change Attribute to Element" which replaces
an Attribute of an Element with a related sub-Element. This transformation is performed when an
Attribute needs to have Attributes or sub-Elements of its own or when it requires a multiplicity greater
than 1. This can be thought of as three atomic transformations: add Element, copy from Attribute to
Element and remove Attribute. However, it is more useful to be able to express the higher level of intent
by having a distinct transformation for "change Attribute to Element".

4.2 On Interfaces
In this paper we are not yet making a distinction between DSL grammars and the interfaces to those
grammars. The distinction is important when you have multiple interacting DSLs. Changes that may
affect statements in other DSLs are clearly both more serious and more problematic than changes that
will affect only statements within the DSL being transformed. One approach to this problem is by
annotating a subset of the Items within a grammar as being part of its Interface and distinguishing
transformations that affect those Items from transformations that affect other Items. While such an
approach is promising, we have not yet had time to fully think through or catalog a separate collection of
transformations related to DSL interfaces, so the current development is initially naively focused only
on the effects of evolution within a single DSL.
4.3 An Initial Catalog
Figure 2 (next page) contains a non-exhaustive list of some of the most common transformations we
have come across to date when evolving our DSLs.
5. Conclusions
We believe that there is real value in developing a catalog of grammatical transformations - similar to
the way that refactorings have been cataloged. We can then develop tooling for automatically migrating
most transformations and facilitating the migration of non-automatable transformations at a tooling
level, removing the necessity for modelers to have to develop their own solutions to transforming
statements as their DSLs evolve.
Of course, transformations are predicated on the concepts used to express the grammars (the meta-meta
models), so for any given meta-grammar, the catalog of transformations will vary.
The next step in the project is to develop a comprehensive catalog of grammatical transformations based
on the types of grammars and constraints that can be described using XSD Schemas in the form of a
DSL for describing the transformations required. We then plan to develop tooling for handling version
transformations for both database and XML concrete syntaxes. Once we have the naive case working for
single DSLs, we then plan to add the concept of DSL interfaces, and to attempt to develop tooling for
supporting transformations across collections of DSLs.
References
[1] Agile Alliance, http://agilemanifesto.org.
[2] Ambler, S. Agile Database Techniques: Effective Strategies for the Agile Software Developer. Wiley 2003 ISBN 0-471-

20283-5.
[3] Ambler, S. Refactoring Databases: Evolutionary Database Design. Addison-Wesley Professional 2006 ISBN 0-321-

29353-3.
[4] Batory, D., Johnson, C., Macdonald B. and Von Heeder, D. Achieving Extensibility Through Product-Lines and

Domain-Specific Languages: A Case Study. ACM Transactions on Software Engineering and Methodology, Vol. 11,
No. 2, April 2002, Pages 191-214.

[5] Bell, P. A Practical High Volume Software Product Line. OOPSLA 2007.
[6] Dig, D., Manzoor, K., Johnson, R., and Nguyen, T. Refactoring-Aware Configuration Management for Object_Oriented

Programs. ICSE '07.
[7] Fowler, M. http://www.martinfowler.com/bliki/DomainSpecificLanguage.html.
[8] Fowler, M. http://www.martinfowler.com/articles/languageWorkbench.html.
[9] Fowler, M, Beck, K, Brant, J, Opdyke, W, Roberts D. Refactoring: Improving the Design of Existing Code. Addison-

Wesley Professional 1999 ISBN 0-201-48567-2.
[10] Freeman S. and Pryce N. Evolving an Embedded Domain-Specific Language in Java. OOPSLA 2006.

[11] Metacase, http://www.metacase.com/.
[12] Metacase, Documentation, http://www.metacase.com/support/45/manuals/mwb/Mw.html.
[13] Microsoft, http://msdn.microsoft.com/vstudio/DSLTools/.
[14] openArchitectureWare, http://www.openarchitectureware.org/.
[15] Pure-systems, http://www.pure-systems.com/Variant_Management.49.0.html.
[16] Rahm, E. and Bernstein, P, http://se-pubs.dbs.uni-leipzig.de.
[17] Ruby on Rails, http://api.rubyonrails.com/classes/ActiveRecord/Migration.html.

Figure 2. Initial Transformations

Name Motivation Automate?
Add Element Add a new element to broaden the expressiveness of

a DSL.
Yes

Add Optional Attribute Improve the expressiveness of an Element by adding
an optional Attribute to it.

Yes

Add Essential Attribute Improve the expressiveness of an Element by adding
an essential Attribute to it.

Maybe 1

Add Optional Relationship Improve the expressiveness of the DSL by creating a
new optional Relationship.

Yes

Add Essential Relationship Improve the expressiveness of the DSL by creating a
new essential Relationship.

Maybe 1

Change Attribute to
Element

Where attribute needs sub-Elements, Attributes or a
multiplicity greater than 1.

Yes

Change Element to
Attribute

Where an Element can more simply be described as
an Attribute of another Element.

Yes2

Transform Data Type of
Attribute

More accurately describe the data type of an
attribute.

Maybe 3

Make Attribute Optional Stop requiring an Attribute (often by adding an
intelligent default), speeding development of
statements within the DSL.

Yes

Make Attribute Required Require a value for an Attribute. Maybe 1
Limit Relationship to has-
one

Stop supporting a multiplicity greater than 1. Maybe 4

Allow Relationship to
have-many

Move a Relationship from supporting
has-one to has-many.

Yes

Deprecate Element Advise that the Element should not be used and may
be deleted in a future version.

Yes

Deprecate Attribute Advise that the Attribute should not be used and may
be deleted in a future version.

Yes

Deprecate Relationship Advise that the Relationship should not be used and
may be deleted in a future version.

Yes

Delete Element Remove an Element from a DSL to remove
unnecessary or inappropriate concept.

Maybe 5

Delete Attribute Remove an Attribute from a DSL to remove
unnecessary or inappropriate Attribute.

Maybe 5

Delete Relationship Remove a Relationship from a DSL to remove
unnecessary or inappropriate Relationship.

Maybe 5

1 Only if a universal default value can be set for all existing statements or if a calculation can be described for setting an initial value for all existing
statements.
2 This transformation cannot be performed on Elements that have Attributes or Relationships.
3 The field of automatically transforming between data types is well explored. Obviously for some transformations and values this will be possible and for
others data loss would ensue.
4 Only if there are no instances of the Relationship with more than one related instance.
5 Only if there are no such Items, otherwise data loss would ensue.

