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Abstract

A new automatic forecasting procedure is proposed based on a recent exponential smoothing

framework which incorporates a Box-Cox transformation and ARMA residual corrections.

The procedure is complete with well-defined methods for initialization, estimation, likeli-

hood evaluation, and analytical derivation of point and interval predictions under a Gaussian

error assumption. The algorithm is examined extensively by applying it to single seasonal

and non-seasonal time series from the M and the M3 competitions, and is shown to provide

competitive out-of-sample forecast accuracy compared to the best methods in these competi-

tions and to the traditional exponential smoothing framework. The proposed algorithm can

be used as an alternative to existing automatic forecasting procedures in modeling single

seasonal and non-seasonal time series. In addition, it provides the new option of automatic

modeling of multiple seasonal time series which cannot be handled using any of the existing

automatic forecasting procedures. The proposed automatic procedure is further illustrated

by applying it to two multiple seasonal time series involving call center data and electricity

demand data.

Keywords: exponential smoothing, state space models, automatic forecasting, Box-Cox

transformation, residual adjustment, multiple seasonality, time series
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1 Introduction

In numerous business and industrial applications such as supply chain management, regular

forecasting of a vast number of univariate time series is often an essential task. The need

for simple, robust automatic forecasting algorithms in such situations has given rise to

an extensive forecasting literature and the development of suitable software (Geriner &

Ord 1991, Mélard & Pasteels 2000, Tashman & Leach 1991, Hyndman & Khandakar 2008,

Hyndman et al. 2002, Makridakis et al. 1982, 1993, Makridakis & Hibon 2000). The main

focus of these literature has been on non-seasonal and/or single seasonal time series. In

practice, online prediction for time series with multiple seasonal patterns may also be

required, especially for those time series related to consumption. For instance, online

electricity demand forecasting is needed for the control and scheduling of power systems

(Taylor 2003). However, only a very few models are available for modeling time series with

multiple seasonal patterns that are suitable for use in an online environment (Taylor 2003,

2008), and automatic model selection procedures for such series are not yet available. In this

paper, a new automatic forecasting algorithm based on a modified exponential smoothing

framework is introduced for selecting the best of the available models for a given a time

series, and using it to obtain point and interval predictions. The proposed procedure could

be used as an alternative to existing automatic forecasting procedures for single seasonal

and non-seasonal time series, and in addition has the advantage of the automated modeling

of time series with multiple seasonal patterns.

Among many available forecasting algorithms, exponential smoothing methods play an

important role, and provide competitive out-of-sample performance with minimal effort in

model identification (Tashman & Leach 1991, Makridakis & Hibon 2000, Makridakis et al.

1982, 1993). Over recent years, the early literature on exponential smoothing (Brown 1959,

Gardner 1985) has been extended to a model based approach (Snyder 1985, Ord et al. 1997,

Hyndman et al. 2008). This has led to a widely applicable exponential smoothing modeling

framework, and with the use of recently developed software packages, these exponential

smoothing models handle trend, seasonality and other features of the data without the need

for human intervention (Hyndman et al. 2002, Hyndman & Khandakar 2008). As with the

rest of the available automatic forecasting approaches, this procedure cannot be used for
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forecasting multiple seasonal time series. The notation ETS(*,*,*) is used in identifying

these exponential smoothing models, where the triplet (*,*,*) stands for possible error (E),

trend (T) and seasonal (S) combinations respectively.

A new exponential smoothing framework has been recently introduced by De Livera &

Hyndman (2009) as an alternative to traditional exponential smoothing. The homoscedastic

ETS models are extended to accommodate multiple seasonality; modified with the inclusion

of an integrated Box-Cox transformation to handle non-linearities and a residual ARMA

adjustment to account for any autocorrelation in the residuals. These models are described

in the following way. Let yt , t = 1, 2, . . . , denote an observed time series. The notation y (ω)t

is used to represent the Box-Cox transformed observed value at time t with the parameter ω.

The transformed series y (ω)t , t = 1,2, . . . , is then decomposed into an irregular component

dt , a level component `t , a growth component bt and possible seasonal components s(i)t with

seasonal frequencies mi, for i = 1, . . . , M where M is the total number of seasonal patterns in

the series. In order to allow for possible dampening of the trend, a damping parameter φ is

included (Gardner & McKenzie 1985). The irregular component of the series is described by

an ARMA(p, q) process with parameters ϕi for i = 1, . . . , p and θi for i = 1, . . . , q. The error

component εt is assumed to be a Gaussian white noise process with zero mean and constant

variance σ2. The smoothing parameters, given by α,β ,γi for i = 1, . . . , M , determine the

extent of the effect of the irregular component on the states `t , bt , s(i)t respectively. The

equations for the models are shown below.

y (ω)t =







yωt −1

ω
; ω 6= 0

log yt ω= 0

y (ω)t = `t−1+φbt−1+
M
∑

i=1

s(i)t−mi
+ dt

`t = `t−1+φbt−1+αdt (1)

bt = φbt−1+ βdt

s(i)t = s(i)t−mi
+ γidt

dt =
p
∑

i=1

ϕidt−i +
q
∑

i=1

θiεt−i + εt ,
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The notation BATS(p, q, m1, m2, . . . , mM) is used for these models, where B, A, T, S represent

the Box-Cox transformation, the ARMA residuals, the trend and the seasonal components

respectively. The arguments include the ARMA parameters (p and q) and the seasonal

frequencies (m1, . . . , mM). The models can be represented in the following linear innovations

state space form (De Livera & Hyndman 2009).

y (ω)t = w ′x t−1+ εt (2)

x t = F x t−1+ gεt ,

where w ′ is a row vector, g is a column vector, F is a square matrix and x t is the unobserved

state vector at time t.

The BATS modeling framework avoids some of the important weaknesses of the traditional

exponential smoothing framework (De Livera & Hyndman 2009). Some complications arising

from the ETS framework for non-negative time series are described in Akram et al. (2009).

Furthermore, for non-linear ETS models, the forecastibility conditions which guarantee stable

forecasts are not available, and analytical results for the prediction distributions do not

exist. The BATS modeling framework which uses an integrated Box-Cox transformation in a

homoscedastic environment, avoids such complications. In addition, in contrast to the ETS

models, the BATS models are designed to capture any autocorrelation in the residuals.

The paper is organized as follows. In Section 2, a detailed account of the formulation of

the BATS(p, q, m1, m2, . . . , mM) automatic procedure is provided, including the methods for

initialization, estimation, parameter restriction, model selection, and point and interval

predictions. A thorough analysis of the proposed automatic algorithm on single seasonal

and non-seasonal time series is presented in Section 3, where it is compared with existing

automatic forecasting procedures. First, the proposed algorithm is applied to the 111 series

from the M forecasting competition in Makridakis et al. (1982), and consequently a suitable

estimation criteria and a residual ARMA fitting approach are selected. Using the 111 and the

1001 series from the M competition and the 3003 series from the M3 competition (Makridakis

& Hibon 2000), the out-of-sample performance of the BATS automatic forecasting procedure

is compared with those methods presented in Makridakis et al. (1982), Makridakis & Hibon

(2000) and Hyndman et al. (2002). The BATS automatic procedure is further illustrated in
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Section 4, by applying it to two multiple seasonal time series which cannot be handled using

any of the existing automatic forecasting approaches.

2 The automatic forecasting procedure

The proposed automatic forecasting procedure has several steps: (1) specification of all

available model combinations which are to be considered for each series; (2) estimation

of the models; (3) selection of the best of the available models, and (4) the generation of

prediction distributions using the best model. These steps are discussed in Sections 2.1- 2.4

respectively.

2.1 Specification of BATS model combinations

In the BATS modeling framework, a total of 24 models is available for consideration of each

series. This consists of 16 model combinations considering each B,A,T,S component and 8

additional models considering a damped trend component. Possible model combinations

are presented in Table 1. In the Table, Td represents the damped trend component and N

represents the model with no components except the level term. These model combinations

are obtained by excluding the boundary cases. For example, ω= 1 is considered as having

no Box-Cox transformation, φ = 1 as having no damping component, p = q = 0 as having

no ARMA residual adjustment in the model and so on. Twelve models with an appropriate

Box-Cox transformation are included in these combinations, presented as an alternative to

the existing non-linear exponential smoothing models, and twelve more models without a

Box-Cox transformation.

Six of the linear single seasonal BATS models are equivalent to some of the ETS models

as shown in Table 2. It should be noted that in the ETS (*,*,*) notation, A stands for an

Additive component, Ad stands for an Additive damped component and N stands for None.

Refer to Hyndman et al. (2008) for details. Some of these represent the underlying models

for well- known exponential smoothing methods. For example, BATS model combination of

N represents the simple exponential smoothing method (Brown 1959), T represents the Holt’s

linear method (Holt 1957), Td represents the damped trend method (Gardner & McKenzie
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Seasonal Non-seasonal
Linear S N

AS A
TS T
ATS AT
TdS Td
ATdS ATd

Non- linear BS B
BAS BA
BTS BT
BATS BAT
BTdS BTd
BATdS BATd

Table 1: BATS model combinations.

BATS ETS
N (A,N,N)
S (A,N,A)
T (A,A,N)
TS (A,A,A)
Td (A,Ad ,N)
TdS (A,Ad ,A)

Table 2: Linear BATS model combinations and equivalent ETS representations.

1985), and TS represents the Holt-Winter’s additive seasonal method (Holt 1957) and so on.

In developing an automatic forecasting algorithm, a simple, robust method for choosing

between the 24 BATS models is required.

2.2 Estimation

The initial states x0, the smoothing parameters, the Box-Cox parameter, the damping param-

eter and the coefficients for the ARMA component have to be estimated using an appropriate

estimation criterion. In this paper, three different estimation criteria are considered for

non-linear optimization as follows: (1) maximize the log likelihood of the estimates (MLE)

by minimizing L ∗ given by L ∗(ϑ, x0) = n log

�

∑n
t=1 ε

2
t

�

− 2(ω− 1)
∑n

t=1 log yt where ϑ

is a vector of all parameters to be estimated in the model, x0 is the initial state vector, and

n is the length of the time series. See De Livera & Hyndman (2009) for the derivation;

(2) minimize the Root Mean Square Error of the original data (RMSE) given by the mean

of
p

�

yt − ŷt
�2, and (3) minimize the Root Mean Square Error of the transformed data

(RMSET) given by the mean of
q

�

y (ω)t − ŷ (ω)t

�2
.
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In implementing the estimation procedure, approximations of the initial state values are

required to seed the non-linear optimization. First, if the data requires a Box-Cox transfor-

mation, an initial value for ω has to be approximated. For this, ω= 0 (which corresponds

to a log transformation) is used following De Livera & Hyndman (2009). For seasonal

BATS models, initial state values are obtained by using the heuristic method described by

De Livera & Hyndman (2009). For single seasonal BATS models, this initialization procedure

is equivalent to the procedure presented in Hyndman et al. (2002). For non-seasonal BATS

models, a linear regression is performed on the first few values of the data set and the initial

trend b0 is set to the slope obtained from the regression. The intercept of the regression

can be negative, and so letting the intercept be equal to the initial level `0 may not be

appropriate for positive time series. As the applications of this paper involve only positive

data, `0 is set to y1 following Makridakis et al. (1998). The initial values obtained this way

are then used to seed a non-linear optimization algorithm together with the initial values

for the smoothing parameters, the damping parameter and the coefficients of the ARMA

component.

For seasonal models, optimizing initial seasonal values is done only for those seasonal time

series with low seasonal periods (including quarterly and monthly data), as optimizing

too many parameters can lead to numerically unstable results. The seasonal values are

constrained when optimizing, so that each seasonal component sums to zero. The smoothing

parameters are restricted to the forecastibility region given in Hyndman et al. (2007).

Restricting the parameters in this way, rather than restricting them to the usual parameter

region of [0,1] has several advantages as noted in Hyndman et al. (2007). In addition, ω

and φ are restricted to lie between 0 and 1, and ARMA coefficients are restricted to the

stationarity region.

2.3 Model selection

Selecting among models can be done using an information criterion or another method such

as prediction validation (Billah et al. 2005, Burnham & Anderson 2002). Billah et al. (2005)

indicated that information criterion approaches, such as the AIC, provide the best basis for

automated model selection. In this paper, the AIC = L ∗(ϑ̂, x̂0) + 2K is used for choosing

De Livera: 28 April 2010 8



Automatic forecasting with a modified exponential smoothing state space framework

between the models, where K is the total number of parameters in ϑ including the number

of free states in x0, and ϑ̂, x̂0 denote the estimates of ϑ and x0 respectively. When any

of the model parameters take boundary values, the value of K reduces accordingly, as the

model simplifies to a special case. For example, when either φ = 1 or ω= 1, the value of K

is reduced by one in each case. The AIC has been successfully used in several automated

algorithms (Hyndman & Khandakar 2008).

In this paper, when considering appropriate models for each series, the seasonal models

are only considered when the data have a specific period (For example, when the data is

quarterly, monthly or have other specific single/multiple periods).

Selecting appropriate ARMA orders

Twelve out of the twenty four BATS model combinations presented in Table 1 include an

ARMA residual adjustment. However, in considering different values for ARMA orders p and

q, there is an infinite number of models to consider. Hence, a method for finding the best

of the available p, q combinations is required. In tackling this problem, the following four

ARMA fitting approaches are explored.

(i) Setting {p = 0, q = 0}

Setting {p = 0, q = 0} assumes that an ARMA residual adjustment is not necessary. In

this case, the total number of BATS combinations shown in Table 1 reduces to twelve.

Out of these models, the model with the minimum AIC is chosen.

(ii) Finding the values for p and q in a two step procedure

In this approach, as a first step, approach (i) is carried out, in an attempt to capture

the level, trend and seasonal components in the series using a BATS model without

an ARMA residual adjustment. As a second step, in order to account for any residual

autocorrelation, an appropriate ARMA model is fitted to the residuals. In doing so,

all possible ARMA combinations up to p = q = 5 are considered, and the ARMA p, q

combination which minimizes the AIC is chosen. Then, the BATS model chosen in the

first step is fitted again with the p, q values chosen in the second step. This model with

ARMA residual adjustment is only retained if it reduces the AIC of the overall BATS
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model. In this case, there is a total of 12+ 1 = 13 BATS models to be applied for each

series.

(iii) Finding the values for p and q in a single step procedure

In this procedure, it is assumed that any autocorrelation in the errors can be captured

by considering different ARMA orders in a single step. Approach (i) is applied in order

to find the best of the B,T,S combination with {p = 0, q = 0}. Then the chosen model is

fitted repeatedly with varying p, q combinations. In doing so, all possible combinations

of p, q up to p = q = 5 are considered. This involves fitting a further 35 models, taking

the total number of models to 47. Out of these models, the model with the minimum

AIC is chosen.

(iv): Finding the values for p and q in a stepwise procedure

Approach (iii) can be considerably more time consuming as it involves fitting 47

models for each series, and when the orders of p, q are high, it may also lead to

possible over fitting of the models. Hence, in choosing the orders of p and q, rather

than considering all possible p, q values, a stepwise procedure may be applied as

follows. This stepwise ARMA fitting approach is an adapted version of the the stepwise

ARIMA model selection procedure introduced by Hyndman & Khandakar (2008).

First, follow approach (i) in order to find the best B,T,S combination with {p = 0, q = 0}.

Fit the chosen BATS model repeatedly with {p = 1, q = 0}, {p = 0, q = 1} and

{p = 2, q = 2}, optimizing parameters in each case. Out of these four BATS models,

select the model with the smallest AIC. Setting the ARMA component of this model as

the incumbent ARMA component, consider the following six variations.

• Allow one of p, q to vary by ±1 from the incumbent ARMA component;

• Allow both p, q to vary by ±1 from the incumbent ARMA component

Fit the chosen BATS model with the above variations as the ARMA component. When-

ever a model with lower AIC is found, the corresponding ARMA component becomes

the incumbent ARMA component. This way, the above variations are considered re-

peatedly, and the process terminates when a model with a lower AIC cannot be found.

In implementing this process, upper bounds are set to p = q = 5.
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2.4 Point and interval predictions

Let ϑ be a vector of all parameters to be estimated in a model, including the smoothing

parameters and the Box-Cox parameter, n be the length of the time series, h be the length

of the forecast horizon, and yn+h|n ≡ yn+h | xn,ϑ be a random variable denoting future

values of the series given the model, its estimated parameters and the state vector at the last

observation xn. A Gaussian assumption for the errors implies that y (ω)n+h|n is also normally

distributed, with mean E(y (ω)n+h|n) and variance V(y (ω)n+h|n) given by the equations (Hyndman

et al. 2005):

E(y (ω)n+h|n) = w ′Fh−1xn (3a)

V(y (ω)n+h|n) =











σ2 if h= 1;

σ2

�

1+
h−1
∑

j=1

c2
j

�

if h≥ 2;
(3b)

where c j = w ′F j−1g , the matrices and vectors being obtained from the state space form of

the BATS model given by (2). Point forecasts and forecast intervals are obtained using the

inverse Box-Cox transformation.

3 Application to non-seasonal and single seasonal

time series

The M competitions involve large and miscellaneous sets of time series data collected

from a diverse range of sources, and consist of monthly, quarterly, annual and other series

(Makridakis et al. 1982, Makridakis & Hibon 2000). These competitions have been used

widely for testing extrapolation methods.

In this section, the proposed automatic procedure is applied to the 111 series and the 1001

series from the M1 competition (Makridakis et al. 1982), and to the 3003 series from the

M3 competition (Makridakis & Hibon 2000). The 111 series is a subset of the 1001 series,

which was used for comparison of the more time consuming methods. The required forecast

horizons for the competitions are 18 for monthly, 8 for quarterly, 6 for yearly and 8 for the
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other series. The results for these applications are obtained simply by applying the proposed

algorithm to the data, without considering any data pre-processing procedures. Hyndman

et al. (2002) points out that more sophisticated data preprocessing techniques had been

carried out by some of the competitors such as Reilly (1999) in the M3 competition.

3.1 Application to 111 series

In this Section, using the 111 series, the effects of various estimation criteria, different

ARMA fitting approaches and the integrated Box-Cox transformation on the out-of-sample

performance are explored. First the automatic forecasting procedure was applied to the 111

series, using ARMA fitting approaches (i)-(iv) described in Section 2.3, under each of the

three estimation criteria presented in Section 2.2 namely, RMSE, RMSET and MLE. Table 3

shows the average out-of-sample mean absolute percentage error (MAPE) across all forecast

horizons and for each seasonal subset of the 111 series, obtained by applying the proposed

automatic procedure. It is seen that the RMSE criterion provided the lowest out-of-sample

Approach (i) Approach (ii) Approach (iii) Approach (iv)
Criterion yearly quarterly monthly all yearly quarterly monthly all yearly quarterly monthly all yearly quarterly monthly all
RMSET 13.1 20.0 17.3 18.0 13.0 19.9 17.0 17.7 14.3 19.2 19.3 19.8 13.4 19.9 17.0 17.8
MLE 13.0 18.0 16.6 17.4 12.9 18.0 16.2 17.0 14.2 18.0 18.6 19.2 13.1 19.0 16.3 17.3
RMSE 11.8 17.9 15.7 16.3 11.8 17.9 15.3 15.9 13.2 18.1 17.9 18.5 12.1 17.9 15.4 16.2

Table 3: Average MAPE across all forecast horizons for each seasonal subset and for all series.

MAPE values for each seasonal subset and across all forecast horizons for all four ARMA

fitting approaches. The RMSET criterion provided the worst out-of-sample MAPE values for

all four ARMA fitting approaches. In comparing ARMA fitting approaches (i)-(iv), approach

(ii), that is residual ARMA correction in a two-step procedure offered the best out-of-sample

performance. As explained in section 2.3, possible over-fitting may have led to the worst

out-of-sample MAPE results across all series in approach (iii). A comparison of approach (i)

with approaches (ii) and (iv) indicates that the residual ARMA correction has improved the

out-of-sample performance of the models when averaged across all forecast horizons for all

111 series.

As explained in Section 2.2, in estimating the BATS models, ω is allowed to vary between

0 and 1. It can be noticed that the boundary cases for ω correspond to special cases. For

example, setting ω = 0 in those non linear models presented in Table 1 is equivalent to
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taking a log transformation of the series before applying the twelve homoscedastic models,

and setting ω = 1 is equivalent to having no transformation in the models, so that only

those twelve linear homoscedastic models are considered. Based on the above results, using

approach (ii) as the ARMA fitting procedure and RMSE as the estimation criterion, the

automatic algorithm was applied to the 111 series by considering these two boundary cases.

For all 111 series, when averaged across all forecast horizons, setting ω = 0 provided an

out-of-sample MAPE of 16.9, and setting ω= 1 provided an out-of-sample MAPE of 17.0,

compared to the MAPE of 15.9 obtained by choosing ω between 0 and 1 using the RMSE

estimation criterion.

Consequently RMSE as the estimation criterion, approach (ii) as the ARMA fitting procedure,

and an integrated Box-Cox transformation where ω is allowed to vary between 0 and 1 are

used in the subsequent applications.

The results obtained from the BATS automatic forecasting algorithm were then compared

with those methods from the M1 competition (Makridakis et al. 1982) where the 111 series

were used by an expert in each method to predict up to 18 periods ahead, and the results

obtained from ETS automated forecasting procedure in Hyndman et al. (2002).

Tables 4-6 show the out-of-sample MAPE results over a range of forecasting horizons for

those methods which take into account any seasonality in the data from the M1 competition

for yearly, quarterly and monthly time series respectively. Refer to Makridakis et al. (1982)

for details of each method. A ranking obtained by comparing BATS automatic forecasting

procedure with the rest of the available methods is also shown. The proposed automatic

procedure is ranked first when averaged over all six forecasting horizons for yearly data,

ranked second when averaged over all eight forecast horizons for quarterly data and, ranked

first when averaged over all eighteen forecast horizons for monthly data. Table 7 shows

the out-of-sample MAPE for all series along with those results presented in Makridakis et al.

(1982) and Hyndman et al. (2002). The BATS procedure ranks first when averaged over the

first four and the first six forecast horizons and ranks second for the rest of the averaged

forecast horizons up to forecast horizon 18.
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Forecasting horizons Average
Method 1 2 3 4 5 6 1–4 1–6
Naive2 6.8 9.7 16.6 21.1 23.8 24.8 13.6 17.1
D Mov.Avrg 8.6 10.9 17.7 21.9 24.7 26.0 14.8 18.3
D Sing EXP 6.2 9.1 16.3 21.0 23.6 25.4 13.1 16.9
D ARR EXP 7.8 13.7 17.7 24.4 25.3 29.3 15.9 19.7
D Holt EXP 5.6 7.2 11.9 16.2 19.0 16.5 10.2 12.7
D Brown EXP 6.7 8.2 12.0 16.5 19.8 16.4 10.8 13.3
D Quad EXP 7.0 8.6 11.8 16.0 20.7 17.4 10.9 13.6
D Regress 6.9 7.8 14.9 18.4 20.0 20.6 12.0 14.8
Winters 5.6 7.2 11.9 16.2 19.0 16.5 10.2 12.7
Autom.AEP 7.1 8.8 14.1 17.8 21.8 19.1 11.9 14.8
Bayesian 12.2 12.6 14.9 18.0 20.6 20.6 14.4 16.5
CombiningA 5.7 7.7 12.5 17.4 20.0 17.8 10.8 13.5
CombiningB 6.3 8.3 13.7 17.5 19.7 20.1 11.5 14.3
Box-Jenkins 7.2 10.8 13.7 18.6 23.2 22.3 12.6 16.0
Lewandowski 7.3 8.3 14.7 13.8 16.8 15.1 11.0 12.7
Parzen 7.6 7.7 12.8 16.0 20.5 18.0 11.0 13.8
BATS 5.9 6.7 9.9 13.8 17.1 17.2 9.1 11.8
Rank 4 1 1 1 2 5 1 1

Table 4: Comparison of BATS for 20 yearly time series in the 111 series.

Forecasting horizons Average
Method 1 2 3 4 5 6 8 1-4 1-6 1-8
Naive2 7.6 12.0 15.8 21.5 22.3 22.3 23.3 14.2 16.9 19.0
D Mov.Avrg 14.4 18.3 23.2 27.4 30.8 31.3 29.5 20.8 24.2 26.5
D Sing EXP 9.0 12.0 14.4 20.5 21.0 21.9 22.6 14.0 16.5 18.5
D ARR EXP 12.3 16.8 18.2 25.0 25.3 24.3 26.0 18.1 20.3 22.2
D Holt EXP 9.2 10.4 17.1 25.1 30.3 32.2 39.2 15.4 20.7 25.9
D Brown EXP 10.0 10.4 15.1 22.5 27.1 30.5 36.5 14.5 19.3 24.0
D Quad EXP 11.1 12.5 21.1 32.0 39.2 46.0 66.6 19.2 27.0 35.6
D Regress 18.1 21.2 22.4 26.3 28.6 24.5 25.2 22.0 23.5 24.8
Winters 8.9 9.1 17.1 25.6 32.6 32.2 40.3 15.2 20.9 26.4
Autom.AEP 8.3 8.8 15.4 22.4 29.2 34.7 40.2 13.7 19.8 25.9
Bayesian 12.7 18.6 20.4 24.7 27.8 26.8 28.8 19.1 21.8 24.6
CombiningA 8.3 8.0 11.7 19.4 24.4 26.3 31.0 11.8 16.3 20.7
CombiningB 8.5 10.1 13.9 23.6 26.7 27.7 33.5 14.0 18.4 22.4
Box-Jenkins 7.6 8.2 13.9 21.3 26.1 26.1 25.4 12.7 17.2 20.1
Lewandowski 12.5 14.1 14.2 21.8 24.8 22.8 26.9 15.7 18.4 20.6
Parzen 6.8 7.6 12.0 16.5 21.1 20.4 21.0 10.7 14.1 16.7
BATS 7.4 8.3 11.0 18.1 20.4 22.0 24.1 11.2 14.5 17.9
Rank 2 4 1 2 1 3 4 2 2 2

Table 5: Comparison of BATS for 23 quarterly time series in the 111 series.

Forecasting horizons Average
Method 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18
Naive2 9.2 11.7 12.4 11.7 12.6 13.5 16.0 14.5 31.2 30.8 11.3 11.8 13.0 13.7 15.8 17.7
D Mov.Avrg 10.1 12.8 16.0 16.0 18.2 19.4 20.4 15.7 28.3 34.0 13.7 15.4 16.6 16.6 17.8 20.0
D Sing EXP 7.9 10.9 11.7 10.6 11.6 13.2 14.4 13.6 29.3 30.1 10.3 11.0 12.0 12.6 14.5 16.5
D ARR EXP 7.9 10.5 11.5 11.1 11.3 12.7 13.3 13.7 28.6 29.3 10.2 10.8 11.6 12.3 14.2 16.1
D Holt EXP 8.2 11.5 12.3 11.4 12.5 15.2 17.7 16.5 35.6 35.2 10.9 11.8 13.5 14.8 17.2 19.5
D Brown EXP 8.4 11.6 13.0 11.2 13.3 16.4 19.6 19.0 43.1 45.4 11.1 12.3 14.2 16.0 19.5 22.9
D Quad EXP 8.6 12.5 13.8 12.1 16.3 18.7 25.3 29.7 56.1 63.6 11.7 13.7 16.6 20.4 25.7 31.0
D Regress 12.2 14.7 16.0 15.7 16.6 19.9 19.6 23.4 46.5 57.3 14.7 15.9 16.8 18.1 21.4 26.7
Winters 10.3 12.0 12.5 11.8 11.9 14.8 17.5 15.9 33.4 34.5 11.7 12.2 13.6 14.6 16.8 19.1
Autom.AEP 11.2 12.8 13.0 11.9 11.2 13.4 17.6 16.2 30.2 33.9 12.2 12.2 13.4 14.2 16.1 18.4
Bayesian 8.9 10.8 10.9 9.9 10.9 12.8 16.0 16.1 27.5 30.6 10.1 10.7 11.8 12.6 14.5 16.6
CombiningA 8.4 11.1 11.8 10.4 11.1 13.4 15.6 14.2 32.4 33.3 10.4 11.0 12.3 13.1 15.3 17.6
CombiningB 8.6 10.7 10.6 10.8 10.2 11.5 15.6 15.5 31.3 31.4 10.2 10.4 11.7 13.0 15.3 17.4
Box-Jenkins 12.1 11.5 9.9 11.1 11.0 12.5 16.7 16.4 26.2 34.2 11.1 11.3 12.7 13.8 15.6 17.9
Lewandowski 12.6 13.6 14.6 13.5 13.8 16.6 16.2 17.0 33.0 28.6 13.6 14.1 14.4 14.9 17.1 18.9
Parzen 12.7 12.6 9.6 11.7 10.2 11.8 14.3 13.7 22.5 26.5 11.7 11.4 12.1 12.6 13.9 15.4
BATS 8.7 9.0 11.1 10.1 12.7 13.2 15.8 14.2 22.9 25.6 9.7 10.8 12.0 12.8 13.9 15.3
Rank 8 1 5 2 12 6 6 4 2 1 1 3 4 5 1 1

Table 6: Comparison of BATS for 68 monthly time series in the 111 series.
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Forecasting horizons Average
Method 1 2 3 4 5 6 8 12 15 18 1–4 1–6 1–8 1–12 1–15 1–18
Naive2 8.5 11.4 13.9 15.4 16.6 17.4 17.8 14.5 31.2 30.8 12.3 13.8 14.9 14.9 16.4 17.8
D Mov.Avrg 10.7 13.6 17.8 19.4 22.0 23.1 22.7 15.7 28.3 34.0 15.4 17.8 19.0 18.4 19.1 20.6
D Sing EXP 7.8 10.8 13.1 14.5 15.7 17.2 16.5 13.6 29.3 30.1 11.6 13.2 14.1 14.0 15.3 16.8
D ARR EXP 8.8 12.4 14.0 16.4 16.7 18.1 16.5 13.7 28.6 29.3 12.9 14.4 15.1 14.7 15.8 17.1
D Holt EXP 7.9 10.5 13.2 15.1 17.3 19.0 23.1 16.5 35.6 35.2 11.7 13.8 16.1 16.4 18.0 19.7
D Brown EXP 8.5 10.8 13.3 14.5 17.3 19.3 23.8 19.0 43.1 45.4 11.7 13.9 16.2 17.0 19.5 22.3
D Quad EXP 8.8 11.8 15.0 16.9 21.9 24.1 35.7 29.7 56.1 63.6 13.1 16.4 20.3 22.2 25.9 30.2
D Regress 12.5 14.9 17.2 18.4 19.7 21.0 21.0 23.4 46.5 57.3 15.7 17.3 18.2 18.8 21.3 25.6
Winters 9.2 10.5 13.4 15.5 17.5 18.7 23.3 15.9 33.4 34.5 12.1 14.1 16.3 16.4 17.8 19.5
Autom.AEP 9.8 11.3 13.7 15.1 16.9 18.8 23.3 16.2 30.2 33.9 12.5 14.3 16.3 16.2 17.4 19.0
Bayesian 10.3 12.8 13.6 14.4 16.2 17.1 19.2 16.1 27.5 30.6 12.8 14.1 15.2 15.0 16.1 17.6
CombiningA 7.9 9.8 11.9 13.5 15.4 16.8 19.5 14.2 32.4 33.3 10.8 12.6 14.3 14.4 15.9 17.7
CombiningB 8.2 10.1 11.8 14.7 15.4 16.4 20.1 15.5 31.3 31.4 11.2 12.8 14.4 14.7 16.2 17.7
Box-Jenkins 10.3 10.7 11.4 14.5 16.4 17.1 18.9 16.4 26.2 34.2 11.7 13.4 14.8 15.1 16.3 18.0
Lewandowski 11.6 12.8 14.5 15.3 16.6 17.6 18.9 17.0 33.0 28.6 13.5 14.7 15.5 15.6 17.2 18.6
Parzen 10.6 10.7 10.7 13.5 14.3 14.7 16.0 13.7 22.5 26.5 11.4 12.4 13.3 13.4 14.3 15.4
ETS 8.7 9.2 11.9 13.3 16.0 16.9 19.2 15.2 28.0 31.0 10.8 12.7 14.3 14.5 15.7 17.3
BATS 7.9 8.4 10.8 12.4 15.1 15.7 17.9 14.2 22.9 25.6 9.9 11.8 13.5 13.8 14.7 15.9
RANK 2 1 2 1 2 2 5 4 2 1 1 1 2 2 2 2

Table 7: Comparison of BATS automatic forecasting procedure for all 111 series.

3.2 Application to 1001 series

The automatic forecasting procedure was then applied to the 1001 series. Table 8 shows

the out-of-sample MAPE comparison between the BATS automatic procedure and the results

obtained from those methods presented in Makridakis et al. (1982) and Hyndman et al.

(2002). Only those methods which take into account any seasonality in the data are

presented in the table. As with the 111 series, a ranking is provided for comparison. In

comparison with the rest of the methods, the BATS method is ranked second when averaged

over the first four, the first six and the first eight forecast horizons. When averaged over the

first twelve and fifteen, it is ranked fourth, and ranked fifth when averaged over the first

eighteen.

Table 9 shows the percentage of each BATS model combination selected for the 1001

series. 54.4% of the chosen models are non-seasonal models, and out of these, N (simple

exponential smoothing), T (Holt’s method) and BT (Holt’s method with an integrated Box-Cox

transformation) are the most commonly chosen models. Non-trended seasonal models, that

is S and BS are the most commonly chosen seasonal models. Models with an integrated

Box-Cox transformation have been chosen 43.5% of the time, and approximately 96% of

the values for ω selected by using the RMSE criterion were between 0 and 0.3. Models

with residual ARMA adjustment have been selected 6.3% of the time, and as shown by the
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relative frequency diagram in Figure 1, pure AR and MA models are the most frequently

selected.

Forecasting horizons Average of forecasting horizons
Method 1 2 3 4 5 6 8 12 15 18 1–4 1–6 1–8 1–12 1–15 1–18
Naive2 9.1 11.3 13.3 14.6 18.4 19.9 19.1 17.1 21.9 26.3 12.1 14.4 15.2 15.7 16.4 17.4
D Mov.Avrg 11.5 14.9 17.0 17.8 21.5 22.3 20.6 17.8 23.2 29.4 15.3 17.5 18.1 18.1 18.6 19.6
D Sing EXP 8.6 11.6 13.2 14.1 17.7 19.5 17.9 16.9 21.1 26.1 11.9 14.1 14.8 15.3 16.0 16.9
D ARR EXP 9.4 13.5 14.0 15.3 18.1 20.2 18.0 17.1 21.4 26.0 13.1 15.1 15.6 15.9 16.5 17.4
D Holt EXP 8.7 11.0 13.3 15.2 19.1 21.6 24.8 23.9 33.7 48.3 12.1 14.8 16.7 18.4 20.2 22.9
D Brown EXP 8.7 10.9 13.8 15.0 18.7 21.1 24.5 23.1 30.8 43.7 12.1 14.7 16.6 18.0 19.6 21.9
D Quad EXP 9.8 12.7 16.6 18.8 25.7 31.0 45.1 40.7 64.4 108.3 14.5 19.1 23.7 26.9 31.2 38.5
D Regress 15.5 16.9 19.1 18.3 21.9 23.0 24.2 29.7 49.1 70.7 17.4 19.1 20.0 22.6 25.5 29.8
Winters 8.7 10.9 13.2 14.9 19.0 21.5 24.3 23.0 32.8 47.0 11.9 14.7 16.5 18.1 19.8 22.4
Autom.AEP 9.1 11.9 13.4 13.7 17.9 20.3 20.3 19.3 24.8 28.8 12.0 14.4 15.5 16.3 17.5 18.8
Bayesian 11.2 12.8 14.5 16.2 19.8 22.3 22.6 18.9 23.5 28.3 13.7 16.1 17.2 17.6 18.3 19.3
CombiningA 8.1 10.4 12.1 13.3 16.7 19.2 19.7 18.6 24.2 30.8 11.0 13.3 14.5 15.4 16.5 17.9
CombiningB 8.5 11.1 12.8 13.8 17.6 19.2 18.9 18.4 23.3 30.3 11.6 13.8 14.8 15.6 16.5 17.8
ETS 9.0 10.8 12.8 13.4 17.4 19.3 19.5 17.2 23.4 29.0 11.5 13.8 14.7 15.4 16.4 17.6
BATS 8.6 11.2 12.6 13.3 16.8 18.7 19.2 17.1 21.5 26.9 11.4 13.5 14.7 15.5 16.5 17.7
Rank 3 7 2 1 2 1 5 2 3 4 2 2 2 4 4 5

Table 8: Comparison of BATS automatic forecasting procedure for 1001 series.

Seasonal Non-seasonal
Linear Non-linear Linear Non-linear

Model Percentage Model Percentage Model Percentage Model Percentage
S 17.6 BS 16.0 N 13.7 B 4.6
TS 2.8 BTS 4.7 T 9.6 BT 10.0
TdS 1.1 BTdS 2.2 Td 7.3 BTd 4.2
AS 0.9 BAS 0.3 A 2.0 BA 0.8
ATS 0.0 BATS 0.0 AT 0.9 BAT 0.5
ATdS 0.0 BATdS 0.1 ATd 0.7 BATd 0.1
Total 22.4 Total 23.3 Total 34.2 Total 20.2

Table 9: Percentage of each model selected for 1001 series.
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Figure 1: Relative frequency diagram for ARMA orders {p, q} selected for 1001 series.

3.3 Application to 3003 series

Based on the results obtained for the 111 and the 1001 series, using the RMSE as the

estimation criterion and the residual ARMA fitting approach (ii), the BATS algorithm was

fitted to the 3003 series in the M3-competition. The out-of-sample performance was

compared with those methods in Makridakis & Hibon (2000) and Hyndman et al. (2002).

In comparing the results, the symmetric mean absolute percentage error (sMAPE) was used, as

it enables comparisons with published M3 results. However some authors such as Hyndman

& Koehler (2006) recommend against the use of sMAPE. Although several variations of

sMAPE appear in forecasting literature (Armstrong 1985, Makridakis 1993, Chen & Yang

2004, Andrawis & Atiya 2009), these variations generate the same results, as all the obser-

vations in the 3003 series are positive, and Makridakis & Hibon (2000) lets any negative

forecasts equal to zero.

The out-of-sample results obtained for quarterly, monthly, yearly, other and all 3003 series

are shown in Tables 10-14 respectively, along with the results for ETS method and those

methods from the M3-competition.
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Forecasting horizons Average of forecasting horizons
Method 1 2 3 4 5 6 8 1–4 1–6 1–8
NAIVE2 5.4 7.4 8.1 9.2 10.4 12.4 13.7 7.55 8.82 9.95
SINGLE 5.3 7.2 7.8 9.2 10.2 12.0 13.4 7.38 8.63 9.72
HOLT 5.0 6.9 8.3 10.4 11.5 13.1 15.6 7.67 9.21 10.67
DAMPEN 5.1 6.8 7.7 9.1 9.7 11.3 12.8 7.18 8.29 9.33
WINTER 5.0 7.1 8.3 10.2 11.4 13.2 15.3 7.65 9.21 10.61
COMB S-H-D 5.0 6.7 7.5 8.9 9.7 11.2 12.8 7.03 8.16 9.22
B-J automatic 5.5 7.4 8.4 9.9 10.9 12.5 14.2 7.79 9.10 10.26
AUTOBOX-1 5.4 7.3 8.7 10.4 11.6 13.7 15.7 7.95 9.52 10.96
AUTOBOX-2 5.7 7.5 8.1 9.6 10.4 12.1 13.4 7.73 8.89 9.90
AUTOBOX-3 5.5 7.5 8.8 10.7 11.8 13.4 15.4 8.10 9.60 10.93
ROBUST-TREND 5.7 7.7 8.2 8.9 10.5 12.2 12.7 7.63 8.86 9.79
ARARMA 5.7 7.7 8.6 9.8 10.6 12.2 13.5 7.96 9.09 10.12
AutomatANN 5.5 7.6 8.3 9.8 10.9 12.5 14.1 7.80 9.10 10.20
FLORES-PEARCE-1 5.3 7.0 8.0 9.7 10.6 12.2 13.8 7.48 8.78 9.95
FLORES-PEARCE-2 6.7 8.5 9.0 10.0 10.8 12.2 13.5 8.57 9.54 10.43
PP-Autocast 4.8 6.6 7.8 9.3 9.9 11.3 13.0 7.12 8.28 9.36
ForecastPRO 4.9 6.8 7.9 9.6 10.5 11.9 13.9 7.28 8.57 9.77
SMARTFCS 5.9 7.7 8.6 10.0 10.7 12.2 13.5 8.02 9.16 10.15
THETAsm 5.6 7.4 8.1 9.3 10.3 11.9 13.5 7.59 8.75 9.82
THETA 5.0 6.7 7.4 8.8 9.4 10.9 12.0 7.00 8.04 8.96
RBF 5.7 7.4 8.3 9.3 9.9 11.4 12.6 7.69 8.67 9.57
ETS 5.0 6.6 7.9 9.7 10.9 12.1 14.2 7.32 8.71 9.94
ForcX 4.8 6.7 7.7 9.2 10.0 11.6 13.6 7.12 8.35 9.54
AAM1 5.5 7.3 8.4 9.7 10.9 12.5 13.8 7.71 9.05 10.16
AAM2 5.5 7.3 8.4 9.9 11.1 12.7 14.0 7.75 9.13 10.26
BATS 4.9 7.0 7.9 9.4 10.4 11.9 13.4 7.31 8.60 9.70
Rank 3 9 7 11 9 7 7 7 7 7

Table 10: Average sMAPE across different forecast horizons: 756 quarterly series.

Forecasting horizons Average of forecasting horizons
Method 1 2 3 4 5 6 8 12 15 18 1–4 1–6 1–8 1–12 1–15 1–18
NAIVE2 15.0 13.5 15.7 17.0 14.9 14.4 15.6 16.0 19.3 20.7 15.30 15.08 15.26 15.55 16.16 16.89
SINGLE 13.0 12.1 14.0 15.1 13.5 12.8 13.8 14.5 18.3 19.4 13.53 13.39 13.56 13.81 14.49 15.30
HOLT 12.2 11.6 13.4 14.6 13.6 12.9 13.7 14.8 18.8 20.2 12.95 13.05 13.29 13.74 14.49 15.34
DAMPEN 11.9 11.4 13.0 14.2 12.9 12.3 13.0 13.9 17.5 18.9 12.63 12.63 12.81 13.08 13.75 14.58
WINTER 12.5 11.7 13.7 14.7 13.6 13.0 14.1 14.6 18.9 20.2 13.17 13.23 13.48 13.86 14.60 15.42
COMB S-H-D 12.3 11.5 13.2 14.3 12.9 12.2 13.0 13.6 17.3 18.3 12.83 12.74 12.88 13.09 13.73 14.47
B-J automatic 12.3 11.7 12.8 14.3 12.7 12.3 13.0 14.1 17.8 19.3 12.78 12.70 12.86 13.19 13.95 14.80
AUTOBOX-1 13.0 12.2 13.0 14.8 14.1 13.1 14.3 15.4 19.1 20.4 13.27 13.37 13.67 14.07 14.91 15.81
AUTOBOX-2 13.1 12.1 13.5 15.3 13.3 13.5 13.9 15.2 18.2 19.9 13.51 13.47 13.72 14.14 14.84 15.67
AUTOBOX-3 12.3 12.3 13.0 14.4 14.6 13.9 14.8 16.1 19.2 21.2 12.99 13.41 13.84 14.39 15.17 16.16
ROBUST-TREND 15.3 13.8 15.5 17.0 15.3 15.3 17.4 17.5 22.2 24.3 15.39 15.37 15.85 16.55 17.45 18.38
ARARMA 13.1 12.4 13.4 14.9 13.7 13.9 15.0 15.2 18.5 20.3 13.42 13.55 13.96 14.39 15.06 15.83
AutomatANN 11.6 11.6 12.0 14.1 12.2 13.6 13.8 14.6 17.3 19.6 12.31 12.51 12.89 13.41 14.12 14.91
FLORES-PEARCE-1 12.4 12.3 14.2 16.1 14.6 13.9 14.6 14.4 19.1 20.8 13.74 13.92 14.21 14.28 15.01 15.95
FLORES-PEARCE-2 12.6 12.1 13.7 14.7 13.2 12.8 13.4 14.4 18.2 19.9 13.26 13.18 13.31 13.52 14.30 15.17
PP-Autocast 12.7 11.7 13.3 14.3 13.2 13.1 14.0 14.3 17.7 19.6 13.02 13.05 13.33 13.70 14.34 15.13
ForecastPRO 11.5 10.7 11.7 12.9 11.8 12.0 12.6 13.2 16.4 18.3 11.72 11.78 12.02 12.43 13.07 13.85
SMARTFCS 11.6 11.2 12.2 13.6 13.1 13.4 13.5 14.9 18.0 19.4 12.16 12.53 12.85 13.49 14.20 15.01
THETAsm 12.9 12.2 13.6 14.3 14.1 14.1 14.0 14.2 17.6 19.1 13.24 13.52 13.81 14.03 14.54 15.24
THETA 11.2 10.7 11.8 12.4 12.2 12.2 12.7 13.2 16.2 18.2 11.54 11.75 12.09 12.48 13.09 13.83
RBF 13.7 12.3 13.7 14.3 12.3 12.5 13.5 14.1 17.3 17.8 13.49 13.14 13.36 13.64 14.19 14.76
ForcX 11.6 11.2 12.6 14.0 12.4 12.0 12.8 13.9 17.8 18.7 12.32 12.28 12.44 12.81 13.58 14.44
ETS 11.5 10.6 12.3 13.4 12.3 12.3 13.2 14.1 17.6 18.9 11.93 12.05 12.43 12.96 13.64 14.45
AAM1 12.0 12.3 12.7 14.1 14.0 13.7 14.3 14.9 18.0 20.4 12.80 13.16 13.59 14.03 14.77 15.67
AAM2 12.3 12.4 12.9 14.4 14.3 13.9 14.5 15.1 18.4 20.7 13.03 13.40 13.83 14.23 15.00 15.92
BATS 11.9 10.9 12.6 13.3 12.2 12.2 13.4 13.8 17.2 18.9 12.20 12.20 12.49 12.99 13.68 14.47
Rank 7 4 6 3 2 3 8 4 3 6 5 4 5 5 5 5

Table 11: Average sMAPE across different forecast horizons: 1428 monthly series.
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Forecasting horizons Average of forecasting horizons
Method 1 2 3 4 5 6 1–4 1–6
NAIVE2 8.5 13.2 17.8 19.9 23.0 24.9 14.85 17.88
SINGLE 8.5 13.3 17.6 19.8 22.8 24.8 14.82 17.82
HOLT 8.3 13.7 19.0 22.0 25.2 27.3 15.77 19.27
DAMPEN 8.0 12.4 17.0 19.3 22.3 24.0 14.19 17.18
WINTER 8.3 13.7 19.0 22.0 25.2 27.3 15.77 19.27
COMB S-H-D 7.9 12.4 16.9 19.3 22.2 23.7 14.11 17.07
B-J automatic 8.6 13.0 17.5 20.0 22.8 24.5 14.78 17.73
AUTOBOX-1 10.1 15.2 20.8 24.1 28.1 31.2 17.57 21.59
AUTOBOX-2 8.0 12.2 16.2 18.2 21.2 23.3 13.65 16.52
AUTOBOX-3 10.7 15.1 20.0 22.5 25.7 28.1 17.09 20.36
ROBUST-TREND 7.6 11.8 16.6 19.0 22.1 23.5 13.75 16.78
ARARMA 9.0 13.4 17.9 20.4 23.8 25.7 15.17 18.36
AutomatANN 9.2 13.2 17.5 20.3 23.2 25.4 15.04 18.13
FLORES-PEARCE-1 8.4 12.5 16.9 19.1 22.2 24.2 14.22 17.21
FLORES-PEARCE-2 10.3 13.6 17.6 19.7 21.9 23.9 15.31 17.84
PP-Autocast 8.0 12.3 16.9 19.1 22.1 23.9 14.08 17.05
ForecastPRO 8.3 12.2 16.8 19.3 22.2 24.1 14.15 17.14
SMARTFCS 9.5 13.0 17.5 19.9 22.1 24.1 14.95 17.68
ETS 9.3 13.6 18.3 20.8 23.4 25.8 15.48 18.53
THETAsm 8.0 12.6 17.5 20.2 23.4 25.4 14.60 17.87
THETA 8.0 12.2 16.7 19.2 21.7 23.6 14.02 16.90
RBF 8.2 12.1 16.4 18.3 20.8 22.7 13.75 16.42
ForcX 8.6 12.4 16.1 18.2 21.0 22.7 13.80 16.48
BATS 8.4 13.0 17.7 20.4 23.5 25.6 14.90 18.10
Rank 12 12 17 18 19 18 15 17

Table 12: Average sMAPE across different forecast horizons: 645 yearly series.

Forecasting horizons Average of forecasting horizons
Method 1 2 3 4 5 6 8 1–4 1–6 1–8
NAIVE2 2.2 3.6 5.4 6.3 7.8 7.6 9.2 4.38 5.49 6.30
SINGLE 2.1 3.6 5.4 6.3 7.8 7.6 9.2 4.36 5.48 6.29
HOLT 1.9 2.9 3.9 4.7 5.8 5.6 7.2 3.32 4.13 4.81
DAMPEN 1.8 2.7 3.9 4.7 5.8 5.4 6.6 3.28 4.06 4.61
WINTER 1.9 2.9 3.9 4.7 5.8 5.6 7.2 3.32 4.13 4.81
COMB S-H-D 1.8 2.8 4.1 4.7 5.8 5.3 6.2 3.36 4.09 4.56
B-J automatic 1.8 3.0 4.5 4.9 6.1 6.1 7.5 3.52 4.38 5.06
AUTOBOX-1 2.4 3.3 4.4 4.9 5.8 5.4 6.9 3.76 4.38 4.93
AUTOBOX-2 1.6 2.9 4.0 4.3 5.3 5.1 6.4 3.19 3.86 4.41
AUTOBOX-3 1.9 3.2 4.1 4.4 5.5 5.5 7.0 3.39 4.09 4.71
ROBUST-TREND 1.9 2.8 3.9 4.7 5.7 5.4 6.4 3.32 4.07 4.58
ARARMA 1.7 2.7 4.0 4.4 5.5 5.1 6.0 3.17 3.87 4.38
AutomatANN 1.7 2.9 4.0 4.5 5.7 5.7 7.4 3.26 4.07 4.80
FLORES-PEARCE-1 2.1 3.2 4.3 5.2 6.2 5.8 7.3 3.71 4.47 5.09
FLORES-PEARCE-2 2.3 2.9 4.3 5.1 6.2 5.7 6.5 3.67 4.43 4.89
PP-Autocast 1.8 2.7 4.0 4.7 5.8 5.4 6.6 3.29 4.07 4.62
ForecastPRO 1.9 3.0 4.0 4.4 5.4 5.4 6.7 3.31 4.00 4.60
SMARTFCS 2.5 3.3 4.3 4.7 5.8 5.5 6.7 3.68 4.33 4.86
ETS 2.0 3.0 4.0 4.4 5.4 5.1 6.3 3.37 3.99 4.51
THETAsm 2.3 3.2 4.3 4.8 6.0 5.6 6.9 3.66 4.37 4.93
THETA 1.8 2.7 3.8 4.5 5.6 5.2 6.1 3.20 3.93 4.41
RBF 2.7 3.8 5.2 5.8 6.9 6.3 7.3 4.38 5.12 5.60
ForcX 2.1 3.1 4.1 4.4 5.6 5.4 6.5 3.42 4.10 4.64
BATS 1.7 2.8 3.9 4.2 5.1 5.0 6.3 3.17 3.78 4.32
Rank 2 5 2 1 1 1 4 1 1 1

Table 13: Average sMAPE across different forecast horizons: 174 other series.
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Forecasting horizons Average of forecasting horizons
Method 1 2 3 4 5 6 8 12 15 18 1–4 1–6 1–8 1–12 1–15 1–18
NAIVE2 10.5 11.3 13.6 15.1 15.1 15.8 14.5 16.0 19.3 20.7 12.62 13.55 13.74 14.22 14.80 15.46
SINGLE 9.5 10.6 12.7 14.1 14.3 14.9 13.3 14.5 18.3 19.4 11.73 12.68 12.82 13.12 13.66 14.31
HOLT 9.0 10.4 12.8 14.5 15.1 15.7 13.9 14.8 18.8 20.2 11.67 12.90 13.09 13.41 13.94 14.59
DAMPEN 8.8 10.0 12.0 13.5 13.7 14.2 12.5 13.9 17.5 18.9 11.05 12.02 12.13 12.42 12.95 13.62
WINTER 9.1 10.5 12.9 14.6 15.1 15.7 14.0 14.6 18.9 20.2 11.77 12.99 13.17 13.46 14.00 14.64
COMB S-H-D 8.9 10.0 12.0 13.5 13.7 14.0 12.4 13.6 17.3 18.3 11.10 12.02 12.11 12.39 12.90 13.51
B-J automatic 9.2 10.4 12.2 13.9 14.0 14.6 13.0 14.1 17.8 19.3 11.42 12.39 12.52 12.78 13.33 13.99
AUTOBOX-1 9.8 11.1 13.1 15.1 16.0 16.7 14.2 15.4 19.1 20.4 12.30 13.64 13.76 13.99 14.54 15.21
AUTOBOX-2 9.5 10.4 12.2 13.8 13.8 14.8 13.2 15.2 18.2 19.9 11.48 12.42 12.61 13.09 13.69 14.40
AUTOBOX-3 9.7 11.2 12.9 14.6 15.8 16.3 14.4 16.1 19.2 21.2 12.08 13.40 13.62 14.00 14.56 15.32
ROBUST-TREND 10.5 11.2 13.2 14.7 15.0 15.7 15.1 17.5 22.2 24.3 12.38 13.38 13.71 14.56 15.41 16.29
ARARMA 9.7 10.9 12.6 14.2 14.6 15.5 13.9 15.2 18.5 20.3 11.83 12.90 13.10 13.53 14.08 14.73
AutomatANN 9.0 10.4 11.8 13.8 13.8 15.4 13.4 14.6 17.3 19.6 11.23 12.37 12.57 12.95 13.47 14.10
FLORES-PEARCE-1 9.2 10.5 12.6 14.5 14.8 15.2 13.8 14.4 19.1 20.8 11.68 12.78 13.03 13.31 13.91 14.70
FLORES-PEARCE-2 10.0 11.0 12.8 14.1 14.1 14.6 12.9 14.4 18.2 19.9 11.96 12.76 12.80 13.03 13.60 14.29
PP-Autocast 9.1 10.0 12.1 13.5 13.8 14.5 13.1 14.3 17.7 19.6 11.20 12.19 12.38 12.79 13.33 14.00
ForecastPRO 8.6 9.6 11.4 12.9 13.3 14.2 12.6 13.2 16.4 18.3 10.64 11.67 11.84 12.12 12.58 13.18
SMARTFCS 9.2 10.3 12.0 13.5 14.0 14.9 13.0 14.9 18.0 19.4 11.23 12.31 12.47 12.93 13.46 14.11
THETAsm 9.4 10.6 12.5 13.7 14.7 15.5 13.3 14.2 17.6 19.1 11.55 12.72 12.90 13.21 13.65 14.24
THETA 8.4 9.6 11.3 12.5 13.2 13.9 12.0 13.2 16.2 18.2 10.44 11.47 11.61 11.94 12.41 13.00
RBF 9.9 10.5 12.4 13.4 13.2 14.1 12.8 14.1 17.3 17.8 11.56 12.26 12.40 12.76 13.24 13.74
ForcX 8.7 9.8 11.6 13.1 13.2 13.8 12.6 13.9 17.8 18.7 10.82 11.72 11.88 12.21 12.80 13.48
ETS 8.8 9.8 12.0 13.5 13.9 14.7 13.0 14.1 17.6 18.9 11.04 12.13 12.32 12.66 13.14 13.77
AAM1 9.8 10.6 11.2 12.6 13.0 13.3 14.1 14.9 18.0 20.4 11.04 11.74 12.41 13.02 13.75 14.62
AAM2 10.0 10.7 11.3 12.9 13.2 13.5 14.3 15.1 18.4 20.7 11.21 11.92 12.60 13.20 13.95 14.84
BATS 8.8 9.9 12.0 13.3 13.8 14.6 12.9 13.8 17.2 18.9 11.02 12.07 12.23 12.81 13.55 14.36
Rank 4 5 7 6 9 10 7 4 3 6 4 8 6 10 12 15

Table 14: Average sMAPE across different forecast horizons: all 3003 series.

These results demonstrate that the proposed BATS automatic procedure is comparable with

the rest of the methods. It performs very well on the other series, being ranked first for all

averaged forecast horizons.

As with the results obtained for all 111 and all 1001 series, the results obtained for all 3003

series show that the proposed BATS algorithm outperformed the ETS method when averaged

over the first four and the first six forecast horizons (See Tables 7, 8 and 14). Figure 2

provides a graphical illustration of the comparison between BATS and ETS forecasting

algorithms for all 111, 1001 and 3003 series, showing that the BATS automatic procedure

offers competitive results to traditional exponential smoothing models.
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Figure 2: The out-of-sample performance across different forecast horizons, comparing BATS
with ETS (a) for all 111 series (b) for all 1001 series (c) for all 3003 series.
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4 Application to multiple seasonal data

In this section, applications of the automatic BATS exponential smoothing algorithm to

multiple seasonal time series are considered. In the existing forecasting literature, automatic

modeling procedures for multiple seasonal time series are not available. As with the non-

seasonal and single seasonal series, RMSE as the estimation criterion and approach (ii) as

the ARMA selection procedure were used.

Figure 3 shows a time series of the number of calls at a large US bank, starting from March

3 2003. The data are half hourly and consist of 1500 observations. The figure depicts a daily

seasonal pattern with frequency m1 = 28 and a weekly seasonal pattern with frequency

m2 = 28 ∗ 5 = 140. The proposed BATS automatic procedure was applied to this data
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Figure 3: Half hourly call center data provided by a large bank in US, starting from March 3
2003

set and the model BATS(2,2,28,140) without a Box-Cox transformation was selected by

the automated algorithm, with parameter estimates of α̂ = −0.0116, β̂ = 0.0048, γ̂1 =

0.0557, γ̂2 = 0.1778, φ̂ = 0.8558, ϕ̂1 = 1.2341, ϕ̂2 =−0.3245, θ̂1 =−0.7458, θ̂2 = 0.2542.

The trend, seasonal and irregular components obtained by the selected BATS model are

shown in Figure 4. The vertical bars at the right side of each sub-plot are of equal heights

but plotted on different scales, providing a comparison of the size of each component. Small

estimated values for α and β indicate that the level and the slope of the trend component
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is almost deterministic implying a global trend, and the estimated value of 0.8558 for φ

implies a damping effect. In forecasting, this will dampen the trend component as the length

of the forecast horizon increases. It is seen in Figure 4 that this trend component is relatively

small compared to the seasonal components. Likewise, the time series plot itself (shown

in Figure 3) depicts a small, stable trend component. The estimated values of γ1 and γ2,

together with Figure 4 indicate that the weekly seasonal component is considerably variable

over time while the daily seasonal component stays relatively stable. The model implies that

the irregular component of the series is correlated and can be described by an ARMA(2, 2)

process.
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Figure 4: Decomposition obtained for the call center data from the BATS automatic procedure

Figure 5 presents the analytical point predictions and 95% interval predictions up to a

day ahead together with the actual values. It is seen that the point predictions follow the

observed series closely, with the prediction intervals containing almost all the observed

values.

The second application involves a time series of electricity demand in England and Wales

beginning June 2000, recorded at half hourly intervals. A double seasonal pattern can be

clearly seen in the time series plot shown in Figure 6. The within-day seasonal pattern has a
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Figure 5: A comparison of the out-of-sample call center forecasts with the actual values up to
28 half hours ahead

duration of m1 = 48 half-hour periods and the within-week seasonal pattern has a duration

of m2 = 336 half-hour periods. The data consists of 5 weeks of observations, that is 1680

values. For such electricity demand series, Taylor (2003, 2008) points out the importance of

short term and very short term forecasts for the real-time scheduling of electricity generation.
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Figure 6: Half hourly electricity demand in England and Wales beginning June 2000
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For this series, the automatic BATS forecasting procedure led to the selection of

BATS(4,0,48,336) model with no Box-Cox transformation. The estimated parameters

are as follows. α̂= 0.0089, β̂ = 0, γ̂1 = 0.1059, γ̂2 = 0.0180, φ̂ = 0.9998, ϕ̂1 = 0.9234, ϕ̂2 =

0.1399, ϕ̂3 = −0.1252, ϕ̂4 = −0.0278. The estimated values of 0.0089 for α and 0 for β

suggest a global trend component with a purely deterministic growth rate. The damping

effect of the trend component is negligible as implied by the estimated value for φ which

is almost 1. Figure 7 shows the trend, seasonal and irregular components obtained by the

selected model. It indicates that the trend component of the series is relatively small and

that the weekly seasonal component does not have much variation over time. The irregular

component is correlated and is modeled by an ARMA(4,0) process. Figure 8 presents the

analytical point predictions and 95% interval predictions up to 28 steps ahead together with

the actual values. As with the call center application, it is seen that the point predictions

follow the observed series closely, and that the narrow prediction intervals contain virtually

all the out-of-sample observations.
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Figure 7: Decomposition obtained for the electricity demand data from the BATS automatic
procedure
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Figure 8: A comparison of the out-of-sample electricity demand forecasts with the actual values
up to 28 half hours ahead

5 Conclusion

In this paper, a new automatic exponential smoothing framework is introduced, which is

complete with straightforward initialization and estimation procedures including likelihood

evaluation, and the computation of point forecasts and prediction intervals. The new

algorithm provides an alternative to existing automatic forecasting practices; but provides

the option of modeling time series with multiple seasonal patterns, which cannot be handled

using any of the existing automatic forecasting procedures.

The proposed BATS automatic procedure is shown to perform well in applications to the 111

and the 1001 series from the M competition and to the 3003 series from the M3 competition,

and is comparable with the best methods of these competitions. The out-of-sample forecast

accuracy results obtained for all 111, 1001 and 3003 series (presented in Tables 7, 8 and

14 respectively) showed that the BATS automatic algorithm outperformed the traditional

exponential smoothing framework when averaged over the first four and the first six forecast

horizons. Two applications involving call center data and electricity demand data were

used to illustrate the competency of the BATS automatic approach for forecasting multiple

seasonal time series. The methods used in this paper for the implementation of the BATS
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automatic procedure will be available in the forecast package for R (Hyndman & Khandakar

2008).
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