
Automatic Components Separation of Obfuscated
Android Applications: An Empirical Study of

Design Based Features
Amit Kumar Mondal Chanchal Roy Banani Roy Kevin A. Schneider

University of Saskatchewan, Canada
{amit.mondal, chanchal.roy, banani.roy, kevin.schneider}@usask.ca

Abstract—In modern days, mobile applications (apps) have
become omnipresent. Components of mobile apps (such as 3rd
party libraries) require to be separated and analyzed differently
for security issue detection, repackaged app detection, tumor
code purification and so on. Various techniques are available
to automatically analyze mobile apps. However, analysis of the
app’s executable binary remains challenging due to required
curated database, large codebases and obfuscation. Considering
these, we focus on exploring a versatile technique to separate
different components with designed based features independent
of code obfuscation. Particularly, we conducted an empirical
study using design patterns and fuzzy signatures to separate
programming design components such as 3rd party libraries. In
doing so, we built a system for automatically extracting design
patterns from both the executable package (APK) and Jar of
an Android application. The experimental outcome with various
standard datasets containing 3rd party libraries, obfuscated
apps and malwares reveals that design features like these are
present significantly within them (within 60% APKs including
malware). Moreover, these features remain unaltered even after
app obfuscation. Finally, as a case study, we found that the
design patterns alone can detect 3rd party libraries within
the obfuscated apps considerably (F1 score is 32%). Overall,
our empirical study reveals that design features might play
a versatile role in separating various Android components for
various purposes.

Index Terms—Obfuscation; Design patterns; libraries; compo-
nents separation;

I. INTRODUCTION

Billions of Android applications (app) are being activated
in every year. Various security flaws in those apps are also
being increased [28]. A new update of the mobile platform
may introduce new flaws and cause app crashes [12]. Moreover,
apps are repackaged [14] by inserting junk code to make it
appear as different one by stealing the original app or malicious
behaviours are inserted with the original app. Ad libraries or
analytic plugins [15, 34] are integrated for earning revenue
and an app may be exposed to potential security threats for
that. To deal with these concerns, the research community
has been exploring various dimensions [24] of Android app
development. Despite much efforts in the community, the
state of the art tools are still challenged in the automatic
analysis due to the requirement of curated database [34], large
codebase [32] and obfuscation [19]. Available studies reveal
that obfuscation makes the Android malware detection worse
[19] as it hides informative data in the software. Various

libraries, one of the most essential components of an app,
are treated in different ways [14] during app analysis. With
the latest techniques [25, 33], 40% of these libraries remain
undetectable in the obfuscated apps. However, many other
distinguishing components are present within an app that are
related to the discussed concerns.

Typically, from the programming component perspective,
an application consists of built-in code from Android native
framework [9], code written by the app developers, code
inserted by the obfuscators [19], code integrated through the
usage of functions of 3rd party libraries [31] or ad-wares [15],
and tumor payload [34]. Handwritten code components further
can be treated into two categories concerning different contexts:
(i) code tightly interweaving with the Android components
such as activity callbacks, and (ii) code written in the external
context but used within the first context such as game playing
logic [15]. Many components [34] (such as 3rd party libraries)
introduce noise or affect mobile app analysis [31]. For example,
in app clone (or repackaged) detection process [14], 3rd party
libraries must be removed at the first step. In the instrumented
packaged app, code components of the Android framework and
written code within its close context remain mostly unchanged
and detection or separation of them is straightforward. However,
that is not the case for the other code components mentioned
above. Consequently, different components need to be detected
or removed first or analyzed separately. Several approaches
are available for detecting 3rd party libraries and ad-wares
within the instrumented apps which require a previously-
collected database, and the search process introduces both
time and memory overhead [32] along with the challenges of
altered and hidden code. Therefore, more fruitful, versatile
and complementary techniques are required to be explored to
advance the available efforts of mobile application analysis.

Considering the above mentioned challenges, in this pa-
per, we conducted an empirical study on object-oriented
design features [32] that are present within the Android
applications having distinguishable properties to partition, filter,
and detection of various components. Android application
development framework is mostly based on object-oriented
programming language Java (Kotlin and C++ can also be
used). Therefore, we assume that the components of an
application can be defined by certain design features to a
considerable extent. For example, most of the widely used

3rd party libraries [31] within Android apps are developed
collaboratively and remotely. Particular design choices are
likely to be adopted by the developers of those libraries due
to collaboration, and continuous extension. Besides, during
development, design features are inherently generated by many
model-driven engineering [26] tools. These design features
can be object models, binary class relationship [16], micro-
architecture with defined motifs [17], design patterns [13], anti-
patterns [20], design principals, fuzzy signatures [33] and so
on. Overall, design features [17] express traits, acts, tendencies,
recurring solutions, structural consumption and other common
observable characteristics within the source/executable code.

Among many features, design patterns, recurring solutions to
common design problems in the organization, are independent
[18] of both the context and the programming language.
Particularly, in this study, we focused on design patterns and
fuzzy signatures to separate programming design components
such as 3rd party libraries. In doing so, we have built a
system for automatically extracting design patterns from both
the Android executable package called APK and Jar of an
Android application; we are unaware of any such tool that
can extract design patterns from an APK. With the help of
this tool, we have experimented the distribution of design
patterns in 3rd party libraries, usual apps and Android malware.
Within standard datasets, we found that around 50 to 98%
obfuscated apps containing libraries have design patterns which
are changed neither in the original code nor in the 3rd party
libraries. Furthermore, among studied collection, 61% malwares
contain design patterns. Finally, as a case study, we have shown
that the design patterns alone can detect 3rd party libraries
within obfuscated apps considerably (F1 score is 32%). Overall,
our empirical study reveals that design features might play a
versatile role in separating various Android components for
various purposes. The contribution of this paper are:

• Extracted design features of various Android apps focusing
five research questions that direct the researchers of
exploring a versatile approach for separating components.

• Presented the distribution of design patterns in the 3rd
party libraries, obfuscated apps and malware.

• We have shown that design patterns can be treated
as versatile features that can predict 3rd party library
components in the obfuscated apps significantly without
the database of libraries.

• Conducted a case study on the impact of the design
features for detecting 3rd party libraries within the
obfuscated apps.

The paper continues as follows. In Section II we designed our
empirical study. Section III describes our methodologies and
tools. Section IV describes the experimental dataset. Section
V report our experimental outcome and Section VII concludes
our paper.

II. STUDY DESIGN

In our empirical study, we consider various design patterns
[13] as key design features - how an application is intentionally
or unintentionally developed on underlying object-oriented

principals and behaviors. More specifically, we focus on the
following research questions:

RQ1: How design features are contained in 3rd party
libraries? If design features can define a 3rd party library
then it is likely to be defined with those features within
an app which integrates it. Researchers will benefit from
RQ1 for developing a versatile technique to detect 3rd
party libraries within an app.
RQ2: How significantly design patterns are present in
Android apps? It is important to know the presence of
certain design features before any efforts done to develop
a design-based methodology.
RQ3: Can obfuscator alter the design patterns? If
obfuscator can alter design patterns then it poses a
challenge to develop independent technique. Therefore, we
also investigate whether obfuscation modifies the design
features or not. Practitioners will benefit from RQ3 to
adopt a design-based methodology to separate components
of an obfuscated APK.
RQ4: Does Android malware contain design patterns?
For designed based security and privacy leaks analysis,
it is essential to figure out the design choices used in
malware.
RQ5: Can design features detect 3rd party libraries in
obfuscated Android apps? Finally, the implication of the
defined features needs to be tested for the practical cases
of Android app analysis. In order to do that we conducted
a case study for 3rd party library detection utilizing fuzzy
signatures and fuzzy hash along with the design patterns.
This research question will allow us to understand the
effectiveness of design-based features for separating 3rd
party libraries.

For our empirical study, we develop a tool for extracting design
patterns from Android APK. In the subsequent sections, we
discuss the methodology, tool, fuzzy signatures and fuzzy hash
deployed for answering the aforementioned research questions.

III. METHODOLOGY AND TOOL FOR OUR STUDY

From the object-oriented design perspective, the design of
an application can be described in many ways. As an Android
app is built with various components discussed in Introduction,
most of them are not developed by the development-owner of
the app, we assume that there might be design characteristics
that are omnipresent among the components of an application.
Primarily, in this study, we focus on object-oriented design
features defined by the researchers: design patterns [13] and
fuzzy signatures [33].

A. Design Patterns

Design patterns are one of the most used features for
developing complex and large systems based on object-oriented
platforms. A design pattern [17, 30] is ”a standard solution to a
common programming problem which is a design or implemen-
tation structure that achieves a particular purpose”. Although
not compulsory, as design patterns guide the implementation
structure in the code-base, they are being widely used [11] in

Fig. 1. Basic class relation in design patterns: (a) Observer, (b) Adapter, (c)
Composite.

developing applications. Purposes of various design patterns
are shown in Table I. Android framework itself and the app
developers are likely to adopt design patterns. Design patterns
in Android app codebase might introduce different relationships
and interactions among classes, objects, and actions. Therefore,
we assume that design patterns in the codebase can be a
representational and complementary characteristic for Android
app analysis in various dimensions. For example, adapter
pattern [13] orchestrates incompatible classes to work together
by converting the interface of one class to an interface expected
by the clients. A basic representation of a few of the design
patterns is shown in Figure 1. The relationship presented in
Figure 1(a) is from the example observer pattern in Listing 1.
In the sample adapter pattern in Figure 1(b), an interface I is
implemented by both classes A and B; class A consumes the
object of class B. In an abstract view, a design pattern forms a
complex relationship [30] among classes concerning interface
implementation, inheritance, consuming objects, and calling
methods. Adapter pattern can hide a sensitive method call
through updating the method signature. In practice, a design
pattern can be employed in various ways. In this study, we are
restricted into 11 design patterns with two variations of each. A
total list of design patterns is found in www.oodesign.com/,
and sourcemaking.com/design patterns.

Listing 1. Observer pattern. Subject broadcasts events to registered Observer

abstract class Observer {
protected Subject subject;
public abstract void update();

}
class Subject {

public void add(Observer o) {
observers.add(o);

}
public int getState() {

return state;
}
public void setState(int value) {

this.state = value; execute(); }
private void execute() {

.. }
}
class BinObserver extends Observer {

public BinObserver(Subject subject) {
......... }

public void update() {
..(subject.getState())); }

}
public class ObserverDemo {

public static void demo() {
Subject sub = new Subject();
new BinObserver(sub);
... } }

B. Fuzzy Signature:

Fuzzy signature [35] of a method as a simplified method
signature is generated by (1) removing the method name with
access modifier and (2) replacing all built-in classes defined
within the app with a single placeholder name, and (3) removing
all variables. For example, in Listing 1, the fuzzy signature of
the add method is void(X), and fuzzy signature of the method
setState is void(int). Fuzzy signature [35] can be used for
similarity matching of a component which is obfuscated within
the APK. In our study, we utilize the fuzzy signature along
with a fuzzy hash to match two design patterns from two
apps/libraries.

C. Design Pattern Extraction Tool from APK

A methodology [6] is available for detecting UI (User
Interface) design patterns (layout) of the Android app. Some
of the tools [17, 30] are also available for design pattern
detection from source code of a typical project. But, no tool is
available to detect object-oriented design patterns from Android
APK or dex file. Therefore, to conduct our study, at first, we
developed a tool named DPAK for detecting design patterns
from both APK and Jar file format using Soot [22] tools.
Design pattern is extracted based on the standard assumptions
found in the literature [17, 30]: (i) most design patterns involve
class hierarchies since they usually include at least one abstract
class/interface in one of their roles except single-tone pattern,
and (ii) each pattern role is associated with one class although
there are exceptions for few of the cases. We primarily used
the abstract class relationship to detect each of the patterns
as shown in Figure 1, then method call is used to detect
more subtle patterns. Our tool can detect design patterns from
obfuscated apps as well. We developed a demo library which
contains those design patterns and a demo APK integrating
that library for testing the design patterns detection tool. We
also manually verified some random design patterns in the
APKs used for our experiments. Each extracted design pattern
is presented as a design digest as follows: < P n > b =
Fb; ob = Fob; ca = Fca; cb = Fcb; sub = Fsub; sup = Fsup....

Here, P is the pattern name, n total number of candidates,
b is the base class or interface which is the major entity over
which a pattern ecosystem is evolved. For the example pattern
in Listing 1, we consider Observer abstract class as the base
(in other patterns we treat it as the super class (sup) since it
is extended by others). BinObserver class in the Listing is
the client class a (ca) which we treat as sub class (sub) for
other pattern. Where Subject class is the other client class
(cb). Here, Fb is the computed fuzzy signature of the base class
(b) and others are the fuzzy signatures of the corresponding
classes. We integrated ORLIS [3] in our tool for computing
fuzzy signature from a pattern digest, and integrated SSDeep
source code [5] for computing fuzzy hash which is used for
comparing two patterns based on the fuzzy signature.

D. Code Obfuscation:

Code obfuscation [19, 25, 33] is widely employed for
preventing reverse engineering through information hiding.

Obfuscation tools such as Allatori [1] can opaque identifier
names, method names, class names, and package names.
Moreover, the tools can change the package hierarchy through
(1) repackaging classes from several packages into a new,
different package and (2) flattening the package hierarchy. Both
Allatori [1] and DashO [2] can alter the program’s control flow
and encrypt the constant strings. The tools also can remove
unused code and add utility methods in the new code.

E. Fuzzy Hash:

Fuzzy hash is originally a Context Triggered Piecewise Hash
(CTPH) [21] and used in computer forensic – such hashes can
be used to identify ordered homologous sequences between
unknown inputs and known files even if the unknown file is
a modified version of the known file. For example, the usual
Fuzzy signature of the Subject class [void(X), int, void(int),
void] might be changed to [void(X), int, void, void(int), void]
due to obfuscator added an extra dummy method [19]. CTPH
can return a matching score for these two almost identical
data. The main difference of fuzzy hash [21] is that current
piecewise hashing programs used fixed offsets to determine
when to start and stop the typical hash algorithm, a CTPH
algorithm uses the rolling hash. Consequently, if one or two
bytes are changed in the input, instead of changing total hash
only one of the hash values is changed. Since the major portion
of the signature remains the same, contents with reformations
can still be related with the CTPH signatures of known contents.
This algorithm is implemented as SSDeep tool.

IV. DATASET

For our empirical study, we collected various standard
datasets widely used in the published research projects. We
collected 453 3rd party libraries, 266 general APKs, and three
types (ProGuard [4], Dasho [2], and Allatori [1]) of obfuscated
apps from ORLIS [33] project. There are 659 obfuscated apps
in the ORLIS collection. We also collected 5,560 malware
from the Drebin [7] project which contains both general and
obfuscated APKs. For testing purpose of our DPAK tool, we
develop a demo library Jar and demo APK containing the
example design patterns which we make available online 1.

V. EXPERIMENTAL OUTCOME

A. Answering RQ1: Design features in 3rd Party Libraries

For answering RQ1, we experimented with the 453 collection
of Java 3rd party libraries. Then we run the DPAK tool in the
Jar mode with this dataset. The distribution of different patterns
within the library dataset are presented in Table I. In the output
of the tool, 33% libraries (149) among 453 3rd party libraries
contain 11 design patterns. Given the only design feature, this is
a significant presence. When these libraries are integrated with a
project, these design patterns might be preserved irrespective of
code obfuscation (we will investigate in the next section). The
collection of libraries are open source and cover diverse areas
of functionalities (not only Android applications). From the

1github.com/akm523/AndroidApps

TABLE I
DISTRIBUTION OF DESIGN PATTERNS IN LIBRARIES AND APKS

Patterns #in
libs

#in
APKs

Properties [13]

observer 559 1222 Defines a one to many relationship, so that
when one object changes state, the others are
notified and updated automatically

factory 508 1127 Defines an interface for creating objects, sub-
classes decide which classes to instantiate

builder 270 626 Separates the construction of a complex object,
so the same construction process can create
different representations

visitor 305 796 Represents an operation to be performed on
the elements of an object structure, without
changing the classes on which is operates

abstract-
factory

305 652 Provides an interface for creating related
objects without specifying concrete classes

objectpool 168 311 Used in situations where the cost of initializing
a class instance is high

adapter 176 454 Allows incompatible classes to work together
by converting the interface of one class to an
interface expected by the clients

composit 76 138 Composes objects into tree structures, and lets
clients treat individual objects and composi-
tions uniformly

chain 184 598 Avoids coupling the sender of a request to the
receiver

decorator 40 74 Attaches additional responsibilities to an ob-
ject dynamically

prototype 83 243 Specifies the kind of objects to instantiate using
a prototypical instance

distribution, we observe that different types of object-oriented
design solutions are adopted by the developers. Other categories
(such as design principals) of design features might be possible
to extract and track the distinguishing design behaviours which
are also true for Android apps. Therefore, design features are
contained in the 3rd party libraries considerably.

B. Answering RQ2 and RQ3: Design features in Android apps

In the previous section, it is evident that the design features
in 3rd party libraries play an influential role. Those design
features will likely be present in an Android application as well.
To figure out the importance of design features in apps (i.e.,
the answer of RQ2), we run our tool (excluding the libraries
provided by the Android framework) with the ground truth of
266 apps in ORLIS study [33]. Among these apps, 226 contains
3rd party libraries. The outcome is promising as we found
that 157 are detected (60%) as containing design patterns. All
the app that contain these patterns, 95% of them contains 3rd
party libraries. The distribution of individual category of design
patterns are shown in Table I. Moreover, we run our tool with
various obfuscated APKs which outcome is shown in Table II,
where DF is design features and ”%DF=Libs” is percentage
of apps that contain DF also contain 3rd party libraries. In
the Proguard collection, 46% apps containing design patterns
also contain 3rd party libraries, whereas this is 98% for the
Allatori collection. The lower outcome in Proguard is due to
203 collections contain many APKs originated from the original
266 ground truth where the 11 design patterns do not exist.
Overall, we can deduct that these features can predict 85% of
the existence of 3rd party libraries in obfuscated APKs without
prior knowledge-database. Table II also displays unsuccessful

TABLE II
DESIGN FEATURES IN VARIOUS OBFUSCATED APPS.

Data #APKs #Contains
DF

#Contains
Libs

%DF=Libs Unsuccessful

Allatori 241 212 208 98% 0
Dasho 215 149 180 83% 2
Proguard 203 78 171 46% 0

TABLE III
LIBRARY DETECTION OUTCOME OF VARIOUS OBFUSCATED APPS.

Data APK+Lib #R #PF #Libs #R T F1
Allatori 208 209 3 431 84 53 31%
Dasho 180 132 3 318 86 33 32%
Progurd 171 52 0 239 102 27 33%

R-recall, PF -false positive, T-true positive, F1- F1 score calculated from R and T

obfuscated APKs to extract design patterns by our tool which
are also contained in the 266 ground truth without obfuscation.
From Table II we notice that obfuscation does not impact design
pattern extraction as there are no unsuccessful APKs except
two which answers our RQ3; design patterns for two apps
in Dasho dataset are unsuccessful due to (i) Dasho removes
some candidate components, and (ii) exception during parsing
the APK by the Soot [22] tool. We can conclude that many
of these design patterns are inherited due to the adoption of
3rd party libraries within an Android application, and these
patterns are obfuscation resilient.

C. Answering RQ4: Design features in Android malware

In Section V-B, our experiment reveals that in general
Android apps contain design patterns. However, how malwares
applications are defined using design features would be an
important direction of research for overcoming the challenges
in detecting and vetting security and privacy leaks. Many
automated malware analysis process [8, 29] can not be
completed using the existing techniques for large call graph or
flow graph of the code base. Therefore, components need to be
segregated during analysis process to overcome such challenges.
Focusing this, we investigate how design features are present in
malwares. So, to answer RQ4, we run our DPAK tool with the
widely used Android malware collection of drebin dataset [7].
In Drebin-5 collection (random pick) of Android malware, 61%
malware contain design patterns. This finding is very much
encouraging as it helps to develop techniques to accelerate
malware detection with more precision rate irrespective of
obfuscations for one of the two purposes: (i) partitioning and
filtering components, (ii) different components are analyzed
differently than the written code.

D. Answering RQ5: Library detection using Design Features

Third party libraries are present [32] within 60% APKs,
and one of the most important components to be separated.
Existing techniques [14, 25, 33] detect 3rd party libraries
with a promising outcome. According to our analysis, library
detection within the mobile apps still requires improvement in
many areas such as accuracy, less prior database dependency
and obfuscation resiliency. In the Section V-B, we notice that
design patterns have 85% predictability of existence of library
within an obfuscated APK without prior knowledge. In this

section, we discuss how design patterns alone can be utilized
to detect obfuscation resilient libraries in the APK. At first,
a database is created with the summary of fuzzy signature
of extracted design patterns for the collection of 453 3rd
party libraries with our developed tool discussed in Section
III-C. Then, design pattern digest and their fuzzy signatures
within each APK, designated as the candidate components, are
matched adopting context triggered piece-wise hashes (CTPH)
[21] computed by the SSDeep library. An app might contain
multiple libraries and their corresponding design patterns. Our
matching technique performs similarity check on individual
design pattern digest i.e., fuzzy signatures of all the classes
involved within a pattern as in Section III-C. However, there
are many libraries which have same types of design pattern
with overlapping fuzzy components since a fuzzy signature
consists of mostly the combination of int,void,X,boolean and
so on. Fuzzy hash provides a score on block-wise matches.
Consequently, a common threshold of similarity score detects
many libraries falsely. Therefore, we compute similarity score
cumulatively on all categories of patterns and ranked the
matched libraries and only consider the top ranked libraries
to reduce the false positive. Detection logic is presented in
Algorithm 1. Design pattern directly detects libraries among
101 APKs (out of 226, 45%) in the ground truth collection; only
false positive is 5, where 102 libraries are detected (among 465).
Therefore, for non-obfuscated dataset, recall R=22%, precision
P=51% and F1=31%. Moreover, the experimental outcome with
the three types of obfuscated datasets is presented in Table III.
F1 score for the obfuscated datasets is also around 32%. The
F1 score of Orlis [33] and LibDetect [14] for the same dataset
are 67% and 17% respectively. However, those techniques
require to calculate fuzzy signature and match fuzzy hash for
all the classes and methods within an APK. In summary, given
the challenges, design features show encouraging outcome for
detecting the 3rd party libraries.

VI. RELATED WORK

A. Study of Design Features in Android Applications

A few of the tools have been proposed [6, 23] for analyzing
UI design patterns of Android applications but those are
not traditional object-oriented design patterns [13]. A few of
other studies have explored type [10] and anti-pattern [20]
(bad design choice) based characterization. However, in our
empirical study, we extracted and experimented the existence
of design patterns in various types of Android apps.

B. Library Detection

LibDetect [14] uses five different abstract digests of a
method’s bytecode to match app methods against library
methods whose recall rate is only 10%. Recently, ORLis [33]
is proposed for detecting 3rd party libraries within obfuscated
Android APK using fuzzy signatures where fuzzy signatures
from all the classes are computed and fuzzy hash is used for
similarity matching. This approach has both memory and time
overhead as we run the tool. In this study, we proposed a
method based on design patterns which require fuzzy hash

Data: FA is the digest of an APK, Fn-is the fuzzy digest of the
libraries, T -defined threshold.

Result: M - Indices of matched Fn

begin
A library digest Fi− > Fadapter, Fobserver....
A pattern digest FP− > Fb;Fob;Fca;
foreach fuzzy digest Fi ∈ Fn do

foreach pattern digest FAP ∈ FA do
totalScore = 0
counted = 0
foreach class digest FAC ∈ FAP&FiC ∈ Fi do

if FAC 6= ∅ then
totalScore.add(SSDeepMatch(FAC , FiC))

counted = counted+1
end

end
totalScore = totalScore/counted
if totalScore > T then

M.apend(i)
end

end
end

end
Algorithm 1: Major similarity matching logic for detecting
library components

but only for a handful of classes within the APKs. Libd [25]
is proposed to detect 3rd party libraries using package and
class relationship. Close to this technique, our empirical study
also used class relationship but we adopted more complex
and abstract patterns of relationship. Libradar [27] is proposed
using package structures which has a significant performance
gap in terms of accuracy. However, the major difference with
our investigated method is that none of the above mentioned
methods can predict a library component without 3rd party
library database, whereas our design based features can predict
3rd party library components independently of library database
and code-obfuscation.

VII. CONCLUSION

In this paper, we conducted an empirical study using design
patterns and fuzzy signatures to separate programming design
components such as 3rd party libraries. For that purpose, we
have built a system for automatically extracting design patterns
from both the Android executable package and Jar of an
application as we are unaware of any such tool. We have
experimented the distribution of design patterns in 3rd party
libraries, usual apps and Android malwares. The experimental
outcomes with various standard datasets are encouraging as
both obfuscated and malware apps contain such features
significantly (around 60%). Finally, as a case study, we have
shown that the design patterns alone can detect 3rd party
libraries within obfuscated apps considerably (F1 score is 32%).
Overall, our empirical study confirms that design features play
a versatile role in separating various Android components
for various purposes. In future, we will extend our work for
separating other app components with more features such as
micro-architecture and design motifs.

ACKNOWLEDGMENT
This research is supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC).

REFERENCES
[1] Allatori: www.allatori.com.
[2] Dasho: www.preemptive.com/company.
[3] Orlis: github.com/presto-osu/orlis-orcis/tree/master/orlis.
[4] Proguard: Proguard.developer.android.com/studio/build/shrink-code.html.
[5] Ssdeep: github.com/openpreserve/bitwiser.
[6] K. Alharbi and T. Yeh. Collect, decompile, extract, stats, and diff: Mining design

pattern changes in android apps. In Proc. of MobileHCI, pages 515–524, 2015.
[7] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens.

Drebin: Effective and explainable detection of android malware in your pocket. In
Ndss, pages 23–26, 2014.

[8] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. SIGPLAN Notices, pages 259–
269, 2014.

[9] M. Backes, S. Bugiel, E. Derr, S. Gerling, and C. Hammer. R-droid: Leveraging
android app analysis with static slice optimization. In Proc. of ASIACCS, pages
129–140, 2016.

[10] K. Choi and B.-M. Chang. A type and effect system for activation flow of
components in android programs. IPL, pages 620–627, 2014.

[11] H. Ergin. Design Patterns for Model Transformations. PhD thesis, The University
of Alabama, 2014.

[12] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su. Large-scale
analysis of framework-specific exceptions in android apps. In Proc. of ICSE, pages
408–419, 2018.

[13] E. Gamma. Design patterns: elements of reusable object-oriented software. Pearson
Education India, 1995.

[14] L. Glanz, S. Amann, M. Eichberg, M. Reif, B. Hermann, J. Lerch, and M. Mezini.
Codematch: obfuscation won’t conceal your repackaged app. In Proc. of FSE,
pages 638–648, 2017.

[15] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure analysis of
mobile in-app advertisements. In Proc. of WiSec, pages 101–112, 2012.

[16] Y.-G. Guéhéneuc and H. Albin-Amiot. Recovering binary class relationships:
Putting icing on the uml cake. In SIGPLAN Notices, pages 301–314, 2004.

[17] Y.-G. Guéhéneuc and G. Antoniol. Demima: A multilayered approach for design
pattern identification. TSE, pages 667–684, 2008.

[18] Y.-G. Guéhéneuc and N. Jussien. Using explanations for design-patterns identifi-
cation. In IJCAI, pages 57–64, 2001.

[19] M. Hammad, J. Garcia, and S. Malek. A large-scale empirical study on the effects
of code obfuscations on android apps and anti-malware products. In Proc. of ICSE,
pages 421–431, 2018.

[20] G. Hecht, R. Rouvoy, N. Moha, and L. Duchien. Detecting antipatterns in android
apps. In Proc. of MOBILESoft, pages 148–149, 2015.

[21] J. Kornblum. Identifying almost identical files using context triggered piecewise
hashing. Digital investigation, pages 91–97, 2006.

[22] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The soot framework for java
program analysis: a retrospective. In Workshop of CETUS, pages 15–35, 2011.

[23] J. Lehtimaki. Smashing Android UI: Responsive User Interfaces and Design
Patterns for Android Phones and Tablets. John Wiley & Sons, 2012.

[24] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau, J. Klein,
and L. Traon. Static analysis of android apps: A systematic literature review. IST,
pages 67–95, 2017.

[25] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and W. Huo. Libd:
scalable and precise third-party library detection in android markets. In Proc. of
ICSE, pages 335–346, 2017.

[26] D. Lucredio, E. S. de Almeida, and R. P. Fortes. An investigation on the impact
of mde on software reuse. In Proc. of CBSOFT, pages 101–110, 2012.

[27] Z. Ma, H. Wang, Y. Guo, and X. Chen. Libradar: fast and accurate detection of
third-party libraries in android apps. In Proc. of ICSE-C, pages 653–656, 2016.

[28] Z. Shan, I. Neamtiu, and R. Samuel. Self-hiding behavior in android apps: detection
and characterization. In Proc. of ICSE, pages 728–739, 2018.

[29] F. Shen, J. Del Vecchio, A. Mohaisen, S. Ko, and L. Ziarek. Android malware
detection using complex-flows. Transactions on Mobile Computing, 2018.

[30] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis. Design pattern
detection using similarity scoring. TSE, pages 896–909, 2006.

[31] H. Wang and Y. Guo. Understanding third-party libraries in mobile app analysis.
In Proc. of ICSE-C, pages 515–516, 2017.

[32] H. Wang, Y. Guo, Z. Ma, and X. Chen. Wukong: A scalable and accurate two-phase
approach to android app clone detection. In Proc. of STA, pages 71–82, 2015.

[33] Y. Wang, H. Wu, H. Zhang, and A. Rountev. Orlis: Obfuscation-resilient library
detection for android. In Proc. of MOBILESoft, pages 13–23, 2018.

[34] W. Yang, J. Li, Y. Zhang, Y. Li, J. Shu, and D. Gu. Apklancet: tumor payload
diagnosis and purification for android applications. In Proc. of AsiaCCS, pages
483–494, 2014.

[35] W. Yang, M. Prasad, and T. Xie. Enmobile: Entity-based characterization and
analysis of mobile malware. In Proc. of ICSE, pages 384–394, 2018.

