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Abstract Cell-based high content screening (HCS) is
becoming an important and increasingly favored approach
in therapeutic drug discovery and functional genomics. In
HCS, changes in cellular morphology and biomarker
distributions provide an information-rich profile of cellular
responses to experimental treatments such as small mole-
cules or gene knockdown probes. One obstacle that
currently exists with such cell-based assays is the avail-
ability of image processing algorithms that are capable of
reliably and automatically analyzing large HCS image sets.
HCS images of primary neuronal cell cultures are particu-
larly challenging to analyze due to complex cellular
morphology. Here we present a robust method for quanti-
fying and statistically analyzing the morphology of neuro-
nal cells in HCS images. The major advantages of our
method over existing software lie in its capability to correct
non-uniform illumination using the contrast-limited adap-
tive histogram equalization method; segment neuromeres
using Gabor-wavelet texture analysis; and detect faint
neurites by a novel phase-based neurite extraction algo-
rithm that is invariant to changes in illumination and
contrast and can accurately localize neurites. Our method

was successfully applied to analyze a large HCS image set
generated in a morphology screen for polyglutamine-
mediated neuronal toxicity using primary neuronal cell
cultures derived from embryos of a Drosophila Hunting-
ton’s Disease (HD) model.
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Huntington’s Disease

High throughput automated fluorescent microscopy of cell
culture preparations has opened new avenues for discovery
in the fields of functional proteomics (Liebel et al. 2003;
Eggert et al. 2004; Muller et al. 2005; Pelkmans et al. 2005;
Sonnichsen et al. 2005; Wheeler et al. 2005; Neumann et al.
2006; Wollman and Stuurman 2007; Peng 2008), small-
molecule screening (Eggert et al. 2004; Mitchison 2005;
Eggert and Mitchison 2006; Carpenter 2007), and drug
profiling (Perlman et al. 2004). In high-content screening
(HCS), multiple images are collected per microplate well,
often at one or more wavelengths (multiplexing), and
processed by image analysis algorithms to extract specific
cellular features from the complex cellular patterns. For
example, when cells are appropriately labelled with vital
dyes or fluorescent markers, algorithms can be developed to
quantify cell size, cell number, the position of cellular
organelles, or even the distributions of proteins at the
subcellular level (Boland et al. 1998; Boland and Murphy
1999; Murphy et al. 2000; Boland and Murphy 2001; Chen
and Murphy 2006). Automatic image analysis is of critical
importance to HCS as it enables rapid quantification and
statistical analysis of large HCS image sets, which is not
feasible manually. Moreover, manual analysis is prone to
investigator error and bias, which can be eliminated with
automation (Wollman and Stuurman 2007). Recently, HCS
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has been adopted to conduct analysis of primary neurons
which have highly complex cellular morphologies and
branching patterns. This type of analysis has been a
powerful methodology in RNA interference (RNAi) screen-
ing experiments to identify genes that are important for
neuronal development, physiology and disease (Dragunow
2008; Sepp et al. 2008). Such studies are expected to be an
increasingly utilized approach in drug discovery as neuro-
nal morphology can be used as an assay for cell health.

Noise and complex signals make it challenging to
quantify neurites and neuromeres, which are two essential
morphological elements that relate to neuronal health status.
For example, noise can arise from non-neuronal cells, cell
debris, or limitations in the sensitivity of charge-coupled
device (CCD) cameras that are commonly used to collect
images. The signal levels of key neurites can be very weak
because of various factors, including variations in the
thickness of the neurites, sub-optimal focus plane estab-
lished by automated microscopy, 3-dimensional nature of
the cell cultures, and inadequate exposure time lengths. In
general, microscope settings for a screen are established on
the basis of what is optimal for an average well of a multi-
well screening plate. However, cell profiles in some wells
may be significantly different in marker intensities, which
can lead to under- or over-exposure of collected images.
Image analysis must take this variability into account to
quantify and analyze all screening wells.

Several methods have recently been proposed for
detecting neurites in microscopy images. Nevertheless, they
have limited use for neuronal HCS assays for various
reasons. Meijering et al. (2004) developed a semi-automatic
searching-based algorithm for tracing neurites, which
requires users to manually identify neurite start and end
points. In this method, neurites are extracted by optimizing
an energy function based on second-order directional
derivatives. Although this method works well for noisy
and discontinuous line structures, it has difficulty detecting
neurites with low contrast. In addition, it requires non-
trivial manual inputs from users, and is therefore not
feasible for high-throughput HCS studies. Zhang et al.
(2007) improved the algorithm of Meijering et al. (2004) by
incorporating automatic neurite endpoint detection. Never-
theless, the accuracy of endpoint detection is limited in
noisy images with non-uniform backgrounds. Al-Kofahi et
al. (2002) proposed an efficient neurite tracing algorithm
that first determines the seed points of neurites and then
extends them into complete neurites by exploiting pixels
near line structures. In this algorithm, candidate seed points
are first produced by line searches over a coarse grid. Final
seed-points are then obtained through elimination of unfit
candidates. A median kernel template is used in the
improved version of this algorithm to deal with broken/
discontinuous segments, discontinuous boundaries, impul-

sive noise and curvature (Al-Kofahi et al. 2003). However,
the method to estimate local directions is sensitive to noise,
which may affect the results. Furthermore, it requires the
intensity of a candidate point to be higher than a threshold
defined as the summation of the median pixel intensity and
the standard deviation around the median. As such,
important seed-points for long faint neurites or neurites in
non-uniform backgrounds may go undetected.

Some neurite extraction methods (Narro et al. 2007;
Vallotton et al. 2007; Broser et al. 2008; Pool et al. 2008)
first binarize images into foregrounds and backgrounds by
using a threshold that is determined either automatically or
manually. Simple morphological operations are then applied
to remove speckles and artifacts in the foreground. Finally,
neurites are obtained by skeletonising the foregrounds. In
practice, choosing an appropriate global binarization thresh-
old can be difficult, especially when many faint neurites
exist. Hence, the above methods work well on assumed
“clean” images (Pool et al. 2008) which do not include a
significant number of faint neurites. In addition, the
binarization step can break strong neurites if they contain
faint segments. To correct this shortcoming, NeuronMetrics
(Narro et al. 2007) offers a nice function that attempts to fill
in gaps of skeletons. Nevertheless, NeuronMetrics requires
manual neurite selection, noise elimination, and cell body
demarcation (Narro et al. 2007), which is not practicable for
high-throughput screening. Recently, Sun and Vallotton
(2009) developed an automatic linear feature detection
algorithm using multiple directional non-maximum suppres-
sion with symmetry checking, which can be applied to
neurite detection. Their method detects neurite central points
as the maximums in the local intensity profiles defined by a
set of linear windows. This algorithm is very fast and has
been implemented in HCA-Vision (http://www.hca-vision.
com/). However, it can be very sensitive to noise, non-
neuronal cells in mixed culture preparations, or cell debris.

We have developed an image processing pipeline that can
efficiently extract and quantify neurites and other cellular
morphology attributes relevant to the analysis of HCS images
of neuronal cell cultures. The method responds well to the
challenges (e.g., non-uniform image backgrounds, large
variation in image intensities, and complex morphology of
neuronal cell cultures) in analyzing noisy fluorescent micros-
copy images of typical HCS neuronal assays using small
molecule libraries or gene knock-down probes. To overcome
these challenges, the pipeline performs several key processing
steps (Fig. 1), including background correction and contrast
enhancement, neuromere segmentation, neurite seed line
generation, and ultimately neurite tracing. We have com-
pared our approach with two state-of-art software packages
that have automatic neurite-tracing capacities, HCA-Vision
and NeuriteIQ (http://www.cbi-tmhs.org/NeuriteIQ/index.
htm), and found that our approach made fewer errors in
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neurite extraction, and was better equipped to detect faint
neurites, as well as neurites in noisy backgrounds containing
cell debris. Our approach also provides a set of neuronal
morphology metrics and a statistical analysis procedure that
can be used to compare morphological profiles of different
treatment conditions and thus identify hits. To test the
robustness of our approach, we used our method to define
morphological differences in primary neuronal cell cultures
derived from a Drosophila Huntington’s Disease (HD)
model. HD is an autosomal dominant neurodegenerative
disorder resulting from the expansion of a polyglutamine
(polyQ) stretch in the coding region of the Huntington (Htt)
protein. Expansion of the polyQ stretch beyond 35 gluta-
mines results in aggregation of the mutant protein and
neuronal degeneration, leading to motor dysfunction, de-
mentia and ultimately death (Kimura et al. 2007). There are
no known cures for HD, making it an important target for
high-throughput screens to identify potential therapeutic
agents that can suppress disease pathology. As a first step
towards this goal, we have used our approach to define
morphological differences between non-pathogenic (Htt-
Q15) and pathogenic (Htt-Q138) versions of the protein
expressed in Drosophila neuronal cultures. We examined the
ability of our approach to identify Htt-Q138 protein
aggregation, and its subsequent effects on neuronal
morphology. These parameters can now be employed in
high-content chemical-compound screening to identify
drug-suppression of aggregation or morphological degener-
ation, allowing new possibilities for HCS in neuronal-based
models.

Methods

Drosophila HD Data Set

Images used to develop and test our automatic neurite
detection and morphological analysis methodology were
obtained from a partial HCS image set of primary neuronal
cultures derived from a Drosophila HD model (unpublished
data). In HD primary neuronal cultures expressing elav-
GAL4, neuronal membranes were labelled with green
fluorescent protein (UAS-CD8-GFP), and pathogenic
(UAS-Q138-mRFP) or non-pathogenic (UAS-Q15-mRFP)
human Huntingtin protein was labelled with monomeric red

fluorescent protein (mRFP) using a chimeric Huntingtin-
mRFP construct. The HD primary cultures were obtained
from early stage embryo homogenates and contained
multiple unlabelled cell types including muscles, glia, and

Original image Intensity histogram of the original image

(A) Background Correction & 
Contrast Enhancement 

Intensity histogram of the result imageResult image 

(B) Neuromere 
Segmentation 

Neuromere mask 

(C) Neurite Seed 
Line Detection 

Neurite seed lines 

(D) Neurite tracing 

Complete neurites (green) 

�Fig. 1 Processing HCS images of neuronal cell cultures. A
Background correction and contrast enhancement using the contrast-
limited adaptive histogram equalization method. The processed image
has a more uniform background distribution and better local contrast.
B Neuromere segmentation. The white mask denotes neuromeres of
the image. C Seed line generation. Seed lines corresponding to
reliable neurite segments are extracted by analyzing the phase map. D
Neurite tracing. Complete neurites (in green) are generated by
extending seed lines

Neuroinform



hemocytes that contributed to image background. Cultures
were plated on 384-well optical bottom plates (Costar cat.
No. 3712) and treated with 100 nL of compound (∼1 mM
to ∼15 mM stocks) in a 50 uL assay volume. Mature
cultures were imaged with an ImageXpressMICRO robotic
microscope (Molecular Devices, Sunnyvale, CA) using a
10× objective, and FITC/Cy3 filter sets, a gain=2, and
binning=1. Images are 1392×1040 pixels, or 897×670
micrometers, and have a resolution of 0.645 micrometers/
pixel. Autofocusing was laser-based to locate the bottom of
the multiwell plate, and then image-based over a 48
micrometer range to resolve fluorescently labelled neurons.
The GFP and mRFP channels were imaged at the same
focal plane, with exposure times of 850 and 400 ms
respectively. Three sites were imaged per well for each
treatment group, and the screen was done in duplicate. In
total, ∼11000 image pairs (GFP and mRFP) were collected
under ∼1800 treatment conditions, plus an additional 500
control image pairs. Eight images were randomly selected
from the HD image set to tune the parameters of our
method, which we report below.

Background Correction and Contrast Enhancement

The HD screen image set is diverse and images contain a
variety of cellular structures, noise, and complex signals
(Fig. 2). There exists a significant variance in the
background of the HCS neuronal cell culture images
(Fig. 3a). The intensity levels of the background in the

centre of an image can be comparable to those of neurites
close to the image boundaries. Hence it is necessary to
perform background correction. The background correction
method must also avoid over-enhancement of noise, over-
saturation, and the elimination of neurites in nearly
homogeneous regions.We chose the contrast-limited adaptive
histogram equalization (CLAHE) method (Zuiderveld 1994)
for background correction and to improve local contrast
(Figs. 1a, 3, and 4).

CLAHE divides each image into small tiles (16×16
pixels in this study). Histogram equalization is performed
within each tile. Neighbouring tiles are refined using
bilinear interpolation to eliminate artificially induced
boundaries. CLAHE restricts the slope of the intensity
mapping function by clipping the height of the histogram.
A higher “clip level” value will result in more significant
contrast enhancement. However, the noise level increases
concomitantly. Mathematically, CLAHE finds a monotonic
gray-level intensity transformation such that the cumulative
output density must equal the cumulative probability

Fig. 2 A typical HCS image of neuronal cell cultures. Noise in the
image can come from non-neuronal cells, cell debris, and illumination
changes. Both the intensities and the widths of neurites vary greatly.
Although some neurites appear to be faint due to imaging artefacts,
they can be long and straight, and hence are important features
indicating healthy connections between neuronal cells. The large
variation in neurite width (range from 1 to 8 pixels) makes it very
difficult to accurately localize them using traditional edge detectors.
Neuromeres (cell colonies) consist of neuronal cell bodies and their
surrounding ecology substances

Fig. 3 Background variance of HCS neuronal cell culture images. a
A typical gray-level HCS neuron cell culture image. b The pseudo-
colour image of (a), where intensity values are indexed to the values
of the hue component of the hue-saturation-value (HSV) colour
model. The intensity values of neurites near the image boundaries are
comparable to those of the background in the centre of the same image
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distribution of the input image. A Rayleigh distribution is
used as the transformation function in CLAHE:

y ¼ ymin þ 2a2 ln
1

1� PinputðxÞ
� �� �1=2

ð1Þ

where y is the output intensity level, ymin is the low bound,
α is a parameter and was set to 0.4 for the analysis, x is the
input intensity level, and Pinput(x) is the cumulative
probability of the input image. The output probability
density can then be derived as:

pðyÞ ¼ y� ymin

a2
exp � y� yminð Þ2

2a2

( )
for y � ymin ð2Þ

CLAHE may generate artefacts especially in the regions
of high gray-level intensity gradients, which can be
eliminated by using a low-pass filter to exclude high
frequency components in the background-corrected
images. Figure 4 compares the result using CLAHE and
that using a global histogram equalization function
“histeq” in Matlab.

Neuromere Segmentation

Neuromeres (Seecof et al. 1973; Fredieu and Mahowald
1989) are clusters of 6–20 neural cell bodies associated
with glial cells. It is essential to segment out neuromeres
prior to neurite tracing because their complicated texture
can compromise neurite extraction efforts and lead to false

Fig. 4 Background correction and contrast enhancement. a The
resulting image of Fig. 3a after background correction and contrast
enhancement using the contrast-limited adaptive histogram equaliza-
tion method (CLAHE). The left is the gray level image. The right is
the pseudo-colour image, where intensity values are indexed to the

values of the hue component of the hue-saturation-value (HSV) colour
model. After enhancement, the background is more uniform (com-
pared to Fig. 3b). It is also visually easier to distinguish non-neuronal
signals from neuronal signals. b The results (left–gray level, right–
pseudo colour) of the global histogram equalization method
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or erroneous detection of neurites. In addition, neuromeres
must be segmented out without removing too many
neurites radiating from their perimeters because these
perimeter neurites are important components of morpho-
logical profiles. Neuromeres are visually complex in the
HD primary neuronal cultures analyzed. In neuromeres,
the neuronal cell bodies are GFP-positive, while their
associated support cells are not labelled. Although neuro-
nal cell bodies usually correspond to high intensity regions
in the images, the closely associated support cells and the
3-D nature of the cell culture complicate the gray-scale
profiles of neuromere distal regions. As a result, neuro-
mere pixel intensities span a wide spectrum with the lower
end being close to background and faint neurites. The
neuromere perimeters are irregular, and are difficult to
define quantitatively in a geometrical manner. The high
intensity portions of neuromeres can be easily and reliably
extracted by using the Otsu method (Otsu 1979), which

calculates a threshold to separate the foreground from the
background so that their intra-class variance is minimal.
However, this pure Otsu method works poorly for
segmenting complete neuromeres.

Our method segments neuromeres by analyzing local
image texture information using a bank of Gabor filters
(Daugman 1985; Grigorescu et al. 2002) (Figs. 1b and 5).
Each Gabor filter captures the characteristics of local
texture in a certain direction. If an image region contains
neuromeres, the values of some Gabor features in that
region will be larger than other Gabor feature values. All
the Gabor feature values in a homogenous background
block should be similar to each other. Therefore, the
standard deviation of the Gabor feature values can be used
to generate a neuromere mask for an image.

A Gabor filter is composed of a Gaussian envelope
modulated with a sinusoid of the frequency f along the
orientation θk. The value of θk is defined as π(k−1)/orient,

Fig. 5 Neuromere segmentation. a A bank of Gabor filters. Each
image represents a Gabor filter in spatial domain. b The standard
deviation of Gabor responses of Fig. 3a. c The neuromere segmen-
tation results obtained from: manual segmentation (red), the proposed

texture-based method (green), and the pure Otsu thresholding (blue).
A region is in white if it was detected by all three methods. The
bottom-right is a zoom-in of a region for clearer view
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where orient represents the number of total orientations and
k=1, ..., orient. The Gabor filter in the spatial domain is
defined as:

g x; y; f ; q;y; sx; sy

� � ¼ 1

2psxsy

� exp � 1

2

x2r
sx

2
þ y2r

s2
y

 ! !

� exp 2pjfxr þ yð Þ ð3Þ

where xr ¼ x cos q þ y sin q, yr ¼ �x sin q þ y cos q, f
denotes the radial frequency of the Gabor function, the
Gaussian envelope along the x and y axes is controlled by
the space constants σx and σy. The ratio between σx and σy
specifies the ellipticity of the support of the Gabor function,
and the phase offset ψ denotes the symmetricality.

We used only the real components of the Gabor
functions and set f, σx, σy, and ψ to 0.125, 6, 6, and π/18,
respectively. The Gabor filter responses in the spatial

domain and the spatial frequency domain are respectively
given by:

R x; y; f ; q;y; sx; sy

� � ¼ 1

2psxsy

� exp � 1

2

x2r
sx

2
þ y2r

s2
y

 ! !

� cos 2pfxr þ yð Þ ð4Þ

G u; vð Þ ¼ exp � 1

2

u� fð Þ2
s2
u

þ v2

s2
v

" #( )

þ exp � 1

2

uþ fð Þ2
s2
u

þ v2

s2
v

" #( )
ð5Þ

Eighteen directions were used in analyzing our data set.
Twelve of those are visualized in Fig. 5a. For each image
block of size W×W centred at (x0, y0), the magnitude of a
Gabor feature in direction k can be calculated by:

Γ k x; y; f ; q;y; sx; sy

� � ¼ XW
2�1

x0¼�W
2

XW
2�1

y0¼�W
2

I X þ x0; Y þ y0ð ÞR x0; y0; f ; q;y; sx; sy

� ���� ��� ð6Þ

We set the window size to 16×16 pixels in our
experiment and used the standard deviation of the Gabor
responses to characterize the complexity of local texture
(an example is illustrated in Fig. 5b). An initial neuromere
mask is first generated by applying the Otsu thresholding
method (Otsu 1979) to the standard deviation map. The
mask is refined by a morphological opening operation
(González and Woods 2007) using a disk structuring
element with radius 5 pixels to remove slim regions
corresponding to noise and neurite segments. Using the
neuromere mask labelled manually as the baseline, we
compared the ability of our texture-based method to
segment neuromeres with that of the pure Otsu thresh-
olding method (Fig. 5c). The manual segmentation was
carried out by two of the authors, who are experts in
neuronal cell culture (J.S. and K.S.). The result of the pure
Otsu thresholding method was refined to remove noise and
slim regions using the same image opening operation used
in our texture-based approach. From this analysis, we
found that our texture-based method detected 96.5% of
neuromere pixel area, missed 3.5%, and miscalled 0.7%.
In contrast, the pure Otsu method detected 60.2% of
neuromere pixel area, missed 39.8%, and miscalled 0.6%.
The pure Otsu thresholding method is therefore more
conservative and detected smaller neuromere regions in
the data set.

Generating Seed Lines of Neurites

The patterns of neurites in primary cultures are important
morphological features, but can be very complicated
(Fig. 2). Traditional edge detection algorithms (e.g., Canny
(Canny 1986), Sobel (Gonzalez and Woods 2002), Prewitt
(Gonzalez and Woods 2002), Roberts (Gonzalez and
Woods 2002), Laplacian of a Gaussian (Gonzalez and
Woods 2002), Zero-Crossings (Gonzalez and Woods 2002),
etc.) poorly localize neurites because of large ranges in
neurite widths and intensity in culture images. We require
an approach that accurately localizes neurites yet is
invariant to illumination and contrast changes. Instead of
directly detecting complete neurites, which is challenging,
we make use of the observation that bilateral symmetry is
an inherent feature of a line, and compute symmetry
information to generate reliable seed lines for neurites,
which will then be extended to produce complete neurites
using the neurite tracing method described later.

We use an approach proposed by Kovesi (1997) to
reliably measure symmetry by integrating local phase
information across multiple scales in the frequency domain.
At each scale, the difference between the cosine and sine of
the phase is computed. The overall symmetry is the
normalized summation of the above differences weighted
by the total magnitude of the filter responses at the
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corresponding scales. Let Me
n and Mo

n denote the even-
symmetric (cosine) and odd-symmetric (sine) log Gabor
wavelet of scale n. The real and imaginary parts of the
responses of an image I(x) to Me

n and Mo
n are enðxÞ ¼

IðxÞ»Me
n and onðxÞ ¼ IðxÞ»Mo

n , respectively. The amplitude
and the phase of that Gabor wavelet can be expressed as

AnðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
enðxÞ2 þ onðxÞ2

q
and ϕnðxÞ ¼ atan2 enðxÞ; onðxÞð Þ,

respectively. Symmetry can be quantified as the difference
between the absolute value of the even-symmetric filter
output and that of the odd-symmetric filter output. To
integrate information from filter responses over multiple
scales, the amplitude An(x) is used to weigh the difference
of the absolute values of the even and old filter responses.
The final symmetry measure is calculated as the weighted
differences normalized by the sum of An over all scales:

SymðxÞ ¼
P

n
AnðxÞ cos ϕnðxÞð Þj j� sin ϕnðxÞð Þj j½ ��Tb cP

n
AnðxÞþ"

¼
P

n
enðxÞj j� onðxÞj j½ ��Tb cP

n
AnðxÞþ"

ð7Þ

where ε is a small value used to avoid dividing by zero and
T is the estimated noise compensation that can be obtained
by combining the estimated influence of noise on each of the
filters. An example is provided in Fig. 6a to show the phase
map of Fig. 3a. It was shown that this symmetry measure is
independent of the overall magnitude of the signals, which
makes it invariant to illumination and contrast changes
(Kovesi 1997). Moreover, use of the difference between the
cosine and sine of the phase at multiple scales produces a
more localized response. This produces better edge localiza-
tion information, which allows accurate localization of
neurites that have a wide range of widths.

Based on the practice reported in (Kovesi 1999), we
empirically adjusted the parameters for computing the local
symmetry of our images as follows. The number of wavelet
scales and the number of filter orientations were set to 5 and 6,
respectively. The wavelength of the smallest scale filter was
set to 3. The filter bandwidth was set to 0.55. The scaling
factor between successive filter rings, which are related to the
ratio of the standard deviation of the Gaussian describing the
log Gabor filter’s transfer function in the frequency domain to
the filter centre frequency (i.e., the filter bandwidth), was
determined empirically to be 2.0. The ratio of the angular
interval between filter orientations and the standard deviations
of the angular Gaussian spreading function was determined to
be 1.2. The above setting creates a set of wavelets that form a
band-pass filter suitable for detecting neurites with a wide
range of widths (1 to 8 pixels). Although the above phase
symmetry method is very powerful in locating neurites of
weak signals, it can sometimes be sensitive to noise. To
remove such effects, we binarize the phase symmetry map by
using the Otsu thresholding method (Otsu 1979), which is
followed by a thinning operation (using the “bwmorph”
function in Matlab). Short structures with less than 10 pixels
are removed to produce reliable seed lines corresponding to
neurite segments. This approach allows a majority of
neurites to be subjected to tracing.

Neurite Tracing

To generate a complete neurite map from neurite seed lines,
we developed an orientation-guided neurite tracing algo-
rithm that extends the seed lines in the original gray-scale
image (Fig. 1d). Neurites are not traced in the phase
symmetry map because tracing can be easily digressed by
the phase symmetry information of nearby non-neuronal
cells and noise. An orientation map (Fig. 7) can be
computed using local gradient information because the
local orientation of a neurite is usually consistent with that
of its neighborhood and is perpendicular to its local
gradient. We first computed the local gradient vectors [Gx,
Gy]

T by convolving the image with the derivatives of a
Gaussian smoothing kernel. The local orientation at (x, y)

Fig. 6 Phase map and seed lines. a The phase map of Fig. 3(a). b The
seed lines generated from (a) by applying binarization, thinning, and
morphological operations

Neuroinform



was then estimated by finding the principal axis of the
autocovariance matrix of [Gx, Gy]

T (Bazen and Gerez
2002), which was defined over a w×w window as:

Λ ¼ Gxx Gxy

Gxy Gyy

� �
¼
X
w

G2
x GxGy

GxGy G2
y

� �
ð8Þ

Another popular approach for estimating local orienta-
tions is the eigen-decomposition of the Hessian matrix
computed at every pixel (Steger 1998), which was used to
trace neurites (Xiong et al. 2006; Fan et al. 2009). These
two methods generated comparable results when applied to
our data. To further reduce the inconsistencies caused by
noise, non-neuronal cells, and neuromeres, we applied a
low-pass filter to smooth the orientation field:

Φs
x i; jð Þ ¼

Xw=2

s¼�w=2

Xw=2

t¼�w=2
LP s; tð ÞΦx i� s; j� tð Þ ð9Þ

Φs
y i; jð Þ ¼

Xw=2

s¼�w=2

Xw=2

t¼�w=2
LP s; tð ÞΦy i� s; j� tð Þ

ð10Þ
where i and j are the coordinates, LP(s, t) is a two-
dimensional low-pass filter (Hong et al. 1998), and Φx and
Φy are the sine and cosine of the doubled angle of the local
gradient and can be computed respectively as:

Φx ¼ Gxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

xy þ Gxx � Gyy

� �2q and

Φy ¼ Gxx � Gyyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

xy þ Gxx � Gyy

� �2q

ð11Þ

The gradients of two ridge sides represent the same ridge
orientation, however, with opposite directions. Directly
averaging them will result in their cancellation. Therefore,
to avoid the cancellation problem, the above smooth
operation is applied to the doubled angles of the local
gradients. This method was proposed in (Kass and Witkin
1987). The final local orientation at position (i, j) is
computed by:

o i; jð Þ ¼ p
2
þ 1

2
arctan

Φs
y i; jð Þ

Φs
x i; jð Þ

	 

ð12Þ

To efficiently trace neurites, we discretized the contin-
uous local orientation (ranging from 0° to 180°) into four
directions: horizontal – [0° to 22.5°] ⋃ [157.5°, 180°];
negative diagonal – [22.5°, 67.5°]; vertical – [67.5°,
112.5°]; and positive diagonal – [112.5°, 157.5°]. When
applied to our data set, this simplification produced results
that were comparable to those generated by using 16 or 32
directions as suggested previously (Al-Kofahi et al. 2003).

Our tracing method uses a strategy similar to the non-
maximum suppression method of the Canny edge detector
(Canny 1986). It traces along the local direction, exploits
points where the gradient magnitude is sliced along the
gradient direction, marks points where the magnitude is
maximal, and finally links the marked points to form
neurites. Our tracing method uses a kernel of H×K, where
H and K are the width and height of the kernel,
respectively. We set H=3 and K=5 in our experiments.
Given an end-point from which a neurite segment should be
extended, a kernel is placed along the local orientation of
that point (Fig. 8). The kernel decides the search range of
the target point, which is defined as the point with
maximum gray-level intensity within the kernel. A line is
then generated to link the current point and its target points.
This strategy allows the linkage of neurites that have been
broken due to noise (Fig. 8a) and can follow neurites with
high curvature (Fig. 8b). The mechanism to extract neurites
with high curvature is illustrated in Fig. 8 and is explained
as follows. The white “+” denotes the current point close to
the high-curvature segment, to which the green kernel is
positioned along with the local direction (yellow arrow).
The next point (orange dot) is chosen as the foreground
pixel with the highest intensity value within the green
kernel. If there are multiple best candidate points, the one
farthest from the current point will be chosen. The next
template (in red) is then aligned with the orange dot. The
above design can reliably trace a neurite with high-
curvature. Tracing will stop if one of the following
conditions is met: (1) an image boundary is reached; (2) a
neuromere or neurite is reached; and (3) the maximum
intensity within the kernel is below a threshold value.
Examples of neurite extraction results are illustrated in Fig. 9.

Fig. 7 A gradient-based orientation map is superimposed on the
original image. Short blue vectors indicate local orientations. Two
regions are zoomed in at the top-right and bottom-left corners to
provide more details
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Comparing Morphological Profiles
Between Different Conditions

To statistically compare the morphologies of different
neuronal cell cultures, we needed to derive a set of
morphological features that characterize any given culture.
Several morphological features have been proposed for
studying the morphology of individual neurons (Costa Lda
et al. 2002; Rocchi et al. 2007; Leandro et al. 2009).
Nevertheless, those features are not appropriate for describ-
ing primary cultures since they contain complicated net-
works of many intertwining neuronal cells. We therefore
designed the following set of morphological features to
characterize the primary neuronal cell culture in each image.

First, neuromeres were discretized into three types based
on their sizes (i.e., number of pixels): small, medium, and
large. This was done by fitting a Gaussian mixture model
(GMM) (Duda et al. 2000) to the distribution of the
logarithm of neuromere sizes using the Expectation and
Maximization algorithm (Dempster et al. 1977). Approxi-
mately sixty-six thousand neuromeres from 1,700 randomly
selected images were used for fitting the GMM. The final
GMM has three components representing small, medium,
and large neuromeres, respectively:

pðxÞ ¼
X3
m¼1

pmf xjmm; s
2
m

� � ð13Þ

where x is the logarithm of a neuromere size, pm, μm, and
σm

2 are the component probability, mean, and variance of the
m-th component and Σm pm=1. The GMM assigns a cluster
to each neuromere by choosing the component with the
largest posterior probability, weighted by the component
probability. Figure 10 illustrates the GMM fitting result
using our data. Neuromeres were clustered into three
categories: small size (log(area)≤5.06), medium size (5.06
<log(area)≤6.32), and large size (log(area)>6.32). We then
applied K-means (Duda et al. 2000) to the lengths (in pixels)
of approximately 612,000 neurite branches in the same
image set to produce three groups: short (length≤42.53),
medium (42.53<length≤107.03), and long (length>107.03).
Since cell numbers can vary slightly from well to well due to
pipetting error, the absolute counts of morphological features
per well can also vary. To overcome this problem, we
converted the absolute feature counts into percentages, and
used three neuromere features representing the percentages of
small, medium, and large neuromeres, three neurite features
representing the percentages of short, medium, and long
neurites, and other features such as the average of the logarithm
of neuromere areas and the average length of neurites.

To compare neuron morphology between different cell
cultures including those Htt-Q15 and Htt-Q138 expressing
cells, the p-value of each individual morphological feature
was first computed by applying the two sample t-test to
compare its populations in two given conditions. The
p-values of the individual features were then combined into

+ 

length = K

(a) (b)

+

Fig. 8 The neurite tracing mechanism using kernels (a) to link broken
neurite segments due to noise or (b) to trace neurites along segments
with high curvature. (a) To extend a broken neurite segment, a kernel
(green template) initiates a search range from the current point (+),
which is the endpoint of the broken neurite, along its local direction
(yellow arrow). The target point (orange dot) is defined as the point
with maximum gray-level intensity within the kernel. A line is then
generated to link the current point and its target point. If there are

multiple best candidate points, the one farthest from the current point
will be chosen. (b) When tracing curved neurite segments, the next
kernel (red template) for searching the next target point of the current
target point (orange dot) forms a sharp angle with the current kernel
(green template). Tracing will stop if one of the following conditions
is met: (1) an image boundary is reached; (2) a neuromere or neurite is
reached; and (3) the maximum intensity within the kernel is below a
threshold value
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Fig. 9 Neurite extraction examples. a, c, and e are the original images
with regions zoomed in to provide more details. The pseudo-color of
the zoom-in regions are provided in (a) and (c) to make the faint
neurites visually more perceptible. b, d, and f are the neurite

extraction results (in green) overlapping with the original images. b
and d show that our method is capable of accurately extracting faint
neurites. f shows that the proposed method appropriately recognizes
branching points in complicated structures

Neuroinform



one single morphology p-value using the Stouffer method
(Hedges and Olkin 1985). A lower morphology p-value
indicates a higher degree of dissimilarity between the cell
cultures of two treatment conditions. The Stouffer method is
one of several commonly used methods for combining p-
values in meta-analysis. It first takes a transformation H(∙) of
p-values and then evaluates the sum of the transformed p-
values Y ¼PT

i¼1 H pið Þ, where T is the total number of tests
and pi is the p-value of the i-th test. An inverse standard
normal cumulative distribution function is used so that the
cumulative distribution function of Y is normal. This method
works well in cases where the evidence against the null-
hypothesis is spread across different attributes.

For each individual image, the number of independent
neuromere features is two because three neuromere features
sum up to 100%. Nevertheless, we cannot arbitrarily
remove one of those three features in our statistical analysis
on morphological differences. For example, it is possible
that a treatment has two neuromere features whose means
are smaller, however, not statistically significant, than their
counterparts of the negative Htt-Q15 control. Nevertheless,
the mean of its third neuromere feature can be statistically
significantly larger than that of the negative Htt-Q15
control. In such scenario, relying solely on the first two
neuromere features will lead to the failure in detecting the
significant difference in the neuromere feature category as a
whole. This can also happen to the neurite feature category.
Therefore, all features are included in our morphological p-
value calculation.

Assessing Htt Aggregation

To assess Htt aggregation, we first extracted Htt aggregate
signals from Htt-mRFP (Cy3 channel) images. We binar-
ized each Htt-mRFP image by simply classifying pixels
with intensity (ranging from 0 to 1) larger than an
empirically decided threshold (=0.3) into the foreground
representing Htt protein aggregates. The Htt aggregate
density of the Htt-RFP image was defined as the ratio
between the total area of Htt aggregates and the total cell
area in the corresponding GFP labelled image. The two
sample t-test was used to compare the Htt aggregate density
values for Htt-Q138 and control Htt-Q15. A small t-test p-
value indicates differences in Htt protein aggregation
between the two conditions.

Results

Comparison, Evaluation and Robustness Study

During the course of this study, two comparable state of the
art software packages were publically available: HCA-
Vision (Sun and Vallotton 2009) (http://www.hca-vision.
com/) and NeuriteIQ (http://www.cbi-tmhs.org/NeuriteIQ/
index.htm). Both software packages provide automatic
neurite extraction functionalities, which were made avail-
able after we finished the development of our approach and
the analysis of the Drosophila HD data set. However,
neither of them provided functionalities for statistically
analyzing the significance of the morphological differences
between different treatment conditions, which is one of our
contributions. For our comparison analysis, we used the
trial version of HCA-Vision ver 2.0.0, which allows full
access for 30 days, and the latest version of NeuriteIQ as of
12/01/2009. We tried all built-in parameter settings provid-
ed by HCA-Vision and decided that the NH14 setting
generated the best results for the Drosophila HD data set.
Neurite extraction using the default setting of HCA-Vision
was very sensitive to the complex local gradient profiles
around neuromeres and the non-neuronal cells in the
Drosophila HD data set. The default setting of NeuriteIQ
was used. A comparison example is shown in Fig. 11 for
visual assessment.

A qualitative test was performed to evaluate how well
HCA-Vision, NeuriteIQ, and our approach can deal with
neurites which are faint or contain faint segments. Twenty-
five image regions (256×256 pixels) were randomly
selected from the Drosophila HD data set. There were
123 neurite segments (long or medium) of interest in those
image regions, which were important for assessing the
health of cell cultures. Two neurobiologists among the
authors (J.S. and K.S.) manually examined neurites

Fig. 10 Categorizing segmented neuromeres using a Gaussian
mixture model. The vertical axis denotes the numbers of neuromeres.
The horizontal axis denotes the logarithm of neuromere sizes. The
GMM trained by the Expectation Maximization algorithm has three
components representing small (red), medium (green), and large (blue)
neuromeres. The priors, means, and variances of those three Gaussian
components are (0.17, 4.79, 0.07), (0.35, 5.62, 0.28), and (0.48, 7.37,
1.17), respectively
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extracted by the above three approaches and grouped them
into “good”, “broken”, and “missed” categories. A neurite
extraction result was classified as “good” if it matched the
expectation of both experts, “broken” if it was broken into
two or more major segments or was significantly shorter
than expected, or “missed” if a method simply failed to
detect a neurite segment because it was too faint. The
results (Table 1) indicate that our approach results in the

generation of fewer broken neurite segments as compared
to NeuriteIQ or HCA-Vision. However, the numbers of
neurites “missed” by all three approaches are substantial,
which indicate that the images are quite challenging and
future improvements of existing methods are needed to
fully address this issue.

We also quantitatively evaluated the capability of our
method to localize the central lines of neurites. Two
neurobiologists independently labelled 106 neurite seg-
ments (with minimal and maximal length of 49 and 278
pixels, respectively) that were extracted by our method as
“good” ones (see Table 1). The “broken” and “missed” ones
were treated as failures and were not used in this
evaluation. To reduce the effects of human bias, we adopted
a strategy proposed by Zhang et al. (Zhang et al. 2007) and
asked both experts to label the central lines of neurites by
using the starting and ending points detected by our

Fig. 11 Comparing neurite extraction results. The original image is
Fig. 3a. The neurite extraction results of (a) our approach (neurites in
green), b HCA-vision using the NH14 parameter setting (neurites in
green), c NeuriteIQ using the curvilinear algorithm (neurites in green),

and (d) NeuriteIQ using the dynamic programming algorithm*
(neurites in red). The image was cropped to 1280×1024 in (c) and
(d) as required by NeuriteIQ. *This method is not in the current public
version of NeuriteIQ

Table 1 Qualitative comparison

Good Broken Missed

The proposed approach 106 2 15

NeuriteIQ (default setting) 86 21 16

HCA-vision (NH14) 79 33 11
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approach. The length difference between an automatically
extracted neurite (la) and the manually labelled one (lm) is
defined as d1 ¼ lm � laj j=la (Zhang et al. 2007). To
compute the difference (d2) between an automatically
extracted central line and its counterpart labelled manually,
we first used the dynamic time warping package (Ellis
2003) and its default parameter setting to align the neurites
extracted automatically to those labelled manually, and then
computed the average Euclidean distance (in pixels)
between the matching point pairs. The neurite detection
results of our approach were consistent to those manually
extracted by both experts (Table 2).

To test the robustness of our method with respect to
noise, we created a clean synthetic image (Fig. 12a) based
on Fig. 9e, and then added zero-mean Gaussian noise with
different variances. We chose Gaussian noise distributions
because the local noise distributions in both the original
images and the background-corrected ones were Gaussian
alike. The neurites of the synthetic image have typical
characteristics (e.g., strong, weak, thick, thin, curved, and
with branching points) of those in the raw images. In this
test, we were more concerned about the breakage of long
neurites into smaller segments and missing neurites because

such errors often change the category of a neurite. The local
signal-to-noise-ratio (SNR) ranges from 1.81 to 14.3 in the
synthesized image. The local SNR is defined over a 9×9
pixel region as the ratio between the mean of the true signal
(without counting neuromeres) within that region and the
standard deviation of the noise. Our method can robustly
detect most neurites with virtually no false detection in this
noisy setting (Fig. 12b). Nonetheless, it produces noticeable
failures in the areas where local SNR is lower than 3.8 (e.g.,
the zoomed-in in Fig. 12b).

Analyzing the Drosophila HD Data Set

Our approach was applied to the Drosophila HD data set to
identify morphological differences induced by Htt-Q138
expression compared to control Htt-Q15 expression.
Figure 13 shows the exemplar images of the neuronal cell
cultures from Htt-Q15 and Htt-Q138. The morphological p-
value for Htt-Q138 was computed with respect to the
negative Htt-Q15 control. Our approach did show that the
morphology of untreated pathogenic Htt-Q138 cultures was
indeed significantly distinct from that of non-pathogenic
Htt-Q15 cultures (morphological p-value <10−50). This is in
agreement with neurobiologists (J.S. and K.J.S) who can
readily tell the differences in the morphology of the two
cultures by visual inspection.

This striking difference in morphology induced by
pathogenic Htt and the ability of our computational
approach to detect such difference allowed us to begin a
large-scale HCS screen for potential compounds that could
revert the neuronal morphology profiles associated with
mutant Htt-Q138 expression towards that of the healthy

Table 2 Quantitative evaluation of the proposed approach

d1 (mean/std) d2 (mean/std)

our approach vs biologist 1 0.011/0.007 0.499/0.095

our approach vs biologist 2 0.012/0.008 0.544/0.094

biologist 1 vs biologist 2 0.01/0.007 0.511/0.092

Fig. 12 Robustness test using a synthetic image. a The synthetic
clean image (without noise) contains neurites of different character-
istics, such as wide/narrow, strong/weak, straight/curved, and so on. b
The detected neurites (in green) are superimposed on the synthetic

noisy images. Our approach successfully detected most neurites.
However, it failed to detect weak neurite segments where the local
SNR is lower than 3.8. A failure case is zoomed-in
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negative control expressed with wild-type Htt. A relatively
large morphological p-value is a necessary condition for
calling a compound as a hit. That is the morphological
profile of a hit should not be significantly different from
that of the negative Htt-Q15 control. In addition to altered
morphology induced by Htt-Q138, we assessed aggregation
of pathogenic Htt protein within neurons given that protein
aggregation is a hallmark of the polyglutamine diseases. Htt
aggregation inhibition ratios were computed with respect to
the mutant cultures without treatment. A hit should also
show a significant Htt aggregation inhibition ratio. In
preliminary studies of approximately 1800 chemical com-
pounds, ∼30 compounds significantly inhibited Htt aggre-
gation (p-value <0.001), and two hits had significant
improvement of neurite morphology (with morphological
p-values equal to 0.1143 and 0.1124, respectively) in
addition to significant inhibition of Htt protein aggregates
(with mean ratios equal to 37.0 and 17.8, respectively; p-
values equal to 9.2×10−5 and 1.59×10−4, respectively). The
morphological test results were visually confirmed by two
neurobiologists (J.S. and K.J.S.), therefore demonstrating
the power of our approach to identify distinct morpholog-
ical differences in the Drosophila HD cultures. Future
studies will test the efficacy of these compounds in vivo for
their effects on Htt-Q138 toxicity.

In Tables 3 and 4, we list the statistics of a few
morphological features that differed between Htt-Q15 and
Htt-Q138 expressing neurons.

Computation Time

Our method takes about 40 s to extract neurites in one
image using one core on a Dell 64-bit PE2950 server (two
quad-core Intel® Xeon® E5410 processors @2.33GHZ and
8.00 GB memory) running 64-bit Windows Server 2008
operating system.

Conclusion and Discussion

The novelties of our method can be summarized as the
following. Image quality is enhanced by correcting uneven
backgrounds. The adverse effects on neurite extraction by
complex gradient patterns of neuromeres are removed
through efficient texture segmentation. By using phase-
based symmetry information, our method offers a major
advantage over existing methods in accurately localizing
neurites and detecting faint neurites in noisy backgrounds.
We also designed a set of morphological features and a
statistical analysis method to quantitatively compare the
morphology of neuronal cell cultures expressing non-
pathogenic Htt-Q15 and pathogenenic Htt-Q138 under
different treatment conditions. To the best of our knowl-
edge, our method is the first one being employed to analyze
such large data sets. The results suggest that it can be a
powerful tool in high-throughput screening image analysis
and computer-aided drug discovery. Since the degenerative

Fig. 13 Exemplar images of Htt-Q15 (a) and Htt-Q138 (b)

Table 3 Example statistics of neuromeres. The size of a neuromere is measured as the total number of its pixels. The 2nd, 3rd, and 4th columns
are the percentages of small, medium, and large cells, respectively

log(cell size) mean (std) Small cells % Mean (std) Medium cell % mean (std) Large cell % mean (std)

Htt-Q15 6.31 (1.33) 19.4 (4.2) 36.8 (4.7) 43.8 (5.0)

Htt-Q138 5.96 (1.50) 31.8 (3.1) 28.8 (3.6) 39.4 (3.8)
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HD model shares many characteristics with other neurode-
generative diseases such as Alzheimer’s and Parkinson’s
Diseases, we expect that the quantification and statistical
analysis methods presented here should be readily transfer-
able to many other neuronal HCS screening platforms
related to neuronal degeneration.

The parameters of our image processing pipeline pre-
sented in this paper may need to be re-tuned for neuronal cell
cultures of different origins. For example, different species
may have quite different neuronal cell body sizes. This can
affect the choice of the structuring element used by the
neuromere segmentation component to remove small regions
corresponding to noise via an image morphological opera-
tion. The texture-based neuromere segmentation component
may be dispensable or can be simplified greatly if the cell
cultures are simpler. For example, other neuronal cell culture
models may not form complex clusters and may not contain
non-neuronal cells that are closely associated with neuronal
cells. The non-neuronal cells in our cultures are known to be
biologically very important for supporting neuronal cells.
Other issues such as image resolution and optical objective,
which directly affect the sizes/widths of objects in images,
can also affect the values of some parameters (e.g., the tile
size used in the CLAHE method, the window size used in
the texture analysis, the wavelengths used in computing
symmetry information, and the length of the kernel used in
neurite tracing). Based on our experience, we expect that the
amount of time required for tuning those parameters should
be reasonably small. It took us around one day to tune all
parameters the first time around using the Drosophila HD
data set (discounting time for software development and
choosing appropriate combinations of image processing
components). Recently, it took us approximately one hour
to adjust our neurite extraction approach for an HCS project
(Schoemans et al. in press) using mouse neuronal cell
cultures, which were quite different from those used to
generate the Drosophila HD data set. Finally, while high-
content screens of neuronal cell cultures are attracting more
and more attention, many new protocols may be developed
for preparing neuronal cell cultures for various experimental
paradigms, which may require future adjustments of existing
methods or developing new processing components to
account for new analysis requirements.

The morphological p-values generated by our approach
may be used to guide the identification of toxic treatments.

For example, a small morphological p-value plus an
abnormally high percentage of short neurites may indicate
that a treatment is toxic to neuronal cell cultures. Visual
examination by experimental experts is required to
confirm such toxicity hypotheses. A quantitative relation-
ship between the toxicity of a treatment and its morpho-
logical p-value and features may be established if enough
bench data from experiments on toxicity of treatments is
available.
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