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Abstract—We apply convolutional neural networks (CNN)
to the problem of image orientation detection in the context
of determining the correct orientation (from 0, 90, 180, and
270 degrees) of a consumer photo. The problem is especially
important for digitazing analog photographs. We substantially
improve on the published state of the art in terms of the
performance on one of the standard datasets, and test our
system on a more difficult large dataset of consumer photos.
We use Guided Backpropagation to obtain insights into how
our CNN detects photo orientation, and to explain its mistakes.
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I. INTRODUCTION

In this paper, we address the problem of detecting the
correct orientation of a consumer photograph (i.e., 0◦, 90◦,
180◦, or 270◦; see Figure 1) by learning a deep convolu-
tional neural network (CNN). We experiment with standard
datasets, on one of which our system performs substantially
better than the published state of the art, and we experiment
on a large dataset of consumer photos that we collected. We
apply Guided Backpropagation [1] [2] in order to visualize
what our classifier is doing and to explain the mistakes it
makes.

We detect the orientation of a photo by learning a classifier
that classifies input images into four classes: 0◦, 90◦, 180◦,
or 270◦. Our classifier is a deep convolutional neural net-
work whose architecture is a modification of VGG-16 [3], a
commonplace architecture used for image classification. We
train our classifier on large datasets of photos.

Automatic photo orientation detection can help with
speeding up the digitization of analog photos. It is a well-
studied problem [4]. To date, learning-based approaches
to the problem [4] [5] [6] consisted of exctracting low-
level features used in image classification and retrieval
such as Histograms of Gradients (HoG) [7] and Colour
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Figure 1. Correct outputs for different inputs. The possible outputs are
0◦, 90◦, 180◦, and 270◦.

Moments [8], and sometimes high-level features such as face
and object detector outputs [9], and then feeding them into
a learned classifier. Such classifiers perform very well on
some standard datasets of photos. Examples of such datasets
include the Corel stock photo dataset [10], which consists of
professional photos, and the SUN-497 database [11] where
each photo is labelled as containing a particular scene. In
recent years, convolutional neural networks have been used
instead of classifying hand-engineered features in object
recognition [12], image retrieval [13] and the estimation of
image skew [14] (note that this is a distinct problem from the
one addressed in this paper: we are interested in accurately
classifying a photo into four possible orientation bins, while
Fischer et al. attempt to estimate the skew angle, which
could be any real number.) In this work, we do the same
for the related problem of photo orientation detection. Cao
et al. [15] describe another biologically-inspired approach to
the estimation of image skew, using a shallow architecture.

Recent visualization techniques for CNNs [1] [2] [16]
have mostly been used for visualizing the function of partic-
ular neurons in a deep neural network, but they also allow
for exploring how and why CNNs classify images the way
they do [17]. We use Guided Backpropagation in order to
visualize how our network classifies and misclassifies the
orientation of photos, and obtain insight into how it works.

The rest of the paper is organized as follows. We outline
our modifications to the VGG-16 architecture to obtain a
photo orientation classifier, and detail our training procedure.
We then present our experimental results on the standard
datasets for the task of photo orientation detection, and
compare them to prior work, demonstrating that CNNs are
able to detect the orientation more accurately than prior
work. We describe our own dataset of consumer photos, and
analyze our experimental results on that dataset. Finally, we
visualize what our CNN is doing in order to obtain insights
into how CNNs detect photo orientation. Our contribution
consists of obtaining better than published-state-of-the-art
results on the task of image orientation detection, and a
demonstration of the use of Guided Backpropagation for
analyzing the outputs of a deep neural network.



II. MODIFYING THE VGG-16 ARCHITECTURE TO BUILD
A PHOTO ORIENTATION CLASSIFIER

A common technique for building a CNN classifier for a
new domain is to adopt an architecture orginally designed
for the ImageNet dataset [18], modify it, and apply it to
the new domain. See e.g. [19] and [20]. We found that
an architecture that is identical to VGG-16, except with 4
outputs corresponding to 0◦, 90◦, 180◦, or 270◦ instead of
1, 000 outputs corresponding to the 1, 000 object classes in
ImageNet, performed the best on our datasets.

A. Training the CNN

We found that initializing the weights of our network
to the weights of VGG-16 trained on ImageNet, and then
training the network end-to-end resulted in the best vali-
dation performance. This indicates that we are doing some
transfer learning: VGG-16 detects 1000 classes of objects,
which would be useful for detecting orientation. Likely
initializing our weights to those of VGG-16 makes our
network converge to nearby values of the weights.

The set of photos is transformed by rotating all the photos
in the original training set by 0◦, 90◦, 180◦, or 270◦. The
VGG architecture requires that the input be of size 224 ×
224× 3. We resize the input image to fit inside a 224× 224
square, and pad it as necessary with black pixels in order
for the input to be 224× 224.

The network is trained using Dropout with p = .7.

III. EXPERIMENTAL RESULTS

A. Prior work

Ciocca et al. [5] summarize the current state of the art
in photo orientation detection on two standard datasets:
the Corel stock photo dataset [10] and the SUN-397
database [11]. On the SUN-397 database, the best results
were obtained by Ciocca et al. [5], with 92.4% accuracy. On
the Corel dataset, the best results were obtained by Vailaya
et al. [4], with 97.4% accuracy.

B. Dataset descriptions

The Corel dataset consists fo approx. 10,000 images, sep-
arated into 80 concept groups such as autumn, aviation, bon-
sai, castle, and waterfall. The SUN database consists consists
of about 108,000 images, separated into 397 categories. Our
own dataset, collected from Flickr by downloading images
corresponding to 26 tags, consists of about 250,000 images.

Some of the images in the Corel dataset have very low-
resolution. They have been resized to be larger but to still fit
into a 224× 224 square. Some images in the Corel dataset
are atypical of consumer photos. Sample images from the
art_cybr category of the Corel dataset are shown in
Fig. 2.

We split all datasets into training (64%), test (20%), and
validation (16%) sets, and then transform each of the sets
by adding in all the possible rotations of each photo.

Figure 2. Some images from the Corel dataset are not representative of
consumer photos.

Dataset Accuracy (ours) Accuracy (SOTA)
Flickr (ours) 92.5%
SUN 397 98.5% 92.4% (Ciocca et al., 2015[5])
Corel 97.5% 97.4% (Vailaya et al., 2002[4])

Table I
EXPERIMENTAL RESULTS FOR CLASSIFYING THE ORIENTATION OF

PHOTOS

C. Experimental results

The accuracy of our classifiers on the test sets of the
datasets under consideration are summarized in Table I.
The results for the Corel dataset should be interpreted with
caution because of the issues described in Section III-B. We
have matched or exceeded the published state of the art on
both standard datasets for the task.

D. Discussion

Our results show that convolutional neural networks
match or outperform the published state of the art in image
orientation detection on both standard datasets. The Corel
dataset appears to not be diverse enough: we suspect that we
are overfitting on some of the categories – we are including
photos from all categories in both the training and the test
set. Our results on our own Flickr dataset indicate that the
SUN dataset may not be fully representative of consumer
photos. This would not be an issue on our Flickr dataset,
since all of our categories are ubiquitous in consumer photos
and there is a large degree of intra-vategory diversity.

IV. UNDERSTANDING THE CNN PHOTO ORIENTATION
DETECTOR USING VISUALIZATION

In this work, we have shown that a deep architecture
is able to detect photo orientation better than any of the
published results employing shallow architectures that use
combinations of low and high level features. It is of interest
to see how the deep architecture is able to classify the
photos, both in order to understand how the deep archticture
classifies the photos, and in order to explain its mistakes.
We show how to use Guided Backpropagation [1] to better
understand what our CNN is doing.

Visualizing CNNs involves visualizing the roles of indi-
vidual neurons. To visualize the roles of an individual neu-
ron, researchers found patches of real images that activate
that neuron the most [2], used methods similar to gradient
ascent in order to synthesize images that activate that neuron



the most [16], or visualized the change in images that would
increase the activity of the neuron the most [1] [2]. These
approaches can also be used in combination with each other.
Recent work [17] employed Guided Backpropagation in the
context of object recognition.

We are interested, for every image in the test set, in
explaining why our CNN obtained the answer that it did.
That means that, when the input is a specific image of
interest, we want to visualize the output neuron of our CNN
whose activity is the largest of all four output neurons.

A. Guided Backpropagation

We use a variant of Guided Backpropagation to explain
the activity of our output neurons. Guided Backpropagation
computes a modified version of the gradient of a particular
neuron with respect to the input. We display that modified
gradient as a saliency map. We are interested in an expla-
nation for the network’s output. For that reason, if, for a
specific image x, the network’s maximal output is the m-
th unit pm, we produce a saliency map that is computed
similarly to ∂pm/∂x, but is clearer than the gradient.

If the absolute value of the gradient |∂neuron∂xi
| is large, that

means that increasing (or decreasing) xi would influence the
neuron. However, there can be a number of mechanisms for
that to happen: one possibility is that the pixel xi currently
activates a feature that, when activated, increases the activity
of a higher level feature, which in turn activates an even
higher-level feature, which in turn activates the neuron of
interest. Another possibility is that the pixel xi activates a
feature that in turn turns off a higher-level feature, which
in turn activates an even higher-level feature, which in turn
activates the neuron of interest. We do not want to visualize
xi as influecing the output neuron in case |∂neuron∂xi

| is large
for the second reason. That is because if xi’s changing
depresses some feature more, causing the final output to be
higher, xi provides evidence for the absence of some feature
in the image. Since numerous features are absent but only
a few are present, it makes less sense to take into account
evidence for the absence of features when visualizing the
saliency map that indicates which pixels influence the output.
Empirically, ∂neuron

∂x is very noisy [1].
Guided backpropagation is a way of visualizing which

pixels provide evidence for the presence of features in the
input image that influence the output neuron. The pixels
that are visualized never depress features causing the neuron
of interest to activate. Instead, they only activate features
throughout the layers of the network. This leads to much
clearer visualizations. For the network in Fig. 3, the pixel
xi will be prominent in the saliency map that corresponds to
the output zm only if there is a path between xi and zm such
that all the hidden ReLU units along that path are activated
and all the partial derivatives along that path (i.e., ∂hn/∂hj ,
and ∂hj/∂xi) are positive.

(Note that in a network that only uses ReLU activation
functions, we can speak of features that correspond to ReLU
units being turned “activated” and “depressed,” referring to
neurons’ outputs’ being positive or zero respectively. With
activation functions that can take positive or negative values,
this would not be possible.)

Figure 3. A path in a network from xi to pm where all the units
along the path are activated and the weights connecting them are all
positive. xi would be visualized on the saliency map when using Guided
Backpropagation.

The saliency map that visualizes what a neuron of interest
pm is doing for a specific image is computed using Guided
Backpropgation as follows. Partial derivatives are computed
as if a Backpropagation pass is being computed, except that
negative partial derivatives are set to 0 before proceeding to
the layer below each time. The result is a “modified version”
of ∂pm/∂x. The modified ∂pm/∂x is high for xi’s that, if
they are increased, increase the activations of already-active
hidden neurons that correspond to features detected in the
image that contribute to pm’s being high.

The result is a saliency map where pixels that provide
positive evidence for features that contribute to the output
zm’s being high are displayed.

Most of the pixels on the computed saliency map are
generally black. There are two reasons for this. First, for
most xi, ∂pm/∂xi is very close to 0, since most pixels
do not activate higher-level features. Second, since in the
salienct map produced using Guided Backpropagation only
pixels that provide positive evidence for pm’s being high all
they way up the network are displayed, there are many more
0-valued pixels in the saliency map than in ∂pm/∂x.

B. Explaining correct predictions by the CNN using Guided
Backpropagation

In this section, we provide several examples of explana-
tions of how the CNN detected the correct orientation of
photos that were generated using Guided Backpropagation.
The explanations are generated by computing the Guided



Figure 4. A correctly-oriented photo. The Guided Backpropagation visualization indicates that the outline of the light fixture was a cue for correctly
orienting the image.

Figure 5. The classifer output the photo is upright, but it should be rotated by 180◦. The Guided Backpropagation visualization indicates that the outline
of the wine glass was useful for orienting the photo, suggesting that the wineglass was mistaken for a light fixture.

Backpropagation saliency map using the algorithm described
in Section IV-A with respect to the output pi, where i is the
correct orientation, and pi was the largest output. The inter-
pretations of the visualizations are necessarily speculative,
but the visualizations are suggestive.

Light fixtures are usually reliable cues for orienting indoor
photos. In Figure 4, we display an example of a correctly ori-
ented indoor photo, together with a Guided Backpropagation
visualization. Interestingly, it is the shape of the light fixture
that seems to be the cue. Items that look like light fixture
seem to sometimes mislead the classifier. For example, in
Figure 5, it appears that a wine glass was “mistaken” by the
classifier for a light fixture.

Objects commonly found in scenes can be useful for
orienting a photo. For example, in Figure 7, it appears that
the shapes of the birds were useful in correctly orienting the
photos.

C. Explaining mistakes by the CNN using Guided Backprop-
agation

In this section, we provide several examples of explana-
tions of how the CNN detected the incorrect orientation of
a photo that were generated using Guided Backpropagation.
One example (Figure 5) was already shown. It appears
that the CNN detects numerous objects and uses object
detections as cues for orientation detection. In the example
in Figure 5, the CNN seems to have incorrectly identified a
wineglass as a light fixture.

In Fig 8, another interesting mistake is made. It appears
that the rooster is used as a cue, but the image is nevertheless
oriented incorrectly by the classifer. From the visualization,
it appears plausible that the network would “think” that the
bird it detected is oriented upright in the incorrectly-rotated
image.



Figure 6. A correctly-oriented photo. The Guided Backpropagation visualization indicates that the shapes of the birds were a cue for correctly orienting
the image.

Figure 7. A correctly-oriented photo. The Guided Backpropagation visualization indicates that people were a cue for correctly orienting the image.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated that deep convolutional
neural networks (CNN) outperform shallow architectures for
the task of image orientation detection. We used Guided
Backpropagation in order to explain both the correct and
incorrect outputs of our classifier. We have shown that the
CNN uses object detections in order to perform image orien-
tation detection. Further evidence of this is that initializing
the weights of our CNN to be the same as those in the VGG-
16 network trained on ImageNet, suggesting that transfer
learning is useful for image orientation detection (since it is
likely that the we converge on weights that are close to the
weights of VGG-16 for the lower layers if we initialize our
weights to be those of VGG-16).

We plan to systematically study the outputs of our Guided
Backpropagation visualizations in order to obtain quantita-
tive insights about the behaviour of the CNN.
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