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Abstract—Supervised text classification algorithms rely on
the availability of large quantities of quality training data to
achieve their optimal performance. However, not all training
data is created equal and the quality of class-labels assigned
by human experts may vary greatly with their levels of
experience, domain knowledge, and the time available to label
each document. In our experiments, focused label validation
and correction by expert journalists improved the Micro and
Macro-F1 scores achieved by Linear SVMs by as much as
14.5% and 30% respectively, on a corpus of professionally
labeled news stories.

Manual label correction is an expensive and time consuming
process and the classification quality may not linearly improve
with the amount of time spent, making it increasingly more
expensive to achieve higher classification quality targets. We
propose ATDC, a novel evidence-based training data cleaning
method that uses training examples with high-quality class-
labels to automatically validate and correct labels of noisy
training data. A subset of these instances are then selected
to augment the original training set. On a large noisy dataset
with about two million news stories, our method improved
the baseline Micro-F1 and Macro-F1 scores by 9% and 13%
respectively, without requiring any further human intervention.

I. MOTIVATION

Document classification is a task that involves assigning
a document to one or more applicable categories from a
set of pre-defined categories, based on its contents. In some
domains, document classification serves as primary means
to prevent information overload. For example, professional
investors in the financial industry commonly subscribe to
news categories of their interest, allowing them to receive a
small fraction of relevant news stories from tens of thousands
of new stories delivered over news feeds every day. In
these domains, inaccurate document classification may have
a high business impact because it prevents documents from
reaching their target audiences.

A. Classification Inconsistencies in Manual Document Clas-
sification

Documents may be classified manually by human experts
or automatically by machines. Manual document classifica-
tion is often subject to a high degree of inconsistency. For
example, a single news desk may include a combination
of junior, mid-career and 30-year veteran journalists. Each
journalist typically specializes in one or two subject areas

and may have varying degrees of knowledge about categories
outside those areas. Since a significant percentage of news
stories belong to multiple subject areas, high-quality labeling
is only possible if each story is reviewed by a team of
journalists that has expertise in all subject areas that relates
to the story. However, this ideal condition is rarely met in
real-life because when a news-worthy event happens, getting
the story out as quickly as possible always takes the highest
priority. This often means that the journalist responsible for
writing the story is also solely responsible for assigning
appropriate categories to the story, as involving multiple
experts may be time or resource prohibitive.

Automatic document classification systems typically use
supervised classification algorithms with a computational
complexity that is linear in the document length1. These
algorithms are efficient and inherently more consistent than
humans in assigning documents to categories2. However,
since these algorithms learn classification models from a set
of manually-classified training documents, human labeling
inconsistency may also have a direct negative impact on their
classification performance.

We have conducted an experiment that clearly demon-
strates this problem. We obtained training and test sets by
evenly splitting3 about 12,700 news stories that were se-
lected by journalists to train an automatic news classification
system. Existing manually-assigned class-labels were also
available for all stories in this dataset. A team of senior
journalists that included experts from all relevant subject
areas reviewed existing classification for each news story and
corrected classification mistakes, i.e., by removing wrong
class-labels and adding missing class-labels.

We first used the original manually-assigned class-labels
to train binary Linear SVMs for each of the 198 classes that
were used in this experiment. The regularization parame-
ter C was automatically selected from the set {10k|k =
−4, ..., 2} using a 5-fold cross-validation on the given train-
ing data. The trained classifiers were then applied to the

1Classification-time complexity for Linear SVMs, Naı̈ve Bayes, and
many other popular algorithms

2Unlike human experts, a pre-trained system is likely to assign a
document to the same set of categories regardless of the document arrival
time or the number of documents processed concurrently

3Using a pseudo-random selection scheme



Table I
CLASSIFICATION PERFORMANCE OF BINARY SVMS USING THE

ORIGINAL AND REVISED CLASS-LABELS ON A DATASET OF NEWS
STORIES.

Original class-labels Revised class-labels
Micro-F1 0.592 0.678
Macro-F1 0.511 0.662

test set, and Micro and Macro-F1 scores were computed
using the original class-labels as ground truth for the test
set. Next, we retrained the classifiers using the revised class-
labels for the same set of training documents, and also
used the revised class-labels as ground truth for the test
set. Table I summarizes the results of this experiment. We
observe that higher-quality labels improved the Micro and
Macro-F1 scores by as much as 14.5% and 30% respectively.
The improvement in Macro-F1 score was more significant
than the Micro-F1 score because journalists may have a
better understanding of frequently-used categories that are
outside their own subject areas as compared to infrequent,
highly specialized categories, resulting in more classification
mistakes with respect to infrequently-used categories.

B. Augmenting High-Quality Labeled Data with Noisy-
Labeled Data

While high-quality class-labels certainly seems to be use-
ful in improving the classification performance of supervised
classification algorithms, they may be quite expensive to
obtain. In our experiments, experts needed an average of
about 5 minutes per story to review and correct class-labels,
or over a thousand man hours for the dataset used in Table I,
when stories were presented to them along with their existing
class-labels in a tool that was specifically developed for
this purpose. In addition, the overall classification quality
may not linearly improve with the amount of time spent,
making it increasingly more expensive to achieve higher
classification quality targets.

Since documents with low-quality “everyday” class-labels
may be readily available in abundance at many organizations
(and from publicly-available web-based databases), we are
motivated to explore if these documents could be used in
conjunction with some high-quality labeled data to further
improve the classification quality, without requiring addi-
tional human intervention. However, the simple approach of
directly augmenting high-quality labeled training data with
low-quality labeled data may only hurt the classification
performance.

To demonstrate this problem, we incrementally augmented
the training dataset with revised high-quality class-labels
from the prior experiment with randomly selected news
stories from the same news archive in batches of about
25,000 stories, and retrained the classifiers. The new clas-
sifiers were then applied to the original test set, using
the revised high-quality class-labels as ground-truth for
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Figure 1. The change in Macro-F1 performance as batches of news
stories with low-quality class-labels were added to a training set with high-
quality class-labels (line with squares), and when the noisy class-labels are
revised by classification and then added to the same training set (line with
diamonds). Horizontal lines on the top and bottom of the graph represents
baseline Macro-F1 scores with high-quality and low-quality class-labels,
respectively (Table I). The test set remained constant in all experiments.

evaluating the classification performance. Figure 1 presents
the results of this experiment. Classification performance
consistently decreased as additional news stories with low-
quality class-labels were added to the training set, and the
noise completely dominated the results when about 150,000
stories were added.

Instead of directly adding noisy-labeled documents to
a training set with high-quality class-labels, it may seem
intuitive to revise their classification using a set of classifiers
trained on documents with high-quality class-labels, before
adding these documents to the training set. To validate
this intuition, we trained a set of classifiers using the
same training set with high-quality class labels and then
used these classifiers to revise the class-labels of noisy-
labeled documents from the same news archive. As we show
in Figure 1, this approach significantly limits the loss in
classification performance but still does not improve over
the baseline classification performance achieved using the
high-quality training data at its own.

In this paper we propose a novel evidence-based training
data cleaning method that uses documents with high-quality
class-labels to automatically validate and correct labels of
documents with noisy class-labels. A subset of the corrected
documents is then selected to augment the original training
set. Using the dataset with revised high-quality class-labels
from Table I and about two million documents with noisy
class-labels from the same corpus, our method improved the
baseline Micro-F1 and Macro-F1 scores by 9% and 13%
respectively. Unlike existing TDC methods [1], [4], [6], our
method does not require any further human intervention.

II. RELATED WORK

Automatic text classification is a well-studied research
problem. We cover a few representative methods here and
refer the reader to [13] for a comprehensive survey.



Supervised text classifiers are typically constructed by
learning a model using previously labeled documents and
then applying this model to obtain labels for previously
unseen documents [10]. Semi-supervised approaches have
also been used for text classification and were found useful
when the labeled dataset is small but a comparatively large
set of unlabeled data is available [12], [3]. The news do-
main typically consists of multi-label documents. Multi-label
classification is commonly achieved by training a separate
binary classifier for each class and then applying all trained
classifiers to an incoming document (or a subset of these
classifiers in case of hierarchical classification [13]). A few
methods that focus on multi-label classification include [11],
[15].

Training Data Cleaning (TDC) has been studied exten-
sively for many machine learning tasks. In computational
linguistics, TDC methods primarily focused on identifying
annotation errors in training data. Some work has also fo-
cused on analyzing annotator behavior to identify potentially
incorrect annotations. Bhardwaj et al. [2] used probabilistic
methods to identify annotators that are outliers among the
group. Annotations performed by these annotators are either
automatically discarded, or selected as candidates for manual
revision, to improve the data quality for word-sense anno-
tation. Sheng et al. [14] proposed a crowd-sourcing method
that uses multiple untrained annotators to re-label the same
data and then combines the results to correct annotation
errors. In the realm of text classification, Esuli and Sebastiani
[4] proposed a boosting-based method for multi-label data
that combines several independent binary classifiers and
finds misclassified documents as candidates for manual re-
annotation. Fukumoto and Suzuki [6] proposed a method
that first trains a SVM classifier and then removes all support
vectors that the SVM has identified, from the training set.
A Naı̈ve Bayes classifier is then trained on the modified
training set, and used to reclassify the removed support
vectors. Any support vectors whose original label does not
match the newly assigned label are considered mislabeled.

Existing TDC techniques are indeed useful in identifying
labeling errors. However, they do not provide an automated
way of correcting these errors and require re-labeling of the
identified documents by human experts. Our work improves
on the existing research by automatically identifying noisy-
labeled documents that may augment good-quality training
data to improve the classification performance. It automati-
cally corrects labeling mistakes in these documents, and may
also find missing labels in a completely automated fashion,
eliminating the need for further human intervention. To the
best of our knowledge, our work is the first attempt in this
promising direction.

III. AUTOMATIC TRAINING DATA CLEANING

In the section we describe our automatic training data
cleaning method. First, we formally define the problem and

the terms used in the rest of the paper. We then discuss a key
observation and finally discuss steps involved in our method.

A. Preliminaries

Let C be a set of class-labels, H be a set of documents
such that each document Hi is associated with a set of high-
quality class-labels HLi, and HLi ∈ {∅, C}, Let L be a set
of documents such that each document Li is associated with
a set of low-quality class-labels LLi, and LLi ∈ {∅, C}.

Since we are primarily concerned with improving the
classification performance over the baseline performance
achieved with H alone, and L � H for all practical pur-
poses, there is no need to try finding accurate classification
for each document in L. Instead, we focus on finding a
subset S of L that may augment H to achieve this goal. For
each document Si, we aim to find a set of class-labels SLi,
and SLi ∈ {C}.

B. “Absence of evidence is not evidence of absence”

In supervised text classification, all instances that are not
labeled positive for a class are generally considered negative
for it. Drawing inspiration from the famous quote by Dr.
Karl Sagan4, we argue that this assumption should only be
made for a given document when there is explicit evidence
available about both the positivity and the negativity of the
document with respect to all available classes.

For example, the team of experts that had revised class-
labels for the dataset used in Section I-A was explicitly
tasked with classifying each document to all applicable
classes, and documents were reviewed by multiple experts
to ensure completeness. In such situations, the negativity
assumption may be safely made because the chances of
missing any positive label(s) for a given document are very
low. In contrast, if the class-labels are known to be noisy, the
positivity assumption is likely to be safer (or at-least more
manageable) than the negativity assumption. Therefore, we
use each document Hi in H as a positive example for all
classes in HLi, and as a negative example for the rest of the
classes, but use each document Si in S only as a positive
example for classes in SLi, and not as a negative example
for any class in the remainder of our experiments. Section
IV-E demonstrates the significant impact of this decision on
classification performance.

C. Method

We make the following observations.
• Since L is noisy-labeled, each class-label c that exists

in the set of class-labels LLi for a document Li may
be considered as a weak evidence w that Li belongs to
c

4“Absence of evidence is not evidence of absence”, Chapter 12, “The
Demon-Haunted World”



• We may independently use H to generate additional
weak evidence e about how Li relates to c

• If e validates w, and if Li improves the classification
performance of c on a set of test documents from H ,
when used as a positive example for c to train a new
classifier along with existing training documents from
H and S, Li may be considered as a candidate for
inclusion in S as a positive example for c

• Some highly-specialized classes in C might be rarely
used in L. For such classes, we may need to solely rely
on evidence from H to find additional documents from
L for inclusion in S

Figure 2 uses these observations to find additional positive
examples for classes in C from L. It begins by splitting
the available high-quality training data into two sets and
reporting the baseline classification performance. Set TRN
is used to find additional documents from L, and TST is
used to evaluate the change in classification performance
once S is completely populated.

Next, we split TRN into k sets and the available noisy-
labeled documents L into n sets, where k and n are user-
defined parameters. Splitting TRN into multiple sets allows
us to generate independent evidence from a subset of TRN
(i.e., set TD) to validate the noisy class-labels in L, select
candidates for inclusion in S, and use the remainder of TRN
(i.e., set SD) to estimate the incremental lift in classification
performance without using documents in TST . Whereas
splitting L into smaller sets allows us to process a large
noisy-labeled dataset in small batches on a machine with
limited computational resources.

We then iterate k times and in each iteration, use the
corresponding TD and SD to evaluate the noisy-labeled
documents on a class-by-class basis (Lines 9-33). For each
class Cx, we first train a binary classifier B using the high-
quality training data TD and obtain the baseline classifi-
cation quality score on SD (lines 10-11). Any appropriate
evaluation metric may be used for this purpose; we have
used class F1 scores in our experiments. B also serves as
an evidence generation source, as we discuss in the next
paragraph.

Next, we initialize a list Z (line 12) to hold the new
positive candidates for Cx. Then for each batch Lj of noisy-
labeled documents, we first obtain a set of clusters CLU
by applying an unsupervised clustering algorithm on the
documents in TD and Lj together (Line 14). We then obtain
two sets of evidences from TD about how each document
in Lj relates to Cx. The first set of evidences is obtained
by applying B (i.e., a binary classifier trained on TD) to
documents in Lj (Line 15), producing a positive or negative
result for each document on Lj with respect to Cx. The
second set of evidences is obtained by analyzing clusters
in CLU where each document in Lj occurs, and counting
the number of neighbors with high-quality class labels (i.e.,
from TD) that are marked positive for Cx (Line 16).

Require: A set C of classes, a set L of sparse noisy-labeled documents,
a set H of sparse documents with high-quality class-labels, and a
set P of evidence evaluation schemes pre-sorted in the decreasing
order of scheme strictness; a parameter k ≥ 2 and a parameter n ≥
1, n ≤ |L|.

1: Split H into two sets, a training set TRN and a test set TST .
2: Use documents in TRN to train binary classifiers for all classes in

C, apply these classifiers to TST and report the baseline classifica-
tion performance

3: Split TRN into k sets.
4: Split L into n sets.
5: S = {∅}
6: for i = 1, . . . , k do
7: TD = all documents in sets TRN0...i−1 and TRNi+1...k

8: SD = documents in TRNi

9: for x = 1, . . . , |C| do
10: B = a binary classifier for Cx trained using documents in TD

11: MQ = evaluate(apply(B,SD))
12: Z = {∅}
13: for j = 1, . . . , n do
14: CLU = clusters obtained by clustering documents in TD

and Lj together
15: ES1 = apply(B,Lj)

16: ES2 = getHighQualityNeighbourCount(Lj , TD,CLU)
17: for y = 1, . . . , |P | do
18: M = select(Lj , ES1, ES2, Py , Z)

19: B1 = a binary classifier for Cx trained using documents
in TD, Z and M , using TD as positive and negative,
and Z and M as positive only

20: CQ = evaluate(apply(B1, SD))
21: if CQ ≥MQ then
22: Append M to Z storing Py as auxiliary information
23: MQ = CQ

24: end if
25: end for
26: for u = 1, . . . , |Z| do
27: if Document Zu does not exist in S then
28: Append Zu to S
29: end if
30: Append Cx to the set of class labels for document Zu

in S, while keeping track of the strictest evidence eval-
uation scheme that had selected Zu for Cx as auxiliary
information

31: end for
32: end for
33: end for
34: end for
35: S = selectSubset(S)

36: Use TRN and S to train binary classifiers for all classes in C
(Section III-B), apply these classifiers to TST and report the classi-
fication performance

37: return S

Figure 2. Automatic training data cleaning

For each noisy-labeled document d in Lj , we now have
three evidences indicating how it relates to Cx. Firstly, the
original (noisy) class-labels assigned to d may or may not
contain Cx. Then, the classification evidence may mark d
as either positive or negative for Cx. Lastly, the clustering
evidence produces a value of 0 or higher indicating the
number of documents with high-quality class-labels that



shared a cluster with d and contained Cx in their list of
class-labels.

We apply a series of evidence evaluation schemes, in the
decreasing order of their strictness, to select candidates from
Lj for inclusion in Z (Lines 17-25). Method select (Line
18) takes Lj , the available evidences, an evidence evaluation
scheme, and the current members of Z as input and returns
a subset of Lj that is not in Z, and satisfies the evidence
evaluation scheme. A new binary classifier B1 for Cx is then
trained using the selected candidates M , documents in TD,
and Z, using documents in TD as positive and negative
instances for Cx, and documents in Z and M as positive
only for Cx (Section III-B). If the new classifier improves
upon the current quality, the selected documents are added
to Z while storing the evidence evaluation scheme and it’s
corresponding parameters as auxiliary information.

We have used the following evidence evaluation schemes.
These schemes are used to accept a document d as positive
for Cx. The Clustering (Clust.) evidence is considered
positive if the evidence contains a value greater than or
equal to t, where t is user-defined.

Scheme Cx ∈ Orig. Labels Positive Evidence
S1 Yes Classifier and Clust.
S2 Yes Classifier or Clust.
S3 No Classifier and Clust.

Once a class is processed, all documents in Z are added
to S as positive examples for Cx (Lines 26-30). Since the
same document may be selected as a positive example for
the same class by different TD and SD combinations, we
keep track of the strictest evidence evaluation scheme that
had selected the document for the class.

Finally, new classifiers are trained on TRN and the
selected subset of S (Line 35-36) and the classification
performance on the hold-out test dataset TST is computed.

IV. EMPIRICAL EVALUATION

A. Experimental Setup

Our noisy-labeled dataset L consisted of English news
stories from January 2006 to December 2010 published
by Reuters. Existing noisy, manually-assigned class-labels
were available for all stories in this dataset and each story
was originally classified against at-least one of the classes
used in our experiments. The high-quality labeled dataset
H consisted of about 12,700 stories. In order to prevent any
overlap between H and L, we first filtered L to eliminate
all stories in H using their unique story identifiers, and then
used cosine similarity to identify and eliminate stories in
L that were highly similar to any story in H (using 85%
cosine similarity as threshold), leaving about 1.97 million
unique news stories in |L|. We dropped highly similar stories
because journalists often reuse large chunks of existing
news stories as background knowledge, which may result

in selecting stories that over-fit the validation set but fail on
unseen data.

The set of class-labels C assigned to the documents were
the leaf nodes of a classification hierarchy and |C| = 198
(we have avoided the internal nodes to simplify the experi-
mental setup). H was split into 2 equal sets, TRN and TST
for training and testing respectively. The same training and
test sets were also used for experiments in Section I. The
parameters k = 5 and n = 100 were used for splitting
TRN and L into subsets. The selected value of n results
in processing noisy-labeled documents in batches of about
20,000 documents. These values for k and n were selected
intuitively and tuning these values may further improve the
classification performance.

Our experiments used Linear SVMs to train binary clas-
sifiers, selected based on their success on a variety of
text classification problems [13], [16], [8]. However, it is
important to note that our method does not depend on SVMs
and we expect it to complement any supervised classification
algorithm. To train Linear SVMs in Linear-time, we have
used the LibLinear library [5]. The overall classification
performance was evaluated using two standard multi-label
evaluation metrics. Micro-F1 globally computes a single F1

score regardless of the classes, and therefore favors large
classes. In contrast, Macro-F1 is computed as an average of
per-class harmonic mean of precision and and recall scores,
and favors small classes.

We have evaluated two different classes of clustering
algorithms to obtain secondary evidence for the class-labels
assigned to documents in L. We used two variants of k-
Means (i.e., Spherical k-means and Kernel k-means using
the TCT [7] implementation) to explore the conventional
neighborhood-based clustering techniques. The number of
clusters k was set to obtain clusters that averaged 100
documents (i.e., if clustering 1000 documents, k = 10). We
additionally used a more recent clustering algorithm, IDHC
[9], which is different than k-means in that it does not take
a parameter k and produces a variable number of clusters.

We then applied the ATDC algorithm (Section III-C) to
obtain a set of documents S ∈ L with revised labels, and
to learn a new classifier using TRN and S and analyze its
performance on TST .

B. Analyzing the Classification Performance with Additional
Training Data from S

We conducted two different sets of experiments to an-
alyze the improvement in the quality of classification, by
incrementally adding more data from S to TRN . We also
compare these results across different clustering algorithms.

In the first experiment, we sorted the documents in S
in the decreasing order of the evidence evaluation scheme
strictness (Section III-C) for each class, and then in each
iteration of the experiment, selected the top m documents
for each class, varying m from 10 to 2000. A new set



of classifiers was trained with the selected documents and
TRN , and applied on TST . Figure 3 presents the change
in Micro and Macro F1 scores as we varied m, for each
clustering algorithm.

We observe that as m increases, classification perfor-
mance initially increases, and then drops slightly. This
indicates that taking a subset of the selected documents
(in this case, Top-100 documents) that was selected by
more strict evidence evaluation schemes yields the best
classification performance. Comparing these results with the
baseline results in Table I, we observe that the additional
documents improved the Micro F1 score from 0.678 to
about 0.74 and Macro-F1 score from 0.66 to about 0.75,
an improvement of about 9% and 13% respectively. We
also observe that all clustering algorithms performs about
the same, with IDHC having a slight edge over the others.

To verify the superior quality of choosing documents
in S selected by stricter evidence validation schemes, we
conducted another experiment, in which we repeated the
process of incrementally adding more data from S to TRN
(Figure 4) but unlike the previous experiment, the documents
were selected in a random order and not in the order of
most-to-least strict evidence validation scheme.

From Figure 4, we can thus conclude that documents
selected by stricter schemes are more reliable for training.
This also makes intuitive sense as the strictness of a scheme
is directly proportional to the amount of evidence available
to assign a label to the document.

C. Comparing Various Evidence Evaluation Schemes

We also conducted an experiment to compare the different
evidence evaluation schemes and to analyze the performance
improvement by considering each scheme individually. We
divided the documents in S into |P | sets according to
the scheme that selected the class-label, and trained |P |
classifiers by combining each set with TRN (Figure 5).
Since all clustering algorithms yielded similar performance,
we only plotted the scores for IDHC in Figure 5.

From Figure 5, we observe that the stricter schemes that
considers the evidence from both the classifier and the
document clusters, and have higher thresholds for consider-
ing cluster-based evidence, performs the best. The stricter
schemes S1-8, S1-4 and S3-8 alone surpass the baseline
score in table I, and achieves an improvement of about 10%
in classification performance. The other schemes performed
close to the baseline F1 scores.

D. Comparing Against an Existing Data Cleaning Method

Our method automatically identifies and corrects labeling
errors, and also selects a subset of the corrected documents
that are likely to improve the classification performance on
unseen data, when combined with high-quality training data.
In the absence of a directly-comparable method, we adapted
the text TDC method proposed by Esuli and Sebastiani [4]

to identify ‘good’ labels (non-erroneous) in noisy-labeled
documents, and then compared the incremental classification
performance achieved by documents with all ‘good’ labels
with the documents selected by our method.

More specifically, we selected L1, a subset of L that
contains about 200,000 documents (the same subset used in
Figure 1). Using the implementation available from the first
authors’ website [4], we used MP-Boost to learn a classifier
from TRN and to identify a set L2 with ‘clean’ documents
from L1 (i.e. documents whose original label(s) agreed
with the classifier assigned label(s)). We then retrained the
classifier using both TRN and L2 as training data and
applied the resulting classifier to TST . Similarly, we applied
our method on the same datasets to select a subset of L1

with automatically-cleaned labels (using IDHC to generated
clustering-based evidence), added the selected documents
to TRN , trained a classifier using TRN and the selected
documents, and applied the resulting classifier on TST .

Figure 6 presents the results of this experiment. We
observe that the Macro-F1 scores achieved by the MP-
Boost-based method dropped from the baseline score of
0.64 to 0.6 (about 6.25% decrease) as we increased the
amount of presumably cleaned data added to TRN , whereas
using our method, the performance increased from 0.68 to
0.73 (or about 7.3%). Note that the difference in baselines
scores is due to the difference in classification algorithms
used by the two methods, but the incremental gain or
loss in classification performance are independent of the
classification algorithm used, as SVM also yielded similar
results when used to revised labels of the same noisy dataset
(Figure 1).

E. Comparing the Positivity and Negativity Assumptions

To support the argument in section III-B, we selected
the subset of documents from S that performed the best
in the top-k experiment using IDHC (section IV-B), using
all selected class-labels for each document, and then trained
a set of classifiers by adding the selected documents to
TRN while holding the negativity assumption as true, i.e.
we considered documents not marked as positive for a class
as negative examples for training a classifier.

Table II
CLASSIFICATION RESULTS BY USING RELABELED DATA ONLY AS

POSITIVE VS. BOTH POSITIVE AND NEGATIVE, FOR TOP-100
DOCUMENTS RELABELED FOR EACH CLASS USING IDHC CLUSTERING

Method Micro-F1 Macro-F1

Documents from S as Positive-Only 0.7389 0.7471
Documents from S as Positive and Negative 0.6485 0.6512

We then tested this classifier on the held out test set
and compared the results with a classifier that did not use
the negativity assumption. Table II shows the result of this
experiment. We observe a significant drop in both the Micro
and Macro F1 scores when the negativity assumption is used
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Figure 4. Comparing Micro-F1 (left) and Macro-F1 scores (right) on the held-out test data, by mixing high-quality labeled documents with additional
documents from S, incrementally increasing the percentage of data added per class in each set
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Figure 5. Comparing various evidence evaluation schemes. Each scheme is coded as Sa− b, where Sa is described in section III-C and b value of the
threshold t used for clustering. Macro and Micro F1 scores are reported on held out test data, using classifiers trained using documents relabeled using
each scheme individually.
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Figure 6. Change in Macro-F1 as amount of cleaned data using MPBoost
added to TRN is increased.

with the selected documents. Hence supporting our argument
in Section III-B.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed ATDC, a novel training data
cleaning method that uses training examples with high-
quality class-labels to automatically validate and correct
labels of noisy training data. Our method uses intuitive ways
of automatically generating additional evidence from high-
quality training data and uses simple evidence evaluation
schemes to validate and select class-labels for noisy-labeled
documents. We emphasize that using multiple sources of
evidence for relabeling noisy documents provides better
results as compared to a single source of evidence. We also
argued that the common machine-learning assumption about
the negativity of training documents with respect to classes
that do not exist in their set of assigned class-labels should
not be made for noisy-labeled datasets.

In the future, we plan to apply our method to other real-
world datasets and experiment with additional clustering
algorithms. We also plan to investigate additional evidence
generation and evaluation schemes and to apply our method
on non-textual data.
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