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Abstract—Many computer end-users, such as research scien-
tists and business analysts, need to frequently query a database,
yet lack enough programming knowledge to write a correct
SQL query. To alleviate this problem, we present a program-
ming by example technique (and its tool implementation, called
SQLSynthesizer) to help end-users automate such query tasks.
SQLSynthesizer takes from users an example input and output
of how the database should be queried, and then synthesizes
a SQL query that reproduces the example output from the
example input. If the synthesized SQL query is applied to another,
potentially larger, database with a similar schema, the synthesized
SQL query produces a corresponding result that is similar to the
example output.

We evaluated SQLSynthesizer on 23 exercises from a classic
database textbook and 5 forum questions about writing SQL
queries. SQLSynthesizer synthesized correct answers for 15
textbook exercises and all 5 forum questions, and it did so from
relatively small examples.

I. INTRODUCTION

The big data revolution has resulted in digitization of massive
amounts of data. There is a growing population of non-expert
database end-users, who need to perform analysis on their
databases, but have limited programming knowledge.

Although relational database management systems (RDBMS)
and the de facto standard query language (SQL) are perfectly
adequate for most end-users’ needs, the costs associated
with use of database and SQL are non-trivial [15]. The
problem is exacerbated by the fact that end-users have diverse
backgrounds and include business analysts, commodity traders,
finance professionals, and marketing managers. They are not
professional programmers. They need to retrieve information
from their databases and use the information to support
their business decisions. Although most end-users can clearly
describe what the task is, they are often stuck with the process
of how to write a correct database query (i.e., a SQL query).
Thus, non-expert end-users often need to seek information
from online help forums or SQL experts. This process can be
laborious and frustrating. Non-expert end-users need a tool
that can be used to “describe” their needs and “connect” their
intentions to executable SQL queries.
Existing solutions. Graphical User Interfaces (GUIs) and
programming languages are two state-of-the-art approaches
to help end-users perform database queries. However, both
approaches have limitations.

Many RDBMSes come with a well-designed GUI with lots
of features. However, a GUI is often fixed, and does not permit

users to personalize a database’s functionality for their query
tasks. On the other hand, as a GUI supports more and more
customization features, users may struggle to discover those
features, which can significantly degrade its usability.

Programming languages, such as SQL and other domain-
specific query languages (e.g., Java with JDBC), are a fully
expressive medium for communicating a user’s intention to a
database. However, general programming languages have never
been easy for end-users who are not professional programmers.
Learning a practical programming language (even a simplified
domain-specific language, such as MDX [20]) often requires a
substantial amount of time and energy that a typical end-user
would not prefer to invest.

Our solution: synthesizing SQL queries from input-output
examples. This paper presents a technique (and its tool imple-
mentation, called SQLSynthesizer) to automatically synthesize
SQL queries1 from input-output examples. Although input-
output examples may lead to underspecification, writing them,
as opposed to writing declarative specifications or imperative
code of any form, is one of the easiest ways for end-users
to describe what the task is. If the synthesized SQL query is
applied to the example input, then it produces the example
output; and if the synthesized SQL query is applied to other
similar input (potentially much larger database tables), then it
produces a corresponding output.

SQLSynthesizer is designed to be used by non-expert
database end-users when they do not know how to write a
correct SQL query. End-users can use SQLSynthesizer to
obtain a SQL query to transform multiple, huge database
tables by constructing small, representative input and output
example tables. We also envision SQLSynthesizer to be useful
in an online education setting (i.e., an online database course).
Education initiatives such as Udacity [28] and Coursera [4] are
teaming up with experts to provide high-quality online courses
to thousands of students worldwide. One challenge, which is
not present in a traditional classroom setting, is to provide
answers to questions raised by a large number of students. A
tool, like SQLSynthesizer, that has the potential of answering
SQL query related questions would be useful.

Inferring SQL queries from examples is challenging, pri-
marily for two reasons. First, the standard SQL language is

1All queries mentioned in this paper refer to SQL queries that retrieve data
from a database but do not update the database.
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inherently complex; a SQL query can consist of many parts,
such as joins, aggregates, the GROUP BY clause, and the ORDER BY

clause. Searching for a SQL query to satisfy a given example
input and output pair, as proved by Sarma et al. [5], is a
PSPACE-hard problem. Thus, a brute-force approach such as
exhaustively enumerating all syntactically-valid SQL queries
and then filtering away those do not satisfy the examples
becomes intractable in practice. Second, a SQL query has a
rich set of operations: it needs to be evaluated on multiple
input tables; it needs to perform data grouping, selection, and
ordering operations; and it needs to project data on certain
columns to form the output. All such operations must be
inferred properly and efficiently.

To address these challenges and make example-based SQL
query synthesis feasible in practice, SQLSynthesizer focuses
on a widely-used SQL subset (Section III) and uses three steps
to link a user’s intention to a SQL query (Section IV):
• Skeleton Creation. SQLSynthesizer scans the given input-

output examples and heuristically determines table joins
and projection columns in the result query. Then, it creates
an incomplete SQL query (called a query skeleton) to
capture the basic structure of the result query.

• Query Completion. SQLSynthesizer uses a machine
learning algorithm to infer a set of accurate and expressive
rules, which transforms the input example into the output
example. Then, it searches for other missing parts in a
query skeleton, and builds a list of candidate queries.

• Candidate Ranking. If multiple SQL queries satisfy the
given input-output examples, SQLSynthesizer employs
the Occam’s razor principle to rank simpler queries higher
in the output.

Compared to previous approaches [3], [5], [26], [35],
SQLSynthesizer has two notable features:
• It is fully automated. Besides an example input and out-

put pair, SQLSynthesizer does not require users to provide
annotations or hints of any form. This distinguishes our
work from competing techniques such as specification-
based query inference [35] and query synthesis from
imperative code [3].

• It supports a wide range of SQL queries. Similar
approaches in the literature support a small subset of the
SQL language; and most of them can only infer simple
select-from-where queries on a single table [3], [5], [26],
[35]. By contrast, SQLSynthesizer significantly enriches
the supported SQL subset. Besides supporting standard
select-from-where queries, SQLSynthesizer also supports
many useful SQL features, such as table joins, aggregates
(e.g., MAX, MIN, SUM, and COUNT), the GROUP BY clause, the
ORDER BY clause, and the HAVING clause.

Evaluation. We evaluated SQLSynthesizer’s generality and
accuracy in two aspects. First, we used SQLSynthesizer to
solve 23 SQL exercises from a classic database textbook [23].
We used textbook exercises because they are often designed
to cover a wide range of SQL features. Some exercises are
even designed on purpose to be challenging and to cover

some less realistic, corner cases in using SQL. Second, we
evaluated SQLSynthesizer on 5 SQL query related questions
collected from popular online help forums, and tested whether
SQLSynthesizer can synthesize correct SQL queries for them.

As a result, SQLSynthesizer successfully synthesized queries
for 15 out of 23 textbook exercises and all 5 forum problems,
within a very small amount of time (9 seconds per exercise or
problem, on average). SQLSynthesizer’s accuracy and speed
make it an attractive tool for end-users to use.
Contributions. This paper makes the following contributions:
• Technique. We present a technique that automatically

synthesizes SQL queries from input-output examples
(Section IV).

• Implementation. We implemented our technique in a
tool, called SQLSynthesizer (Section V). It is available
at: http://sqlsynthesizer.googlecode.com.

• Evaluation. We applied SQLSynthesizer to 23 textbook
exercises and 5 forum questions. The experimental results
show that SQLSynthesizer is useful in synthesizing SQL
queries with small examples (Section VI).

II. ILLUSTRATING EXAMPLE

We use an example, described below, to illustrate the use of
SQLSynthesizer. The example is taken from a classic database
textbook [23] (Chapter 5, Exercise 1) and has been simplified
for illustration purposes.2

Find the name and the maximum course score of
each senior student enrolled in more than 2 courses.

Despite the simplicity of the problem description, writing
a correct SQL query can be non-trivial for a typical end-user.
An end-user must carefully choose the right SQL features and
use them correctly to fulfill the described task.

As an alternative, users can use SQLSynthesizer to obtain the
desired query. To use SQLSynthesizer, an end-user only needs
to provide it with some small, representative example input and
output tables (Figures 1(a) and 1(c)). Then, SQLSynthesizer
works in a fully-automatic, push-button way to infer a SQL
query that satisfies the given example input and output.

The SQL query, shown in Figure 1(b), first joins two tables
on the common student_id column, and then groups the joined
results by the student_id column. Further, the query selects all
senior students (using a query condition in the WHERE clause)
who are enrolled in more than 2 courses (using a condition in
the HAVING clause). Finally, the query projects the result on the
student.name column and uses the MAX aggregate to compute
the maximum course score. To the best of our knowledge, none
of the existing techniques [5], [14], [16], [26] can infer this
query from the given examples.

III. A SQL SUBSET SUPPORTED IN SQLSYNTHESIZER

SQLSynthesizer focuses on a widely-used SQL subset
using which a large class of query tasks can be performed.
Unfortunately, when designing the SQL subset, we found that
no empirical study has ever been conducted to this end, and

2This exercise defines 2 tables, whose schemas are shown in Figure 1(a).
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student_id name level 

1 Adam senior 
2 Bob junior 
3 Erin senior 
4 Rob junior 
5 Dan senior 
6 Peter senior 
7 Sai senior 

student_id course_id score 

1 1 4 
1 2 2 
2 1 3 
2 2 2 
2 3 3 
3 2 1 
4 1 4 
4 3 4 
5 2 5 
5 3 2 
5 4 1 
6 2 4 
6 4 5 
7 1 2 
7 3 3 
7 4 5 

name max_score 

Dan 5 
Sai 5 

(a) Two input tables:  student (Left) and enrolled (Right) (c) An output table 

SELECT student.name, MAX(enrolled.score) 

FROM student, enrolled 

WHERE student.student_id = enrolled.student_id 

      and student.level = ‘senior’ 

GROUP BY student.student_id 

HAVING COUNT(enrolled.course_id) > 2 

(b) A SQL query inferred by SQLSynthesizer 

Fig. 1. Illustration of how to use SQLSynthesizer to solve the problem in Section II. The user provides SQLSynthesizer with two input tables (shown in (a))
and an output table (shown in (c)). SQLSynthesizer automatically synthesizes a SQL query (shown in (b)) that transforms the two input tables into the output
table.
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ORDER BY
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Fig. 2. Survey results of the most widely-used SQL features in writing
a database query. Each participant selected the 10 most widely-used SQL
features. SQL features with no vote are omitted for brevity.

little evidence has ever been provided on which SQL features
are widely-used in practice. Without such knowledge, deciding
which SQL subset to support remains difficult.

To address this challenge and reduce our personal bias
in designing the language subset, we first conducted an
online survey to ask experienced IT professionals about the
most widely-used SQL features in writing database queries
(Section III-A). Then, based on the survey results, we designed
a SQL subset (Section III-B). Later, we sent the designed SQL
subset to the survey participants and conducted a series of
follow-up interviews to confirm whether our design would be
sufficient in practice.

A. Online Survey: Eliciting Design Requirements
Our online survey consists of 6 questions that can be

divided into two parts. The first part includes demographic
information including experience in using SQL. In the second

〈query〉 ::= SELECT 〈expr〉+ FROM 〈table〉+

WHERE 〈cond〉+

GROUP BY 〈column〉+ HAVING 〈cond〉+

ORDER BY 〈column〉+

〈table〉 ::= atom

〈column〉 ::= 〈table〉.atom

〈cond〉 ::= 〈cond〉 && 〈cond〉
| 〈cond〉 || 〈cond〉
| ( 〈cond〉 )
| 〈cexpr〉 〈op〉 〈cexpr〉

〈op〉 ::= = | > | <
〈cexpr〉 ::= const | 〈column〉
〈expr〉 ::= 〈cexpr〉 | COUNT(〈column〉) | COUNT(DISTINCT 〈column〉)

| MIN(〈column〉) | MAX(〈column〉)
| SUM(〈column〉) | AVG(〈column〉)

Fig. 3. Syntax of the supported SQL subset in SQLSynthesizer: const is
a constant value and atom is a string value, representing a table name or a
column name.

part, participants were asked to select the 10 most widely-
used SQL features in their minds. Instead of directly asking
participants about the SQL features, which might be vague and
difficult to respond, we present them a list of standard SQL
features in writing a query.

We posted our survey on professional online forums (e.g.,
StackOverflow) and sent to graduate students at the University
of Washington. We received 12 responses. On average, the
respondents had 9.5 years of experience in software develop-
ment (max: 15, min: 5), and 5.5 years of experience in using
databases (max: 10, min: 2). In addition, two participants
identified themselves as database professionals. Figure 2
summaries the survey results.

B. Language Syntax
Based on the survey results, we designed a subset of the

standard SQL language, whose syntax is shown in Figure 3.
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SELECT student.name, MAX(enrolled.score) 

FROM student, enrolled 

WHERE student.student_id = enrolled.student_id 

      and student.level = ‘senior’ 
GROUP BY student.student_id 

HAVING COUNT(enrolled.course_id) > 2 

ORDER BY student.name 

Projection column Aggregate 

Join conditions 

Query conditions 

GROUP BY clause 

HAVING  clause 

ORDER BY clause 

Query tables 

Fig. 4. An example query using the SQL subset defined in Figure 3.

The supported SQL subset covers all top 10 most widely-
used SQL features as voted by the survey participants in
Figure 2, except for the IN keyword. In addition, the SQL
subset supports the HAVING keyword since HAVING is often used
together with the GROUP BY clause. Our SQL subset, though
by no means complete in writing all possible queries, has
significantly enriched the SQL subsets supported by the existing
query inference work [5], [26]. Besides being able to write
standard select-from-where queries as in [5], [26], our SQL
subset also supports table joins, aggregates (e.g., COUNT, MAX,
MIN, and AVG), the GROUP BY clause, the ORDER BY clause, and
the HAVING clause. For readers who are not familiar with the
basic SQL idioms, Figure 4 shows an example query using
our SQL subset.

When designing the SQL subset, we focused on standard
SQL features and excluded user-defined functions and vendor-
specific features, such as the TOP keyword supported in Mi-
crosoft SQLServer. We discarded some standard SQL features,
primarily for three reasons. First, some features are designed
as syntactic sugar to make a SQL query easier to write; and
thus can be safely removed without affecting a language’s
expressiveness. For example, the BETWEEN keyword checks
whether a given value is within a specific range or not, and can
be simply replaced by two query conditions. Similarly, the NOT

NULL keyword is also omitted. Second, some features, such as
FULL JOIN, LEFT JOIN, and RIGHT JOIN, provide special ways
to join tables, and are less likely to be used by non-expert end-
users. Third, other features, such as IN and NOT EXIST, are used
to write sub-queries or nested queries, which can significantly
increase the complexity in query inference [5]. Related, the LIKE

keyword is designed for string wildcard matching; determining
its matching patterns requires systematic search and can be
expensive in practice. Thus, for the sake of inference efficiency,
we excluded these keywords.

C. Follow-up Interviews: Feedback about the SQL Subset
After proposing the SQL subset in Figure 3, we performed

follow-up email interviews to gain participants’ feedback.
Participants were first asked to rate the sufficiency of the
SQL subset in Figure 3 in writing real-world database queries,
on a 6-point scale (5-completely sufficient; 0-not sufficient at
all; and in-between values indicating intermediate sufficiency),
and then to provide their comments.

Among the 12 received responses, the average rating of the
proposed SQL subset is 4.5. Most of the participants rated it 5,
or 4. Only one participant rated it 3, because this participant

misinterpreted the language syntax and thought it does not
support table joins.

Overall, based on the feedback by experienced IT profes-
sionals, we believe our SQL subset is usable for end-users in
writing common database queries.

IV. TECHNIQUE

This section first gives an overview of SQLSynthesizer’s
workflow and high-level algorithm in Section IV-A, and then
explains SQLSynthesizer’s three steps in details (Section IV-B,
Section IV-C, and Section IV-D).

A. Overview
Figure 5 illustrates SQLSynthesizer’s workflow. SQLSynthe-

sizer consists of three steps: (1) the “Skeleton Creation” step
(Section IV-B) creates a set of query skeletons from the given
examples; (2) the “Query Completion” step (Section IV-C)
infers the missing parts in each query skeleton, and outputs
a list of queries that satisfy the provided example input and
output; and (3) the “Candidate Ranking” step (Section IV-D)
uses the Occam’s razor principle to rank simpler queries higher
in the output. Users can inspect SQLSynthesizer’s output to
select a desired query. If the synthesized SQL queries satisfy
the example input and output, but do not address the user’s
intention, the user can provide SQLSynthesizer with more
informative examples and re-apply SQLSynthesizer to the new
examples.

Figure 6 sketches SQLSynthesizer’s high-level algorithm.
Line 2 corresponds to the first “Query Skeleton Creation” step.
Lines 3 – 13 correspond to the second “Query Completion” step,
in which SQLSynthesizer searches for the query conditions
(line 4)3, aggregates (line 5), and columns in the ORDER BY

clause (line 6). SQLSynthesizer then builds a list of candidate
queries (line 7), and validates their correctness on the examples
(lines 8 – 11). Line 14 corresponds to the “Candidate Ranking”
step.

B. Skeleton Creation
A query skeleton is an incomplete SQL query that captures

the basic structure of the result query. It consists of three parts:
query tables, join conditions, and projection columns. To create
it, SQLSynthesizer performs a simple scan over the examples,
and uses several heuristics to determine each part.

Determining query tables. A typical end-user is often
unwilling to provide more than enough example input. Based on
this observation, we assume every example input table is used
(at least once) in the result query. By default, the query tables
are all example input tables. Yet it is possible that one input
table will be used multiple times in a query. SQLSynthesizer
does not forbid this case; it uses a heuristic to estimate the
query tables. If the same column from an input table appears
N (N > 1) times in the output table, it is highly likely that
the input table will be used multiple times in the query, such
as being joined with different tables. Thus, SQLSynthesizer
replicates the input table N times in the query table set.

3Including conditions in the HAVING clause, and columns in the GROUP
BY clause.
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Fig. 5. Illustration of SQLSynthesizer’s workflow of synthesizing SQL queries from input-output examples.

Input: example input table(s) TI , an example output table TO

Output: a ranked list of SQL queries
synthesizeSQLQueries(TI , To)
1: queryList ← an empty list
2: skeletons ← createQuerySkeletons(TI , TO)
3: for each skeleton in skeletons do
4: conds ← inferConditions(TI , TO, skeleton)
5: aggs ← searchForAggregates(TI , TO, skeleton, conds)
6: columns ← searchForOrderBys(TO, skeleton, aggs)
7: queries← buildQueries(skeleton, conds, aggs, columns)
8: for each query in queries do
9: if satisfyExamples(query, TI , TO) then

10: queryList.add(query)
11: end if
12: end for
13: end for
14: rankQueries(queryList)
15: return queryList
Fig. 6. Algorithm for synthesizing SQL queries from input-output examples.

Determining join conditions. Instead of enumerating all
possible ways to join query tables, which may lead to a
large number of join conditions, SQLSynthesizer uses two
rules (below) to identify the most likely join conditions.
SQLSynthesizer repeatedly applies these two rules to join
two different tables from the query tables until all tables
get joined. First, SQLSynthesizer seeks to join tables on
columns with the same name and the same data type. For
example, in Figure 1, the student table is joined with the
enrolled table on the student_id column, which exists in
both tables and has the same data type. If such columns
do not exist, SQLSynthesizer uses the second rule to join
tables on columns with the same data type (but with different
names). For example, suppose the student_id column in
the student table of Figure 1(a) is renamed to student_key,
SQLSynthesizer will no longer find a column with the same
name and data type in table student and table enrolled. If so,
SQLSynthesizer will identify three possible join conditions by
only considering columns with the same data type: student_key
= student_id, student_key = course_id, and student_key =

score; and create three skeletons, each of which uses one join
condition.

Determining projection columns. SQLSynthesizer scans
each column in the output table, and checks whether a
column with the same name exists in an input table. If so,
SQLSynthesizer uses the first matched column from the input
table as the projection column. Otherwise, the column in the

SELECT student.name, <Aggregate> 
 

FROM student, enrolled  
 

WHERE student.student_id = enrolled.student_id 

and  <Query Condition> 
 

GROUP BY < Column Name(s)> 
 

HAVING <Query Condition> 
ORDER BY <Column Name(s)> 

ame core 

Bob 4 

an 5 

im 2 

ame 

Bob 

an 

ent 

name = ‘Bob’
or name = ‘Dan’

Fig. 7. A query skeleton created for the motivating example in Figure 1. The
missing parts (between < and >) will be completed in Section IV-C.

output table must be created by using an aggregate. Take
the output table in Figure 1 as an example, SQLSynthesizer
determines that the name column is from the student table and
the max_score column is created by using an aggregate.

Given an example input and output pair, depending on the
number of join conditions, SQLSynthesizer may create multiple
skeletons, which share the same query tables and projection
columns, but differ in the join condition. For the example in
Figure 1, SQLSynthesizer creates one query skeleton shown
in Figure 7.

C. Query Completion
In this step, SQLSynthesizer completes the missing parts

in each query skeleton and outputs a list of SQL queries that
satisfy the given input-output examples.

1) Inferring Query Conditions: SQLSynthesizer casts the
problem of inferring query conditions as learning appropriate
rules that can perfectly divide a search space into a positive
part and a negative part. In our context, the search space is all
result tuples created by joining query tables; the positive part
includes all result tuples that contain the output table; and the
negative part includes the remaining tuples.

The standard way for rule learning is using a decision-tree-
based algorithm. However, a key challenge is how to design a
sufficient set of features to capture relevant relations between
the example input and output. Existing approaches [26] simply
use tuple values in the input table(s) as features, and thus limit
their abilities in inferring non-trivial conditions. In particular,
merely using tuple values as features can only infer conditions
comparing a column value with a constant (e.g., student.level
= ’senior’), but fails to infer conditions using aggregates (e.g.,
COUNT(enrolled.course_id) > 2), or conditions comparing
values of two table columns (e.g., enrolled.course_id >

enrolled.score). This is primarily because tuple values from
the input table(s) do not include enough knowledge about
the consequence of applying an aggregate and the potential
relations between table columns.

To address this challenge, SQLSynthesizer adds two new
types of features to each tuple, and uses them together with
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An input 

table  

 Aggregation Features   
Comparison Features 

Group by C1 Group by C2 

C1 C2 COUNT(C2) 
COUNT 

(DISTINCT C2) 
MIN(C2) MAX(C2) SUM(C2) AVG(C2) COUNT(C1) 

COUNT 

(DISTINCT C1) 
MIN(C1) MAX(C1) SUM(C1) AVG(C1) C1 = C2 C1 < C2 C1 > C2 

2 4 3 2 1 4 6 2 1 1 2 2 2 2 0 1 0 

2 1 3 2 1 4 6 2 3 2 1 2 5 5/3 0 0 1 

2 1 3 2 1 4 6 2 3 2 1 2 5 5/3 0 0 1 
1 1  1 1 1 1 1 1 3 2 1 2 5 5/3  1 0 0 

  Fig. 8. Illustration of two new types of features added by SQLSynthesizer. (Left) An example input table with two columns: C1 and C2. (Center) The
aggregation features added by SQLSynthesizer for the input table. (Right) The comparison features added by SQLSynthesizer for the input table.

When grouping all tuples in the input table by column C1, there will be two groups: the first group includes the first 3 tuples with value 2 in the C1 column,
and the second group includes the last tuple with value 1 in the C1 column. For example, the first half of the first row in the aggregation feature table shows
the results of applying different aggregates to the first group: the number of C2 values is 3 (i.e., COUNT(C2)=3); the number of distinct C2 values is 2 (i.e.,
COUNT (DISTINCT C2)=2); the minimal C2 value is 1 (i.e., MIN(C2)=1), the maximal C2 value is 4 (i.e., MAX(C2)=4), the sum of C2 values is 6 (i.e.,
SUM(C2)=6), and the average C2 value is 2 (i.e., AVG(C2)=2).

the existing tuple values for rule learning. The new features
explicitly encode useful information about SQL aggregates and
table column relations.
• Aggregation Features. For each column in the joined

table, SQLSynthesizer groups all tuples by each tuple’s
value, and then applies every applicable aggregate4 to each
of the remaining columns to compute the corresponding
aggregation result. The “Aggregation Features” part in
Figure 8 shows an example.

• Comparison Features. For each tuple, SQLSynthe-
sizer compares the values of every two type-compatible
columns, and records the comparison results (1 or 0) as
features. The “Comparison Features” part in Figure 8
shows an example.

SQLSynthesizer employs a variant of the decision tree
algorithm, called PART [10], to learn a set of rules as query
conditions. We chose PART because it uses a “divide-and-
conquer” strategy to build rules incrementally, and thus is
faster and consumes less memory than the original decision
tree algorithm [22]. Using the new features added by SQL-
Synthesizer, the PART algorithm is able to discover rules that
are hard to identify by only using the original tuple values as
features. Figure 9 shows an example.

SQLSynthesizer splits the learned conditions into two disjoint
parts, and places each part to the appropriate clause. Specifi-
cally, SQLSynthesizer places conditions using aggregates to
the HAVING clause, and places other conditions to the WHERE

clause. This is based on the SQL language specification:
query conditions using aggregates are valid only when they
are used together with the GROUP BY clause and are used in
the HAVING clause. Take the conditions inferred in Figure 9
as an example, SQLSynthesizer puts the query condition:
student.level =‘senior’ to the WHERE clause, puts condition:
COUNT(enrolled.course_id) > 2 to the HAVING clause, and puts
column student_id to the GROUP BY clause.

2) Searching for Aggregates: For every column in the
output table that has no matched column in the input ta-
ble(s), SQLSynthesizer searches for the desired aggregate
by repeatedly applying each aggregate on every input table
column; and checks whether the aggregate produces the same

4COUNT, COUNT DISTINCT, MAX, MIN, SUM, and AVG for a column of
numeric type ; and COUNT, and COUNT DISTINCT for a column of string
type

output as in the output table. To speed up the exhaustive
search, SQLSynthesizer uses two sound heuristics to filter
away infeasible combinations.

• SQLSynthesizer only applies an aggregate to its type-
compatible table columns. Specifically, the value type of
an output column must be compatible with an aggregate’s
return type. For instance, if an output column contains
string values, it cannot be produced by applying the
COUNT or COUNT DISTINCT aggregate, or applying the MAX

aggregate to a column of integer type. Further, some
aggregates have restrictive usages. For example, the AVG

and SUM aggregates cannot be applied to columns of string
type. SQLSynthesizer encodes such knowledge to prune
the search space.

• SQLSynthesizer checks whether each value in the output
column exists in the input table. If not, the output column
cannot be produced by using the MAX or MIN aggregate.

For the example in Figure 1, SQLSynthesizer determines
the max_score column in the output table is produced by using
the MAX(score) aggregate.

3) Searching for columns in the ORDER BY clause: SQLSyn-
thesizer scans the values of each column in the output table.
If the data values in a column are sorted, SQLSynthesizer
appends the column name to the ORDER BY clause.

For the output table in Figure 1, SQLSynthesizer determines
no column should be added to the ORDER BY clause, since
neither output column is sorted.

D. Candidate Ranking
It is possible that multiple SQL queries satisfying the

given input-output examples will be returned. SQLSynthesizer
employs the Occam’s razor principle, which states that the
simplest explanation is usually the correct one, to rank simpler
queries higher in the output. A simpler query is less likely to
overfit the given examples than a complex one, even when
both of them satisfy the example input and output.

A SQL query is simpler than another one if it uses fewer
query conditions (including conditions in the HAVING and WHERE

clauses), or the expressions (including aggregates) in each
query condition or clause are pairwise simpler. For example,
expression COUNT(student_id) is simpler than COUNT(DISTINCT

student_id). Simpler query conditions and expressions often
suggest the logics are more common and general.
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  Group by student_id 

student_id course_id score name level  COUNT(course_id) MAX(score) 

1 1 4 Adam senior  2 4 
1 2 2 Adam senior  2 4 
2 1 3 Bob junior  3 3 
2 2 2 Bob junior  3 3 
2 3 3 Bob junior  3 3 
3 2 1 Erin senior  1 1 
4 1 4 Rob junior  2 4 
4 3 4 Rob junior  2 4 
5 2 5 Dan senior  3 5 
5 3 2 Dan senior  3 5 
5 4 1 Dan senior  3 5 
6 2 4 Peter senior  2 5 
6 4 5 Peter senior  2 5 
7 1 2 Sai senior  3 4 
7 3 3 Sai senior  3 4 
7 4 5 Sai senior  3 4 

student_id course_id score name level 

5 2 5 Dan senior 
5 3 2 Dan senior 
5 4 1 Dan senior 
7 1 2 Sai senior 
7 3 3 Sai senior 
7 4 5 Sai senior 

student_id course_id score name level 

5 2 5 Dan senior 
5 3 2 Dan senior 
5 4 1 Dan senior 
7 1 2 Sai senior 
7 3 3 Sai senior 
7 4 4 Sai senior 

student_id course_id score name level 

2 1 3 Bob junior 
2 2 2 Bob junior 
2 3 3 Bob junior 
5 2 5 Dan senior 
5 3 2 Dan senior 
5 4 1 Dan senior 
7 1 2 Sai senior 
7 3 3 Sai senior 
7 4 4 Sai senior 

name max_score 

Dan 5 
Sai 5 

&&  level = ‘senior’ 

group by student_id 

(a) 

(b) 

(c) 

(d) 
(e) 

COUNT(course_id) >2 

Aggregation Features 

Project tuples on  
column: name, and 
aggregate: MAX(score) 

 

…

The table created by joining table student with 
table enrolled on column student_id 

Fig. 9. Illustration of how the new features added by SQLSynthesizer help in inferring query conditions for the example in Figure 1. (a) shows SQLSynthesizer
enriches the original tuple values (Left) with new features (Right). For brevity, only relevant aggregation features are shown. Using the added aggregation
features, SQLSynthesizer observes that tuples whose feature values satisfy COUNT(course_id)>2 and level=‘senior’ appear in the output table, and
thus infers a query condition that transforms the original table into the table shown in (b), which contains the output table shown in (c). Such query condition
is difficult to discover without using the aggregation features. (c) shows the output table, which is produced by projecting the table in (b) on the name column
and the MAX(score) aggregate.

 

 

 

  

name score 

Bob 4 

Dan 5 

Jim 2 

name 

Bob 

Dan 

(a) An input table: student (b) An output table 

1. SELECT name FROM student WHERE score > 2 

2. SELECT name FROM student WHERE name = ‘Bob’ 
                               or name = ‘Dan’ 

Fig. 10. Illustration of SQLSynthesizer’s query ranking heuristic. SQLSyn-
thesizer produces two queries for the given examples. The first query differs
from the second query in using a simpler condition, and thus is ranked higher.

SQLSynthesizer computes a cost for each query, and prefers
queries with lower costs. The cost for a SQL query is computed
by summarizing the costs of all conditions, aggregates, and
expressions appearing in each clause. The cost of each
condition, aggregate, and expression is approximated by its
length. Figure 10 shows an example.

E. Discussion
Soundness and Completeness. SQLSynthesizer is neither
sound nor complete. The primary reason is that several steps
(e.g., the Query Skeleton Creation step in Section IV-B) use
heuristics to infer query tables, join conditions, and projection
columns. Such heuristics are necessary, since they provide a
good approximate solution to the problem of finding SQL
queries from examples. Although SQLSynthesizer cannot
guarantee to infer correct SQL queries for all cases, as
demonstrated in Section VI, we find SQLSynthesizer is useful
in synthesizing a wide variety of queries in practice.

V. IMPLEMENTATION

We implemented the proposed technique in a tool, called
SQLSynthesizer. SQLSynthesizer supports integer and string
data types. SQLSynthesizer uses the built-in PART algorithm in
the Weka toolkit [13] to learn query conditions (Section IV-C).

SQLSynthesizer also uses MySQL [21] as the backend database
to validate the correctness of each synthesized SQL query.
Specifically, SQLSynthesizer populates the backend database
with the given input tables. When a SQL query is synthesized,
SQLSynthesizer executes the query on the database to observe
whether the query result matches the given output.

VI. EVALUATION

We evaluated four aspects of SQLSynthesizer’s effectiveness,
answering the following research questions:
• What is the success ratio of SQLSynthesizer in synthesiz-

ing SQL queries? (Section VI-C1).
• How long does it take for SQLSynthesizer to synthesize

a SQL query? (Section VI-C2).
• How much human effort is needed to write sufficient input-

output examples for SQL synthesis? (Section VI-C3).
• How does SQLSynthesizer’s effectiveness compare to

existing SQL query inference techniques? (Section VI-C4).

A. Benchmarks
Our benchmarks are shown in Figure 11.
• We used 23 SQL query related exercises from a classic

database textbook [23]. These exercises are from Chapter
5, which systematically introduces the SQL language. We
chose textbook exercises because they are designed to
cover a wide range of SQL features. Some exercises are
even designed on purpose to be challenging and to cover
some less realistic, corner cases in using SQL. We used
23 exercises that can be answered using standard SQL
language features without any vendor-specific features or
user-defined numeric functions. As shown in Figure 11,
many textbook exercises involve at least 3 tables. It was
unintuitive for us to write the correct query by simply
looking at the problem description.

• We searched SQL query related questions raised by real-
world database users from 3 popular online forums [6],
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Benchmarks SQLSynthesizer Query by
ID Source #Input Tables Example SizeRankTime Cost (s)Cost in Writing Examples (m)#Iterations Output [26]
1 Textbook Ex 5.1.1 4 28 1 8 4 2 Y
2 Textbook Ex 5.1.2 4 35 X 4 10 10 N
3 Textbook Ex 5.1.3 2 52 1 4 6 3 N
4 Textbook Ex 5.1.4 3 49 X 4 10 10 N
5 Textbook Ex 5.1.5 2 17 1 3 3 1 N
6 Textbook Ex 5.1.6 3 44 1 2 6 3 N
7 Textbook Ex 5.1.7 1 10 1 2 1 1 N
8 Textbook Ex 5.1.8 1 9 1 2 1 1 N
9 Textbook Ex 5.1.9 2 22 1 4 2 5 N

10 Textbook Ex 5.1.10 2 19 1 2 3 3 Y
11 Textbook Ex 5.1.11 4 22 X 3 10 10 N
12 Textbook Ex 5.1.12 4 14 X 1 10 10 N
13 Textbook Ex 5.2.1 2 12 1 3 2 1 N
14 Textbook Ex 5.2.2 3 18 1 3 4 2 N
15 Textbook Ex 5.2.3 3 21 X 4 4 4 N
16 Textbook Ex 5.2.4 3 28 1 3 6 3 N
17 Textbook Ex 5.2.5 3 24 X 2 5 1 N
18 Textbook Ex 5.2.6 3 19 1 3 6 3 N
19 Textbook Ex 5.2.7 3 25 1 3 5 3 N
20 Textbook Ex 5.2.8 3 38 X 3 10 10 N
21 Textbook Ex 5.2.9 3 31 1 2 7 3 N
22 Textbook Ex 5.2.10 3 35 1 5 5 3 N
23 Textbook Ex 5.2.11 3 30 X 3 10 10 N
24 Forum Question 1 1 11 1 3 2 2 N
25 Forum Question 2 1 8 1 2 2 2 N
26 Forum Question 3 1 24 1 1 3 2 N
27 Forum Question 4 4 13 1 120 1 1 N
28 Forum Question 5 3 10 1 1 2 2 N
Fig. 11. Experimental results. Column “Benchmarks” describes the characteristics of our benchmarks. Column “#Input Tables” shows the number of input
tables used in each benchmark. Column “SQLSynthesizer” shows SQLSynthesizer’s results. Column “Example Size” shows the number of tuples (i.e., rows) in
all user-written example input and output tables. Column “Rank” shows the absolute rank of the correct SQL query in SQLSynthesizer’s output. “X” means
SQLSynthesizer fails to produce a correct answer. Column “Time Cost (s)” shows the total time (in seconds) used in synthesizing queries by SQLSynthesizer.
Column “Cost in Writing Examples (m)” shows the total time (in minutes) used in writing examples by the SQLSynthesizer user. Column “#Iterations” shows
the number of interactive rounds in using SQLSynthesizer. Column “Query by Output” shows the results of the existing Query by Output (QBO) [26] technique.
In this column, “Y” means QBO produces the correct SQL query, and “N” means QBO fails to produce the correct query. The time cost of QBO is comparable
to SQLSynthesizer, and is omitted for brevity.

[25], [27]. We focused on questions about how to
write queries using standard SQL features. We excluded
questions that were vaguely described or were obviously
wrong, and discarded questions that had been proved to
be unsolvable by using SQL (e.g., computing a transitive
closure). We collected 5 non-trivial forum questions (all
questions are available at: [9]), among which two questions
even did not receive any reply on the forum. Writing a
good forum post is often harder than seeking information
from internet or asking a SQL expert (since the post has
to clearly describe the problem), and these end-users had
already tried but failed to find the correct SQL query
before they wrote the post.

B. Evaluation Procedure
We used SQLSynthesizer to solve each textbook exercise and

forum question. If an exercise or problem was associated with
example input and output, we directly applied SQLSynthesizer
on those examples. Otherwise, we manually wrote some

examples. All examples are written by the second author of
this paper, who is not SQLSynthesizer’s major developer.

In the evaluation, the SQLSynthesizer user wrote examples
in plain text files using CSV format. SQLSynthesizer parses
the files, and automatically infers the data type of each column
based on the provided values.

We checked SQLSynthesizer’s correctness by comparing its
output with the expected SQL queries. For textbook exercises,
we compared SQLSynthesizer’s output with their correct an-
swers. For forum questions, we first checked SQLSynthesizer’s
output with the confirmed answer in the same post, if there
is any. Otherwise, we manually wrote the correct SQL query
and compared it with SQLSynthesizer’s output.

For some textbook exercises and forum questions, if SQL-
Synthesizer inferred a SQL query that satisfied the input-output
examples but did not behave as expected, we manually found
an input on which the SQL query mis-behaved and re-applied
SQLSynthesizer to the new input. We repeated this process
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and recorded the total number of interactions.
Our experiments were run on a 2.5GHz Intel Core i5 Mac

Mini with 4GB physical memory, running OS X Version 10.8.3.
C. Results

Figure 11 summarizes our experimental results.
1) Success Ratio: SQLSynthesizer synthesized correct SQL

queries for 15 out of the 23 textbook exercises and all 5 forum
questions. We did not come across any benchmark that can be
expressed in our SQL subset, but our algorithm failed to infer
the correct query. SQLSynthesizer failed to solve 8 textbook
exercises, because these exercises required to write complex
existential sub-queries in the join conditions using the IN and
NOT EXIST keywords, which are not currently supported by
SQLSynthesizer. Compared to the textbook exercises, the 5
forum questions come from more realistic use cases, and can be
expressed in our SQL subset and answered by SQLSynthesizer.

We also observed that our ranking strategy (Section IV-D)
was surprisingly effective: for all benchmarks where SQLSyn-
thesizer produced a correct answer, it always ranked the correct
SQL query as the first suggestion.

2) Performance: As shown in Figure 11, SQLSynthesizer is
very efficient. On average, including benchmarks that SQLSyn-
thesizer failed to produce a correct answer, SQLSynthesizer
took less than 8 seconds in total to produce the results (min:
1, max: 120). For 20 benchmarks on which SQLSynthesizer
succeeded, the average time cost was only 9 seconds (min: 1,
max: 120). Among them, in the worst case, SQLSynthesizer
took 120 seconds to synthesize a correct SQL query for a
complex forum question, which includes 4 tables and 13
columns. SQLSynthesizer searched over 920 possible queries
and validated each of them on the examples before getting
the correct answer. Even so, SQLSynthesizer’s speed is still
acceptable for most practical use-case scenarios.

3) Human Effort: We measured the human effort required
to use SQLSynthesizer in two ways. First, the time cost to
write sufficient input-output examples. Second, the number of
interactive rounds in invoking SQLSynthesizer to synthesize
the correct SQL queries.

The human effort required in writing input-output examples
is reasonable. For the 20 successful benchmarks, it took the user
less than 3.6 minutes on average to write sufficient examples
per benchmark (min: 1, max: 7). The average example size
is 22 (min: 8, max: 52). To produce the correct SQL query,
SQLSynthesizer requires just 2.3 rounds of interaction on
average (min: 1, max: 5). For 19 successful benchmarks, the
number of interaction rounds is 1 to 3. In general, the user
spent slightly more time on benchmarks involving more tables
or requiring more complex query conditions.

We also observed that, for 6 of the failed benchmarks,
the user gave up after spending 10 minutes adding examples
and 10 interaction rounds invoking SQLSynthesizer, since the
synthesized SQL queries in each round seemed to get closer
to the expected query but still differed in some parts. For the
remaining 2 failed benchmarks, the user immediately concluded
that SQLSynthesizer could not produce a correct answer
after 1 and 4 rounds, respectively; because the synthesized

SQL query is significantly different than expected. Such
observation is driving us to improve SQLSynthesizer’s user
experience. For example, as our future work, we plan to enhance
SQLSynthesizer to inform users about the solvability of a
problem earlier.

4) Comparison with an Existing Technique: We compared
SQLSynthesizer with Query By Output (QBO), a technique
to infer SQL queries [26] from query output. We chose QBO
because it is the most recent technique and also one of the most
accurate SQL query inference techniques in the literature. QBO
requires an example input-output pair, and uses the decision
tree algorithm [22] to infer a query. However, QBO has three
limitations. First, it can only join two tables on their key
columns (annotated by users), and requires users to specify
how to project the results by annotating the projection columns.
Second, it uses the original tuple values from the input tables
as learning features, and can only infer simple query conditions.
Third, QBO does not support many useful SQL features, such
as aggregates, the GROUP BY clause, and the HAVING clause.

We implemented QBO, annotated each example table as
it required, and ran it on the same benchmarks. The results
are shown in Figure 11. QBO produced correct answers for
only 2 textbook exercises and none of the forum questions.
Benchmarks solved by QBO were also solved by SQLSyn-
thesizer. QBO’s poor performance is primarily caused by its
limited support for learning join conditions, query conditions,
and many other SQL features.

We did not compare SQLSynthesizer with other tech-
niques [3], [14]–[16], because these techniques either require
different input (e.g., a query log [15], [17] or a snippet of Java
code [3]), or produce completely different output (e.g., an excel
macro [14], or a text editing script [16]) than SQLSynthesizer.
Thus, it is hard to conduct a meaningful comparison.

D. Experimental Discussion
Limitations. The experiments indicate four major limitations of
SQLSynthesizer. First, some queries cannot be formulated by
our SQL subset due to unsupported features. This limitation is
expected. Our future work should address it by including more
SQL features in SQLSynthesizer. Second, SQLSynthesizer
requires users to provide noise-free input-output examples.
Even in the presence of a small amount of noises (e.g., a typo),
SQLSynthesizer will declare failure. Third, SQLSynthesizer
does not provide any guidance regarding when the user should
give up on SQLSynthesizer and assume the SQL cannot be syn-
thesized by SQLSynthesizer. Fourth, SQLSynthesizer assumes
the database schema is known by the user. SQLSynthesizer
may not be helpful to infer SQL queries for a complex database
whose schema is unclear to its users.
Threats to Validity. There are two major threats to validity in
our evaluation. First, the 23 textbook exercises and 5 forum
questions, though covering a wide range of SQL features,
may not be representative enough. Thus, we cannot claim the
results can be generalized to an arbitrary scenario. Second, our
experiments evaluate SQLSynthesizer’s accuracy. A user study
is needed to further investigate SQLSynthesizer’s usefulness.
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Experimental Conclusions. We have three chief findings:
(1) SQLSynthesizer is effective in synthesizing SQL queries
from relatively small examples. (2) SQLSynthesizer is fast
enough for practical use; and it only needs a small amount of
human effort in writing examples; (3) SQLSynthesizer produces
significantly better results than an existing technique [26].

VII. RELATED WORK

We next discuss two categories of related work on reverse
engineering SQL queries and automated program synthesis.
Reverse Engineering SQL Queries. Reverse engineering SQL
queries is a technique [5], [26], [35] to improve a database’s
usability. Zloof’s work on Query by Example (QBE) [35] pro-
vided a high-level query language and a form-based Graphical
User Interface (GUI) for writing database queries. To use the
QBE system, users need to learn its query language, formulate
a query with the language, and fill in the appropriate skeleton
tables on the GUI. By contrast, SQLSynthesizer mitigates
such learning curves by only requiring users to provide some
representative examples to describe their intentions.

Tran et al. [26] proposed a technique, called Query by Output
(QBO), to infer SQL queries from examples. As we have
discussed thoroughly in Section VI-C4, QBO excludes many
useful SQL features and can only infer simple select-project-
join queries. Our experiments demonstrated that QBO failed
to infer queries for many use-case scenarios.

Recently, Sarma et al. [5] studied the View Definitions
Problem (VDP). VDP aims to find the most succinct and
accurate view definition, when the view query is restricted to a
specific family of queries. VDP can be solved as a special case
in SQLSynthesizer where there is only one input table and one
output table. Furthermore, the main contribution of Sarma et
al’s work is the complexity analysis of three variants of the
view definitions problem; there is no tool implementation or
empirical studies to evaluate the proposed technique.
Automated Program Synthesis. Program synthesis [11] is a
useful technique to create an executable program in some under-
lying language from specifications that can range from logical
declarative specifications to examples or demonstrations [1],
[2], [7], [12], [14], [16], [18], [19], [24]. It has been used
recently for many applications.

The PADS [8] system takes a large sample of unstructured
data and infers a format that describes the data. Related, the
Wrangler tool, developed in the HCI community, provides a
visual interface for table transformation and data cleaning [16].
These two techniques, though well-suited for tasks like text
extraction, cannot be used to synthesize a database query.
This is because text extraction tasks use completely different
abstractions than a database query task; and the existing tools
like PADS and Wrangler lack the support for many database
operations such as joins and aggregation.

Harris and Gulwani described a system for learning excel
spreadsheet transformation macros from an example input-
output pair [14]. Given one input table and one output table,
their system can infer an excel macro that filters, duplicates,
and/or re-organizes table cells to generate the output table.

SQLSynthesizer differs in multiple respects. First, excel macros
have significantly different semantics than SQL queries. An
excel macro can express a variety of table transformation
operations (e.g., table re-shaping), but may not be able to
formulate database queries. Second, Harris and Gulwani’s
approach treats table cells as atomic units, and thus has
different expressiveness than SQLSynthesizer. For instance,
their technique can generate macros to transform one table
to another, but cannot join multiple tables or aggregate query
results by certain table columns.

Some recent work proposed query recommendations systems
to enhance a database’s usability [15], [17]. SQLShare [15]
is a web service that allows users to upload their data and
SQL queries, permitting other users to compose and reuse.
SnipSuggest [17] is a SQL autocompletion system. As a
user types a query, SnipSuggest mines existing query logs
to recommend relevant clauses or SQL snippets (e.g., the table
names for the FROM clause) based on the partial query that
the user has typed so far. Compared to SQLSynthesizer, both
SQLShare and SnipSuggest assume the existence of a query log
that contains valuable information. However, such assumption
often does not hold for many database end-users in practice.
SQLSynthesizer eliminates this assumption and infers SQL
queries using user-provided examples.

Cheung et al. [3] presented a technique to infer SQL queries
from imperative code. Their technique transforms fragments
of application logic (written in an imperative language like
Java) into SQL queries. Compared to SQLSynthesizer, their
work aims to help developers improve a database application’s
performance, rather than helping non-expert end-users write
correct SQL queries from scratch. If an end-user wishes to use
their technique to synthesize a SQL query, she must write a
snippet of imperative code to describe the query task. Compared
to providing examples, writing correct imperative code is
challenging for a typical end-user, and thus may degrade the
technique’s usability.

VIII. CONCLUSION AND FUTURE WORK

This paper studied the problem of automated SQL query
synthesis from simple input-output examples, and presented
a practical technique (and its tool implementation, called
SQLSynthesizer). We have shown that SQLSynthesizer is able
to synthesize a variety of SQL queries, and it does so from
relatively small examples.

For future work, we plan to conduct a user study to
evaluate SQLSynthesizer’s usefulness. We are also interested in
developing techniques to help users debug their SQL queries by
leveraging the recent advance in automated test generation [30],
[33] and failure explanation [29], [31], [32], [34].
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