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Abstract. In this paper, we propose a complete framework that segments lungs
from 2D Chest X-Ray (CXR) images automatically and rapidly. The framework
includes two main steps: First, given a set of manually segmented training data,
some landmark detectors are obtained using learning techniques. Second, using
these detected landmarks as boundary indicators, a statistical shape inference is
applied to fit the contours and get a rough segmentation of lung. This framework
could also be applied to different applications for other organs or medical imag-
ing modalities. Our major goal is to segment the lung rapidly with a reasonable
accuracy. In the experiments, we compared the performance of Boosted Cascade
with Haar features and Support Vector Machine (SVM) with Gabor features.
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1 Introduction

Accurately segmenting organs from medical images is a fundamental yet challenging
task. Good segmentation results can be used for clinical or research analysis. For exam-
ple, computer aided diagnostic (CAD) programs usually need the segmentation result
as input to analyze potential diseases. Manual segmentation has been shown to be suf-
ficiently robust and accurate, but is labor intensive. Thus, it is practically necessary to
develop an automatic and rapid segmentation framework.

In this paper, we study a framework for 2D segmentation of lung from CXR images,
and speed-up the whole process while archiving good performance. We use a coarse-
to-fine strategy. First, we train some boundary landmark detectors and learn a statistical
shape model to provide prior information. Then, based on the detected landmarks and
prior shape constraints, use a learning-based statistical model to fit the boundary con-
tours. This framework can be used for creating an atlas of lung, and could also be
extended to do whole-body organs segmentation.

This work focus on the following aspects: (1) Implemented a complete framework
for auto segmentation of lung from CXR images. (2) Evaluated two methods in the de-
tection: Boosted Cascade [12] with Haar feature [9]; SVM [3] with Gabor feature [14].
(3) Coarse-to-fine strategy for rapid detection. (4) Comparison of different methods re-
garding to the detection results. (5) Applied learning-based statistical model to infer the
contour of lung. (6) Extensively evaluated the segmentation results using sensitivity,
specificity and dice similarity coefficient.
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2 Related work

Our segmentation framework is relevant to two types of methods: the appearance-based
models and the shape-based models. Appearance-based models use low-level intensity
information, like brightness gradients and texture gradients. For example, Snakes [7],
Gradient Vector Flow [13], Metamorphs [6] and Level-set [10] methods. However, im-
ages are usually corrupted by several artifacts, such as the image noise, missing or oc-
cluded parts, intensity inhomogeneity, which cause misleading cues. The shape-based
models incorporate higher-order shape information about the objects. Prior statistical
shape knowledge may disambiguate this misleading information in segmentation pro-
cess. But the shape-based models usually need a good initialization. Such models (e.g.,
Active Shape Models (ASM) [1], Active Appearance Models (AAM) [2]) have been
used in different applications for shape prior. However, due to the less reliable appear-
ance information, the detected landmarks could be misleading for the shape model-
s. Zhang et al. proposed a sparse shape representation [16, 17] in their segmentation
framework and achieved promising results since the sparse shape representation can
avoid misleading info caused by sparse landmark outliers. A complete segmentation
framework has been proposed in [15]. They used 3D data and 3D models for segment-
ing liver and distal femur from CT and MRI images respectively. Some frameworks
similar to ours have been applied to organ segmentation, but for different organs or d-
ifferent imaging modalities. In our study, we aim to speed up the whole framework to
segment the lung from 2D CXR images automatically and rapidly while still achieved
a reasonable accuracy.

For the object detection, there have been some successful approaches using different
features, such as Haar [9], Gabor [14], SIFT [8], etc. Viola,P. and Jones, M. have pro-
posed a boosted cascade algorithm for rapid object detection in [12]. These algorithms
have been employed in our framework.

2.1 Chest X-ray imaging

The chest radiograph, or CXR, is a projection radiograph of the chest. CXR imaging is
an important way to diagnose pathological changes of the chest, including lung, trachea,
bronchia, and other nearby structures. Segmentation of lung in CXR images is the first
step in much disease diagnosis. However, a typical problem with projective radiographs
is the lack of contrast between overlapping objects, such as bones and soft tissues. This
can cause ambiguity about the true location of the object boundaries in the image.

2.2 Gabor feature

Features based on Gabor filter have been widely used in image processing since Gabor
kernels are characterized as localized, orientation, and frequency selective. The Gabor
wavelet representation of an image not only describes spatial frequency structure in
the image but also preserves information about spatial relations. Convolving the lung
image with complex Gabor filters with 5 spatial frequency and 8 orientation captures
the whole frequency spectrum, both amplitude and phase. Feature extraction algorithm
mainly has two steps: feature point localization and feature vector computation.
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Feature point localization: Feature points can be located by searching the peaks on
the responses of the lung image to Gabor filters with a window size of W ×W . Here,
we use W = 9.

Feature vector generation: Feature vectors are generated from feature points as a
composition of Gabor wavelet transform coefficient.

2.3 Haar feature

1. Edge features

3. Center-surround features

2. Line features
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Fig. 1. 14 Haar feature prototypes [9]

Stated in [9], there are many extended Haar-like
features can be extracted from images. Fig. 1
shows 14 feature prototypes could be used. For
a window size of 25 × 25, there could be more
than 157,000 features. These features can be com-
puted rapidly by using some intermediate (aux-
iliary) images [9, 12]. Such large feature vectors
can cause computational complexity during learn-
ing process. But this complexity can be avoid
by feature selection based methods, such as Ad-
aboost [4].

2.4 SVM

SVMs are a set of related supervised learning methods widely used for classification
and regression. It exhibit good accuracy of classification if the data set is small. By
applying kernel function, SVM can efficiently map input data which may not be linearly
separable to a high dimensional feature space where linear methods can be used.

SVM has been widely used in many applications. One of the main reasons is that its
decision function only depends on the dot product of the input feature vector with the
Support Vectors (SVs). Theoretically, features with any dimension can be fed into SVM
for training since it has no requirements on the dimension of the feature vector. But in
practice, the huge dimension of Gabor features demands large computation complexity
and memory costs, optimized Gabor features [11] are proposed with a general SVM
classifier can achieve good performance.

2.5 Boosted Cascade

Given an input image, detectors usually have a large amount of sub-windows to check.
This large number of sub-windows could cause unacceptable false positive rate and
cost a lot of time. In [12], a cascade of classifiers was proposed to achieve low false
positive rates while greatly reducing computation time. The series of classifiers can
eliminate a large number of negative sub-windows. After several stages of processing
the number of sub-windows have been reduced radically. This can significantly reduce
the computation time and improve the performance by lower the false positive rate.
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3 Proposed Approach

In this experiment we aim to roughly locate the right lung from CXR, using landmark
detections and sparse dictionary learning. CXR imaging is widely used because of the
fast speed and low cost. Computer Aided Diagnostic (CAD) programs can detect vari-
ous pathologies including abnormal cardiac sizes, pneumonia shadow and mass lesions
by analyzing X-ray images. To automatically detect such pathology, one needs to lo-
cate lungs robustly and efficiently. In our application, the size of input images is about
2500 × 2500 pixels. The ground truths are binary masks of manual segmentation re-
sults, labeled by a clinical expert. From the binary masks, 2D contours can be easi-
ly extracted. We then manually select six specific points (e.g., corner points, top and
bottom points) on the contour as the anatomical landmarks for training purpose. The
six landmarks are defined as fig. 2(b). After that, a fixed amount of points between t-
wo neighboring landmarks are evenly and automatically interpolated along the contour.
Thus, one-to-one correspondence is obtained for all landmarks and shapes. When a new
image comes, we first detect the anatomical landmarks (which may contain errors), and
then use shape priors to infer a shape from these detected landmarks.

(a) Lung
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Fig. 2. Coarse to fine strategy

In the first step, we train one lung detector and six landmark detectors. Because of
the large resolution and low contrast of CXR images, direct landmark detection could
be time-consuming and have too many false alarms. Here we proposed a coarse-to-fine
framework for lung segmentation. Fig. 2 shows the strategy: (a) detect the bounding box
of right lung; (b) detect landmarks in the bounding box with some location constraints;
(c) infer contour based on landmarks (second step).

After necessary image processing, we scale the original image to lower resolution
(about 40× 40) and extract patches of size 27× 18 for whole lung as positive samples
and negative samples which don’t contain the lung or contain a small portion of lung.
This set of samples is used for training lung detector. Then scale the original image
to about 200 × 200, and extract patches of size 25 × 25 for training the 6 landmarks.
Positive landmark samples are illustrated in fig. 3. These sets of samples are used for
training six landmark detectors.

We apply two different methods to create active models to detect the lung and land-
marks: Gabor+SVM and Haar+Boosted Cascade. For Gabor+SVM, gabor features are
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extracted as input of SVM classifier according to section 2.2. In experiment, we use
polynomial degree-2 as SVM kernel function. For Haar+Boosted Cascade, it is intro-
duced in section 2.3 that the haar feature vector of a sample image usually has very high
dimension, so we use Adaboost method in each cascade classifier to do feature selec-
tion. This can speed up the detection procedure while maintaining a good performance.
Similar methods have been proved very successful in face detection.

The trained detectors can only detect sub-windows that may contain the expected
objects. For the landmarks, however, we need six points rather than rectangles. A very
simple hypothesis is that picking the central point of the sub-window as the landmark.
A more reasonable hypothesis is selecting a corner as the landmark in that sub-window.
So we use the Harris operator [5] to compute the responses of the detected sub-window
and locate the corner as the local maxima in the response image.

In the second step, we first learn statistical models (ASM or sparse shape composite)
for the right lung boundary shape from training set. Given a new image, we interpolate a
prototype boundary based on the detected 6 landmarks. Then, we use the learned shape
prior information to refine the prototype boundary and get an approximate contour for
the right lung. Fig. 4 shows this procedure, in which the blue points and lines are the
ground truth, the red points and lines are the expected results.

(a) LM 1 (b) LM 2 (c) LM 3 (d) LM 4 (e) LM 5 (f) LM 6

Fig. 3. Example of landmark patches. (LM stands for landmark)

4 Experiments

4.1 Set-up

The data set is a total of 372 2D CXR images with labeled lung. 188 of them have
manually labeled landmarks, which are used to train the landmark detectors and to
construct the prior-shape repository. The rest 184 of them are used for testing. Due to
the similarity of left lung and right lung, we only work on right lung segmentation.

We will use the confusion matrix to analyze the specificity, sensitivity, precision
and accuracy of the lung detectors: Sensitivity = TP

TP+FN , Specificity = TN
TN+FP ,

Accuracy = TP+TN
TP+TN+FP+FN . True Positive (TP): the object detected by the detector

is truly labeled object. False Positive (FP): the object detected by the detector is not
truly labeled object. True Negative (TN): the object not detected by the detector is not
truly labeled object. False Negative (FN): the object not detected by the detector is truly
labeled object.
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Fig. 4. Boundary contour refinement with shape prior

For the final segmentation results (right lung contours), the mean values and the
standard deviations of sensitivity (P ), specificity (Q), and Dice Similarity Coefficient
(DSC) are reported. As a base line, we obtain the landmarks using the central points of
the detected rectangles. And then compare the refined contour results with that using
Harris corner detector.

(a) Landmark (b) PCA refine (c) Sparse refine

Fig. 5. Boundary contour refinement results

4.2 Results

In table 1, the first two rows are results for training set, while the last two rows contain
results for testing set. Here, the last column represents the percentage of FP cases that
detect the other lung from input images. For Haar+Boost, despite the low specificity
score, high value of left lung hit means out of the FP cases this method usually de-
tects the left lung rather than some random regions. So this low Specificity should be
acceptable.
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Table 1. Right lung detection results

Method Sensitivity Specificity Accuracy Time Left lung hit
Haar+Boost 1.0 0.601064 0.800532 2.90 sec 0.92
Gabor+SVM 0.728723 0.590426 0.659574 264.72 sec 0.36
Haar+Boost 0.983696 0.61413 0.798913 2.44 sec 0.83
Gabor+SVM 0.581522 0.532609 0.557065 185.89 sec 0.13

Table 2. Boundary contour refinement results

Method mean(P) std(P) mean(Q) std(Q) mean(DSC) std(DSC)
PCA 0.8439 0.1000 0.9108 0.0989 0.8595 0.0619

Sparse 0.8740 0.1016 0.9137 0.1032 0.8914 0.0661

Table 2 shows the final boundary contour results refined by PCA and sparse shape
composite. From the results, it can be concluded that the sparse shape prior is better
than PCA prior. The comparison is shown in fig. 5.

Regarding to the detection time, Haar+Boost method is far superior to Gabor+SVM.
Overall, the Haar+Boost performs better in our experiment. So we applied Haar+Boost
in the landmark detection, the detection time for each CXR image is about 0.3 seconds.
And the shape refinement by PCA costs about 0.02 seconds per image, while sparse
shape refinement costs about 1.8 seconds.

5 Conclusions and Future Work

In this work, an automatic rapid framework for lung segmentation from CXR images
was implemented and validated. The problem of landmark detection was solved by
Haar+Boost method efficiently and refined by Harris corner detection. Then the learned
shape prior was used to infer the shape of the right lung. This framework could be
extended to other applications, such as lesion detection, organ segmentation from CT
or MRI medical images. In the future, we would like to extend this framework to 3D
and also to solve other problems, such as tracking the cardiac [18].
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