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Abstract – This paper presents an automatic tuning 
method of model predictive control (MPC) using particle 
swarm optimization (PSO). Although conventional PID is 
difficult to treat constraints and future plant dynamics, MPC 
can treat this issues and practical control can be realized in 
various industrial problems. One of the challenges in MPC is 
how control parameters can be tuned for various target plants 
and usage of PSO for automatic tuning is one of the solutions. 
The numerical results show the effectiveness of the proposed 
PSO-based automatic tuning method. 

I. INTRODUCTION 

Various control methods have been utilized in industries. 
Among these control methods, MPC becomes one of the 
major control strategies because of its intuitive control 
concept. Recently, MPC has many successful applications 
including chemicals, food processing, automotive, and 
aerospace applications [1]. 

Tuning of the MPC parameter is considered to be easy 
for skillful MPC controller designers. However, the relation 
between the tuning parameters and physical meanings is not 
always clear. Therefore, the parameter tuning is difficult for 
unskilled controller designers. 

Tuning techniques for the MPC have been proposed in 
many literatures. Iino et al. proposed a parameter tuning 
method considering robust stability based on frequency 
response analysis [2]. Rowe et al. proposed the H-infinity 
loopshaping method [3]. Drogies et al. proposed a heuristic 
tuning method based on expert rules [4]. Iino’s and Rowe’s 
methods require complicated computing procedure and it is 
difficult to use it by unskilled ordinary controller designers. 
Practically, Drogies’ expert rules have to be modified for 
the target problem. Namely, the previous tuning methods 
are still difficult for unskilled controller designers and 
simple MPC tuning method is eagerly required in 
industries. 

Tuning of MPC can be formulated as an inverse problem 
and optimization techniques can be applied. Since MPC 
should be treated as a blackbox in the inverse problem, 
conventional mathematical programming type optimization 
techniques cannot be applied and evolutionary computation 
type optimization techniques should be applied. In the 
formulation, state variables are continuous and PSO [5] is 
one of the best candidates for the problem. Recently, PSO 

has been applied in industries practically [6-8] and a PSO-
based tuning method must be accepted. 

This paper presents an automatic tuning of the model 
predictive control using particle swarm optimization. The 
proposed PSO-based Automatic Tuning for MPC (PSO-
MPC) computes the optimal tuning using time-domain 
performance criterion. In the proposed PSO-MPC, as 
described above, MPC is treated as a blackbox and 
unskilled ordinary controller designers do not have to care 
MPC itself. Moreover, it is verified through simulations 
that the proposed PSO-MPC can tune MPC parameters 
appropriately using the same PSO parameters. Namely, it is 
suggested that unskilled ordinary controller designers do 
not have to tune PSO and consequently they can tune MPC 
easily. The numerical results show the effectiveness of the 
proposed PSO-MPC. 

II. MODEL PREDICTIVE CONTROL 

In this section, brief summary of model predictive 
control and target parameters is described. Model predictive 
control has been first proposed by J.Richalet and C.Cutler 
independently at the end of 70's [9][10]. MPC estimates 
future behavior of the control target within a certain period 
using a model of the control target inside the controller. 
Then, it determines manipulated signals so that an objective 
function is minimized [1][11-13]. 

Illustrated comparison between MPC and conventional 
PID is shown in fig. 1. While a PID controller determines a 
manipulated signal using instantaneous observed and target 
values directly, MPC estimates behavior of the control 
target within a certain period in the future. Therefore, it 
consider not also instantaneous control property but also 
control property within a certain period in the future. While 
PID can only treat limiters as constraints, MPC can treat 
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Fig. 1. Comparison between conventional PID controllers and MPC. 
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various constraints of the control target when it minimize 
an objective function. This is another advantage compared 
with conventional PID controllers. 

MPC can be formulated as follows. Concept of MPC is 
shown in Fig. 2. MPC utilizes predictive outputs ŷ , which 
is estimated within Hp steps (prediction horizon) in the 
future using a internal model. It minimize the following 
objective function, which consists of weighted sum of 
tracking error of predictive outputs ŷ  to set points r,
manipulated signals u, and variances of manipulated signals 
u. A model predictive control problem can be formulated 

as an optimization problem, which determine input signals 
u(k), ..., u(k+Hc-1) within Hc steps (control horizon) in the 
future so that the objective function is minimized 
considering the following constraints [14]. 
(1) Objective function of MPC 
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where W(i) is weight for each term, r(i) is set point, iŷ  is 
predictive output, )(ˆ iu  is predictive control input. 

(2) Constraints of MPC 

1,,0,)(ˆ maxmin PHiyikyy  (2) 

where ymin is lower bound of output, ymax is  upper bound of 
output. 

1,,0,)(ˆ maxmin PHiuikuu   (3) 

where umin is lower bound of control input, umax is upper 
bound of control input. 

1,,0,)(ˆ maxmin PHiuikuu  (4)  

where umin is lower bound of control input difference, 
umax is upper bound of control input difference. 

 It is assumed that input signals after control horizon 
are equal (u(k+Hc-1)=u(k+ Hc)=...=u(k+Hp-1)). The only 

input signals at the first step are utilized as manipulated 
signals. After one sampling period, actual outputs are input 
and the same procedure (an optimization procedure of 
MPC) is applied using the prediction horizon, which is 
shifted one step to the future direction. 

III. FORMULATION OF AN AUTOMATIC TUNING 
PROBLEM OF PARAMETERS IN MPC 

This section shows a formulation of an automatic tuning 
problem of parameters in MPC. In the tuning problem, 
plant outputs from t=1, ..., tmax calculated by numbers of 
MPC are evaluated. 

3.1 Target tuning Parameters of MPC 
Generally, since prediction horizon Hp, control horizon 

Hc, and constraints are fixed, weighted coefficients Wy, Wu,
and W u are tuned in this paper. In this paper, for the sake 
of simplicity, W(i) is fixed to constant values. Namely, in 
the tuning problem, it is assumed that objective function 
can be a function of weights of MPC, W.
3.2 Problem Formulation 

The target tuning problem can be formulated as follows: 
(1) Objective function

The basic (single) objective function can be expressed 
as follows: 
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where  is weighted coefficient for response and variance 
property, Essi is steady state error, tsi is settling time, tri is 
rising time, Mpimax is maximum value of y, ytmax is y at the 
end time. If we have number of outputs, the objective 
function can be expressed as a min-max type function.

},,,min{max 21 mfff
x

, (6) 

where m is number of output. 
A general weighted sum type objective function can be 
utilized as well. However, according to our experience, 
min-max type function has better performance and we 
decided to utilize the min-max type objective function. 
(2) Constraints 
Upper and lower bounds of weights should be considered. 
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Fig. 2. Concept of MPC.

222

Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)



miWWW yiyiyi ,...,1,maxmin
 (7) 

miWWW uiuiui ,...,1,maxmin
 (8) 

miWWW uiuiui ,...,1,maxmin
, (9) 

where Wyimin is lower bound of output yi, Wyimax is upper 
bound of output yi, Wuimin is lower bound of input ui, Wuimax

is upper bound of input ui, W uimin is lower bound of input 
variance ui, W uimax is upper bound of input variance ui.
The concept of the tuning problem is shown in Fig. 3. 
Parameters (weights of the objective functions of MPC 
control problem) are searched in the upper tuning problem 
by PSO and they are sent to the lower level MPC problem. 
Next, the outputs of the process are calculated by MPC and 
they are sent to the upper level PSO. Then, objective 
function values in the upper level tuning problem are 
calculated. This procedure is repeated until the 
predetermined iteration number. As shown in the figure, 
using this tuning concept, MPC parameters are 
automatically tuned by PSO and unskilled control designers 
can utilize it easily. When state variables are updated at the 
one iteration step of PSO, lower optimization problem 
(MPC) is calculated as shown in Fig.3. Therefore, total 
optimization procedure (integration of upper and lower 
level) is expected to be time-consuming. However, because 
of recent progress of computer performance, this kind of 
brute force procedure can be realized. 
3.3 Characteristics of the Problem

In this section, characteristics of the tuning problem, 
especially the shape of the objective function is examined. 
Fig. 4 and 5 show shapes of the objective functions of PID 
controllers and MPC. In PID, proportional, derivative, and 
Integral parameters (kp, kd, ki) are tuned. The two 
controllers are applied to the same process and have the 
same manipulator. Conventional Controller tuning 
literatures by PSO have already published [15][16]. As 
shown in these figures, a MPC tuning problem has to treat a 
more complicated and multimodal objective function than a 
PID controller tuning problem.  

IV. AUTOMATIC TUNING OF MPC USING PSO 

This section shows the way how automatic tuning of 
MPC is realized using PSO. The target tuning problem 
described in chap.III can be rewritten as the following 
optimization problem with upper and lower bound 
constraints: 

),,(max yuuW
WWWF  (10) 

},,,min{ 21 nfffF  (11) 
.3,,1,maxmax miWWW iii

Equation (10)(11) can be expressed as an optimization 
problem (13) without constraints using the following 
transformation function (12): 
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Fig. 4. An example of the shape of an objective function of a PID 
tuning problem (two PIDs). 
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The basic “Gbest” model is utilized in this paper. An update 
equation of agents can be expressed as follows:
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The update equations of gbest and pbests can be expressed 
as follows: 
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where P is total number of agents. 
A calculation procedure of PSO-MPC can be expressed as 
follows: 
Step1 [Initialization procedure] 

Initialize Wi
p(0) of agent p(i=1,...,3m) using uniform 

random numbers within upper and lower bounds of 
Wi. Weights Wi

p(0) calculated at step 1 are sent to 
MPC and a control model simulates the target plant 
behavior until tmax. The evaluation values are 
calculated by (5). Pbests and gbest are calculated 
using (17)(18). The procedure is repeated for 
p=1,...,P.

Step2 [Update of pbests and gbest]
Weights Wi

p(k) calculated at step 1 are sent to MPC 
and a control model simulates the target plant 
behavior until tmax. The evaluation values are 
calculated by (5). Pbests and gbest are calculated 
using (17)(18). The procedure is repeated for 
p=1,...,P. Considering upper bounds of vi

p, vi
p can 

be expressed as follows: 
)}(5.0||,)(min{||))(sgn()( minmax ii

p
i

p
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p
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pbests and gbest are updated using(17)(18). 
Step3 [Stop criterion and update of the weighting 

function] 
 The procedure is stopped when k reaches kmax 

(maximum iteration number). Otherwise, k=k+1
and  of (14) is updated using the following 
equation (inertia weights approach) and go to 
Step2: 

k
kmax

minmax
max  (19) 

V. NUMERICAL EXAMPLES 

For the purpose of illustrating the effectiveness of the 
proposed method, two examples are studied numerically.  
5.1 Numerical Example No.1
(1) Simulation Conditions

The following plant is tested in example No.1. 
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The block diagram of PSO-MPC controller and the plant is 
shown in Fig. 6. Fig. 7 shows the original step responses of 
the plant without the PSO-MPC controller. As shown in 
these figures, steady state errors are appeared in the original 
responses. In this simulation, the following parameter 
settings are utilized through pre-simulations: 
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Fig. 7. Step response of the plant without the PSO-MPC controller. 
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Fig. 6.  Block diagram of the plant with a MPC controller.
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These parameters are fixed for all simulations. The 
following MPC controller parameters are also utilized in 
the simulation: 
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As shown in the Fig.3, MPC parameters are automatically 
tuned by PSO and unskilled control designers can utilize it 
easily. Therefore, practical applicability of the proposed 
method depends on whether appropriate parameters can be 
obtained within appropriate calculation time. In addition, 

in order to verify the advantage of the proposed PSO-MPC, 
we also apply a PSO based PID tuning method (PSO-PID) 
to the same plant with two PID controllers. In this 
simulation, the same fixed parameters , P, kmax, c1, c2, max,

min are utilized for PSO-PID. Upper and lower bounds of 
PID parameters are set to 0 and 0.01. PSO-MPC and PSO-
PID are compared using the same objective function (5). 
(2) Simulation Results

The best values of the optimized parameters are given in 
Table 1. In order to obtain close parameters in Table 1, 
skilled control designers spent approximately 8 hours. On 
the contrary, it only takes 3 minutes by PSO-MPC. Fig. 8 
shows step responses of the plant with the PSO-MPC and 
the PSO-PID controllers. In order to compare their 
convergence characteristics, best, average, worst, and 
standard deviation of the objective function values are 
evaluated through 50 trials with different initial conditions 
as shown in Table 2. According to the results, the PSO-
MPC controller has better evaluation values than the PSO-
PID controller. Since, PSO-PID can generate the best 
control responses of the conventional method, it is said that 
appropriate parameters can be obtained within appropriate
calculation time by PSO-MPC. 

5.2 Numerical Example No.2
The proposed method is applied to a practical plant 

model with 4 inputs and 4 outputs. Output signals are 
mutually coupled (interfered or have strong connections) in 
the plant. Simulation for 500 cases (500 combinations of 
parameters) takes approximately 100 hours. On the 
contrary, it only takes approximately 18 minutes by PSO-
MPC. Best, average, worst, and standard deviation of the 
objective function values are evaluated through 50 trials 
with different initial conditions as shown in Table 3. Fig. 9 
shows step responses of the plant with and without the 
PSO-MPC (best results). According to the results, it is 
observed that appropriate parameters are obtained by PSO-
MPC.

VI. CONCLUSIONS 

This paper presents an automatic tuning method of model 
predictive control (MPC) using particle swarm optimization 
(PSO-MPC). This is a first application of PSO for 
automatic tuning of MPC. Using PSO-MPC, unskilled 
control designer can tune MPC easily within appropriate 
tuning time. 
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Fig. 8. Step response of the plant with different controllers. 

Table 2 PIDC & MPC tuning results. 
Objective function 

value PID tuning MPC tuning 

Mean value 0.067875 0.5488 

Best value 0.079716 0.9039 

Worst value 0.055561 0.3235 

Standard deviation 4.42321e-05 0.031269 

Table 1 The optimal parameters. 
PSO- PID tuning PSO-MPC tuning 

kp,1 0.000000 Wu,1 0.4997 

kd,1 0.000175 W  u,1 9.4196 

kd,1 0.085051 Wy,1 1.8154 

kp,2 0.036728 Wu,2 0.8394 

ki,2 0.003548 W  u,2
9.4899 

kd,2 0.008873 Wy,2 3.9619 

Table 3. Objective function values through 50 trials. 

Mean value 45.7207 

Best value 66.7299 

Worst value 32.3397 

Standard deviation 75.69687 
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Future works are as follows. In this paper, only step 
responses are evaluated. We will develop PSO-MPC 
evaluating step responses, disturbance responses, and other 
items. In this paper, weights W are assumed to be fixed all 
time. Calculation of W(i) (different W for each time) is one 
of the future works for improvement of control property. 
Moreover, development of appropriate man-machine 
interface (MMI) is one of the main issues for unskilled 
control designers. 
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Fig. 9. Step response of the 4 inputs and 4 outputs plant with the PSO-MPC controller.
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