
Automated Virtual Machine Replication and Transparent
Machine Switch Support for An Individual Personal

Computer User

by

Beom Heyn Kim

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright c© 2011 by Beom Heyn Kim

Abstract

Automated Virtual Machine Replication and Transparent Machine Switch Support for

An Individual Personal Computer User

Beom Heyn Kim

Master of Science

Graduate Department of Computer Science

University of Toronto

2011

As the price of computing devices drops, the number of machines managed by an in-

dividual PC user has been increased. In many cases, a user with multiple computers

wants to use an exact desktop environment across machines. For personal data replica-

tion, there are several tools like DropBox, Live Mesh and Tonido. However, these tools

can not provide software environment replication. Without a tool to replicate software

environment, users have to manage each device’s desktop environment separately which

is hassling and difficult task to do manually. In this work, we explore the solution to help

modern day PC users to perceive the consistent view of not only personal data but also a

whole desktop environment. Our approach automatically replicates modifications made

on the desktop environment of one machine to other devices using different replication

policies for different network properties. Moreover, users can switch machines instantly

and still see the exact environment.

ii

Acknowledgements

First and foremost, I would really appreciate to Professor David Lie for his patient men-

toring, invaluable advice, financial support, and large amount of time spent on discussions

for this research. Also, I am thankful to my fellow graduate students. I would like to

thank Professor Ashvin Goel and the members of Computer Systems Lab (CSL) group

for their valuable feedback. I am very grateful to my family for their much needed moral

support. Finally, I would like to thank University of Toronto and the department of

Computer Science for their financial support

iii

Contents

1 Introduction 1

2 Related Work 4

2.1 Desktop Virtualization . 5

2.1.1 Internet Suspend/Resume . 5

2.1.2 The Collective . 7

2.1.3 Commercial Products . 8

2.2 Distributed File Systems . 8

2.2.1 Client-Server Architectures . 8

2.2.2 Symmetric Architectures . 11

2.2.3 Cluster-Based Distributed File Systems 13

2.2.4 Miscellaneous Distributed Storage Systems 14

2.3 Cloud Storage Service . 16

2.4 Networked High Availability Cluster System 17

3 Overview 19

3.1 Limitations . 20

3.2 Assumptions . 20

3.3 Disk I/O Bandwidth Measurement . 21

3.4 System Architecture . 24

3.5 Overall System Design . 29

iv

4 Implementation 34

4.1 DRBD Background . 35

4.2 Multi-target Replication for Aggressive Replication Policy 36

4.2.1 Issue with Write Ordering . 37

4.3 Concurrent On-demand Fetching and The Background Synchronization . 39

4.3.1 Dirty Bitmap and Sync Bitmap 40

4.3.2 Race between On-demand Fetching and The Background Synchro-

nization . 41

5 Evaluation 43

6 Future Work 46

7 Conclusion 48

Bibliography 50

v

Chapter 1

Introduction

As computing devices are becoming more and more ubiquitous, an individual PC user

can have more numbers of machines at the cheaper prices. Hence, it becomes a common

PC usage environment where users have one or two desktops at home and one or two

laptops for the mobility plus one or two workstations at the workplace. However, this

luxurious situation came with the cost of managing desktop environments on different

physical machines separately. In many cases, users want to share a consistent desktop

environment across different machines they own. For example, a user has an up-to-date

Windows 7 environment installed with all of his favourite applications configured with his

own settings and preferences. The user has spent much time and put much effort to craft

the Windows box to make it secure and handy for his personal usage. Assuming this was

installed on one of desktop at home, if the user wants to work with the same computing

environment on the workstation at his workplace or on his laptop, the other machines

should undergo the same procedure of installation, configuration, data transfer, and so

on. Considering frequent updates and short software release cycle, it is heavy burden to

users to manage each PC separately.

One way to solve this issue is to have a main desktop environment on only one

machine which can be accessed from other devices using thin client products. However,

1

Chapter 1. Introduction 2

this approach might be too expensive due to the performance overhead from the slow

network. It is critical for interactive application because users can perceive the lag very

sensitively. Moreover, putting all important data and software environment on one place

makes it a very attractive attack point. Also, this approach has weak reliability when

the disk fails without a backup storage. Thus, for personal PC users, this is not an ideal

option for the desktop management. Another way to solve this issue is to replicate data

across devices automatically so that users can transparently work with the same data

from any machine. This approach does not suffer from problems of the foregoing option.

For personal data, the task might be easy since there are several public cloud storage

services like DropBox, Live Mesh, Tonido, etc. Users’ personal data on one client machine

is automatically replicated to other clients. So the data can be fetched from the local disk

instead of the slow and expensive commercial network. There is no extra management

effort needed other than installing client software and configuring user settings like user

ID and whom users want to share data with. These services provide reliability and

mobility by allowing data replication to the server managed by the service provider.

Also, replicated data on the local disk provides high performance suitable for interactive

applications and lets users continuously use data even if the network is disconnected.

Yet, those services have several shortcomings. First, they do not replicate the software

environment. Second, updates might not be visible instantly because the update has

not made to the server yet. Third, they are lack of strict consistency mechanism. So,

it can result in multiple versions of a file because concurrent writers can write different

contents to the same file at the same time. Therefore, the consistency model of cloud

storage services is not suitable for users who want to replicate desktop environment and

keep it consistent without conflicting changes.

One might argue that application configuration or personal setting might be replicated

to other devices by using application specific plug-in or add-on like Firefox’s bookmark

synchronization tool. However, these approaches are limited to the certain sets of ap-

Chapter 1. Introduction 3

plications. Furthermore, this neither reflects updates of software including applications

and the operating system nor installs the same version of software on other computers.

Therefore, the tool to automatically replicate the entire desktop environment across

user’s PCs is needed and it is explored in this work. We are proposing automatic vir-

tual machine replication and transparent support for the instant machine switch for an

individual PC user. Although we designed the system to fulfill the purpose described

above, only two replication policies have been implemented and evaluated at the moment

of writing. We will keep developing the rest of the system and optimize it in the future.

In the following section, related works are summarized to give some background. The

detailed description of our approach is in the overview section. Then, the implementation

section will talk about issues resolved during the development of two replication policies,

and the evaluation section will show how these two replication policies affect application

performance. Then, we present our future work and conclude.

Chapter 2

Related Work

There are several research works and commercial products which are attempting

to provide consistent desktop environment using Virtualization. Numerous Distributed

File Systems(DFS) have been built in order to allow remote data access and data sharing

among multiple users. Many of them allow clients to cache the replica of the data onto the

local disk of client for performance and scalability. Also, DFSs provide cache coherence

mechanisms to manage replicas consistently. Some of DFS also provide disconnected

operation mode and thus users can use the file system even if network is disconnected

or server crash. There is a category of DFS for replicating data across different types

of devices or devices with some limited set of hardware resources or network capacity.

Cloud storage services can be used not only to replicate personal data but also to replicate

virtual disk of the virtual machine(VM) - a file on host OS can be used as a disk to the

VM. Mirroring the disk state over the network has been exploited in the area of high

availability(HA) cluster systems. In following sections, we would discuss more about

these systems.

4

Chapter 2. Related Work 5

2.1 Desktop Virtualization

Desktop Virtualization uses the virtualization layers on the desktop PC to decouple

the machine state from the hardware. Thus, it can encapsulate and serialize the whole

state of the running machine which can be replicated across different devices. There

are a couple of previous works done by the research community and several commercial

desktop virtualization products.

2.1.1 Internet Suspend/Resume

The goal of Internet Suspend/Resume(ISR) was to provide infrastructure-based mo-

bility to users so that the exact desktop environment can be perceived any time and at

any place [25, 23, 13]. Emulating suspend and resume feature of laptops, ISR pursued

the goal of seamless mobile computing by allowing users to suspend and resume a VM at

different sites. They envisioned there will be computing devices deployed ubiquitously in

the future. Thus, users do not need to carry personal devices such as laptops. Instead,

they can simply use pervasively deployed computing devices to work with their own cus-

tomized desktop environments. Because VMs are checked out from a centralized server,

users can access their VM location-transparently.

However, if users travel quickly or try to switch machines instantly, users might have

to wait until all updated blocks are transferred from the suspend site to the resume

site via the centralized server. Also, ISR is not trying to conserve the bandwidth of

commercial networks which is expensive. Today, the disk size of the virtual machine is

expected to be larger than few gigabytes which was the disk size ISR is tested with. This

can lead to longer resume latency and users might have to wait for a longer time than ISR

expected. Furthermore, compared to the approach transferring data from the suspend

site to the resume site directly, ISR’s approach involves additional network bandwidth

consumption and longer latency because of the server. Users of ISR should check out VM

Chapter 2. Related Work 6

before they use it and cache blocks on the local disk. In order to keep the consistency of

cached blocks, ISR uses a simple locking mechanism. That is, users are not allowed to

check out the VM until the VM, previously checked out on the other machine, is checked

in and releases the lock. This can be a hassling task for users if they forgot to suspend the

virtual machine before they leave the previous site. Since ISR’s goal was mobility, ISR

provided a centralized server for users to access their VM from any device. Although this

can provide location-transparent VM access, it prevents ISR from employing proactive

replication to multiple targets since the resume site might be unknown.

In order to reduce resume latency and slowdown, ISR tries to reduce the amount of

data to be downloaded from the server by exploiting portable storage devices like USB

keys as a look-aside buffer. So, the changes made by users will be contained in the

USB keys and the USB keys can be carried by users[9]. If there is a block is needed to

be fetched at the resume site, ISR looks at the portable storage device first and then

tries the server next. In order to conserve network bandwidth consumption and improve

performance, ISR used collision resistant hash to compare content of blocks. If the hash

value of the block on the portable storage device is same as the hash value of the block

on the server, the client fetches the block from the portable storage device. Otherwise,

it goes to the server to fetch the corresponding block. However, this approach requires

users to carry the portable storage device which is contradicting to ISR’s original goal

which is providing seamless mobility to users without necessity of carrying any personal

device.

Unlike ISR, our system’s goal is not an infrastructure based mobility but manage-

ability for an individual PC user. Since users have fixed set of PCs, the machines to

manage are well-known in advance. So, we could transfer data from one peer to another

peer directly without involving a central server. Also, we could do proactive replication

to all devices the user wants to synchronize. Moreover, since we have a directory server

which knows the location of the blocks that are not yet replicated from other devices,

Chapter 2. Related Work 7

our system could support transparent machine switch without requiring explicit check-in

and check-out commands and users can switch machine instantly.

2.1.2 The Collective

The Collective group also independently came up with the idea of using virtualization

to encapsulate state of the running machine and migrate them across different physical

devices [4, 20, 22]. While ISR tries to improve mobility for the PC users, the Collective

focused on improving manageability for administrators who configured and maintain

desktops in the corporate environment. Individual users are having hard time to configure

their desktop environment properly, and this leads to the security breaches. On the

other hand, managing each desktop by an administrator is overwhelming task. Instead,

the Collective eases the burden by having a central repository containing the golden

image of VM for consistent software environment, and users will access this copy to use

well configured desktop environment while their personal settings and configurations are

provided by the Network File System(NFS) server.

They came up with a few interesting optimization ideas for the VM migration [21].

The copy-on-write(COW) disk technique is exploited to keep track of changes from the

previous version and transfer changes only. They used ballooning userspace process to

reduce the size of the memory state by shrinking the memory size taken by the VM. Also,

on-demand block fetching is adapted in order to reduce the resume latency for which

users should wait until they can use the VM. Finally, collision resistant hashing is used

to conserve the network bandwidth consumption by avoiding sending data unnecessarily.

Although their goal is similar to ours, our system does not have a centralized repos-

itory as mentioned above. Moreover, for individual PC users, any of their machines

should be able to act like a repository for the golden copy. In other words, users should

be able to make changes on any machine and still be able to replicate it to other devices.

Furthermore, we do not require one place to have all latest blocks for users to use the

Chapter 2. Related Work 8

VM. Our system can fetch the latest blocks from any devices.

2.1.3 Commercial Products

XenDesktop is provided by Citrix and built for the corporate environment. Also,

VMware’s counter part is VMware View. They provide remote desktop, thick client

mode and disconnected mode. Other virtualization solutions can be integrated with

those. For example, VMware provides ThinApp integrated with View to support virtual-

ized application for better security and flexibility of using legacy apps independent from

platforms. They both are based on the client-server architecture and provide the strength

of centralized management like the goal of The Collective. The Collective ends up with

start up company, MokaFive. MokaFive exploits using personal portable devices like

USB to transfer personal data and user settings while the central server provides locked

down system disk image. To the best of our knowledge, they do not provide peer-to-peer

data transfer or automatic block device replication to multiple devices.

2.2 Distributed File Systems

Since the Distributed File System has the long history, numerously many Distributed

File Systems(DFS) have been designed and implemented. We would highlight interesting

ones only. We discuss DFSs of different architectures such as traditional Client-Server

Architectures, Symmetric Architectures and Cluster-Based Distributed File System. At

last, we present distributed storage system for portable devices designed for the environ-

ment limited with hardware resources like network capacity or battery, etc.

2.2.1 Client-Server Architectures

Client-Server architecture uses a centralized server to store and maintain shared

data. Servers export these data organized in file system tree structure. Thus, clients

Chapter 2. Related Work 9

import and mount the exported file trees onto the local file system’s mount point, and

share data across different devices and with different users through the UNIX-like file

system interface. Sun Microsystems’s Network File System(NFS) is one of the first DFSs

and probably the most widely deployed DFS. The initial version of NFS did not have

mechanism allowing client side caching on the local disk. The server was considered

as the primary location for all up-to-date data and clients have to contact servers very

frequently. Hence, the old version of NFS suffers from several shortcomings such as the

centralized server becoming a performance bottleneck and single point of failure. More

than one server can be composed and collaboratively export a single file system tree in

order to distribute the clients’ requests to different servers. However, it is possible that

one of the servers holds very popular file in the whole filesystem like root directory which

will be accessed frequently by many clients in short time. Then, this harmonized group

of servers still suffers from the scalability problem. Moreover, partitioning filesystem and

distributing subtrees to multiple file servers for good performance and scalability is not

a trivial task even for experienced administrators. Furthermore, the NFS was designed

for the LAN environment where the network bandwidth is large and the latency is small.

Recent version of NFS has added features allowing client side caching on the local hard

disk. In addition, it provides callback mechanisms for replica management, although

they implemented optimistic policy which can lead to conflicting changes made by write-

sharing clients. The recent version of NFS is affected greatly by the CMU’s AFS which

is described in the following paragraph.

In order to solve the scalability issue, researchers at CMU came up with AFS which

heavily utilizes a local persistent storage for client side caching [24]. Since AFS caches a

whole file on the local disk, clients’ request can be handled locally which results in much

lesser accesses to the server. Hence, the scalability was greatly improved and performance

could be enhanced so that AFS could support thousands of clients. Nevertheless, as

the number of users and machines AFS can support increases, the network failure or

Chapter 2. Related Work 10

server failure became more frequent and critical issues. This leads to the development

of Coda distributed file system with disconnected operation mode for weakly connected

networking environments [3]. Coda also provides trickle reintegration which allows clients

to commit changes to the server steadily and gradually without significantly hurting the

performance of the client. Moreover, Coda supports transparent server replications to

provide high availability by servicing clients from an alternative server in the event of

the server crash. For systems like AFS or Coda which allows client side caching, replica

management policy is an important design issue. AFS once implemented token-based

pessimistic cache consistency model which enforces no sharing of a file while one writer

is writing to the file. Although this can provide much stronger consistency model than

the optimistic ones like Coda’s, communication bandwidth for protocol related message

exchange can be expensive and performance can be decreased as the number of sharer

increases. However, researchers found that for DFS’s target environment where desktops

sharing data through the DFS the update rate is low and data sharing is usually sequential

but rarely concurrent [11]. Moreover, for DFS like Coda, it is difficult to implement

efficient pessimistic cache consistency model with disconnected clients. Thus, the recent

version of AFS and Coda implement optimistic cache consistency model.

These DFSs are providing the repository for clients so that they can read, write and

share files. However, our system does not just providing shared information but also it

actively replicates to each device. In terms of cache consistency, we adapt directory based

cache consistency protocol which is pessimistic protocol. Since we are dealing with disk

consistency and disk corruption can be much more severe damage than a file corruption,

it is better to choose more conservative approach then optimistic consistency protocols.

Since our system targets the environment where there is no concurrent sharer, protocol

related message exchange would be much lesser frequent than AFS’s old pessimistic

cache consistency protocol where multiple sharers can ping-pong the exclusive ownership

of files.

Chapter 2. Related Work 11

2.2.2 Symmetric Architectures

xFS, is designed to improve scalability of DFS by removing the centralized server

and distribute server’s responsibility to clients [2]. xFS implemented pessimistic cache

consistency model inspired by the directory based cache consistency protocol. This cache

consistency model uses invalidation to guarantee one exclusive writer and no data sharing

while writing. Also, the metadata manager directs client to the peer holding the latest

data. It distinguishes its cache consistency model from AFS by managing consistency at

the granularity of a block rather than a file. Thus, this consistency model becomes useful

to increase scalability by striping a popular large file across different servers and allowing

access to different parts of the file concurrently. Also, xFS uses cooperative cache which

allows fetching cached data from peers’ memory cache prior to fetching from a persistent

storage, because LAN can provide faster data fetching than a hard disk. Since there

is no centralized server, the scalability could be improved so that throughput increases

linearly with respect to the number of clients. However, xFS is targeted only for LAN

environment. Moreover, frequent message communication with expensive networking

protocols limits the performance of xFS.

Many of peer-to-peer(P2P) distributed storage systems were proliferated in early

2000 [7, 14, 19, 26, 16, 1]. The main advantage of P2P system is scalability through the

symmetric architecture and high availability through redundancy of data. OceanStore

is built envisioning there will be a need for the global-scale storage shared across the

globe. It aims global-scale storage utility envisioned to scale up to 10 billion people with

10 thousands files per person. Since OceanStore is targeting global-scale, it is important

to replicate data on servers distributed across the globe. This can complicate cache

management but provides availability. OceanStore tries to decouple data from physical

location and let it flow through the servers depending on data access patterns of users.

Since it is system shared by multiple users, the data is encrypted and allows write only

to allowed users based on ACL.

Chapter 2. Related Work 12

CFS is a scalable and robust p2p read only file system which is utilizing Chord, a

scalable lookup system, and DHash which is distributed block storage. Applications us-

ing CFS will interact through UNIX-like interfaces, while DHash managed the blocks

and Chord looks up the location of the requested block. For large scale systems, net-

work topology is never static but keeps changing. In CFS, underlying Chord manages

dynamically and implicitly the mapping from the block identifier to the server holding

the requested block. DHash replicates files in advance over different servers for load bal-

ancing and high availability. Only the publisher can update data while others can only

read. In terms of the concept of single writer, CFS is similar to our system. However,

they do not try to replicate entire file on the local disk of each peer, but rather distribute

blocks over servers. Fetching blocks for cache miss is adding the performance overhead.

While CFS is read-only file system, Ivy is p2p distributed file system for both read

and write accesses. It is another P2P system built on top of DHash and Chord. Ivy

implements optimistic cache consistency model and uses a per-participant log to support

conflict resolution after network partitioned and disconnected peers made conflicting

changes. Performance was two or three times slower than the regular NFS. The main

performance bottleneck was network latency and the cryptographic operation to generate

digital signature. The cryptographic operation was needed, since Ivy client does not fully

trust each other and DHash server might be corrupted.

Farsite is a serverless DFS that logically functions as a centralized file server but

physically dispersed across networked desktop PCs. Farsite uses cryptographic techniques

to secure user data, randomly replicate data for higher availability and reliability and

Byzantine-fault-tolerant protocol to maintain integrity of file and directory data. It

is designed for desktop I/O workloads but not for high performance I/O of scientific

applications or the large scale write sharing of database applications. Administration

effort is minimal which is mainly signing certificates such as Machine, user, namespace

certificates. Also, Farsite was designed with the intention to emulate the traditional local

Chapter 2. Related Work 13

file system’s behaviour, typically NTFS.

Unlike many P2P systems, we have a directory server which keeps track of locations

of blocks. Also, we cache the whole VM instead of just distributing it over servers.

Moreover, we prefer pessimistic consistency protocol than the optimistic ones.

2.2.3 Cluster-Based Distributed File Systems

There are some DFS modified the traditional Client-Server architecture to make

DFS suitable for server clusters which are often used for parallel applications [30, 8].

Google File System(GFS), Ceph, Parallel Network File System(pNFS) are allowing clients

parallel accessing to a pool of persistent storage devices. In order to improve performance

for their target applications, file-stripping techniques are used in those cluster-based

DFSs. File-stripping techniques distribute a single file across multiple servers, and enables

fetching different part of the file in parallel. For large server clusters, clients read and

write files across thousands of machines, and files are usually very large, easily ranging up

to multiple gigabytes. Files contain lots of smaller objects and updates to files are usually

appending rather than overwriting. For large scale systems like Google’s infrastructure,

it is relatively frequent that machine crashes. GFS constructs clusters of servers that

consist of a single master and multiple chunk servers. The master is only contacted for the

location information of the required part of file which is chunked and distributed across

chunk servers. Chunks are replicated across different chunk servers for high availability.

Since the master node’s load is only metadata management, it can scale much better

than traditional client-server architectures.

We do not use striping technique. Also, our system is not for a larger cluster envi-

ronment, but for a small group of PCs owned by an individual.

David Lie
Highlight
why?

Chapter 2. Related Work 14

2.2.4 Miscellaneous Distributed Storage Systems

Data on various devices like consumer electronics or portable storage devices are

manually replicated and synchronized, but this is time-consuming task and hard to keep

all replicas consistent by hand. Also, they are restricted with hardware resources like

network bandwidth or battery life. Thus, this leads to many researches to develop dis-

tributed storage system for replicating data across devices in the restricted environments.

These works resemble to our work in the sense that it helps users to replicate data across

different devices automatically with the network capacity limitation and some of them

support the disconnected operation mode.

Bayou [27] is designed for applications to replicate data across servers and it allows

concurrent accesses by multiple applications. When many clients concurrently read and

write with weakly connected network, it is unavoidable to have confliction. Bayou is

an infrastructure for confliction management introduced by concurrent data accesses of

applications on mobile devices such as laptops or PDAs. Authors claim that they do not

have the notion of disconnected mode, because Bayou allows devices to communicate

in pairwise even if they are disconnected from other devices and propagate changes

between them. Bayou store a full collection of data on several servers, and clients can

access different servers with session guarantees [28] to reduce possible inconsistencies

perceived by applications. Once done with write, each client does not care whether

updates have been propagated to other servers or not. Bayou servers tend to move

toward eventual consistency which means writes will eventually propagated to all servers

through intermittently connected network connections. Bayou provides support for the

application specific confliction detection and resolution.

Footloose [15] tries to let users to manage data replicated across computing devices

such as cell phones, PDA, laptop, and desktop PCs. They assumed devices are connected

to some devices but not all other devices. Also, mobile devices will travel along users

and connect to different devices from place to place. So they are used as the data carrier.

Chapter 2. Related Work 15

So they replicate data from device to device whenever devices are connected towards

physical eventually consistency. For conflict resolution, they let the conflicts to flow to

other devices which can resolve them.

BlueFS [17] is designed to manage personal data replicas distributed across differ-

ent consumer electronics devices at home. Those devices have limited battery life, and

BlueFS tries to provide an energy-efficient distributed storage system for them. The

system lets devices use persistent storage to cache replicas for both performance and

network disconnected operation. There is a centralized server which has reliable network

connection, and the server keeps the primary copy of each replicated data for the high

availability. Also, the central server provides the reliability when devices lost or stolen.

They allow a client to fetch data from the replica on the location where the power con-

sumption can be minimized. BlueFS asynchronously update the changes to the server

and other peers across diverse devices. BlueFS implements optimistic cache consistency

model similar to Coda’s and uses callback mechanisms similar to AFS’s for cache coher-

ence. They maintain callbacks per-device and queues the invalidation messages in order

to support portable media which frequently hibernate for energy conservation. BlueFS

keeps the version number for confliction resolution. By keeping version number which

increases at every write access, the server can easily detect confliction by looking at the

version number. If the version number is one more than previous version number, that

means there was no confliction. Otherwise, it implies that the conflicting changes have

been made by clients.

EnsemBlue [18] showed how to integrate consumer electronics with distributed file

system. EnsemBlue is based on BlueFS and added extended features. The persistent

queries were supported by the EnsemBlue to customize the file system behaviour for

each different CED. CEDs are heterogeneity and can only work with certain file format.

EnsemBlue also provides the namespace diversity to support different file organization

schemes on different CEDs. Moreover, EnsemBlue allows a set of disconnected devices

Chapter 2. Related Work 16

to form an ensemble to share data with each other and with a pseudo-server, castellan.

The castellan keeps track of the cache contents of each member of the ensemble and lets

a client to fetch data from the proper peer in the event of cache miss. Also, it receives

changes made by a client and propagates the changes to clients.

Our system is targeting the environment where network connection is limited but not

disconnected frequently. Even if we support disconnected mode, the system should be

explicitly informed by the client going into the disconnected mode. Also, we provide

more pessimistic cache consistency protocol than optimistic ones. At last, we do not

want to distribute latest blocks over the devices, but rather want to keep all latest blocks

replicated on every device. Even if it is not possible to keep all replicas on each device

up-to-date all the time, we try to make the whole VM image up-to-date on each device

eventually.

2.3 Cloud Storage Service

Cloud Storage Services like DropBox, Live Mesh and Tonido are more and more

widely used by users who want to replicate personal data to other machines. Cloud

Storage Services can be used to synchronize the virtual disk of VM by synchronizing a

file on the host OS backing the VM’s virtual disk. However, because these tools provide

eventual consistency of shared data, consistency of virtual disk can not be guaranteed.

Dropbox provides a folder to the user and the user can place files he wants to replicate.

Files in this folder are replicated to the DropBox server and then to other devices. In

order to conserve network bandwidth consumption and improve speed to replicate data,

Dropbox supports Peer-to-peer mode. However, files must be synchronized with file server

before replicated to other devices. Also, peer-to-peer mode is only for LAN environment.

It leaves a snapshot of a file every time users save changes to allow users to rollback to

a previous version. If conflicting changes are made concurrently, one of them is kept as

Chapter 2. Related Work 17

the new version of the existing file and other changes will create different files marked as

conflicted version in its file name. Moreover, it synchronizes data at the granularity of

file. Also, storing data or disk replica on the third party server might compromise one’s

privacy.

Live Mesh is similar to DropBox, but it has interesting features itself such as let users

synchronize Microsoft’s application user settings. Live Mesh also has peer-to-peer data

synchronization feature as well. Unlike DropBox’s LAN sync feature, Live Mesh does

not need to synchronize data with the central server. Thus, users can be protected from

privacy issues with this feature. If users want, they can replicate data to the server, sky

drive, for reliability and availability at the cost of privacy. Unlike DropBox, they do not

leave snapshots of different versions of a file. So they do not provide means to revive a

file accidentally erased.

Tonido is a P2P cloud storage service. Although it also provides Tonido server for high

availability and reliability, its primary goal is providing the basis for forming personal

cloud storage.

These systems are mainly for file replication. So, these solutions implements opti-

mistic consistency protocol and there is possibility of conflicting changes to occur. How-

ever, we want more strict consistency mechanisms which can be used for VM replication.

Also, these systems do not automatically replicate changes unless users explicitly save

the modified files. Yet, we automatically and transparently replicate changes.

2.4 Networked High Availability Cluster System

There is a previous work for replicating the whole VM including all states of running

computer to create backup image for High Availability. Remus replicates the snapshot

of the entire running machine as fast as 25 milliseconds. It delays releasing output until

the snapshots is completely replicated to the secondary node, backup machine. Since

Chapter 2. Related Work 18

this delay is very short, the client would not perceive it. However, they are targeted for

HA cluster consisted of two nodes and works for the LAN environment.

DRBD is a virtual block device that replicates every disk write to the backup node

over the network. Although this replicates disk state, it can not replicate the CPU and

memory state of the running machine. It is also designed for LAN primarily, and it only

works for two nodes.

Since systems for HA clusters usually include only two nodes and they aggressively

replicate each change, different properties of network is not considered. This is because

their main purpose is to provide high availability not manageability. Thus, their approach

is not suitable for our purpose, because it does not consider network capacity of WAN

and its cost. Our system does not completely give up the high availability though. It

tries to replicate aggressively for peers in LAN environment so that reliability through

redundancy can be achieved.

Chapter 3

Overview

In this work, we propose an automated VM replication system to provide users exact

desktop environment for manageability and mobility. Virtualization technologies have

been used to encapsulate the entire desktop environment including personal data, soft-

ware environments as well as hardware states of the running machines. Each device has

a replica of an entire VM on the local disk for performance, reliability through redun-

dancy and disconnected operation. Our system provides a cache consistency mechanism

for connected clients by using a meta data server which collects cache state of each de-

vice and provides location information of the latest blocks. So any disk block change

made on any device is visible immediately on any other device. Therefore, we can allow

users instant switch of machines transparently. Although our cache consistency mech-

anism requires a central server to manage proper mapping information, block contents

are transferred in P2P manner. This approach saves network bandwidth consumption.

Also, the server is only responsible to maintain the meta data used for the consistency

protocol during the system initialization. Hence, the server is lightly loaded and any PC

can be used as a server machine. Our system is aware of network properties between

peers and incorporates different replication policies for different connections.

19

Chapter 3. Overview 20

3.1 Limitations

Currently, our approach has several limitations. It works with devices with similar

architecture only because of the limitation of currently existing VMMs. Currently, it

is not transparent to do suspend and resume between different hardware architectures,

because of different instruction sets supported by different CPU families. We do not try

to fix this problem here, although we expect that there will be some solution in the future.

Although we provide a consistency mechanism for connected clients, our system can not

prevent the confliction while clients are operating in disconnected mode. Our current

implementation can handle only two nodes in WAN environment because the directory

server has not been realized yet. Also, disconnected mode, network conservation and the

fault tolerance are not yet implemented either. At the time of writing, only the LAN

replication and WAN replication policies are implemented.

3.2 Assumptions

We assume a user owns multiple PCs such as desktop, laptop, netbook or tablet,

and tries to manage them with a single consistent desktop environment. Each computer

will be connected through a gigabit Ethernet for LAN, and 7 Mbps commercial network

for WAN. It is common that the gigabit Ethernet is used in a LAN environment these

days. On the other hand, the commercial network for a WAN environment is limited to

7 Mbps upload speed today and has longer network latency. These commercial networks

are asymmetric and download speed is usually much larger. However, transferring data

between PCs over WAN is limited by the upload speed. As our key insight, we assume

only one active node at any given time. Since our target environment is only for a single

user, it is reasonable to assume that there is only one computer that is being used by the

user. That is, VM state is accessed by only one computer, primary node, at any given

time. Other nodes which are not running VM are defined as secondary nodes. Also, our

Chapter 3. Overview 21

system works in the environment where network connections are stable and there is no

frequent network failure or machine crash.

3.3 Disk I/O Bandwidth Measurement

In order to see how much disk I/O bandwidth is consumed by the VM running a

regular desktop environment, we ran some disk I/O intensive applications normal desktop

users would use and measured disk I/O statistics using iostat utility program. iostat

reports CPU rate and device I/O rate during the given interval as many times as a user

specified. A user can adjust time window and see the average I/O rate per interval of

the given duration. Since we were interested in how many disk I/O requests are received

by the block device used as the VM’s disk and we knew that the clock in VM is skewed,

we ran iostat on the Host OS for the primary partition used by VM instead of running it

inside the VM. We were typically interested in the feasibility of the aggressive replication

policy, the policy where we replicate each disk write, for LAN and whether it is possible

to be applied to WAN environment as well. This would depend on the disk dirty rate

because it shows how fast we must replicate. To stress disk heavily, we tried to pick some

disk write intensive jobs. Although we have not considered benchmarking tools and other

unusually disk intensive tasks, we tried to test the normal desktop applications often used

by PC users.

Usually decompression and installation of software shows the high disk dirty rate,

and in order to generate swapping more frequently we tried to run multiple processes

at the same time. We created a Windows XP guest VM on VirtualBox 3.2.10 client

hypervisor. We picked VirtualBox because it is an open source, allows VM to use raw

hardware partition directly and provide the teleporting feature. Seven Internet Explorer

processes were executed and one of then was running YouTube movies. Concurrently, we

installed a BitTorrent client program and downloaded the Torrent file for Eclipse IDE.

Chapter 3. Overview 22

Then, we downloaded an eclipse zip file using the torrent, decompressed the zip file and

installed the Eclipse. Afterwards, we measured disk I/O consumption for ten consecutive

intervals each of which is 5 minute long. The result is provided in the Table 3.1. Based

on our assumption, the bandwidth for the LAN is 1 Gbps which is 125 MB/s and the

bandwidth for WAN is 7 Mbps which is 0.875 MB/s. The max dirty rate average was

2880.57 blocks/sec in the interval 4 which is about 1.407 MB/s, considering the block size

is 512 MB in the iostat’s result. Even if we considered the overhead of TCP protocol, it

is feasible to aggressively replicate to multiple peers within LAN environment. However,

for WAN environment, the disk dirty rate exceeds the network bandwidth sometimes.

Considering we want to support multi-target replication, aggressive replication can not

be used for WAN.

Table 3.1: Disk I/O Bandwidth Consumption with 5 min intervals

Interval Blk read/s Blk wrtn/s Blk read Blk wrtn Dirty Rate(MB/s)

1 32.50 45.21 9750 13563 0.022

2 1637.75 805.79 491424 241784 0.393

3 1136.21 897.97 340864 269392 0.438

4 2728.21 2880.57 818544 864256 1.407

5 1756.97 1831.92 527160 549648 0.894

6 778.85 610.17 233672 183064 0.298

7 102.63 60.18 30792 18056 0.029

8 43.25 26.50 12976 7952 0.013

9 176.41 1405.49 52928 421688 0.686

10 96.58 321.82 28976 96552 0.157

Next, we tried to see how disk dirty rate changes depending on the length of the

interval when decompressing a large file. We tested with two different intervals, 5 sec

and 90 sec. The result is presented in the Table 3.2 and Table 3.3.

Chapter 3. Overview 23

Table 3.2: Decompression disk I/O measurement with 5sec intervals

Interval Blk wrtn/s Blk wrtn Dirty Rate(MB/s)

1 82.45 412 0.040

2 27.31 136 0.013

3 0.00 0 0

4 6.40 32 0.003

5 7646.22 38384 3.734

6 28988.80 144944 14.155

7 20162.87 101016 9.845

8 13422.04 66976 6.554

9 22707.20 113536 11.088

10 19402.79 97208 9.474

11 20643.20 103216 10.080

12 10179.20 50896 4.970

13 2870.68 14296 1.402

The table 3.3 shows that 3.716 MB/s was max dirtying rate for 90 sec interval, and

the table 3.2 shows that 14.155 MB/s was the max dirtying rate for 5 sec. The decom-

pression task took around 1 min and 8 sec and we did not run any other disk intensive

applications. So both measurements cover the disk I/O rate of the decompression mainly.

The average dirtying rate was lower as longer the period of the measurement is. During

the decompression, the steep dirty rate curve was observed in some intervals, but in other

intervals it showed much lower dirty rate than the peak dirty rate. It is true not only

for the decompression but also for mixed workload. If we aggregate interval 3 and 4 in

table 3.1, then the average dirty rate goes down to 0.923 MB/s. This implies we can

replicate at lower rate than the peak dirty rate but over the longer period of time for

WAN. Because WAN is slow the replication rate over WAN can not catch up the dirty

Chapter 3. Overview 24

Table 3.3: Decompression disk I/O measurement with 90sec intervals

Interval Blk wrtn/s Blk wrtn Dirty Rate(MB/s)

1 61.38 5524 0.030

2 7611.06 685376 3.716

rate. However, disk intensive work does not last long and the disk will be lightly loaded

for the rest of time. Thus, we can replicate blocks over the long period of time gradually

to achieve eventual consistency. One problem with this lazy replication policy is that

not all of latest blocks might be replicated to the machine by the time the user tries

to use it after traveling. As a fallback, we provide on-demand fetching and background

synchronization based on the directory based cache consistency protocol.

In short, our measurement showed that it is feasible to aggressively replicate each disk

write to multiple machines connected with 1Gbps network, and it is better to provide

eventual consistency for peers connected over WAN while the disk is being idle or lightly

loaded.

3.4 System Architecture

System Components Our system has three components a userspace utility, kernel

module and directory server. Figure 3.1 displays these components, their interactions

with each other and interactions with the block device driver and other peers. First, the

userspace component is to provide user-defined configuration parameters to the kernel

module so that it can be initialized properly. For example, IP address of the peer should

be specified in the configuration file. Then, the userspace utility will reads configura-

tion information and pass it to the kernel module so that the network connection can

Chapter 3. Overview 25

Figure 3.1: System Architecture

be established with the correct peer. Also, other parameters like a primary disk parti-

tion to be replicated and synchronization rate should be specified in the configuration

file and passed to the kernel module by the userspace utility during the kernel module

initialization.

Second, the kernel module is the component actually participating in the replication.

It is sitting between the file system of guest OS and the backing block device driver

which is the block device driver for the physical hard disk. The VM thinks the kernel

module as its block device and sends disk I/O to the kernel module component. Then,

the kernel module component receives disk I/O from its upper layer, VM, and sends

the disk I/O to the backing block device driver. At the same time, the kernel module

sends replicated data to peers over LAN connections. For WAN peers, the kernel module

simply forwards disk I/O without sending replicated data. Then, dirtied blocks will be

Chapter 3. Overview 26

replicated when the VM does not get any input from the user - pushing synchronization.

This pushing synchronization might not be able to catch up the dirty rate as we saw

in the disk I/O measurement section. Thus, the kernel module on the new node runs

background synchronization - pulling synchronization - with on-demand fetching. The

locations of latest blocks are known to the directory server, and the kernel module can

obtain this meta data from the directory server. While the pushing synchronization is

controlled by the kernel timer, pulling synchronization is continued until all latest blocks

are replicated on the local disk. This is because to reduce the chance of cache misses

which cause significant performance overhead.

Third, the directory server is used mainly for directory based cache consistency pro-

tocol. It is expected to be lightly loaded because it manages meta data only and the

message exchange for consistency protocol in our system is not as frequent as the shared

memory multiprocessor architecture due to our single primary assumption. Essentially,

it takes care of the location information for each block and provides the knowledge of

where the latest version of the block replica is stored. The directory based cache consis-

tency protocol is a pessimistic consistency protocol because it does not allow both read

and write sharing of data while the data is being written by one entity. Therefore, the

directory server contributes to minimizing the disk corruption which is much more severe

issue than file inconsistency in distributed file systems. The directory server can also

keep track of which machine is being used by the user by storing the machine’s ID when

the user starts running VM.

When user runs the start-up command of our system, the kernel module will be

configured and initialized by communicating with the userspace utility which provides

knowledge about the user’s configuration file. Then, VM configured to use the kernel

module as a disk is started running. If the VM was running on another peer, VirtualBox

triggers teleporting which is essentially similar to the live migration[5] to switch the

machine transparently on which the VM is running. Otherwise, VirtualBox simply powers

Chapter 3. Overview 27

up the VM. The directory server will interact with the kernel module during the system

initialization and execution in order to keep the consistency of the disk.

Mobility Protocol DRBD which our design and implementation are based on defines

two roles for each computer or node. The primary node is the node that allows ap-

plications to write to its disk. Yet, the secondary node does not allow applications to

write to its disk while its primary peer can write to its disk. The secondary node can

be promoted to be the primary node in the case of the primary node crash or network

failure. Also, the primary node can be demoted to be the secondary node. We adapted

the same terminology in terms of the role, but we promote and demote each node for

different purpose.

Figure 3.2: Mobility Protocol

The mobility protocol is described in the Figure 3.2. The figure assumes that two

Chapter 3. Overview 28

nodes are connected over WAN. While the user is traveling, the VM at the previous site

becomes idle for a while and the background synchronization is started. Then, the user

invokes some command on the terminal to trigger the machine switch after arriving at

the new site. The script will inform the directory server that the user is trying to use the

different device to run VM. Since the directory server can figure out the device currently

running VM and let the new device knows about it. Then, the new device promotes itself

to become the primary node and sends a machine switch request to the other primary

node to trigger teleporting. Note that if the user was remained at the previous site,

the background synchronization will be stopped as soon as the user starts giving inputs

to the VM again. However, since users moved to the new site in this example and the

new site still does not have all of latest blocks yet, the background synchronization is

continued in order to bring all the modified blocks as soon as possible to reduce chance of

cache miss. After the teleporting is finished, the old primary node becomes the secondary

node to prevent others modify the replica on that device. Even though there are two

primary nodes temporarily during the teleporting, the teleporting actually never runs

VM on both sides simultaneously. It suspends VM on the previous site before resumes

the VM on the new site. Therefore, this still does not violate the essence of our single

primary node assumption because there is only one writer and no concurrent sharer at

any given time. If the VM was running on no other machine by the time the user invokes

the start-up command, the situation is much simpler. The new device will just promote

to the primary and start up the VM as soon as the directory node informs it that there

is no other device currently running the VM.

If two sites are connected through the LAN, all latest blocks are supposed to be

already replicated since we are using aggressive replication policy. However, if they are

connected through the WAN, there is a chance that not all of latest blocks are replicated

on the new device. This is where we need the directory based cache consistency protocol

as the fallback mechanism of the background synchronization. Every cache miss will

Chapter 3. Overview 29

trigger on-demand fetching based on the directory based cache consistency protocol. On-

demand fetching is slow especially over the WAN. Therefore, our system uses background

synchronization to more aggressively replicate modified blocks with on-demand fetching.

This can help to reduce slowdown that users will perceive at the new site because there

will be lesser cache miss.

3.5 Overall System Design

In this section, we describe more details about how our system actually does disk

replication and memory replication for a VM. Also, three additional features which are

necessary for making our system more practical are introduced. Not all of these features

are implemented yet. However, we introduce them here to give overall impression of our

system’s goal.

Disk Replication We considered two replication policies which are aggressive repli-

cation policy for LAN and lazy replication policy for WAN. Although we could consolidate

disks of desktops and came up with distributed block storage like DHash [16], we decided

to store the whole VM image on the local disk and try to keep all disks consistent for

following reasons.

• Better performance for interactive application

• Disconnected Operation

• Reducing network bandwidth consumption

• Hard disks are cheap and large

• Reliability through redundancy

Virtual Machines used for a desktop environment is configured with a large disk size

which makes difficult to replicate the VM on different machines over the network. Both

Chapter 3. Overview 30

ISR and Collective attempted to exploit the blocks already existing on the destination

assuming the user ran the VM on the devices previously. This assumption allows an

efficient optimization, copying only the blocks of different contents based on hash values.

However, previous systems are lack of support for instant switch of devices without any

portable storage devices. This is due to the lack of mechanism to fetch latest blocks

directly from other peers and still maintaining consistency of VM’s disk. We provide a

logically consistent disk even if the disk is physically inconsistent through directory based

cache consistency protocol.

For LAN environment, the bandwidth is large and the latency is small so that the

disk I/O is a bottleneck. Therefore, we try to keep each disk in the same subnet as

closely replicated as possible by replicating disk writes aggressively to other peers. Note

that since we are targeting a single PC user we are assuming only limited number of

machines connected within same LAN environment. If the number of devices increases

and starts affecting the performance, it is possible to divide the LAN group into multiple

other subnet groups and compose them as if those subnet groups are connected through

WAN.

For WAN, although the measurement showed that we could achieve eventual con-

sistency, we should consider the fallback mechanism for the worst case scenario. For

example, in ISR like working environment, if the user forgot to suspend and check-in the

VM, then the user has to wait until suspend and check-in are finished before checkout

and resume. Moreover, if users travel very short distance like going to the coffee shop

nearby and try to work with the laptop. Data transfer will be made over the slow net-

work and it is possible that some blocks are not yet replicated on the laptop. We provide

concurrent on-demand fetching and background synchronization to handle this scenario.

The directory server will maintain the meta data for the latest blocks’ locations and give

it to the users when they start up the system on the laptop.

Chapter 3. Overview 31

The block level synchronization is more efficient than the aggressive replication. For

example, files opened for write access is frequently overwritten. Aggressively replicating

each write is more wasteful than just transferring the final version of the series of the

changes. This will save hardware resources including network bandwidth. In addition,

the collision resistant hash can be used to compare the block contents on potential sender

and receiver. If the hash values are matched, it means block contents on both side are

not needed to be synchronized. Therefore, network bandwidth consumption can be even

more conserved.

Every system managing replica should implement a consistency protocol. We are

planning to implement the directory based cache consistency protocol. Since we do not

allow concurrent active nodes, we can reduce communications with the directory server.

Currently, we are thinking having the directory server to provide meta data to the primary

node during the initialization period. Then, for shared cache blocks, the primary can

fetch blocks from other peers without involving the directory server. For other types of

cache state changes, we might need the intervention of the directory server. We would

decide details of how to optimize the directory based cache consistency protocol as the

implementation becomes more mature.

Memory State Replication For the scope of this work, we have decided to use

built-in teleporting feature of client hypervisors for migrating memory state of running

VM. Teleporting, or Live Migration, is designed to transfer VMs for a server environment

with minimal service downtime perceived by clients. This feature is originally designed

for the server environments where servers are using a shared storage. Thus, it considers

memory state transfers through one gigabit LAN. It iteratively copies the dirtied memory

pages to the resuming site until there remains a small set of memory pages which are

dirtied faster than the iterative copy. This small set of memory pages are named as

writable working set by Live Migration of Virtual Machine paper [5], and it is wasteful to

Chapter 3. Overview 32

copy these pages iteratively because they are highly likely to be dirtied in the following

iteration. Instead of the unlimited iterative copy, VM will be suspended at some point

and the rest of dirtied pages will be copied to the other side. Then, the VM is resumed

at the resume site after final iteration of copying is done.

Disconnected Operation Mode Our system will support mobile devices such

as laptops and netbooks. Users should wait until all latest blocks are collected on the

local disk before the disconnection. While a device is in the disconnected mode, other

devices are recommended not to run the VM. When reconnected, all the changes made

by the previously disconnected node will be replicated to peers. If other devices have run

VM over the disconnected period, then conflicts can occur and possibly detected by the

directory server during the reconnection stage. As soon as conflicts are detected, users

should decide whether they want to try to resolve the conflicts, overwrite one version

with the other version or just keep two separate desktop environments. To try to resolve

conflicts, the system will go to the failure recovery mode as explained in Fault Tolerance

section below.

Network Conservation

Figure 3.3: Typical Overlay Network Topology for Our System

Our system considers different properties of each network connection between the

Chapter 3. Overview 33

primary node and the secondary node. We try to conserve network bandwidth by forming

an overlay network so that replicated data transfers only once over WAN between different

LAN groups. The typical overlay network topology in our mind is in figure 3.3. A

postmaster node, the solid black nodes in the figure, is selected from each LAN group and

each pair of them establishes the communication channel. Replicated data is exchanged

only through this connection between postmaster nodes. When the postmaster node

receives data, the node will replicate data to other peers, hollow nodes in the figure, using

aggressive replication policy. This approach saves more bandwidth than broadcasting to

all peers over WAN.

On the other hand, LAN is almost free compared to WAN. Thus, we prefer achieving

performance, availability and reliability through aggressive replication policy. Since a

gigabit LAN can transfer replicated data almost instantly, it is fair to assume all LAN

group members are synchronized considering our goal. Therefore, when the postmaster

node crashes, another peer can be selected as a new postmaster node with minimal chance

of being inconsistent.

Fault Tolerance Only when we detect the unavailability of required blocks, we

consider it as disk inconsistency issue. Because it is possible that machine can be tem-

porarily disconnected from others, the system can operate until either a client crash or a

network failure prevents the primary node from fetching the latest blocks. It is possible

to tolerate crashed node or failed network by trying to choose alternative peer. When

there is no peer which can handle the request, our system falls into the failure recovery

mode. We have an immaterial idea for disk inconsistency issue resolution which is using

fsck. First, all latest blocks from peers are gathered to one node and run fsck over the

disk partition. However, we might be able to do better if we use features like taking

snapshots frequently. More options will be explored as a future work.

Chapter 4

Implementation

Because it replicates data directly to its peer over the network, can fetch blocks from

a peer on demand and already has the background synchronization feature, we chose to

implement our system based on DRBD. However, DRBD has some shortcomings that we

have overcome. First, DRBD can replicates to only one peer while we want to replicate

data to multiple peers because many users have more than two PCs to manage. Second,

DRBD does not guarantee the consistent view of the disk if latest blocks are dispersed

over different devices. Although DRBD allows on-demand fetching, DRBD uses it only

for diskless node. So DRBD works only on the local disk which is either consistent or

completely inconsistent, not on the local disk which has some of latest blocks and some of

outdated blocks. However, since we want to support instant machine switch, we have to

provide a VM the logically consistent view to the disk even if the local disk is inconsistent

physically. Therefore, we had to modify DRBD to realize aggressive replication and

on-demand fetching with background synchronization. In this chapter, we discuss the

background information of DRBD and how we modified DRBD to enable two replication

policies. Note that on-demand fetching with background synchronization only works for

two nodes currently because we have not finished implementing the directory server yet.

34

Chapter 4. Implementation 35

4.1 DRBD Background

DRBD is implemented as a virtual block device which can be inserted between the

file system and the block layer which is the layer actually interact with the physical

block device. DRBD is used for High Availability(HA) cluster that consists of two nodes.

Usually, one node is primary and the other node is secondary while it is possible to allow

dual primaries assuming the cluster file system is used. DRBD on the primary node will

intercept the disk I/O and send the replicated data to the DRBD on the secondary node

to mirror both disks. Thus, even if one node becomes unavailable, the other node can

keep servicing applications.

DRBD provides 3 protocols to replicate data such as Protocl A, B and C. A disk

write request is completed when data is written to the local disk no matter whether the

data is received by the peer or not, when replicated data is arrived at the peer node and

when replicated data is written to both the local disk and the peer’s disk, respectively.

Although Protocol C provides the strongest guarantee for consistent, reliable and highly

available replicated disk, it has the biggest performance overheads since it is synchronous

protocol. With Protocol A and B, there are some possibility to end up with inconsistent

disk in the event of node crash or network failure. However, we decided to use Protocol

A because that is the most scalable and the quickest protocol and our goal is not to

provide high availability but to replicate to multiple peers even over WAN. We would

explore better options for the fault tolerance mechanism as a future work.

DRBD resynchronizes two disks after the event of node crash or network failure using

quick-sync bitmap and activity logging. The quick-sync bitmap on the primary node

keeps track of which blocks are modified and has not been replicated to the peer at the

granularity of 4KB. However, the activity logging maintains the information about which

blocks are accessed recently at the granularity of 4 MB. The activity log(AL) keeps track

of limited number of 4 MB regions, called extents. When the extent, not tracked by the

Chapter 4. Implementation 36

AL, gets newly accessed, the old extent in AL is replaced with the new one based on the

least recently used cache replacement policy. With the AL, DRBD to access disk less

frequently for quick-sync bitmap management. DRBD keeps small portion of the bitmap

according to the extent in the AL. So, only when the old extent is replaced, the quick-

sync bitmap on the disk will be updated accordingly based on the portion of bitmap

in memory. When the node crashes, the quick-sync bitmap might fail to tracking some

dirtied blocks because the portion stored in the memory is lost. However, using activity

log kept in the disk, DRBD can revive the extents tracking the hot blocks. Then, DRBD

considers all hot blocks as dirtied so that no block that might be out-of-sync is missed

out during the resynchronization.

4.2 Multi-target Replication for Aggressive Replica-

tion Policy

DRBD has three main workhorse threads such that receiver, asender and worker

threads. They are initialized when the kernel module component of DRBD is initialized

and the TCP connection is established by the initialization code for the receiver thread by

invoking drbd connect(). DRBD keeps all required data for its operation in its main data

structure drbd conf and almost all important DRBD functions takes it as an argument.

drbd connect() also takes struct drbd conf as an argument and obtained IP address from

its member field containing drbd socket data structure. The drbd socket contains both IP

address and socket descriptor member fields and used for both connection establishment

and message communication as well as data transfer. However, drbd socket only stores

one IP address and one socket descriptor. After drbd connect() obtain the opened socket

file descriptor, it stores the descriptor in the drbd socket data structure.

In order to extend drbd socket, we defined our data structure vmsync socket and

Chapter 4. Implementation 37

created a list of vmsync socket, named vmsync socket list. We put vmsync socket list

in the drbd socket. The vmsync socket contains information per connection like peer’s

IP address and opened file descriptor for the connection and possibly more. So, there

is one vmsync socket per peer, and when the DRBD module is initialized, we initial-

ize vmsync socket struct per peer in order to contain peers’ IP addresses. Then, we

construct the vmsync socket list with vmsync socket data structures and store the list

in the struct drbd socket which is again contained in the main DRBD data structure

drbd conf. We did it this way to modify DRBD’s architecture minimal because DRBD

is not implemented in a modular way.

We enclosed the drbd connect() invoking part of the receiver initialization procedure

with the loop iterating the vmsync socket list. Since drbd connect() obtains the IP

address from and save the opened socket file descriptor in drbd socket, we properly

set the IP address of a peer in drbd socket before invoking the drbd connect(). After

returning from drbd connect(), we retrieve the opened socket descriptor in drbd socket()

and save it to the corresponding vmsync socket.

When a block input/output(bio) request is made by VM, drbd make request common()

interposes it. If the bio request is for write access then it needs to replicate the write to

other peers in the same LAN group. So DRBD schedules the replication work into the

queue which the worker thread gets jobs from and sends the bio request to the backing

block device driver to write to the local disk. When the worker thread starts working

on the replication job, the worker invokes drbd send dblock() function to send the data

to the peer over the network. We again enclose drbd send dblock() with the loop iterat-

ing vmsync socket list and send the packets to multiple targets by changing the socket

descriptor retrieved from vmsync socket list at the each iteration.

4.2.1 Issue with Write Ordering

Chapter 4. Implementation 38

Some applications like journaling filesystems or relational databases require to keep

write-ordering correctly. Since Ext filesystems are journaling filesystems and we would

like to support these filsystems in the VM, we had to consider this write-ordering issue

during modification. DRBD uses barrier packets to keep write-ordering for replicated

data for Protocol A which we adapt. The reason why DRBD needed to use the barrier

packets is that disk I/O scheduler on the peer can mix up the order of disk writes even

if packets are sent in the correct order by the primary. For example, if applications want

to write A and then B to the same block and they have causal dependency, applications

can force the write-ordering by using method like flushing (e.g. fsync). This can keep the

write-ordering for the local disk. However, if write A and B are sent over the network,

there is no mechanism such as flushing over the network. Thus, DRBD implemented the

network version of flushing which is basically sending the barrier packet between write

A and B. Then, the peer receives A and the barrier packet prior to B. When a barrier

packet is received by the secondary node, the secondary node will flush write A to its

local disk before receiving B. DRBD puts every write request that should be written

before following write requests into an epoch set. Since the Protocol A is asynchronous,

DRBD collects replicated data which do not have causal dependency in the same epoch

set. Different epoch sets are separated by barrier packets. Until acknowledgement for

the barrier packet arrives, DRBD does not clear the epoch set. If we replicate data to

the multi-targets, each target will reply with the barrier Ack packet. This should be

received so that the TCP receive buffer does not get blocked. The barrier Ack packet is

sent through the meta data socket which is different TCP socket from the data socket

which is mainly used for transferring replicated data. While the data socket is used by

the receiver thread, the meta data socket is a responsibility of the asender thread. So

we extended DRBD’s asender thread listening on the meta data socket so that when the

barrier Ack packet arrived, we let the asender to iterate through the vmsync socket list

and collect the barrier Ack packet sitting in the TCP receive buffer. Then, we clear the

Chapter 4. Implementation 39

corresponding epoch set when we received the barrier Ack packets of the last peer.

Since we are waiting for each peer to send the barrier Ack packet, this will degrade

the performance depending on how fast every peer replies. However, this write-ordering

issue is only applicable to the aggressive replication policy - we replicate using background

synchronization for lazy replication policy - and other peers are not expected to experience

intensive disk I/O. So, we do not expect to see particularly long delay. Thus, we just

implemented as it is described here to ease the implementation. We could implement

multiple asender threads per connection and handle each connection differently without

waiting for lagging peer during the iteration.

4.3 Concurrent On-demand Fetching and The Back-

ground Synchronization

We provide concurrent on-demand fetching and the background synchronization for

the situation where a new primary has inconsistent disk due to slow network bandwidth

as mentioned in the section 3.5 under the disk replication heading. In order to provide a

logically consistent disk, the new primary node should know the information of locations

for the latest blocks. Based on our design, this information is managed by the directory

server. However, because we did not implement the directory server yet, this feature is

limited to two nodes. To enable this feature for two nodes, we depend on the bitmap sent

from the old primary. The bitmap on the old primary node provides information which

blocks are dirtied and not transferred to the new primary yet. This bitmap is called

sync bitmap, and the old primary, the sync source, sends this sync bitmap to the new

primary, the sync target. Towards the eventual consistency, we enabled synchronization

in the background which also uses the sync bitmap. Here, we present how we enabled

this feature for two peers. Once we implement the directory server, it can be extended

Chapter 4. Implementation 40

to the multiple peers easily.

4.3.1 Dirty Bitmap and Sync Bitmap

DRBD sets the bit in the bitmap whenever it is finished with handling disk write

request. Since background synchronization is using the bitmap as well, we needed an-

other bitmap to mark dirtied blocks while the sync bitmap will keep track of blocks to be

synchronized during background synchronization. Otherwise, there is no means to deter-

mine why the bit is set - it can be set because the corresponding block is dirtied locally or

dirtied remotely. Thus, we added the new bitmap, so called dirty bitmap, and set a bit

in the dirty bitmap instead of the sync bitmap when a disk write is done. Therefore, we

have the sync bitmap for the background synchronization and the dirty bitmap to mark

newly dirtied blocks on the new primary node. When the synchronization is finished and

all of latest blocks are on the local disk, the dirty bitmap will be merged to the sync

bitmap. Afterwards, disk write request will set the bit in the sync bitmap so that those

blocks to be synchronized can be remembered for the next time users switch the device.

On-demand fetching is another synchronization job which we use the sync bitmap

for. It allows us to synchronize the requested out-of-sync block right away so that VM

does not have to wait for the background synchronization to fetch the block. When a

disk I/O request comes in, we look at the sync bitmap and determine whether we need

to fetch from the peer or not. If we need to fetch the block from the peer, then we put

VM into sleep and request directly to the peer. When the block is received and written

to the local disk, we clear the bit in the sync bitmap and wake up the VM which will

then proceeds to make disk I/O requests to the backing block device driver.

Chapter 4. Implementation 41

4.3.2 Race between On-demand Fetching and The Background

Synchronization

While on-demand fetching is triggered by the disk I/O request from VM, the back-

ground Synchronization is triggered by a timer interface in the Linux kernel. Every time

the timer is expired, the synchronization job is scheduled for the worker thread. Once the

worker thread starts working on the synchronization job, it first looks at the sync bitmap

and picks the next bit that is set to 1. Once next bit to sync is picked, the corresponding

blocks are marked as being synchronized, and the block request is sent to the peer. The

request message contains the hash value of the block content so that the sync source

can compare the received hash value with the hash value of its own corresponding block

content. If two hash values are equivalent, the requested block will be transferred to the

new primary. Otherwise, just acknowledgement message, notifying the block is already

in sync, will be sent back. When requested blocks are received by sync target, the blocks

are written to the local disk and the bit is cleared in the sync bitmap.

Since both on-demand fetching and the background synchronization access the sync

bitmap, there is a race between background synchronization and on-demand fetching.

The race is avoided by marking atomically the block is in the middle of either on-demand

fetching or the background synchronization. DRBD uses lru cache to keep track of hot

blocks that are accessed recently. Also, DRBD has the concept of extent that represents a

specific region of blocks in the disk. The extent can be represented as bm extent or al ext.

If a bm extent exists in the cache managed by lru cache data structure, the background

synchronization is on-going for blocks in that extent. Also, DRBD keeps al ext for

recently accessed blocks in separate lru cache, and al ext contains reference counter.

Thus, if the reference counter is greater than 0 and al ext is in lru cache, then blocks in

the al ext are being accessed by an application. When the background synchronization

Chapter 4. Implementation 42

procedure tries to synchronize blocks, it first checks whether the blocks are being accessed

by VM by looking at this reference counter. On the other hand, when the disk I/O

request procedure tries to do disk I/O on blocks, it checks whether those blocks are being

synchronized or not by looking for the existence of corresponding bm extent. DRBD uses

al lock spinlock data structure to atomically modify both lru cache data structures, so

only one of both procedures can modify extent and lru cache at the same time. Thus,

while one is trying to work on the disk blocks, other can not work on the overlapping set

of blocks.

We extended this mechanism by merging the on-demand fetching as a part of the disk

I/O request handling. When disk I/O request comes in, the disk I/O handling procedure

tries to start disk I/O request by checking the existence of bm extent. If it exists, wait

until synchronization is finished for that extent. Otherwise, the procedure looks at the

sync bitmap. If the corresponding bit is set, on-demand fetching is triggered. While

waiting for the block, the disk I/O handling procedure is put into sleep together with

VM. When the response is received and the fetched block is written to the local disk, the

disk I/O handler wakes up. Then the disk I/O request is passed to the backing block

device driver. Similarly, while on-demand fetching is on-going - if the corresponding

al ext’s reference counter is greater than 0 - the synchronization procedure waits until

the on-demand fetching is finished for disk I/O as it would wait for disk I/O handling in

original DRBD.

Chapter 5

Evaluation

Our testing environment consists of two desktop PCs equipped with a gigabit capable

network interface card. They are connected through gigabit Ethernet cables and a gigabit

switch. One machine has Intel Pentium 4 CPU 3.00 GHz with 512 MB cache size and 1

GB of main memory. The other machine has Intel Pentium 4 CPU 3.00 GHz with 512

MB cache size and 2 GB of main memory. We chose to use VirtualBox 3.2.10 for our

client hypervisor and a VM was configured with 256 MB of main memory and 10 GB of

hard disk. We installed Linux 10.04 Lucid on the VM.

In this paper, we have discussed two features we have built so far. One is the aggres-

sive replication policy and the other is concurrent on-demand fetching and background

synchronization. Since the aggressive replication policy can mirror disks with the very

small time window during which disks are inconsistent, we do not expect interesting per-

formance difference between the aggressive replication policy and the base case where we

run a VM with the standalone consistent up-to-date local disk. So our main interest of

the evaluation was how much performance degradation is introduced by the concurrent

on-demand fetching and background synchronization. Therefore, we evaluated the base

case first and then tried to see the overheads of using the concurrent on-demand fetching

43

Chapter 5. Evaluation 44

with the background synchronization.

First, we tried to get the time taken to finish the decompression of the linux-2.6.38

source file on the consistent standalone hard disk. Then, we did the same decompression

job on the inconsistent hard disk to see the overhead of the on-demand fetching(OF)

with the background synchronization (BS). To evaluate the overhead of OF with BS, we

invalidated all blocks on the local disk and minimize the background synchronization rate

to 300 KB/s. However, we could not emulate the WAN environment because we had a

problem when we used Linux Traffic Control (TC) utility for bandwidth control together

with the DRBD. The overhead of WAN emulation is expected to decrease performance

more. For more accurate evaluation in the future, we will have an intermediate desktop

bridging two peers and make the intermediate desktop to control the network bandwidth

and latency so that we do not use TC with DRBD on the same machine.

Table 5.1: Multiple Trials of Decompressing the Linux Source

Trial Base Case OF with BS Trial Base Case OF with BS

1 182 275 6 238 354

2 258 223 7 154 285

3 255 523 8 157 353

4 242 388 9 213 382

5 244 361 10 225 231

Table 5.2: Average(Standard Variation)

Base Case OF with BS

216.8 (32.24) 339.2 (68.56)

The average time taken to decompress the Linux source file was 216.8 sec with the

standard variation 32.24 for the standalone case, and was 339.2 sec with standard vari-

ation 68.56 for OF with BS. The overhead of the OF with BS is definitely perceivable

Chapter 5. Evaluation 45

by the user since time increases around 50% compared to the base case. Moreover, this

is numbers obtained with a gigabit LAN environment. This implies two things. First,

the aggressive replication is better to be employed for LAN environment due to the per-

formance. Second, we have to synchronize two disks as much as possible before users

switch devices. OF with BS should be used as the fallback mechanism rather than the

primary method to replicate data even for WAN environment. Nonetheless, OF with BS

can provide a new feature that no other previous desktop virtualization supported which

is instant machine switch support for an individual PC user.

Chapter 6

Future Work

Since our implementation is not completed yet, most of our future work is to finish

implementation. At the moment, we have built two different replication schemes for

LAN and WAN. For LAN, multi-target replication is enabled, but for WAN, it works

for only two nodes. Once we build the directory server, we would be able to support

multiple nodes for WAN environment. Other features like disconnected operation mode,

network bandwidth conservation feature and fault tolerance should be implemented as

well in order to provide reasonable guarantees to users.

Also, we want to find a trade-off between minimizing the total migration time and

the service downtime so that users do not suffer too much either from slowdown or from

resume latency. In terms of the total migration time, the live migration will take more

time then the simple copy-in and copy-out scheme due to the iterative copying stage.

Thus, the live migration can hurt the performance and users will perceive performance

degradation during the total migration time. On the other hand, the copy-in and copy-

out approach will go through the longer service downtime which means users will suffer

from the long resume latency. We will invest some time to this issue in the future.

Although performance is poor when on-demand fetching and background synchro-

nization is used, there are many optimizations we can utilize. We will fetch more blocks

46

Chapter 6. Future Work 47

than requested ones to fetch blocks nearby the requested ones in advance. Also, we

will add hash function to avoid unnecessary data transfer. Instead of synchronizing in

the increasing order of the block ID, synchronizing hot blocks with higher priority may

provide better performance by reducing the chance of cache misses. Furthermore, we

will work to improve efficiency of the aggressive replication by batching replicated data

before sending out so that avoiding sending small packets many times.

In terms of communication channel, we use TCP connection currently. Thus, we

are currently sending out packets containing the same data multiple times. Thus, it is

inefficient compared to broadcasting a packet to multiple peers. However, we might be

able to implement reliable multicasting protocol to improve scalability.

We would also evaluate our system more rigorously with WAN emulation by having

a bridging desktop machine between two peers and restricting incoming and outgoing

bandwidth as well as imposing some network latency. In addition, we would want to

evaluate our system in a real deployment. Then, we would be able to see how much

performance degradation is observed for OF with BS in the real deployment.

Our system can automatically replicate the whole software environment considering

network properties and it can provide logically consistent view of the disk even if the

actual physical disk’s state is inconsistent. This can provide flexibility of deploying

replica of VM across different platforms and keep replicas consistent which is a general

and useful property in today’s cloud computing environment. Thus, we expect that it

can be used for different purpose other than PC management for users and we would try

to find the different application scenario of our mechanism.

Chapter 7

Conclusion

In this paper, we described the design of a system to automatically replicate whole

desktop environment and the implementation of two replication policies one of which is

to support instant device switch for users. The tool is designed to help an individual PC

user to manage their desktop environment one time only and to provide the user an exact

computing environment on any device he owns. We have done the disk I/O measure-

ment to get some sense how intensively the desktop environment uses the disk. Based on

numbers we got, the aggressive replication is feasible for LAN which can keep VM state

almost identical all the time across different devices. Also, we realize that a lazy repli-

cation policy should be used for WAN due to the limited network capacity and the cost.

Since we design to lazily replicate state changes for WAN, we need a fallback mechanism

to support transparent and instant machine switch. Thus, we implemented on-demand

fetching with background synchronization and evaluated its performance. Currently our

system is only applicable to two nodes for WAN while it is applicable to multi-targets for

LAN. We would implement directory cache consistency protocol to extend our system

to work with multiple nodes in the WAN environment. Although we could not get the

accurate performance overheads of on-demand fetching with background synchronization

48

Chapter 7. Conclusion 49

due to the issue of using Linux TC with DRBD, the evaluation without TC showed about

50% performance degradation. This gives some hint that it can get much worse than 50%

overhead and we need to implement optimization techniques. However, our evaluation

was for the unrealistic setting where all disk blocks trigger on-demand fetching. It would

be interesting to see how much we can reduce the overhead with performance tuning. At

last, to make our system more useful, we would support disconnected operation mode,

network bandwidth conservation feature and fault tolerance feature in the future.

Bibliography

[1] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken,

John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, and Roger P.

Wattenhofer. Farsite: federated, available, and reliable storage for an incompletely

trusted environment. In Proceedings of the 5th symposium on Operating systems

design and implementation, OSDI ’02, pages 1–14, New York, NY, USA, 2002. ACM.

[2] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli, and

R. Y. Wang. Serverless network file systems. SIGOPS Oper. Syst. Rev., 29:109–126,

December 1995.

[3] Peter J. Braam. The coda distributed file system. Linux J., 1998, June 1998.

[4] Ramesh Chandra, Nickolai Zeldovich, Constantine Sapuntzakis, and Monica S. Lam.

The collective: a cache-based system management architecture. In Proceedings of

the 2nd conference on Symposium on Networked Systems Design & Implementation -

Volume 2, NSDI’05, pages 259–272, Berkeley, CA, USA, 2005. USENIX Association.

[5] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-

tian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines.

In Proceedings of the 2nd conference on Symposium on Networked Systems Design

& Implementation - Volume 2, NSDI’05, pages 273–286, Berkeley, CA, USA, 2005.

USENIX Association.

50

Bibliography 51

[6] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson,

and Andrew Warfield. Remus: High availability via asynchronous virtual machine

replication. In In Proc. NSDI, 2008.

[7] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.

Wide-area cooperative storage with cfs. In In SOSP, 2001.

[8] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.

In Proceedings of the nineteenth ACM symposium on Operating systems principles,

SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM.

[9] Benjamin Gilbert, Adam Goode, and Mahadev Satyanarayanan. Pocket isr: Vir-

tual machines anywhere. Technical report, Carnegie Mellon University School of

Computer Science, 2010.

[10] Ragib Hasan, Zahid Anwar, William Yurcik, Larry Brumbaugh, and Roy Campbell.

A survey of peer-to-peer storage techniques for distributed file systems. In Pro-

ceedings of the International Conference on Information Technology: Coding and

Computing (ITCC’05) - Volume II - Volume 02, ITCC ’05, pages 205–213, Wash-

ington, DC, USA, 2005. IEEE Computer Society.

[11] James J. Kistler and M. Satyanarayanan. Disconnected operation in the coda file

system. SIGOPS Oper. Syst. Rev., 25:213–225, September 1991.

[12] James J. Kistler and M. Satyanarayanan. Disconnected operation in the coda file

system. ACM Trans. Comput. Syst., 10:3–25, February 1992.

[13] Michael Kozuch and M. Satyanarayanan. Internet suspend/resume. pages 40–46.

IEEE Computer Society, 2002.

[14] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,

Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley

Bibliography 52

Weimer, Chris Wells, and Ben Zhao. Oceanstore: An architecture for global-scale

persistent storage. pages 190–201, 2000.

[15] Justin Mazzola, Paluska David, Saff Tom, and Yeh Kathryn Chen. Footloose: A

case for physical eventual consistency and selective conflict resolution. In In IEE

WMCSA, 2003.

[16] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen. Ivy: a

read/write peer-to-peer file system. SIGOPS Oper. Syst. Rev., 36:31–44, December

2002.

[17] Edmund B. Nightingale and Jason Flinn. Energy-efficiency and storage flexibility in

the blue file system. In In Proceedings of the 6th Symposium on Operating Systems

Design and Implementation, pages 363–378, 2004.

[18] Daniel Peek and Jason Flinn. Ensemblue: Integrating distributed storage and con-

sumer electronics. In In Proceedings of the 7th Symposium on Operating Systems

Design and Implementation. ACM SIGOPS, pages 219–232, 2006.

[19] Antony Rowstron and Peter Druschel. Storage management and caching in past, a

large-scale, persistent peer-to-peer storage utility. SIGOPS Oper. Syst. Rev., 35:188–

201, October 2001.

[20] Constantine Sapuntzakis, David Brumley, Ramesh Chandra, Nickolai Zeldovich, Jim

Chow, Monica S. Lam, and Mendel Rosenblum. Virtual appliances for deploying and

maintaining software. In Proceedings of the Seventeenth Large Installation Systems

Administration Conference (LISA 2003), October 2003.

[21] Constantine Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow, Monica S. Lam,

and Mendel Rosenblum. Optimizing the migration of virtual computers. In Pro-

ceedings of the Fifth Symposium on Operating Systems Design and Implementation,

pages 377–390, December 2002.

Bibliography 53

[22] Constantine Sapuntzakis and Monica S. Lam. Virtual appliances in the Collective:

A road to hassle-free computing. In Proceedings of the Ninth Workshop on Hot

Topics in Operating System, May 2003.

[23] M. Satyanarayanan, Michael A. Kozuch, Casey J. Helfrich, and David R. O’Hallaron.

Towards seamless mobility on pervasive hardware. Pervasive Mob. Comput., 1:157–

189, July 2005.

[24] Mahadev Satyanarayanan. Scalable, secure, and highly available distributed file

access. Computer, 23:9–18, 20–21, May 1990.

[25] Mahadev Satyanarayanan, Benjamin Gilbert, Matt Toups, Niraj Tolia, Ajay Surie,

David R. O’Hallaron, Adam Wolbach, Jan Harkes, Adrian Perrig, David J. Farber,

Michael A. Kozuch, Casey J. Helfrich, Partho Nath, and H. Andres Lagar-Cavilla.

Pervasive personal computing in an internet suspend/resume system. IEEE Internet

Computing, 11:16–25, March 2007.

[26] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-

nan. Chord: A scalable peer-to-peer lookup service for internet applications. pages

149–160, 2001.

[27] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer, and

C. H. Hauser. Managing update conflicts in bayou, a weakly connected replicated

storage system. SIGOPS Oper. Syst. Rev., 29:172–182, December 1995.

[28] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer,

and Brent W. Welch. Session guarantees for weakly consistent replicated data.

In Proceedings of the Third International Conference on Parallel and Distributed

Information Systems, PDIS ’94, pages 140–149, Washington, DC, USA, 1994. IEEE

Computer Society.

Bibliography 54

[29] Werner Vogels. File system usage in windows nt 4.0. SIGOPS Oper. Syst. Rev.,

33:93–109, December 1999.

[30] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos

Maltzahn. Ceph: A scalable, high-performance distributed file system. In In Pro-

ceedings of the 7th Symposium on Operating Systems Design and Implementation

(OSDI, pages 307–320, 2006.

