
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
G
O
*

Ar
t ifact *

A
E
C

Automatic Generation of Fast BLAS3-GEMM:
A Portable Compiler Approach

Xing Su† Xiangke Liao† Jingling Xue‡
†National Laboratory for Parallel and Distributed Processing, College of Computer, NUDT, Changsha, 410073, China

‡School of Computer Science and Engineering, UNSW, Sydney, NSW 2052, Australia

Abstract
GEMM is the main computational kernel in BLAS3. Its

micro-kernel is either hand-crafted in assembly code or gen-
erated from C code by general-purpose compilers (guided by
architecture-specific directives or auto-tuning). Therefore,
either performance or portability suffers.

We present a POrtable Compiler Approach, POCA, im-
plemented in LLVM, to automatically generate and opti-
mize this micro-kernel in an architecture-independent man-
ner, without involving domain experts. The key insight is
to leverage a wide range of architecture-specific abstrac-
tions already available in LLVM, by first generating a vector-
ized micro-kernel in the architecture-independent LLVM IR
and then improving its performance by applying a series of
domain-specific yet architecture-independent optimizations.
The optimized micro-kernel drops easily in existing GEMM
frameworks such as BLIS and OpenBLAS. Validation fo-
cuses on optimizing GEMM in double precision on two
architectures. On Intel Sandybridge and AArch64 Cortex-
A57, POCA’s micro-kernels outperform expert-crafted as-
sembly code by 2.35% and 7.54%, respectively, and both
BLIS and OpenBLAS achieve competitive or better perfor-
mance once their micro-kernels are replaced by POCA’s.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers; G.1.3 [Numerical
Analysis]: Numerical Linear Algebra

Keywords dense linear algebra, GEMM, code optimization

1. Introduction
Dense linear algebra libraries are fundamental in scien-

tific computing. Basic Linear Algebra Subprograms (BLAS)
are routines that provide standard building blocks for per-
forming vector-vector operations (level 1), matrix-vector op-
erations (level 2), and matrix-matrix operations (level 3).
BLAS libraries are widely available. Vendor supplied imple-
mentations include Intel MKL, AMD ACML and NVIDIA
cuBLAS. The HPC community have also contributed sev-
eral high-performance BLAS implementations such as AT-
LAS [32], GotoBLAS [12], OpenBLAS [37] and BLIS [28].

For the level-3 BLAS (BLAS3), GEMM (GEneral Ma-
trix Multiplication) is the main computational kernel, as

the other level-3 BLAS routines can be defined in terms of
GEMM and some level 1 and 2 computations [14]. In addi-
tion, GEMM is also the key library routine for deep learn-
ing. Finally, the LINPACK benchmarks rely critically on
GEMM for its performance measurements. Therefore, op-
timizing GEMM is the core task in any high-performance
BLAS implementation. However, given a C specification of
GEMM, general-purpose compilers are still not able to gen-
erate machine code that achieves near peak performance.

Broadly speaking, there are three approaches for obtain-
ing optimized loop-based GEMM kernels, (1) assembly pro-
gramming, (2) auto-tuning, and (3) directive-based program-
ming, yielding different tradeoffs between performance and
portability. With assembly programming, domain experts
write a few innermost loops in GEMM directly in assem-
bly code. In the case of auto-tuning, ATLAS [32] generates
different GEMM kernels (with different parameter values)
in C and compile them to run on the actual computing sys-
tem to find the best-performing one. Finally, directive-based
programming is embraced by POET [35] and AUGEM [31].
Given a GEMM kernel in C, POET inserts annotations into
the C code to direct source-to-source compiler transforma-
tions and AUGEM uses a template-based method to match
predefined patterns in the C code and transforms the matched
C code sequence into an optimized assembly code sequence.

These three approaches make different performance and
portability tradeoffs. Coding GEMM in assembly by do-
main experts can achieve near peak performance but is te-
dious and non-portable. Auto-tuning makes the opposite
tradeoff. For example, ATLAS relies on general-purpose
compilers to generate optimized GEMM kernels for differ-
ent architectures automatically, thus resulting in portable
but sub-optimal performance. In the case of directive-based
programming, POET and AUGEM resort to architecture-
specific annotations and templates, respectively, written still
by domain experts, to guide general-purpose compilers to
produce optimized GEMM kernels. In particular, AUGEM
is shown to generate optimized GEMM kernels for x86 only.

How do we obtain near peak yet portable performance
for GEMM automatically for a wide range of architectures?
Despite its algorithmic simplicity, this problem is very chal-

978-1-5090-4931-8/17 c© 2017 IEEE CGO 2017, Austin, USA

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

122

A B C GEMM Blocked Algorithm
K N N

M K M

Nc Nc

for jj = 0:Nc:N¡ 1

 A0=A; B0 = B[:][jj:jj+Nc¡ 1]; C0 = C[:][jj:jj+Nc¡ 1];

K Nc Nc

M K M

Kc

Kc for kk = 0:Kc:K¡ 1

 A1=A0[:][kk:kk+Kc¡ 1]; B1=B0[kk:kk+Kc¡ 1][:]; C1=C0;

Kc Nc Nc

M

Kc

M
Mc Mc

 for ii = 1:Mc:M¡ 1

 A2=A1[ii:ii+Mc¡ 1][:]; B2=B1; C2=C1[ii:ii+Mc¡ 1][:];

Kc Nc Nc

Mc

Kc
Mc

Nr

Nr

 for j = 1:Nr:Nc¡ 1

 A3=A2; B3=B2[:][j:j+Nr¡ 1]; C3=C2[:][j:j+Nr¡ 1];

Kc Nr Nr

Mc

Kc
Mc

Mr Mr for i = 0:Mr:Mc¡ 1

 A4=A3[i:i+Mr¡ 1][:]; B4=B3; C4=C3[i:i+Mr¡ 1][:];

Kc Nr Nr
Mr

Kc

Mr

1

1 for k = 0:1:Kc¡ 1

 A5=A4[:][k]; B5=B4[k][:]; C5=C4;

1 Nr Nr

Mr

1

Mr C5+=A5£B5;

¹
ke

rn
el m

ac
ro

-k
er

ne
l (

G
EB

P)

layer 1

layer 2

layer 3

layer 4

layer 5

layer 6

layer 7

Figure 1. Structure of blocked DGEMM (the structures of SGEMM, CGEMM and ZGEMM are similar (Section 2)).

lenging to solve. Any promising solution is significant due
to the continued proliferation of computer architectures.

In this paper, we present a POrtable Compiler Approach,
POCA, implemented in LLVM, to automatically generate
and optimize GEMM in an architecture-independent man-
ner. Due to the nature of GEMM, it suffices to focus on its
innermost loop, known as a micro-kernel, µkernel. The key
insight is to leverage a wide range of architecture-specific
abstractions (e.g., SIMD engines supported and instruction
latencies) already available in LLVM, by first generating a
vectorized µkernel in the architecture-independent LLVM
IR and then boosting its performance by applying a series of
domain-specific yet architecture-independent optimizations.
The optimized µkernel, obtained without any involvement of
domain experts, drops easily in existing GEMM frameworks
such as GotoBLAS [12], OpenBLAS [37] and BLIS [28].

We restrict our presentation to GEMM that works on
double-precision real numbers, known as DGEMM, as in
prior work [26, 31, 35], for two reasons. First, the basic
idea behind POCA applies to other variants of GEMM such
as SGEMM, CGEMM and ZGEMM (as discussed in Sec-
tion 2). Second, the LINPACK benchmarks, which rely on
GEMM as the performance-critical routine, must work on
double-precision real numbers in order to build the TOP500
list, ranking the world’s most powerful supercomputers.

This paper makes the following contributions:

• We introduce a portable compiler approach, POCA for
generating highly optimized GEMM fully automatically.
• We evaluate POCA in optimizing GEMM that works on

double-precision real numbers on two architectures. On

Intel Sandybridge and AArch64 Cortex-A57, POCA’s
micro-kernels outperform expert-crafted assembly code
by 2.35% and 7.54% respectively. In addition, both BLIS
and OpenBLAS achieve competitive or better perfor-
mance once their micro-kernels are replaced by POCA’s.
• We provide a comprehensive quantitative analysis to un-

derstand and evaluate the impact of POCA-specific com-
piler optimizations on kernel performance.
To the best of our knowledge, this is the first compiler ap-

proach for generating fast GEMM kernels portably, without
involving domain experts. While the work presented here is
for GEMM in BLAS3, the approach can be applied to the
other kernels in BLAS3 such as TRSM and GEMV.

2. Structure of GEMM
GEMM comes with four main varaints, SGEMM, DGEMM,

CGEMM and ZGEMM, which operate on four different data
types, single-precision floating-point (S), double-precision
floating-point (D), complex single-precision floating-point
(C), and complex double-precision floating-point (Z). We
first describe a blocked algorithm for DGEMM and intro-
duce several basic concepts used throughout the paper. We
then look at SGEMM, CGEMM and ZGEMM briefly.

DGEMM performs a matrix-multiply-add operation on
double-precision real numbers, C = βC + αAB, where
A,B and C are matrices of sizes M×K, K×N and M×N ,
respectively, and α and β are scalars. While this operation is
algorithmically simple, so that a 3-deep loop nest suffices to
accomplish it, a high-performance implementation is quite
sophisticated due to the presence of multi-level memory hi-
erarchies on modern processors. Figure 1 shows the program

123

structure of a real-world DGEMM kernel implemented via a
blocked algorithm. Each loop (in the original 3-deep loop
nest) is tiled, resulting in a total of six loops (often referred
to as layers 1 – 6). Loop tiling, together with data packing
and prefetching, serves to improve data locality and overlap
computation and memory access effectively.

In this blocked algorithm, the loops over the N , K and
M matrix dimensions are tiled by sizes Nc, Kc and Mc at
layers 1, 2 and 3, respectively. Nc, Kc and Mc are carefully
selected so that matrix B2 (Kc × Nc) fits into the L3 cache
(if it exists), A3 (Mc ×Kc) fits into the L2 cache, and both
A4 (Mr ×Kc) and B4 (Kc × Nr) fit into the L1 cache. At
layers 4 and 5, the N and M dimensions are further tiled
by sizes Nr and Mr, respectively. As a result, the innermost
loop at layer 6 goes over the K dimension for a total of Kc

times, with each iteration performing a rank-1 update on the
Mr × Nr submatrix of C, as shown at layer 7. Note that a
new scalar β̄, where β̄ = (kk == 0 ? β : 1), is introduced
at layer 7, to ensure that βC is computed only once by loop
kk at layer 2. Nr and Mr are selected so that Mr elements
from A, Nr elements from B and Mr × Nr elements from
C can fit into registers, with the Mr × Nr submatrix of
C residing in registers throughout the innermost loop at
layer 6. Finally, A1[ii : ii + Mc − 1][:] and B1 are packed
into continuous buffers at layer 3 in order to ensure their
consecutive memory access at layers 4 – 7.

Goto [12] factors out the innermost three loops at layers
4 – 6 for computing C2 += A2 × B2 as an architecture-
dependent kernel, known as a macro-kernel and abbreviated
as GEBP (GEneral multiply of a Block of A and a Panel of
B). In GotoBLAS [12], and its successor, OpenBLAS [37],
their GEMM kernels are developed based on this factoriza-
tion, with GEBP coded in assembly. Thus, a hand-crafted
GEBP kernel, together with a set of well-chosen tile sizes
Mc, Nc, Kc, Mr and Nr, will suffice to instantiate a highly
optimized GEMM on a target processor. BLIS [28] factors
out an even smaller kernel, the innermost loop at layer 6,
known as a micro-kernel and denoted as µkernel, as the only
architecture-dependent kernel to be coded in assembly.

While SGEMM shares exactly the same structure as
DGEMM, CGEMM and ZGEMM are slightly different but
are easily adapted from SGEMM and DGEMM, respec-
tively. In general, a complex matrix-multiply-add operation
β(Cr + Cii) + α(Ar + Aii)(Br + Bii) is factorized as
(βCr+αArBr−αAiBi)+(βCi+αArBi+αAiBr)i and
thus implemented in terms of four real matrix-multiply-add
operations. For [CZ]GEMM, A1[ii : ii + MC − 1][:] and
B1 at layer 3 are each packed into two real submatrices of
the same size, one for the real part and one for the imaginary
part. As a result, a complex GEBP kernel is decomposed
into four real GEBP kernels with each containing a real
µkernel. All the tile sizes are determined similarly as in the
case of DGEMM to improve cache locality. Therefore, for
SGEMM, DGEMM, CGEMM and ZGEMM, it suffices to

focus on optimizing GEBP or µkernel that works on single-
and double-precision real numbers only.

3. POCA: A Portal Compiler Approach
To obtain a fast GEMM kernel portably, we focus on

automatically generating a fast µkernel of size Mr×Nr that
works on real numbers portably, where Mr and Nr are input
parameters determined by the overall design of GEMM [12].

C = (cpq) ;
T = (tpq) ; // initialized to 0
f o r k = 1 : Kc : 1

A = A′[:][k] = (ap) ;
B = B′[k][:] = (bq) ;
f o r p = 0 : Mr−1 : 1

f o r q = 0 : Nr−1 : 1
tpq += ap ∗ bq

cpq = β̄ ∗ cpq + α ∗ tpq

a0

a1

a2

a3

b0 b1 b2 b3

c00 c01 c02 c03

c10 c11 c12 c13

c20 c21 c22 c23

c30 c31 c32 c33

A

B

C

Figure 2. µkernel with Mr ×Nr = 4× 4 illustrated.

To ease presentation, we will focus on µkernel given in
Figure 2 abstracted from Figure 1. A′, B′ and C are matrices
of sizes Mr × Kc, Kc × Nr, and Mr × Nr, respectively.
A (B) is the k-th column (row) of A′ (B′). The rank-1
update T += A × B, where T = (tpq), A = (ap) and
B = (bq), is first performed in the two innermost loops
and a multiply-add operation is then performed at the end
of loop k to update C, as illustrated for the case when
Mr × Nr = 4 × 4. Below we will use a double-precision
µkernel of this particular size as a running example.

To generate a fast µkernel kernel portably even though it
looks simple, we must address two major problems:
µkernel Generation. How do we perform instruction selec-

tion to accomplish the µkernel computation, which is
expected to be fully vectorized? This problem depends
on the processor’s ISA. Different ISAs lead to different
vectorized µkernels. Even for the same ISA, different
µkernels can result for different tile sizes Mr×Nr given.

µkernel Optimization. How do we perform instruction
scheduling to achieve near peak performance? This
problem is also architecture-dependent. General-purpose
compilers are known to be ineffective, since they cannot
exploit domain-specific knowledge well.
POCA represents the first compiler approach for obtaining

near peak performance portably for µkernel, as illustrated
in Figure 3. POCA is portable, because it operates on top
of the architecture-specific abstractions already provided by
general-purpose compilers such as LLVM for a wide range
of computer architectures. POCA can deliver near peak per-
formance, because it is structured into two sequential phases,
µkernel generation and µkernel optimization. Our µkernel
generator produces a vectorized µkernel in the architecture-
independent LLVM IR. The main task performed here is
instruction selection. Our µkernel optimizer then applies a
series of domain-specific but architecture-independent opti-
mizations to produce a highly optimized µkernel. The main
task performed here is instruction scheduling.

124

Single-Iteration
Scheduling

Two-Iteration
Pipelining

Unroll-based
Rotating Register

Allocation

kernel Optimizerμ

kernel Genratorμ
Instruction Info

Register Info
SIMD Engine

Function Units
...

LLVM Abstract
Machine

Descriptions

AArch64
Cortex-A57

X86_64
Sandybridge

...

Figure 3. POCA’s framework for generating fast µkernels
portably on top of LLVM’s architecture-specific abstractions.

3.1 The µkernel Generator
We take as input, the tile size Mr × Nr for µkernel, the

data type of matrix elements (e.g., float or double), and
the architecture targeted, as shown in Figure 3, and produce
a vectorized µkernel in LLVM IR. To perform instruction
selection, we carry out vectorization, data prefetching and
addressing mode optimization, as described below. While
seemingly standard, these passes are applied portably on top
of LLVM’s architecture-specific abstractions.

3.1.1 Vectorization
To achieve near peak performance, vector instructions are

utilized whenever possible. While SIMD accelerators are
ubiquitous in microprocessors, their SIMD features can dif-
fer greatly. Despite its simplicity, µkernel must be vectorized
carefully to achieve portability due to the ISA diversity.

To vectorize µkernel in Figure 2, we adopt the same
design exercised in hand-crafted GEMM variants, such as
GotoBLAS [12], OpenBLAS [37] and BLIS [28]. The two
loops governing the rank-1 update are fully unrolled. C
resides in registers as live-ins but the two vectors A and B
are loaded from memory into registers across the iterations
of loop k. To ensure consecutive memory access, A′[:][k] and
B′[k][:] have already been packed into contiguous buffers.
Finally, tile size Mr ×Nr has also been selected so that Mr

is a multiple of the vector length, denoted V L, expressed in
terms of the maximum number of data elements residing in a
vector register. Thus, A can always be loaded into Mr/V L
vector registers with Mr/V L aligned vector loads and C
occupies exactly Mr ×Nr/V L vector registers.

Therefore, it suffices to consider how to load an Nr-sized
vector B into vector registers. Currently, we make use of
three strategies, VectorLoad-Broadcast, VectorLoad-Shuffle
and ScalarLoad-Broadcast. To achieve high bandwidth, vec-
tor loads (VectorLoad-Broadcast and VectorLoad-Shuffle)
are preferred over scalar loads (ScalarLoad-Broadcast).
However, vector loads are considered only when they are
all aligned, which happens when V L divides Nr. Then
there are two cases. VectorLoad-Broadcast is adopted on ar-
chitectures that support “zero-cost scalar broadcasts” (e.g.,

fmla (vector, by element) on AArch64). VectorLoad-
Shuffle is adopted on architectures such as x86 that sup-
port vector shuffling. Otherwise, ScalarLoad-Broadcast is
selected, resulting in a scalar load for each element of B and
its subsequent broadcast to all the lanes in a vector register.

After all the loads for A and B are generated, arithmetic
instructions are selected to perform the accumulation opera-
tion in µkernel. FMA instructions are used, if available.

Example Figure 4 illustrates how the 4×4 double-precision
µkernel is vectorized on Sandybridge and Cortex-A57 (with
their architectural features listed in Table 5). On Sandy-
bridge, where V L = 4, VectorLoad-Shuffle is adopted. Af-
ter the vector loads for A and B (lines 1 – 2), the three vector
shuffle instructions (lines 3 – 5) are executed to obtain three
different permutations of B. Then the outer product A × B
is computed (lines 6 – 13). On Sandybridge, FMA is not
supported. In lines 14 – 15, the loop induction instructions
are executed to enable new vectors A and B to be loaded in
the next iteration. The prefetching instructions in lines 16 –
18 will be explained shortly in Section 3.1.2. Note that the
shuffle instructions used for restoring C0 – C3 to the storage
order required for C, as shown in Figure 2, are omitted.

On Cortex-A57, where V L = 2, VectorLoad-Broadcast
is adopted. The loads for A and B are vectorized (lines 1 –
4). Then, each scalar element of B is replicated in a distinct
vector register (lines 5 – 8). These four scalar broadcasts
have zero cost, as they will be later combined and performed
together with their corresponding fmla instructions (lines 9
– 16). For this architecture, FMA instructions are selected.
3.1.2 Data Prefetching

Data prefetching is important for µkernel. In Figure 2,
A′ and B′ symbolize A4 (Mr × Kc) and B4 (Kc × Nr)
in Figure 1, respectively. According to Section 2, these tile
sizes are selected to fit A4 and B4 into the L1 cache.

From Figure 1, we can see that A4 varies but B4 stays
unchanged at layer 5. Therefore, two different prefetching
strategies are applied, following GotoBLAS [12], Open-
BLAS [37] and BLIS [28]. For B4, its rows are prefetched
several iterations in advance. For A4, the next Mr ×Kc row
block of A3, Anext

4 := A3[i + Mr : i + 2Mr − 1][:], is
prefetched, as Anext

4 will be used in the next call to µkernel.
Consider the vectorized µkernel for Sandybridge given

in Figure 4, where the instructions in lines 16 – 18 serve
to prefetch Anext

4 and B4. The base addresses of A4, B4

and Anext
4 are represented by AP, BP and AN, respectively.

Let St be the size of the data type of matrix elements and
Sc the cacheline size for the underlying L1 data cache (in
bytes). For each iteration of loop k in µkernel (Figure 2), a
column of Anext

4 and a row of B4 are prefetched by issuing
⌈Mr ∗ St/Sc⌉ and ⌈Nr ∗ St/Sc⌉ prefetching instructions,
respectively. When Mr ×Nr = 4× 4, only ⌈4 ∗ 8/64⌉ = 1
prefetching instruction is needed each. The prefetch distance
used for B4 is empirical, ranging typically between 256 –
768 bytes. In POCA, 512 bytes are used, by default.

125

1 A0 = vload AP // <a0, a1, a2, a3>
2 B0 = vload BP // <b0, b1, b2, b3>
3 B1 = vshuffle B0 <1,0,3,2> // <b1, b0, b3, b2>
4 B2 = vshuffle B1 <2,3,0,1> // <b3, b2, b1, b0>
5 B3 = vshuffle B2 <1,0,3,2> // <b2, b3, b0, b1>
6 M0 = fmul A0, B0 //
7 C0 = fadd C0, M0 // <c00, c11, c22, c33>
8 M1 = fmul A0, B1
9 C1 = fadd C1, M1 // <c01, c10, c23, c32>

10 M2 = fmul A0, B2
11 C2 = fadd C2, M2 // <c03, c12, c21, c30>
12 M3 = fmul A0, B3
13 C3 = fadd C3, M3 // <c02, c13, c20, c31>
14 AP = add AP, 4 // AP += 4
15 BP = add BP, 4 // BP += 4
16 prefetch_0 (BP+64) // 8 * 64 = 512(bytes)
17 prefetch_0 AN // next A block
18 AN = add AN, 32 // Mr * 8 = 32(bytes)

(a) Sandybridge

1 A0 = vload AP // <a0, a1>
2 A1 = vload (AP+2) // <a2, a3>
3 B0 = vload BP // <b0, b1>
4 B1 = vload (BP+2) // <b2, b3>
5 B0_0 = vshuffle B0 <0,0> // <b0, b0>
6 B0_1 = vshuffle B0 <1,1> // <b1, b1>
7 B1_0 = vshuffle B1 <0,0> // <b2, b2>
8 B1_1 = vshuffle B1 <1,1> // <b3, b3>
9 C0 = fma C0, A0, B0_0 // <c00, c10>

10 C1 = fma C1, A1, B0_0 // <c20, c30>
11 C2 = fma C2, A0, B0_1 // <c01, c11>
12 C3 = fma C3, A1, B0_1 // <c21, c31>
13 C4 = fma C4, A0, B1_0 // <c02, c12>
14 C5 = fma C5, A1, B1_0 // <c22, c32>
15 C6 = fma C6, A0, B1_1 // <c03, c13>
16 C7 = fma C7, A1, B1_1 // <c23, c33>
17 AP = add AP, 4 // AP += 4
18 BP = add BP, 4 // BP += 4

... // prefetching insts omitted
(b) Cortex-A57

Figure 4. Vectorized µkernel in double precision on Sandybridge and Cortex-A57.

3.1.3 Addressing Mode Optimization
In POCA, loads with immediate offsets are preferred over

those with pre- and post-indexed immediate offsets, which
also increase (decrease) the base register by the number of
loaded data elements as an side-effect. With a pre- and post-
indexed load, we can increase code density, but at the ex-
pense of one integer µop issued for modifying the base reg-
ister. This extra µop acts as pure overhead, as it consumes
resources in the processor frontend (e.g., its µop buffer space
and dispatcher issue slot). The situation is worse for proces-
sors with in-order issue or a narrow issue window.

Instead of the post-indexed loads “A0 = vload AP, 2;

A1 = vload AP, 2;”, costing 4 µops, we prefer the loads
with immediate offset “A0 = vload AP; A1 = vload

AP+2; AP = add AP, 4;”, costing 3 µops only.

3.2 The µkernel Optimizer
Given a vectorized µkernel, our optimizer obtains an op-

timized µkernel in assembly code. Its core functionality is
to schedule the instructions in µkernel to achieve near peak
performance, a task beyond general-purpose compilers.

When crafting µkernel by hand, domain experts achieve
near peak performance by orchestrating carefully instruc-
tion scheduling and register allocation. However, general-
purpose compilers must make tradeoffs in solving these two
problems due to the lack of domain-specific knowledge, re-
sulting in sub-optimal performance. Specifically, compilers
usually schedule instructions too conservatively in order to
keep enough registers available for later use.

To achieve near peak performance for µkernel portably,
we take a radically different approach. Our µkernel op-
timizer can be viewed as a domain-specific compiler for
µkernels, with its three passes given in Figure 3. In Single-
Iteration Scheduling, we schedule the instructions in a sin-
gle iteration of µkernel to minimize its execution time while
keeping the number of live variables, LiveReg, as close as
but never larger than the total number of (architectural) vec-
tor registers, MaxReg, available. In Two-Iteration Pipelin-
ing, we perform software pipelining on two consecutive it-

erations of µkernel to improve resource utilization while
pushing LiveReg nearly to the MaxReg limit. In contrast,
modulo scheduling [11, 21, 23] is too general to be effective
for µkernel (as validated later). We consider only two con-
secutive loop iterations because two are sufficient to exhaust
all the vector registers available. In Unroll-based Rotating
Register Allocation, we perform a rotating register alloca-
tion on an unrolled loop to produce an optimized kernel,
without register spills (since LiveReg ⩽ MaxReg always).
Therefore, no iteration is needed between the last two passes.

Table 1. Instruction information for Sandybridge.

Unit Total

LoadU 2
ShuffleU 3
FPMulU 1
FPAddU 1
IntegerU 3

Instruction Latency Unit

vload 4 LoadU
vshuffle 1 ShuffleU
fmul 5 FPMulU
fadd 3 FPAddU
add 1 IntegerU
prefetch 0 0 LoadU

We will illustrate our three passes by using the vector-
ized µkernel on Sandybridge, with its relevant architectural
features given in Tables 1 and 5. While there are 16 256-bit
AVX registers, we assume MaxReg = 8 for this example.
3.2.1 Single-Iteration Scheduling

This pass schedules the instructions from one iteration
of µkernel to minimize its execution time, by operating on
its dependence graph. It applies list-scheduling with cus-
tomized heuristics, including four new ones. The objective
is to minimize the single-iteration latency while making
LiveReg as close as possible but never exceed MaxReg.
This is practically feasible (without backtracking) since Mr

and Nr are so selected that A, B and C can fit into registers.
Figure 5 shows the data dependence graph for the vec-

torized µkernel for Sandybridge. Each node represents an
instruction, labeled with its output variable (except for
prefetching instructions, PrfA for prefetch 0 AN and
PrfB for prefetch 0 (BP+64)). All dependencies are de-
picted in solid arrows. The ENTRY- and EXIT-related arti-
ficial dependencies are depicted in dashed arrows. ENTRY

126

�����
��

�

��

�

����
�

���

��

�

��

�

��

�

��
�

��

�

�

��

�

��
�

�

����

�

��

�

�

��

�

�

�

���

��
�

��
�

��

�

�

�
�

�

�
�

�

�

�
�

�

�����

�

Figure 5. Data dependence graph for the 4 × 4 vectorized
µkernel given in Figure 4(a) on Sandybridge.

(EXIT) is linked with the original source (sink) nodes. Each
dependence edge is labeled by the latency of the instruction.

Formally, let I be the set of candidate instructions such
that the instructions that they depend on have been sched-
uled. A scheduling heuristic is a function h : I → Xh that
assigns a score x ∈ Xh to each instruction I ∈ I. Here,
Xh is a totally ordered set with a total order ≺Xh

. For two
instructions I1, I2 ∈ I, h prioritizes I1 if h(I1) ≺Xh

h(I2).
To break ties, list scheduling can be made more effective

by applying several heuristics to select the best instruction
to be scheduled next. If h(I1) =Xh

h(I2), where I1, I2 ∈ I,
for a particular heuristic, then the next heuristic is tried.

Table 2. Single-iteration scheduling heuristics.

Heuristic (h) Range (Xh) Order
≺Xh

=Xh

RegPress B > =
EarliestCycle N < =
BalancedWKLD B > =
FPFirst B > =
MaxRelease N > =
MinDepth N < =
MaxHeight N > =
InstOrder N < n/a

Table 2 lists eight heuristics tried by the µkernel opti-
mizer in that order, with the top four being POCA-specific.
For each heuristic, the “Range (Xh)” and “Order (≺Xh

and
=Xh

)” columns give its totally ordered set and total order,
respectively. N = {0, 1, · · · } is the set of natural numbers.
B = {0, 1}. <, > and = have the traditional meanings.

Below we describe the eight heuristics used:

RegPress We keep track of LiveReg and compute the set
of variables, KillSet(I), that are dead after instruction I is
scheduled. We set RegPress(I) to 0 (false) if LiveReg >
MaxReg immediately afterwards, i.e., if LiveReg + 1−
| KillSet(I) |> MaxReg and 1 (true) otherwise.
EarliestCycle EarliestCycle(I) gives the cycle at which
I can be executed, based on EarliestCycle(I ′) for all
the instructions I ′ already scheduled, thereby favoring the
earliest-starting instruction. We compute EarliestCycle(I)
by modeling precisely the underlying architecture, from its
instruction decoding to µop execution. All relevant archi-
tectural features (e.g., out-of-order vs. in-order, issue width,

function units and their latency and throughput), provided by
LLVM’s architecture-specific abstraction, are considered.
BalancedWKLD We aim to balance the workload for the
function units at the processor backend. Let FU(Ilast)
(FU(I)) be the set of function units required for execut-
ing Ilast (I), where Ilast (I) is the instruction most recently
(being) scheduled. We set BalancedWKLD(I) to 1 (true)
if FU(Ilast) ∩ FU(I) = ∅, since their µops will be dis-
patched to different function units, and 0 (false) otherwise
FPFirst PFFirst(I) returns 1 (true) if I is a floating-
point instruction, since I is highly likely to be on a critical
path in the dependence graph, and 0 (false) otherwise.
MaxHeight, MinDepth, MaxHeight and InstOrder These
four are standard, already available in LLVM. MaxRelease
favors scheduling instructions such that more instructions
will be ready to be scheduled afterwards. MinDepth and
MaxHeight favor instructions with smaller depths and
larger heights, respectively. The depth (height) of an in-
struction is measured as the longest distance from ENTRY
(to EXIT) in the dependence graph. Finally, InstOrder is a
fallback heuristic that respects the original instruction order.
Example Table 3 gives the schedule for Figure 4(a) on
Sandybridge (based on the architectural information given in
Tables 1 and 5). With MaxReg = 8 assumed, the instruc-
tions are listed in the order scheduled from left to right. For
each instruction, the second row gives the cycle at which it
is dispatched and the third row gives LiveReg immediately
afterwards. The single-iteration latency is 12 cycles.

This schedule is unconventional. We have obtained it due
to the sophisticated heuristics used for modeling Sandy-
bridge’s out-of-order behavior (provided by LLVM’s ma-
chine abstraction). Note that the 4 × 4 µkernel has 4 live-
in registers, C0, C1, C2 and C3. Thus, LiveReg = 5 af-
ter the first instruction B0 = vload BP has been scheduled.
Throughout, LiveReg is made as close to MaxReg as pos-
sible, particularly in the middle of a schedule.

Let us select a particular scheduling point to highlight the
capability of our cost model. Why is C0 scheduled before
B3, M2 and M3 but executed only afterwards? After M1
is scheduled, LiveReg = MaxReg = 8. Then the set of
candidate instructions becomes {C0,C1,M2,B3}. We have
RegPress(C0) = RegPress(C1) = 1 and RegPress(B3)
= RegPress(M2) = 0. Thus, C0 and C1 are preferred, as
scheduling B3 and M2 would cause LiveReg > MaxReg.
According to the next heuristic, EarliestCycle(C0) = 9
and EarliestCycle(C1) = 10. Thus, C0 is finally selected.

Now, the set of candidate instructions is {C1,M2,B3}.
We first compute RegPress(C1) = RegPress(M2) =
RegPress(B3) = 1. We then find that EarliestCycle(C1)
= 10 and EarliestCycle(M2) = EarliestCycle(B3) =
6. As M2 and B3 tie with respect to BalacedWKLD,
FPFirst, MaxRelease and MinDepth, we finally ob-
tain 9 = MaxHeight(B3) > MaxHeight(M2) = 8.
Thus, B3 is selected to be scheduled after C0. However, B3

127

Table 3. Single-iteration scheduling for the double-precision µkernel in Figure 4(a) on Sandybridge (MaxReg = 8).
Instruction B0 A0 BP AP PrfA AN PrfB B1 M0 B2 M1 C0 B3 M2 M3 C1 C2 C3

Cycle 0 0 0 0 1 1 1 4 4 5 5 9 6 6 7 10 11 12
LiveReg 5 6 6 6 6 6 6 7 7 8 8 7 8 8 7 6 5 4

Table 4. The pipelined kernel Pµ obtained by two-iteration pipelining for the schedule in Table 3 on Sandybridge (MaxReg =
8), with the instructions from one iteration in S shown in normal font and the instructions from the next iteration in S′ in bold.

Instruction B2 M1 C0 B3 M2 M3 B0’ C1 A0’ BP’ AP’ PrfA’ PrfB’ AN’ C2 B1’ M0’ C3
Cycle 5 5 9 6 6 7 7 10 8 8 9 9 10 9 11 10 11 12

LiveReg 8 8 7 8 8 7 8 7 8 8 8 8 8 8 7 8 8 7

(at cycle 6) will be dispatched before C0 (at cycle 9) due to
register renaming and out-of-order dispatching modeled in
EarliestCycle. (Note that, for Intel Sandybridge, there are
16 256-bit AVX registers but 144 256-bit physical registers.)
3.2.2 Two-Iteration Pipelining

In this second pass, we apply software pipelining to only
two consecutive iterations of µkernel that have been sched-
uled earlier. The objective is to maximize resource utiliza-
tion while pushing LiveReg even closer to MaxReg.

Algorithm 1 Two-iteration pipelining.
Require: S=[I0, . . . , In−1], S

′ = [I ′0, . . . , I
′
n−1]

Ensure: Pµ = [Ī0, . . . , Īn−1], where Īi ∈ S ∪ S′

1: Pµ ← []
2: i← 0, j ← 0
3: while i < n do
4: if (inserting I ′j immediately before Ii ensures that (1)

LiveReg ⩽ MaxReg, and (2) EarliestCycle(Ik) re-
mains unchanged as in S, for every Ik, where k ⩾ i) then

5: I ← I ′j , j ← j + 1
6: else
7: I ← Ii, i← i+ 1
8: end if
9: Pµ ← Pµ # [I] // append I to Pµ

10: end while
11: Pµ ← Pµ[j : j + n− 1] // pipelined kernel
12: return Pµ // j = 0 =⇒ Pµ = S

Let S = [I0, . . . , In−1] be the schedule for one iteration
and S′ = [I ′0, . . . , I

′
n−1] the schedule for the next iteration

obtained in the first pass. We generate a two-iteration (mod-
ulo) schedule by applying Algorithm 1. The basic idea is to
move j instructions from S′ into S while keeping the rel-
ative order of the instructions in each sequence unchanged,
so that the latency of S, which contains now n + j instruc-
tions, remains the same. Let Pµ = S[j : n + j − 1]. Typi-
cally, LiveReg is close to MaxReg in the middle of a one-
iteration schedule (Table 3). Thus, Pµ usually contains all
the j instructions moved from S′. In theory, this can always
be enforced by overlapping S′ gradually with a later part of
S. Therefore, Pµ is the pipelined kernel. S[0 : j − 1] is the
prologue and S′ (without the j removed instructions) is the
epilogue. In the special case when j = 0, which will never
happen for µkernel of a well-chosen Mr ×Nr, Pµ = S.
Example Continuing from the single-iteration schedule
given in Table 3 with 18 instructions, Table 4 shows the
pipelined kernel Pµ consisting of also 18 instructions, with
half from S (in normal font) and half from S′ (in bold).
Previously, two iterations take 24 cycles to execute, with 12

cycles each. After pipelining, two iterations take only 20 cy-
cles (with 4 cycles in the prologue consisting of the first nine
instructions in Table 3, 8 cycles in Pµ, and 8 cycles in the
epilogue consisting of the last nine instructions in Table 3).

By comparing Tables 3 and 4, we note that we have
pushed LiveReg to nearly the MaxReg = 8 limit.
3.2.3 Unroll-based Rotating Register Allocation

In this last pass, we first unroll the pipelined µkernel with
its loop body as Pµ and then perform a rotating register
allocation. We will choose an unroll factor of UF to ensure
that every variable is allocated to the same register every UF
iterations, resulting in a rotating register allocation [10, 13,
17, 30]. As LiveReg stays near but never exceeds MaxReg in
the pipelined schedule, as shown in Table 4, the final µkernel
obtained is highly optimized, free also of register spills.

We compute UF by using a directed graph created from
the pipelined kernel Pµ, called Register Transfer Graph
(RTG). Each node represents a variable in Pµ. Each edge
v → w represents a possible flow of a physical register, in-
dicating that a register assigned to v can be reassigned to w
after v is dead, since their live ranges do not interfere.

Algorithm 2 RTG construction.
Require: Pµ = [Ī0, . . . , Īn−1]
Ensure: RTG

1: k ←MaxReg − LiveIn
2: ∆psudo ← {F0, . . . , Fk−1}
3: ∆dead ← ∆psudo

4: for I in [Ī0, . . . , Īn−1] in their sequential order do
5: Let LHS(I) be the variable defined by I
6: k ← k + |KillSet(I)|
7: ∆dead ← ∆dead ∪KillSet(I)
8: for d ∈ ∆dead do
9: Add d→ LHS(I)

10: end for
11: k ← k − 1
12: if k = 0 then
13: ∆dead ← ϕ
14: end if
15: end for
16: for d ∈ ∆dead and v ∈ ∆psudo do
17: Add d→ v
18: end for

Algorithm 2 constructs the RTG needed. LiveIn gives
the set of live-in variables for Pµ (e.g., C0 – C3, A0, B1, M0
in our example). Thus, ∆psudo represents the set of pseudo
variables (i.e., registers) available initially. KillSet(I) rep-
resents the set of variables that is dead after, i.e., killed by I .
We use ∆dead and k to keep track of the set of dead variables
and the number of free registers, respectively. Due to lines 8

128

– 10, the variable defined by I , i.e., LHS(I) can reuse any
register previously allocated to d ∈ ∆dead. Note that ∆dead

and k are not updated in sync, because when I is processed,
one free register must be allocated to LHS(I), causing k
to go down by 1 (line 11). However, this free register may
be any previously assigned to any dead variable in ∆dead.
Thus, ∆dead remains unchanged and is cleared only when
k = 0 (lines 12 – 14). This ensures that all possible flows
of registers are considered. Even after ∆dead is cleared, ev-
ery variable is guaranteed to have at least one (dead variable)
predecessor, as LiveReg ⩽ MaxReg holds always. Finally,
d → v is added, where d ∈ ∆dead and v ∈ ∆psudo.

We can find UF from RTG easily to unroll the pipelined
µkernel (with Pµ as its loop body) to enable a rotating
register allocation. As LiveReg ⩽ MaxReg, every node
in RTG lies in a cycle. For every cycle c, which is not
necessarily an elementary cycle, let Tc be the number of live-
out variables on c, called its period. Tc is an upper-bound for
the number of live variables in c, since any variable in c can
only become live after it predecessor is dead.

Let P = {c0, . . . , cm−1} be a partition of RTG, every
ci is a cycle. Then UF =LCM(T0, . . . , Tm−1). A rotating
register allocation can be readily obtained [10, 17, 30].

The problem of finding optimal unroll factors for in-
struction scheduling and register allocation remains open. In
practice, RTG is small, with less than 50 nodes. We find
P = {c0, . . . , cm−1} with exhaustive search by preferring a
UF =LCM(T0, . . . , Tm−1) within [2, 8] if it exists and the
smallest otherwise, in several seconds. As Pµ is pipelined
with LiveReg close to MaxReg, the impact of different un-
roll factors on performance is small (as evaluated later).

��

��

���

���

��

���

���

��

��

��

����

��

��

��

��

���

���

��

���

���

��

��

��

����

��

��

(a) RTG (b) Partition

Figure 6. RTG for Pµ in Table 4, with one four-cycle parti-
tion shown in four different colors. The period of a cycle is
the number of live-out variables drawn in a solid shade.

Example For the pipelined kernel Pµ in Table 4, Figure 6
shows its RTG and a partition with four cycles. From the
last column in Table 4, we see that Livein = 7. Thus,
F0 represents the only pseudo variable initially available.
For the partition shown, its four circles are drawn in four
different colors. For each cycle, its period is represented
by the number of nodes in a solid shade. Thus, UF =
LCM(Tblue, Tred, Tgreen, Tyellow)=LCM(4, 1, 2, 1) = 4.

4. Performance Evaluation
In our evaluation, we address three research questions:

RQ1. Can the µkernels generated automatically by POCA
outperform expert-crafted assembly versions?

RQ2. Can representative GEMM frameworks, OpenBLAS
and BLIS, achieve competitive or better performance
once their expert-crafted µkernels are replaced by POCA’s?

RQ3. How effective are POCA’s optimizations?
We have implemented POCA in LLVM (3.9.0). Its µkernel

generator is a stand-alone module generating vectorized
µkernels in LLVM IR. Its µkernel optimizer is embed-
ded into LLVM’s backend compiler. The “Single-Iteration
Scheduling” and “Two-Iteration Pipelining” passes replace
LLVM’s machine scheduler. The “Unroll-based rotating
Register Allocation” pass is implemented in terms of LLVM’s
register allocator by making hints on which physical reg-
isters should be allocated to which variables. To optimize
µkernel with POCA, LLVM’s “-O3” is turned on.

POCA is implemented in about 9300 lines of C++, with
about 1500 LOC in its µkernel generator and 7800 LOC in
its µkernel optimizer (3800 LOC for scheduling and pipelin-
ing, 2500 for register allocation, and 1500 for others).

Table 5. Configurations for Sandybridge and Cortext-A57.
Processor Sandybridge Cortex-A57

Hardware

Arch X86 64 AArch64
L1 cache 32KB (8-way) 32KB (-)
L2 cache 256KB (8-way) 512KB (-)
Dispatch out-of-order (4-issue) in-order (3-issue)
Execution out-of-order out-of-order
SIMD AVX (256b) Neon (128b)
FMA NO YES

GEMM
BLIS 0.1.8-29 0.1.8-29
OpenBLAS 0.2.20-dev 0.2.20-dev
ATLAS 3.10.3 3.10.3
MKL 11.03.03 -

Compilers ICC 16.0.3 -
GCC 4.8.2 6.1.0

We evaluate POCA on two processors, Intel Sandybridge
and AArch64 Cortex-A57, with their hardware and software
configurations listed in Table 5. Sandybridge represents a
series of dominant processors in the server and HPC mar-
ket from the x86 camp, while Cortex-A57 is the first 64-bit
AArch64 processor from the ARM camp. Both have their
own micro-architectures, differing in their cache design,
µop dispatchers, and SIMD engines supported. For GEMM
frameworks, we have selected two representative hand-
crafted implementations, OpenBLAS [37] and BLIS [28],
one well-known auto-tuning-based implementation, AT-
LAS [32], and Intel MKL. All matrices are real double-
precision matrices. For compiler-synthesized µkernels, ICC
and GCC, are considered, with “-O3” turned on. LLVM is
omitted since it generates poorer code for µkernel.

4.1 RQ1: The µkernel Performance
We compare POCA with assembly programming, ICC

and GCC. As discussed in Section 2, OpenBLAS [37] and
BLIS [28] are written by domain experts, with GEBP and
µkernel depicted in Figure 1. In OpenBLAS, GEBP is coded
in assembly. In BLIS, only µkernel is coded in assembly.
Therefore, its expert-crafted µkernel, identified as BLIS-µ,

129

is selected in our evaluation. For BLIS-µ, Mr ×Nr = 8× 4
on Sandybridge and Mr ×Nr = 4× 8 on Cortex-A57.

For the µkernels generated by POCA for both processors
(in several seconds in each case), UF = 4. For BLIS-µ,
loop unrolling is applied identically. To compare POCA with
each compiler C ∈ {ICC,GCC}, we consider two versions
of µkernel, C1 and C4, generated by C, where i in Ci is
the unroll factor used. In each case, we wrote a µkernel
loop vectorized with low-level SIMD intrinsics in exactly
the same way as the vectorized µkernel generated by POCA.
This loop is then unrolled by a factor of i and compiled
by C (under “-O3”) to produce Ci. Neither GCC (with
-fmodulo-sched) nor ICC emits software-pipelined loops.

BLI
S-
¹

gc
c-

1

gc
c-

4
ic
c-

1
ic
c-

4

PO
CA

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

P
e
rf

o
rm

a
n

c
e
 (

G
F
L
O

P
S

)

95.01

89.10

96.53

93.54

97.16 97.36

(a) Sandybridge (Mr ×Nr = 8× 4)

BLI
S-
¹

gc
c-

1

gc
c-

4

PO
CA

4.0

4.5

5.0

5.5

6.0

P
e
rf

o
rm

a
n

c
e
 (

G
F
L
O

P
S

)

88.93

75.67

84.98

96.47

(b) Cortex-A57 (Mr × Nr = 4 × 8)

Figure 7. The µkernel performance results (with the
floating-point efficiency shown on the top of each bar).

Figure 7 gives our results. For the µkernel loop given
in Figure 2, A′ and B′ are stored in column- and row-
major, respectively, to simulate the effect that both are pre-
packed into continuous buffers. We set Kc = 192 on both
Sandybridge and Cortex-A57 to ensure that all the matrices
involved fit into the L1 data cache (with A′ being 12KB,
B′ being 6K, and the next A′ to be prefetched into the L1
cache (Section 3.1.2)). For each µkernel evaluated, we show
its floating-point performance (measured as the average of
5000 runs), together with its floating-point efficiency.

POCA is the best performer on both processors. For
Sandybridge, POCA’s µkernel generator selects the same in-
structions as BLIS-µ. For Cortex-A57, POCA’s µkernel gen-
erator also behaves identically as BLIS-µ except that POCA
selects loads with immediate offsets while BLIS-µ selects
loads with post-indexed immediate offsets (Section 3.1.3).

POCA’s µkernel optimizer is a key contributor to perfor-
mance. As shown in Tables 1 and 5 for Sandybridge, POCA
schedules and pipelines instructions to improve both execu-
tion time and resource utilization aggressively by keeping
LiveReg as close to MaxReg as possible, since a rotating
register allocation without register spills is guaranteed later.
In contrast, general-purpose compilers and domain experts
(to a lesser degree) are more conservative, by scheduling in-
structions with smaller LiveReg in order to reduce potential
register spills later, resulting in poorer resource utilization.
In fact, no spilling eventually happens for ICC and GCC.

4.2 RQ2: The GEMM Performance
The performance advantages of POCA-synthesized µkernels

also translate into the performance competitiveness of POCA-

25
6
51

2
76

8
10

24
12

80
15

36
17

92

20
48
23

04
25

60
28

16
30

72
33

28
35

84
38

40
40

96
43

52
46

08
48

64
51

20
53

76
56

32
58

88
61

44
64

00
66

56
69

12
71

68
74

24
76

80
79

36
81

92

Matrix Size (M=N=K)

10

11

12

13

14

15

16

17

18

P
e
rf

o
rm

a
n

ce
 (

G
F
LO

P
S

)

ATLAS

BLIS

BLIS-POCA

MKL

OpenBLAS

OpenBLAS-POCA

gcc

icc

(a) Sandybridge

25
6

51
2

76
8

10
24

12
80

15
36

17
92

20
48

23
04

25
60

28
16

30
72

33
28

35
84

38
40

40
96

43
52

46
08

48
64

51
20

53
76

56
32

58
88

61
44

Matrix Size (M=N=K)

3.0

3.5

4.0

4.5

5.0

5.5

P
e
rf

o
rm

a
n

ce
 (

G
F
L
O

P
S

)

ATLAS

BLIS

BLIS-POCA

OpenBLAS

OpenBLAS-POCA

gcc

(b) Cortex-A57

Figure 8. The GEMM performance for large data sets.

synthesized GEMM routines. Figure 8 gives the results.
BLIS-POCA is BLIS with its expert-written µkernel being
replaced by POCA’s. For OpenBLAS, Mr ×Nr = 8× 4 on
Sandybridge and Mr ×Nr = 4× 8 on Cortex-A57 are also
used [37]. However, the loops at layers 4 – 6 forming GEBP
(Figure 1) are all coded in assembly. OpenBLAS-POCA is
OpenBLAS with only its µkernel loop being replaced by
POCA’s and the other two loops still in C. For each GEMM
routine, the same inputs with 32 matrix sizes are used. Its
execution time is the average of three runs.

On Sandybridge, MKL is the best performer for large ma-
trices but exhibits unstable behavior for smaller ones. In con-
trast, ATLAS is the worst performer on both processors due
to its lacking knowledge about the underlying hardware dur-
ing its auto-tuning process. Compiler-synthesized GEMM
routines are not competitive as hand-written ones.

POCA achieves performance results that are competitive
as or better than BLIS and OpenBLAS on both processors.
Note that µkernel is an important factor affecting the overall
GEMM performance, but not the only one. Other important
factors include matrix blocking and submatrix scheduling.
This explains why BLIS-POCA and OpenBLAS-POCA show
different performance results even on the same architecture.

On Sandybridge, POCA achieves competitive perfor-
mance as BLIS and OpenBLAS. BLIS-POCA is slightly
faster than BLIS, by 1.002x on average. OpenBLAS-POCA
is slightly slower than OpenBLAS, exhibiting an average
slowdown of 0.994x, possibly because GEBP in OpenBLAS
runs slightly faster, with two more loops (at layers 4 and 5)
also coded in assembly than OpenBLAS-POCA.

On Cortex-A57, POCA is more impressive. OpenBLAS-
POCA outperforms OpenBLAS by 1.065x on average due
to a better schedule generated, and BLIS-POCA outperforms
BLIS by 1.067x on average due to also the addressing mode
optimization (as discussed earlier in Section 4.1).

130

4.3 RQ3: The Optimization Analysis
We analyze the impact of POCA’s instruction scheduling

and loop unrolling on the optimized µkernels generated.
4.3.1 Instruction Scheduling

POCA schedules instructions in two passes, single-iteration
scheduling and two-iteration pipelining. To assess their ef-
fectiveness individually, we start with a non-scheduled ver-
sion of µkernel, base, and obtain a scheduled version, sched,
by applying one-iteration scheduling only, and a pipelined
version, piped, by applying two-iteration pipelining only.
For each optimization strategy S ∈ {base, sched, piped},
we consider a total of four unrolled variants, S-1, S-2, S-4
and S-8, where i in S-i is the unroll factor being applied.

base
-1

sc
hed-1

pip
ed-1

base
-2

sc
hed-2

pip
ed-2

base
-4

sc
hed-4

pip
ed-4

base
-8

sc
hed-8

pip
ed-8

BLI
S-¹

POCA
14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

Pe
rf

or
m

an
ce

 (
G

FL
O

PS
)

86.5
4

86.4
8

85.3
7 87.3

0

87.3
8

88.2
9

87.7
6 89.5

7

87.7
7

87.5
6 89.9

0

87.3
0

95.0
1 97.3

6

(a) Sandybridge (Mr × Nr = 8 × 4)

base
-1

sc
hed-1

pip
ed-1

base
-2

sc
hed-2

pip
ed-2

base
-4

sc
hed-4

pip
ed-4

base
-8

sc
hed-8

pip
ed-8

BLI
S-¹

POCA
4.0

4.5

5.0

5.5

6.0

Pe
rf

or
m

an
ce

 (
G

FL
O

PS
)

82.6
5

78.8
6 82.8

1

82.6
1

74.9
6 84.9

1

82.5
5

76.8
2 85.8

7

82.6
1

75.3
1 86.4

3 88.9
3

96.4
7

(b) Cortex-A57 (Mr × Nr = 4 × 8)

Figure 9. Impact of instruction scheduling on performance
(with the floating-point efficiency shown on each bar).

Figure 9 shows the results, obtained in the same setting
as in Section 4.1. On Sandybridge, base, sched and piped
exhibit similar performance, with a small variation of less
than 3%. Sandybridge is a high-end server processor with
powerful out-of-order µop dispatch and execution, reducing
the need for software-level instruction scheduling. While
applying either sched or piped makes little improvement to
base, applying both brings a great performance gain, with
POCA outperforming base-1 by 12.5%.

On Cortex-A57, the situation is a little different: sched
is consistently worse than base. With sched, all the loads
are scheduled before all the floating-point instructions for
one iteration of µkernel, making both seriously imbalanced.
Despite its out-of-order execution, Cortex-A57 has a in-
order µop dispatcher with a narrow 3-issue window. Thus,
the imbalanced instruction stream makes the µop dispatcher
the bottleneck, resulting in poor utilization of its backend
function units. However, piped is always better than base,
because the loads and floating-point instructions from two
iterations are interleaved (Tables 1 and 5), creating a better-
balanced instruction stream. Finally, when sched and piped
are combined, POCA outperforms base-1 by 16.7%.

Therefore, POCA’s instruction scheduling is effective for
not only low- and middle-end processors like Cortex-A57
but also high-end server processors like Sandybridge.

4.3.2 Loop Unrolling
Due to our aggressive one-iteration scheduling and two-

iteration pipelining passes, our unroll-based rotating register
allocation pass will select an unroll factor within [2, 8] arbi-
trarily, as described in Section 3.2.3. On both Sandybridge
and Cortex-A57, UF = 4 happens to be selected.

BLI
S-
¹

PO
CA

-3

PO
CA

-4

PO
CA

-5

PO
CA

-6

PO
CA

-7

PO
CA

-8
14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

P
e
rf

o
rm

a
n

c
e
 (

G
F
L
O

P
S

)

95.01

97.51 97.36 97.32 96.49 96.45 96.61

(a) Sandybridge (Mr×Nr = 8×4)

BLI
S-
¹

PO
CA

-2

PO
CA

-4

PO
CA

-6

PO
CA

-8
4.0

4.5

5.0

5.5

6.0

P
e
rf

o
rm

a
n

c
e
 (

G
F
L
O

P
S

)

88.93

96.08 96.47 96.16
97.88

(b) Cortex-A57 (Mr×Nr = 4×8)

Figure 10. Impact of unroll factors on performance (with
the floating-point efficiency shown on each bar).

Figure 10 compares the performance results of BLIS-
µ and the POCA-synthesized µkernels under all possible
unroll factors in [2, 8], in the same setting as in Section 4.1.
According to our register allocation pass, these unroll factors
are 4, 5, 6, 7 and 8 for the 8× 4 µkernel on Sandybridge and
2, 4, 6 and 8 for the 4× 8 µkernel on Cortex-A57.

POCA outperforms BLIS-µ on both processors under all
the unroll factors. The performance advantages of POCA
over BLIS-µ are already analyzed in Section 4.3.1. Note
that the effects of unroll factors on performance are small.
In general, µkernel is backend-bound. So the instruction
decoding in the frontend rarely becomes a bottleneck if
the µop dispatcher and backend function units work at full
capacity, which happens for all the unroll factors evaluated.

On Cortex-A57, POCA-8 does not exhibit a performance
drop. On Sandybridge, however, POCA-7 and POCA-8 are
slightly slower than POCA-4 due to more DSB-MITE switch-
ing (µop cache misses) as UF increases (with 17% and 21%
more DSB-MITE switching cycles for POCA-7 and POCA-8
than POCA-4, obtained by Intel VTune Amplifier).

These results show that with instructions well scheduled,
µkernels can achieve near peak performance under a range
of unroll factors. The problem of finding a good unroll factor
in our register allocation pass has thus been made simple.

5. Related Work
In addition to the prior work discussed on BLAS in Sec-

tion 1, we review some additional work related to this paper.
The performance of DLA kernels can be improved with

compiler techniques, including SIMD vectorization [9, 19,
24, 38, 39], polyhedral optimization [4, 16], and loop
tiling [18, 27, 33]. However, general-purpose compilers lack
the domain-specific knowledge to achieve near peak per-
formance for DLA kernels. Source-to-source transforma-
tions [7, 8, 31], assisted with domain-specific directives, can
be more effective, particularly when combined with an em-
pirical tuning engine to ease the auto-tuning process [34, 35].

Empirical auto-tuning is widely used for DLA kernels.
The idea starts from [1] and was later adopted by PHiPAC [3]

131

and ATLAS [32]. Their BLAS libraries automatically se-
lect the best from a set of optimized DLA kernels by actu-
ally running them on the actual computing system. A DLA
kernel may be obtained from a general-purpose compiler,
a domain-specific code generator [2], or a domain expert.
Being compiler-dependent, both auto-tuning and source-to-
source transformations trade performance for portability.

Instead of auto-tuning, analytic techniques [15, 22, 36]
attempt to determine optimal values for various parameters
in GEMM, such as block sizes, analytically. Techniques for
accelerating BLAS on Intel Xeon Phi processors [26] and
other DLA kernels on GPUs [6, 29] also exist.

POCA takes a different but complementary approach.
With domain-specific optimizations performed on top of
LLVM’s abstract machine descriptions, µkernels with near
peak performance can be generated automatically for a pro-
cessor and drop easily in existing GEMM frameworks.

POCA produces highly optimized µkernels by performing
domain-specific scheduling and pipelining while guarantee-
ing a subsequent rotating register allocation without regis-
ter spills. For general-purpose compilers, software pipelin-
ing [11, 17, 20, 21, 23] and register allocation [5, 25] tech-
niques are mature. Techniques for adopting cyclic interval
graphs as an alternative representation of interference graph
for register allocation are introduced in [10, 13]. Our RTG
used for producing a rotating register allocation can be re-
garded as a (live-range) interval graph for µkernels.

6. Conclusion
In this paper, we present a compiler approach, POCA,

for automatically generating highly optimized GEMM ker-
nels with competitive or better performance compared to
expert-crafted GEMM implementations, portably for a wide
range of computer architectures. The key novelty lies in its
domain-specific yet architecture-independent optimizations,
especially its aggressive instruction scheduling techniques
for maintaining the number of live variables to a maximum.
In future work, we plan to extend POCA to multi-threaded
GEMM and other dense linear algebra kernels.

Acknowledgments
We thank all the reviewers for their constructive com-

ments on an earlier draft of this paper. This research is
partly supported by the National Key Research and Devel-
opment Program of China (NO.2016YFB0200400), NSFC
(NO.61272483, NO.61370018, NO.61402495), and Aus-
tralian Research Council (DP150102109 and DP170103956).

References
[1] R. C. Agarwal, F. G. Gustavson, and M. Zubair. Ex-

ploiting functional parallelism of POWER2 to design high-
performance numerical algorithms. IBM Journal of Research
& Development, 38(5):563–576, 1994.

[2] G. Belter, J. G. Siek, I. Karlin, and E. R. Jessup. Automatic
generation of tiled and parallel linear algebra routines. In
IWAPT’ 10, pages 1811–1820.

[3] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Op-
timizing matrix multiply using PHiPAC: A portable, high-
performance, ansi c coding methodology. In SC ’97, pages
253–260.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayap-
pan. A practical automatic polyhedral parallelizer and locality
optimizer. In PLDI ’08, pages 101–113.

[5] G. J. Chaitin. Register allocation and spilling via graph color-
ing. In CC ’82, pages 98–105.

[6] H. Cui, L. Wang, J. Xue, Y. Yang, and X. Feng. Automatic
library generation for BLAS3 on GPUs. In IPDPS ’11, pages
255–265.

[7] H. Cui, J. Xue, L. Wang, Y. Yang, X. Feng, and D. Fan.
Extendable pattern-oriented optimization directives. ACM
Trans. Archit. Code Optim., 9(3):14:1–14:37, Oct. 2012.

[8] H. Cui, Q. Yi, J. Xue, and X. Feng. Layout-oblivious compiler
optimization for matrix computations. ACM Trans. Archit.
Code Optim., 9(4):35:1–35:20, Jan. 2013.

[9] A. E. Eichenberger, P. Wu, and K. O’Brien. Vectorization for
SIMD architectures with alignment constraints. In PLDI ’04,
pages 82–93.

[10] C. Eisenbeis, S. Lelait, and B. Marmol. The meeting graph:
A new model for loop cyclic register allocation. In PACT ’95,
pages 264–267.

[11] L. Gao, Q. H. Nguyen, L. Li, J. Xue, and T. Ngai. Thread-
sensitive modulo scheduling for multicore processors. In
ICPP ’08, pages 132–140.

[12] K. Goto and R. a. V. D. Geijn. Anatomy of high-performance
matrix multiplication. ACM Trans. Math. Softw., 34(3):1–25,
2008.

[13] L. J. Hendren, G. R. Gao, E. R. Altman, and C. Mukerji.
A register allocation framework based on hierarchical cyclic
interval graphs. In CC ’93, pages 176–191.

[14] B. Kågström, P. Ling, and C. van Loan. GEMM-based level
3 BLAS: High-performance model implementations and per-
formance evaluation benchmark. ACM Trans. Math. Softw.,
24(3):268–302, Sept. 1998.

[15] V. Kelefouras, A. Kritikakou, and C. Goutis. A matrix-
matrix multiplication methodology for single/multi-core ar-
chitectures using SIMD. The Journal of Supercomputing,
68(3):1418–1440, jan 2014.

[16] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and
P. Sadayappan. When polyhedral transformations meet SIMD
code generation. In PLDI ’13, pages 127–138.

[17] M. Lam. Software pipelining: An effective scheduling tech-
nique for VLIW machines. In PLDI ’88, pages 318–328.

[18] M. D. Lam, E. E. Rothberg, and M. E. Wolf. The cache
performance and optimizations of blocked algorithms. In
ASPLOS ’91, pages 63–74.

[19] S. Larsen and S. Amarasinghe. Exploiting superword level
parallelism with multimedia instruction sets. In PLDI ’00,
pages 145–156.

[20] D. M. Lavery and W.-M. W. Hwu. Unrolling-based optimiza-
tions for modulo scheduling. In MICRO ’95, pages 327–337.

132

[21] J. Llosa. Swing modulo scheduling: A lifetime-sensitive ap-
proach. In PACT ’96, pages 80–.

[22] T. M. Low, F. D. Igual, T. M. Smith, and E. S. Quintana-Ortı́.
Analytical modeling is enough for high-performance BLIS.
ACM Trans. Math. Softw., 43(2):12:1–12:18, Aug. 2016.

[23] B. R. Rau. Iterative modulo scheduling: An algorithm for
software pipelining loops. In MICRO ’94, pages 63–74.

[24] I. Rosen, D. Nuzman, and A. Zaks. Loop-aware SLP in GCC.
In GCC Developers’ Summit, pages 131–142, 2007.

[25] M. D. Smith, N. Ramsey, and G. Holloway. A generalized
algorithm for graph-coloring register allocation. In PLDI ’04,
pages 277–288.

[26] T. M. Smith, R. Van De Geijn, M. Smelyanskiy, J. R. Ham-
mond, and F. G. Van Zee. Anatomy of High-Performance
Many-Threaded Matrix Multiplication. In IPDPS ’14, pages
1049–1059.

[27] D. G. Spampinato and M. Püschel. A basic linear algebra
compiler. In CGO ’14, pages 23:23–23:32.

[28] F. G. Van Zee and R. A. van de Geijn. BLIS: A framework for
rapidly instantiating BLAS functionality. ACM Trans. Math.
Softw., 41(3):14:1–14:33, June 2015.

[29] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune
dense linear algebra. In SC’08, pages 31:1–31:11.

[30] L. Wang, J. Xue, and X. Yang. Reuse-aware modulo schedul-
ing for stream processors. In DATE ’10, pages 1112–1117.

[31] Q. Wang, X. Zhang, Y. Zhang, and Q. Yi. AUGEM: Automat-
ically generate high performance dense linear algebra kernels
on x86 CPUs. In SC ’13, pages 25:1–25:12.

[32] R. C. Whaley and J. J. Dongarra. Automatically Tuned Linear
Algebra Software. In SC ’98, pages 1–27.

[33] J. Xue. Loop Tiling for Parallelism. Kluwer Academic
Publishers, Boston, 2000.

[34] Q. Yi. Automated programmable control and parameteriza-
tion of compiler optimizations. In CGO ’11, pages 97–106.

[35] Q. Yi, Q. Wang, and H. Cui. Specializing compiler opti-
mizations through programmable composition for dense ma-
trix computations. In MICRO ’14, pages 596–608.

[36] K. Yotov, X. Li, G. Ren, M. J. S. Garzaran, D. Padua, K. Pin-
gali, and P. Stodghill. Is search really necessary to gen-
erate high-performance BLAS? Proceedings of the IEEE,
93(2):358–386, Feb 2005.

[37] X. Zhang, Q. Wang, and Y. Zhang. Model-driven level 3
BLAS performance optimization on Loongson 3A processor.
In IPDPS ’12, pages 684–691.

[38] H. Zhou and J. Xue. Exploiting mixed SIMD parallelism by
reducing data reorganization overhead. In CGO ’16, pages
59–69.

[39] H. Zhou and J. Xue. A compiler approach for exploiting
partial simd parallelism. ACM Trans. Archit. Code Optim.,
13(1):11:1–11:26, Mar. 2016.

133

