
Universitat Politècnica de Catalunya

Automating the configuration
of networking devices with Python

A Master’s Thesis submitted to the Faculty of the Escola Técnica Superior
d’Enginyeria de Telecomunicació de Barcelona

by

Alberto Simón Fernández

In partial fulfillment of the requirements for the Master’s degree in
Telecommunications Engineering

supervised by
Prof. Marcos Postigo Boix

Barcelona, May 22th, 2020



Abstract

The networking team in ITNow needed to automate the configuration and
massive data extraction of specific networking devices. In this thesis a web
portal running the Django framework alongside some Python scripts was
developed to fulfill this need. The operation and structure of the web portal
are described including some examples and the scripts that run beneath are
explained in detail.

i



List of Figures

1.1 Work plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Gantt diagram for this project . . . . . . . . . . . . . . . . . . 4

2.1 Typical Django project structure . . . . . . . . . . . . . . . . 7
2.2 Sentence to check that the user has a valid CSRF token in

Django . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Example of code extension in the Django framework . . . . . . 8

3.1 Django web portal core structure. . . . . . . . . . . . . . . . . 13
3.2 Example of url.py file. . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Example of views.py file. . . . . . . . . . . . . . . . . . . . . . 15
3.4 Example of .html file. . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Instance of the app model. It defines a script. . . . . . . . . . 17
3.6 Instance of the worker model. It defines an execution log. . . . 17
3.7 Login page of the automation web portal. . . . . . . . . . . . . 18
3.8 Home page of the automation web portal. . . . . . . . . . . . 18
3.9 Script page for the ”Change Bypass” script. . . . . . . . . . . 19
3.10 Result retrieval of an execution of the interface status & free

ports script. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11 Logs page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.12 Reports page. Number of executions/works over time. . . . . . 23
3.13 Reports page. Total time saved. . . . . . . . . . . . . . . . . . 23
3.14 First form of the ”Architect”. Used to create the script record

in the database. . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.15 A task in the Jira project. . . . . . . . . . . . . . . . . . . . . 27

4.1 Execution results for the Massive Extraction script. . . . . . . 29
4.2 First execution results for the Check Session Border Controller

SIP agents state & statistics script. . . . . . . . . . . . . . . . 30
4.3 Comparison results for the Check Session Border Controller

SIP agents state & statistics script. . . . . . . . . . . . . . . . 31

i



4.4 Execution results for the Check Alcatel SILK Phone Status
script. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Execution results for the Bandwidth Restriction script. . . . . 34
4.6 Execution results for the Show Interface Status & Free Ports

script. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.7 Execution results for the Check Bypass script. . . . . . . . . . 36
4.8 Execution results for the Change Bypass script. . . . . . . . . 38
4.9 Execution results for the Virtual Controller Configuration script

when one or more of the commands in the given template is
incorrect and triggers a parse error in the VC. . . . . . . . . . 39

4.10 Execution results for the Meraki create networks script. . . . . 43
4.11 Execution results for the ACL config script when there is no

ACL configured in the switch. . . . . . . . . . . . . . . . . . . 44
4.12 An example of an exported backup generated by the backup

script. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.13 Comparison of the phone statuses done by the CUCM script. . 47
4.14 Comparison showing the missing phones in each VCS server. . 48
4.15 Execution results for the Check OCCAS status & EOM status

script. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.16 Wireless Client Isolation configuration commands for a VC . . 51
4.17 Execution results for the Techspec of CISCO switches script. . 52
4.18 Execution results for the Morning Check script. . . . . . . . . 53
4.19 Retrieving the IPs of the devices that have a different model

than the one specified by the user in the input form. . . . . . 55

ii



Contents

Abstract i

List of Figures ii

1 Introduction 1
1.1 Statement of purpose . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Requirements and specifications . . . . . . . . . . . . . . . . . 2
1.3 Work plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Project team structure & project status . . . . . . . . . . . . . 3
1.5 Deviations and incidents . . . . . . . . . . . . . . . . . . . . . 4

1.5.1 Problems when deploying to the production environment 4

2 State of the art 6
2.1 The evolution of web developing . . . . . . . . . . . . . . . . . 6
2.2 Frameworks and why are they used . . . . . . . . . . . . . . . 6
2.3 The importance of version control . . . . . . . . . . . . . . . . 8
2.4 The CI/CD pipeline . . . . . . . . . . . . . . . . . . . . . . . 9

3 Project development 10
3.1 Brainstorming of script ideas . . . . . . . . . . . . . . . . . . . 10
3.2 Programming language and framework decision . . . . . . . . 11

3.2.1 Django . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Flask . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 Pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Analysis of the pros and cons of each Python framework . . . 12
3.4 Django learning topics . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Structure of the Django Web Application . . . . . . . . . . . . 13
3.6 The url.py files . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7 The views.py files . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.8 The .html template files . . . . . . . . . . . . . . . . . . . . . 15
3.9 The database . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iii



3.10 Workflow of the Django Web Portal . . . . . . . . . . . . . . . 18
3.11 Securing the web portal . . . . . . . . . . . . . . . . . . . . . 21
3.12 Logs page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13 Reports page . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14 Making the upload of new Python scripts transparent to new

developers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.15 Moving the web portal to the production environment . . . . . 24
3.16 GIT implementation . . . . . . . . . . . . . . . . . . . . . . . 25
3.17 Task tracking of the project . . . . . . . . . . . . . . . . . . . 26

4 Results 28
4.1 Massive extraction of phone information . . . . . . . . . . . . 28

4.1.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Check Session Border Controller SIP agents state & statistics 29
4.2.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Check Alcatel SILK Phone Status . . . . . . . . . . . . . . . . 31
4.3.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Bandwidth Restriction . . . . . . . . . . . . . . . . . . . . . . 33
4.4.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Show Interface Status & Free Ports . . . . . . . . . . . . . . . 34
4.5.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Check Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Change Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.7.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.7.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.8 Virtual Controller Configuration . . . . . . . . . . . . . . . . . 37
4.8.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.8.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.9 Meraki Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.10 ACL Config . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.10.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.10.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.11 Backup of CISCO switches . . . . . . . . . . . . . . . . . . . . 44
4.11.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iv



4.11.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.12 Check CUCM server . . . . . . . . . . . . . . . . . . . . . . . 46

4.12.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.12.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.13 Check VCS phone status . . . . . . . . . . . . . . . . . . . . . 46
4.13.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.13.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.14 Check OCCAS status & EOM status . . . . . . . . . . . . . . 48
4.14.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.14.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.15 Wireless Client Isolation . . . . . . . . . . . . . . . . . . . . . 49
4.15.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.15.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.16 Techspec of CISCO switches . . . . . . . . . . . . . . . . . . . 50
4.16.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.16.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.17 Morning Check LAN & WiFi . . . . . . . . . . . . . . . . . . 52
4.17.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.17.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.18 Check CISCO devices models & versions . . . . . . . . . . . . 53
4.18.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.18.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Conclusions 56
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 58

v



Chapter 1

Introduction

1.1 Statement of purpose

The time where networking engineers log into networking equipment to man-
ually input commands to configure devices or log into servers to manually
configure one by one a list of devices/networks is coming to an end. More and
more companies are pushing forward in automation as they see that every
hour put into automation translates to a lot of hours of work saved.

Automating these tasks with some well done programming logic allows
the configuration of hundreds of devices in minutes, removes the possibility
of miss-configurations originated from human error, allows logging of con-
figuration changes and has the advantage that it makes the configuration
technical details transparent to the user who is going to start the automa-
tion process. For example, a company could subcontract an operations team
that lacks the technical networking knowledge and just by providing them a
certain set of inputs they could configure for X Access Points in Y networks
an specific SSID with the desired parameters. The given inputs could be
introduced by them in a web application and the underlying programming
code would do the rest. In the end this translates to a very fast and reliable
configuration that does not need to be done by the networking engineers.
They can invest this extra time in other tasks. But automation not only
does wonders in terms of configuration, its also great for monitoring the sta-
tus of networks/devices/ports, obtain wireless health information and any
other information that can be extracted from the end systems.

One can periodically query for information and present all this informa-
tion in one screen, allowing anyone to have a big picture of the state of the
system. By gathering and processing the data from various sources, infor-
mation that would not be possible to get otherwise can be obtained. This

1



information can be used to gain knowledge and with this knowledge engineers
can improve network performance, deduce possible sources that are causing
a certain problem in the network, etc.

It’s important to take into consideration that recurring daily/weekly tasks
that require the gathering of information are great candidates to automate.
With an automation that queries the needed data and does some process-
ing the required information can be quickly obtained and presented to the
engineer saving him/her from manually logging into many devices, checking
certain configuration lines, etc.

In the end, automating everyday networking tasks whether to massively
configure or to quickly gather useful information, provides a positive Return
of Investment (ROI) [1].

1.2 Requirements and specifications

The main requirements were clear from the start of the project:

• A publicly available web portal where the end users can call the au-
tomation scripts from a simple yet elegant frontend.

• Script integration in an Application Program Interface (API) so not
only the portal is able to call this API but other systems in the company
can also benefit from the scripts.

• Load balance the web portal between the given two UNIX servers using
a Virtual IP Address (VIPA).

• Setup a pre-production environment where new scripts and changes in
the platform are tested so no impact is made over the stable production
environment.

• Link the application with a remote repository located inside the local
area network of the company to make deployment changes easy and
fast.

1.3 Work plan

The work plan was established by me at the start of the project. The work
plan is shown in Fig. 1.1. All the tasks, its time duration and the correlation
between tasks can be seen in Fig. 1.2

2



Figure 1.1: Work plan

1.4 Project team structure & project status

This project has been supervised by my work supervisor, David Salvador
Rodrigo and by the project’s tutor, Prof. Marcos Postigo-Boix. My work su-
pervisor helped me with the administrative issues I found inside the company
and other work related issues like scheduling meetings with the engineering
teams when needed.

This project was started and finished by me. I was contracted to develop
a web portal where automation processes could run underneath and this
project is the result of 8 months of developing. For a few months I worked
alongside a small group of trainees. They helped in the creation of some of
the scripts which were code reviewed and approved by me.

3



Figure 1.2: Gantt diagram for this project

1.5 Deviations and incidents

While the web portal development and the script development went as planned
and approximately followed the theoretical finish dates specified in the initial
work plan, two main problems arose when deploying from the local environ-
ment towards the production environment which translated in more days of
work than the predicted ones.

1.5.1 Problems when deploying to the production en-
vironment

One of the problems was the connectivity issues that the machine had. The
machine did not have connectivity towards:

• Certain network devices where the scripts needed to connect

• Certain servers where the scripts connected to gather information

• The remote GIT repository

• The Python Package Index (PyPI) [2]

The network devices were missing Access Control List (ACL) rules and the
servers, the remote GIT repository and PyPI were not accessible due to strict
firewall rules.

4



Since the machine had this very limited access to Internet, in order to
install the needed Python modules, a simple pip install was not possible.
The workaround was to download the modules from the Python Package
Index and manually install them. This translated to a big problem, the fa-
mous “dependency hell” where some modules needed other minor modules to
work. Furthermore, some modules had to be downgraded in version for some
installations to work. This downgrade also supposed some modifications in
the portal code itself.

The other problem was a bureaucratic one. New apps in the company
had to be approved by a committee. This committee was rather strict, and
the process advanced at a very slow rate. In the end, the committee accepted
the app and the firewall rules were updated to connect to the remote GIT
repository.

5



Chapter 2

State of the art

2.1 The evolution of web developing

At first, web apps were nothing more than a bunch of HTML, CSS and
JavaScript files put together, related between them. Before frameworks, web
apps were already completely customizable and dynamic using proper CSS
and JavaScript. A good developer was able to make great web apps if he/she
had enough skill/knowledge.

In the present day, frameworks have appeared and taking into consider-
ation that they do not improve what the user ends up seeing and his/her
interactions with the frontend, which in the end is the final objective, then
one might ask why are they widely used nowadays [3].

2.2 Frameworks and why are they used

Frameworks have been adopted by the vast majority of web developers be-
cause they provide:

• Modularity

As the app grows larger, code needs to be well structured in folders
and files depending on what the code does. In the past, large apps
suffered when the app grew, there were scalability problems as the
number of JavaScript and CSS files increased rapidly and there were
lots of repeated code between files. By providing a defined structure,
a certain piece of code can be easily searched for. If we take as an
example the Django framework [4], Django structures the code in a
very specific way. The typical Django app structure can be seen in
figure 2.1.

6



Inside the models.py file the database models are defined to make
queries to the database unrelated to the specific database used in the
project, inside views.py file, the logic to retrieve and process data when
the user demands it is implemented, inside urls.py the routing of the
app is established, inside the templates folder there are all the .html
files where the views.py file send the obtained data to render it, etc.

Figure 2.1: Typical Django project structure

• Faster development

Frameworks provide out of the box functionalities by simply calling al-
ready built-in functions/methods. By just reading the framework doc-
umentation and learning how to use them, the developer can rapidly
incorporate functionalities that otherwise would be hard to implement
and also very time consuming. Examples include authentication func-
tions, session management functions, database operation functions,
form validation functions and functions to provide security against ma-
licious attackers.

• Security

Most frameworks include tools to protect against the most common
malicious attacks which are Cross Site Scripting (XSS), Cross Site Re-
quest Forgery (CSRF) and SQL Injection [5]. To give an example, in
Django, all the HTTP requests that the user sends include a CSRF
token. In the code you can include a short sentence that will not load
specific functionalities if the user does not have a valid CSRF token.
This protects the application from CSRF attacks. The short sentence
can be seen in figure 2.2.

Figure 2.2: Sentence to check that the user has a valid CSRF token in Django

7



Figure 2.3: Example of code extension in the Django framework

• Code extension

Most frameworks allow to extend some piece of code which will be used
in several other files. This ensures that there is no repeated code and
any change in that code translates to all instances that use that code.
In Django you can extend code by simply using one sentence as shown
in figure 2.3.

• Easier code legibility

Since the code uses well defined standard functions and a certain spe-
cific structure, it is easier to pick up by someone who is new to the
code itself but knows how the framework works.

2.3 The importance of version control

Aside from using frameworks, nowadays it is common practice to implement
version control linking the whole web application with a remote repository
like GitHub [6]. Version control allows developers to have multiple versions
of code in case they want to roll back to a previous working code. Having a
remote repository also allows to publish newer versions of the web application
once they are ready directly into the production environment just with a
simple command. Version control also makes it so the developer does not
end having several local copies of the code corresponding to different versions.

8



2.4 The CI/CD pipeline

Once the web app is linked with the remote repository, the last trend in
the DevOps world is to implement a CI/CD pipeline [7] which essentially
is an automated process that triggers when new code is published in the
remote repository. This process initiates code builds, runs some tests and
finally if everything is fine, deploys the code automatically in the production
environment. With this, the developers can ensure that nothing will break
in production and new functionalities are served as soon as possible to the
client.

9



Chapter 3

Project development

3.1 Brainstorming of script ideas

The first step in the process was to determine what to automate based in
several considerations. In order to define this, many brainstorming meetings
were done with the LAN & WiFi networking team. In these meetings a
lot of ideas were brought to the table and the networking team established
a priority in development order. The maximum priority was given to au-
tomations needed for the completion of some of their current projects which
deadlines were soon and that required massive configuration deployments in
networking equipment.

Aside from that, the priority was given to the automations that would
overall save more time. The networking team has many recurrent tasks that
are done daily/weekly and that at the end of the year represent a lot of time.
The objective in many automations is to reduce the time consumed in doing
these recurrent tasks.

It’s also important to mention that not all the development petitions
were established in this early brainstorming meetings and the needs for new
automations were constantly being reported as the networking team had new
ideas or received new urgent projects.

After receiving the wish list from the networking team, the petitions were
analyzed in order to determine if they were technically feasible to implement
in code, how would be the best way to do it and finally if the petition would
result in a ROI greater than 1. A Return of Investment in this scenario
represents the ratio between the gain in number of hours with respect to
manually doing the procedure and the hours used to develop the script. If
the script reduces the time with respect to doing it manually by 30 hours but
it’s very hard to develop and it can take approximately two weeks to develop

10



then it has a ROI lower than 1 and considerations to discard its development
should be made.

3.2 Programming language and framework de-

cision

The company pushes forward to establish Python as the main programming
language for its scripts and thus Python was the selected programming lan-
guage for the development of the scripts. While I’m fluent writing Python
code, it’s important to mention that it was not chosen by me, it was imposed
by the company standards. Following this, an analysis of three big Python
frameworks was done.

3.2.1 Django

Django is a high-level web framework which is ideal to develop web apps with
Python as the backend [4]. Django is one the best frameworks out there for
many reasons:

• Provides fast app development. It simplifies much of the hassle of
traditional web development which in the end translates to a quicker
app completion time.

• It’s a secure framework. Django has built-in modules to provide au-
thentication and session management. Its also easy to implement pro-
tection against XSS, CSRF and SQL injection [5].

• It’s scalable. Sites like Instagram, Pinterest and Bitbucket receive hun-
dreds of thousands of daily requests and have Django as their frame-
work of choice.

• It’s open source, same as Python.

• It has high-quality documentation and the biggest community out of
the Python frameworks so there is a lot of information online.

• Its easy to build an API using it.

• Has a prebuilt administration page that can be used to easily make
changes in the database.

11



3.2.2 Flask

Flask is the second most popular Python framework just behind Django [8].
Since it’s a very lightweight and minimalist framework, some people fit it
inside the category of “Microframework”. Its main positive qualities are:

• It’s simple and fast to develop in.

• It’s an extremely lightweight framework.

• Uses Non-relational databases, which are becoming very popular nowa-
days because of its simplicity.

• It’s very easy to build APIs with Flask.

3.2.3 Pyramid

Pyramid is a minimalist, fast, lightweight and easy to use framework [9]. As
Flask, it is considered a “Microframework”. It was one of the first frameworks
to be compatible with Python 3. Its great for very small applications since it’s
a simple framework. The community while small is quickly developing. Every
Pyramid release has 100% statement coverage and 95% decision/condition
coverage. The documentation is complete and friendly to newcomers.

3.3 Analysis of the pros and cons of each Python

framework

After analyzing the pros/cons of each option, the winner was clear. Django
was one step ahead in many areas. The only main positive points that
Flask and Pyramid had with respect to Django were the simplicity and the
lightness. These two positive points are far overweight by the advantages
that Django offers:

• The app will grow and receive a lot of requests, so it needs a framework
that scales very well and Django has the better scalability.

• Having good security is mandatory and Django prebuilt security mod-
ules are easy to implement and provide great security mechanisms.

• Django has the biggest community among the Python frameworks.
There is a lot of information published online. Solutions to problems
and answers to questions are easily found with a quick search. This
greatly helps in the developing process.

12



3.4 Django learning topics

After deciding that Python would be the main programming language and
Django would be the framework, the process of learning Django started [10].
Besides knowing Python, in order to develop the web portal, there were many
things to learn related to Django:

• How the URL routing between views work.

• How to work with the SQLite database.

• How to implement the API in Django.

• How to authenticate users and create sessions.

3.5 Structure of the Django Web Application

When the basics were clear, the development of the web portal started in
the local machine i.e. the company laptop. First the core structure of the
web portal was defined. This core structure can be seen in figure 3.1. It’s
important to note that the whole Django application is on the same physical
server. When the user sends a request to execute a script with certain inputs,

Figure 3.1: Django web portal core structure.

the Django app receives the request and sends a new request with all the

13



information that the user introduced directly towards the API which receives
it. The API interacts with the database if any previous data is needed before
script execution. When the script finishes execution, the result is stored in
the database and sent back to the frontend for the user to see.

The Django application is composed by many things, but the most im-
portant ones are the url.py files, the views.py files, the .html template files
and the database.

3.6 The url.py files

These files define the URL routing of the application. URLs that match with
the URL patterns described in the urls.py file are sent to the corresponding
function in the views.py file. Matching is done from top to bottom in the
urls.py file. While URL exact matching was implemented in this project,
Django also allows the use of regular expression matching. In figure 3.2,
the URLs of the API can be seen, each URL maps to the function in the
api1/views.py file that ends up executing the script.

Figure 3.2: Example of url.py file.

3.7 The views.py files

The functions on a views.py file are called when the given URL sent by the
user matches the corresponding URL pattern in the urls.py file. Parameters

14



sent via HTTP call enter the corresponding function via parameters or re-
quest body. In the views.py file of the API, the function executes the script
code with the given input parameters. When the script code execution ends,
the result is returned to the views function and passed as context to the cor-
responding .html file to show the results to the user that executed the script.
An example of a function in a views.py file can be seen in figure 3.3.

Figure 3.3: Example of views.py file.

3.8 The .html template files

In the views.py function, Django renders the corresponding .html template
file with a certain context. The context is in JavaScript Object Notation for-
mat (JSON) [11] and it is sent to the .html. Data in the context is displayed
in the .html if the .html is properly parameterized. An example of .html with
the syntax code on how to access the context data is shown in figure 3.4.

15



Figure 3.4: Example of .html file.

3.9 The database

The web portal uses a SQLite database [12]. This database contains three
models which are defined in the models.py file, the app model, the worker
model and the credentials model.

The app model defines the scripts. There is one record in the database
for each script. It defines the inputs, outputs, name, etc. The worker model
defines a particular execution of a script, like an execution log. It defines the
ID which can be used to retrieve the result, the script name and the result of
the execution. The credentials model stores credentials which are previously
encrypted. With this, some scripts can get the credentials needed to work
without user input and without directly referencing the credentials in the
code.

The database can be managed directly through a Graphical User Interface
(GUI) in Django. This GUI can only be accessed by admin users. Examples
of records of the app model and the worker model seen in this GUI are shown
in figures 3.5 and 3.6 respectively.

16



Figure 3.5: Instance of the app model. It defines a script.

Figure 3.6: Instance of the worker model. It defines an execution log.

17



3.10 Workflow of the Django Web Portal

When the user tries to access the URL of the web portal, it is presented
with the login page (figure 3.7). User creation by new users is not allowed
for security reasons. After logging, the user is redirected towards the main

Figure 3.7: Login page of the automation web portal.

URL of the portal and is presented with the home page where a catalog with
all the scripts is shown (figure 3.8). The routing towards the home page is
done in the home/urls.py file, which points to the home/views.py file. Before
rendering the home.html, the available scripts are obtained from the records
of the app model in the database. This is done with a call to the API with the
base URL “/api/v1/apps”. Once the scripts and all of their info is retrieved,
the home.html is rendered. Each script is allocated inside a box and all the
scripts can be seen by scrolling down in the browser.

Figure 3.8: Home page of the automation web portal.

When a user clicks on the “Run” button of a certain script, the web
portal shows him/her the .html page for that particular script, with its own

18



specific inputs. An example can be seen on figure 3.9. To achieve this, the
system sends an HTTP GET request to the home/urls.py file, with base URL
“/apps/app name” which calls the ”app” function in home/views.py. Inside
this function, the information of the script is retrieved using the ”app name”
sent in the request, retrieving the script details from a global variable filled
with the details of all scripts. With this, the web portal obtains the title and
the inputs for that particular script.

Figure 3.9: Script page for the ”Change Bypass” script.

When the user fills the input form and clicks the “OK” button, an HTTP
POST is sent to the home/urls.py which points to the ”app” function in
home/views.py file. Inside the function, the request is detected as a POST
request. The data from the inputs form is obtained from the request and
a new request is sent to the API with the data from the inputs form as
parameters/body of this new request. This new request is sent to the base
URL “/api/v1/app name” which points to the corresponding function in the
api1/views.py file. This function executes the script itself which is located
in a separate file since routing code is separated from pure script code.

Once the script code finishes execution, the result data is returned to the
API view function. In the same way, the view function returns the result data
to the home view function in which is manipulated to match the expected
JSON format and used to render the appropriate .html file to show the results
to the user in the outputs section of the .html file.

Besides the results, a token is also generated and returned to retrieve
data for that particular execution at any point in time. This token can

19



be used in the “Results Retrieval” section which can be accessed from the
navbar. The token is generated by hashing a certain fixed string with the
current timestamp with microsecond precision. By doing it this way, it’s not
possible to cleverly manufacture a token to retrieve the results of a certain
execution.

It’s important to mention that while there are scripts that are able to
return results in a few seconds there are others that take a long time to
return them. For those scripts, the execution is threaded in order to not
hang the portal while the script is running and only the token is returned.
While the script is running if the user tries to retrieve the results with the
token, the frontend displays a message telling him/her that the results are not
yet ready. When the results are ready, the user can retrieve them running the
“Results Retrieval” application and giving the token as input. An example
can be seen in figure 3.10.

Figure 3.10: Result retrieval of an execution of the interface status & free
ports script.

The “Results Retrieval” application uses the token given in the inputs
form to perform a query to the database. It searches for the record of the
worker model that has the value of the given token and returns the results
of the execution.

Once the core functionality of the Django web portal was ready, other
important additions were developed.

20



3.11 Securing the web portal

After having ready the core functionality of the web portal, the next manda-
tory development was to make the web portal secure.

First of all, the views were protected from not logged in users. Then
the API was protected from individuals without the proper authentication
credentials. Django comes with a pretty good built-in user authentication
system. The ”django.contrib.auth” model together with the ”login required”
decorator was used to protect the views. Basic Authentication together with
HTTPS was used to protect the API from unauthorized individuals.

Form inputs were sanitized with query parameters before being sent to
the database to avoid SQL injection and CSRF tokens were included to
avoid CSRF attacks. XSS attacks are also avoided in the framework by de-
fault since Django templates escape specific characters which are particularly
dangerous to HTML.

3.12 Logs page

After securing the web portal, an execution logs page was developed. The
link to the logs page was incorporated to the navbar and when requested, the
“logs” function from the home/views.py file is called. Inside this function a
call to the API is sent requesting the execution logs. The page number is sent
as a parameter to provide pagination. It defines which records are retrieved.
Inside this function the database is queried, and records of the worker model
are retrieved. The logs page can be seen in figure 3.11.

The result of the executions is not shown in the logs page itself. When
clicking the name of a particular execution, a call to the “Results retrieval”
application is made, together with the execution token and the “Results
retrieval” page is rendered with the result of that particular execution.

3.13 Reports page

Another big functionality that was added was the reports page. The reports
page allows the user to see through some graphs, the number of executions
and works that any script/group of scripts has done between two points
in time. Executions of a script are the number of times the script has been
executed. Works are the number of devices the device has configured/queried
for data.

Each script has a field in its database model that defines how many hours
it takes to manually do the job for one device. By querying the database and

21



Figure 3.11: Logs page.

retrieving the worker records between two points in time, the total number
of executions and works for that time period can be obtained. The graphs
are then populated with that data.

Furthermore, by assigning for each script the manual hours that repre-
sent a work, total time saved by automation can be obtained and Return
of Investment calculations can be done. In figure 3.12, the total number of
executions/works for a group of scripts in a given time interval is shown. In
figure 3.13, the total number of hours saved by automation for a group of
scripts in a given time is shown.

3.14 Making the upload of new Python scripts

transparent to new developers

The last and also biggest addition to the portal was the “Architect”. The
”Architect” is a system that through some forms and code in the backend,
allows the upload of a Python script and adapts the code to the platform

22



Figure 3.12: Reports page. Number of executions/works over time.

Figure 3.13: Reports page. Total time saved.

standards. By putting the raw script code in a certain template, the ”Archi-
tect” adapts it, searching for some specific comments with a certain format
in the template and directly substitutes them for some code.

When calling the ”Architect” through the frontend, some forms are pre-
sented. The forms ask for the inputs/outputs of the script and also for the
source code of the script (the template). After correctly filling the forms,
the ”Architect” creates the script record in the app model of the database
with the correct input/output format that the platform wants and it also
modifies the template to add the platform specific code, like for example the
code needed for storing the result of the script in the database.

This allows someone with no Django knowledge and/or platform knowl-
edge to publish a script in the platform with just some small considerations
in the template itself. One of the forms of the ”Architect” is shown in figure
3.14.

23



Figure 3.14: First form of the ”Architect”. Used to create the script record
in the database.

3.15 Moving the web portal to the produc-

tion environment

Once all the desired functionality was added and working in the local envi-
ronment, the task to move the portal to a production environment began.
The application was deployed in a RedHat 7.7 Linux machine.

One of the big problems that arose when transferring the portal to pro-
duction was the lack of superuser rights. The administrators of the machine

24



were the “BACKENDS LAN-WAN” engineering team. A lot of coordination
and working alongside them was needed in order to transfer the portal in a
reasonable time.

The first objective was to successfully run without errors the Django
application in the server. First of all, in order to not interfere with the Python
modules already deployed in the production server, a virtual environment [13]
was created to install inside it the specific modules needed for the Django
application to work. Since the machine had very limited internet access due
to strict firewall rules, the modules had to be manually installed, a simple
pip install could not be done.

When all the modules were finally installed inside the virtual environment,
writing rights inside a directory tree were given to me to upload all the Django
files. After uploading the files, the Django application ran without errors.

The next step was to deploy the Django application using Apache Web
Server. The configuration had to be done by the ”BACKENDS LAN-WAN”
team and only certain inputs were needed from my side, like the URL where
it will be available, the port where the Django app listens (port 8000 in this
case) and a petition to the security team asking for the generation of a valid
SSL certificate to configure SSL in Apache. After all these procedures and
some minor modifications in the settings.py file, the Django application was
accessible through the URL. Following this, the testing of all the functional-
ities began. Some minor code changes were needed for it to work like in the
local environment.

After the Django app was ready in the production environment, the de-
ployment on another production server and in the preproduction server be-
gan. The deployment in the second production server provides redundancy
and allows the configuration of an active/passive VIPA to ensure that the
Django web portal has 100% uptime. If the primary production server goes
down, the URL then points to the secondary production server. All the VIP
configuration was done by the corresponding team in the company and I only
needed to provide some details about the application/servers to them.

The pre-production server allows the testing of new scripts and also new
portal functionalities without affecting the production server. The configu-
ration of these two servers went a lot smoother after knowing what had to
be done and how to solve the problems that arise.

3.16 GIT implementation

GIT is a must in any serious development project, and this is no exception.
It provides fast code deployment, versioning and allows branching. Having

25



it installed in the local development machine and in the production environ-
ment allows to easily and quickly deploy into the production environment
the already tested code in the local development environment.

Versioning provides the option to roll back to previous code versions in
the case that some unknown error appears in a newer version. In this project
a master branch with stable code was used to publish the web portal to
the production environment while stable new developments that were being
tested were placed in the main development branch. A branch was created
for each new functionality/script and when ready, that branch was merged
with the main development branch. When the development branch is fully
tested, the code was merged into the master branch.

3.17 Task tracking of the project

Jira is the software tool that was used to track all the issues related with
this master’s degree thesis [14] like the development of each individual script,
the preparations needed to properly run Django in the machine (like proxy
configurations, firewall configurations, VIPA configuration, installation of
modules/dependencies, etc.), the developing of the framework itself, etc.

Jira allows the tracking of the project tasks, information about them, etc.
Task fields are completely customizable and the same goes with task status
workflows, the Kanban board, etc. If periodically filled, one can recap from
one day to another the status and details of any task. This software was used
to report the status of the project to the cotutor of the project. Jira also
comes with some prebuilt automation tools that allow automatic workflow
transitions, automatic subtask creation, etc. Those automations proved to
be very useful.

In the end, a Jira project tailored to the project needs was configured
and the time invested configuring the Jira platform was time well invested.
A Jira task for this project can be seen in figure 3.15.

26



Figure 3.15: A task in the Jira project.

27



Chapter 4

Results

In this chapter, the scripts inside the web portal will be discussed in detail
and the execution results for each one of them will be shown.

4.1 Massive extraction of phone information

4.1.1 Inputs

• A list containing the IPs of the CISCO phones.

4.1.2 Outputs

• A dictionary containing the MAC address, the directory number, the
model number and the serial number of the CISCO phone.

The voice & media engineering team wanted to extract certain informa-
tion from a rather large subset of CISCO phones to put them in their inven-
tory and to use some of that data to fill in some reports. The phones are
rather new and have a built-in API that allows to query them for information
via HTTP calls [15].

Since the needed information was possible to retrieve with an API call, a
script was made that cycles through the list of CISCO phones and sends
an HTTP call to every single one of them to retrieve the desired infor-
mation. The “Content-Type” header had to be specified in the HTTP
GET request with value ”application/x-www-form-urlencoded”. The re-
quests Python module was used to send the HTTP request.

The phones respond in Extensible Markup Language (XML) format and
to further process the data, the xmltodict Python module was used to con-
vert the data from XML to a dictionary. The dictionary contains the MAC

28



address, the directory number, the model number and the serial number
of the CISCO phone. This dictionary is then passed to the context of the
corresponding view to render the obtained results in the frontend. (Figure
4.1)

Figure 4.1: Execution results for the Massive Extraction script.

4.2 Check Session Border Controller SIP agents

state & statistics

4.2.1 Inputs

• A list containing the IPs of Session Border Controllers (SBCs)

• The credentials to be able to log into them via SSH

• An identifier which is used to compare the results of two different exe-
cutions that share the same identifier

29



4.2.2 Outputs

• A dictionary that contains for each SBC, its SIP Agents and all its
information.

The voice & media engineering team wanted to quickly compare the statis-
tics and status of the SIP agents in a list of SBCs [16] between two different
points in time. The problem they had is that when the firewall engineering
team makes some changes in the network, sometimes some SIP proxies, SIP
gateways or SIP endpoints lose connectivity, or their performance is affected.

These firewall changes are done midnight because the changes might affect
critical equipment in production which can impact service in the clients.
With this script, the voice & media team creates a snapshot containing the
SIP agents statistics the evening before the firewall changes (Figure 4.2) and
then, executing the script again the morning after the firewall changes, a
comparison of the two executions is made, showing the comparison results
in a table and highlighting the differences found between the two executions
(Figure 4.3)

Figure 4.2: First execution results for the Check Session Border Controller
SIP agents state & statistics script.

30



Figure 4.3: Comparison results for the Check Session Border Controller SIP
agents state & statistics script.

4.3 Check Alcatel SILK Phone Status

4.3.1 Inputs

• The IP of the server that contains the information of the phones

• The credentials to be able to log into the server via SSH

• An identifier which is used to compare the results of two different exe-
cutions that share the same identifier

4.3.2 Outputs

• A dictionary containing all the registered phones and its status, this
status can be either ”OK” or ”KO”

The voice & media engineering team wanted to compare the status of some
Alcatel SILK phones before and after the firewall engineering team makes
some changes in the network.

This script much like the “Check Session Border Controller SIP Agents
State & Statistics” script, performs a comparison between two executions
that share the same identifier. Since the current status can be obtained from
an SSH accessible server, the script logs into the machine using the pexpect

31



Python module, extracts the info, parses it into a well formatted dictionary
and displays the result in a table in the frontend. (Figure 4.4)

Figure 4.4: Execution results for the Check Alcatel SILK Phone Status script.

If the script is executed a second time with the same identifier, the script
queries the backend database to get the first execution dictionary and com-
pares both dictionaries, generating a new dictionary with the comparison
results. Then the comparison dictionary is passed to the view and displayed
as a table showing if any phone has changed status, highlighting the change.

32



4.4 Bandwidth Restriction

4.4.1 Inputs

• The IPs of the Aruba Virtual Controllers where the bandwidth restric-
tion configuration commands will be sent

• The downstream and upstream max allowed speed in Mb/s

• The credentials to log into the Virtual Controller

4.4.2 Outputs

• A dictionary containing for each IP the status of the configuration. The
configuration status can be either ”SUCCESS” or ”FAIL”

The LAN & WiFi engineering team needed to apply a bandwidth restriction
configuration to a lot of Aruba Virtual Controllers (VCs) [17] for a project
with imminent deadline. Since the change had to be done outside of normal
working hours because the VCs are in a production environment and the
bash scripts that automate configuration deployment that the LAN & WiFi
engineering team has do not work for Aruba Virtual Controllers, the necessity
of a custom-tailored script to massively configure the VCs arose.

The script logs into the VCs via SSH using the pexpect Python module
with the given credentials. The script has into consideration the multiple
possible prompts of those devices. The pexpect module much like Expect,
waits for the prompt to be ready by the destination device in order to send
the next command. By doing it this way, pexpect ensures that the command
can be processed by the destination device.

Once logged in, the script launches the respective configuration com-
mands. If any error occurs mid execution in a certain IP, the code saves a
“KO” for that IP inside the results dictionary denoting that most likely the
configuration was not applied. Otherwise, an “OK” is saved for that IP in-
side the results dictionary. For each “OK” and “KO” the respective counter
is increased. The results dictionary also contains the number of devices that
are “OK” i.e. correctly configured and the number of devices that are “KO”
i.e. most likely not configured. The result dictionary is passed to the cor-
responding view and formatted to a table in the HTML itself. (figure 4.5)

33



Figure 4.5: Execution results for the Bandwidth Restriction script.

4.5 Show Interface Status & Free Ports

4.5.1 Inputs

• The IP of the CISCO switch

• The credentials needed to log into it

4.5.2 Outputs

• A dictionary containing for each port if its free and all its information.

The necessity of this script developed from the fact that when a technician
goes to a switch and wants to connect to a certain port, he/she needs to
know if that port is free momentarily or it has not been used in a long time.
If it’s just free momentarily and they plug in, problems with clients might
arise. To solve this problem, a script was developed that besides showing
the information of all the ports (which is useful to determine in which port
between the free ports the technician should connect), it also shows and
highlights the free ports.

To determine if a port has been free for a long time, the script connects
via SSH using the pexpect module and then sends the “show interface status”
command to gather all the port information and the port names. The “show
interface status command” does not show the ports that are free, in order to
do that, using the obtained port names, for each port the command “show
interface [port name]” command is sent. This command outputs certain text
information that can be used in conjunction with some logic to determine if
the port has been free for a long time. The established criteria in the script

34



considers that if the command returns “last input never” and “last output
never” then the port can be considered free for a long time.

Once determined, the value “YES” or “NO” is appended to a list that
contains all the other information about that particular port. A list is created
and appended for each port. A list of lists is generated and put inside a
dictionary to pass that data to the corresponding view. Inside the HTML
the list of lists is iterated to fill a table with all the information (Figure 4.6).

Figure 4.6: Execution results for the Show Interface Status & Free Ports
script.

35



4.6 Check Bypass

4.6.1 Inputs

• The list of IPs of the Wireless LAN Controllers (WLCs)

• The credentials to log into these devices

4.6.2 Outputs

• A dictionary specifying for each WLC its bypass status which can be
“Bypass enabled”, “Bypass disabled” or “Connection Failed”

The LAN & WiFi engineering team found that some Wireless LAN Con-
trollers (WLCs) [18] had the “enable bypass” option activated, that means
that anyone that could login into the WLC could bypass the password prompt
needed to access the “enable” mode and directly enter the “enable” mode
which gives full privileges. This is obviously a security hole and they wanted
to patch it, but they didn’t know which of the WLCs had it activated and
which not. Checking manually was an option but it was not a very efficient
one since there are a lot of WLCs in the network, so they suggested the de-
velopment of a script to automatically check and report all the devices that
had the “enable bypass” option activated.

The script sequentially logs via SSH into all the WLCs using pexpect
and sends the command “show run | i enable” to determine if the bypass is
active, then it updates a dictionary with the status of the bypass for that.
The dictionary is either filled with “Bypass enabled”, “Bypass disabled” or
“Connection Failed”. Once all the IPs have been covered, the dictionary is
sent to the view and the result shown in the frontend (Figure 4.7).

Figure 4.7: Execution results for the Check Bypass script.

36



4.7 Change Bypass

4.7.1 Inputs

• The list of IPs of the Wireless LAN Controllers (WLCs)

• The credentials to log into these devices

4.7.2 Outputs

• A dictionary with as many keys as Wireless LAN Controllers, the key
names are the IPs of the WLCs, and the values of those keys are either
“Bypass disabled successfully” or “Not possible to change bypass”

Once the engineers knew with the “Check Bypass” script which WLCs had
the “enable bypass” option, what was left was to remove that option. A
script was created for that purpose.

The script was tailored to log into the WLCs of Aruba, detect the specific
prompts and input the commands needed to remove the “enable bypass”
option. If all the commands are sent and no exception occurs in the code
execution, then the script considers that the configuration commands were
applied, and the results dictionary is updated for that IP with the value
“Bypass disabled successfully”. If the script is not able to connect, or some
timeout occurs midway execution, or the destination terminal outputs some
parse error or an exception is thrown, the dictionary is updated for that IP
with “Not possible to change bypass”. Once all the IPs have been covered,
the dictionary is sent to the view and the result shown in the frontend (Figure
4.8)

4.8 Virtual Controller Configuration

4.8.1 Inputs

• The IP of the VC and a list of input parameters that modify the con-
figuration template that is going to be applied

• The credentials to log into the device

4.8.2 Outputs

• A dictionary with only one key/value pair. The key name is “status”
and the key value can be either “Master not found in the IP range”,

37



Figure 4.8: Execution results for the Change Bypass script.

“KO, one or more commands were not successfully applied” or “OK,
configuration applied successfully”

One common task in the LAN & WiFi engineering team is to configure new
Aruba Virtual Controllers. The manual process is quite slow because they
must find which IP was given inside of the IP range they had specified, and
then manually input the configuration commands which are not always the
same. The VC configuration depends on input parameters.

The script first searches for the IP where the master Access Point is
located. It tries to sequentially log into the IPs inside the IP range using
the pexpect module and if there is no timeout then it sends the command
“show election statistics”. If the master AP is not found inside the IP range
then the dictionary is updated with “Master not found in the IP range”.
If “master” is in the response of the command, then the master AP can be
found in that IP. The script then starts sending the configuration commands.
If there is no timeout and all the commands are correctly sent and none of
them return the response “% Parse error” then the dictionary is updated
with the value “OK, configuration applied successfully”. If an error occurs
midway execution like a timeout or error response, then the dictionary is
updated with “KO, one or more commands were not successfully applied”.
Once the dictionary is filled, it is returned to the view and displayed in a
table in the frontend (Figure 4.9).

38



Figure 4.9: Execution results for the Virtual Controller Configuration script
when one or more of the commands in the given template is incorrect and
triggers a parse error in the VC.

4.9 Meraki Menu

The Meraki Menu consists of multiple different scripts which can be called
from the frontend of the portal that interact with the CISCO Meraki Cloud
using the “Dashboard API” of Meraki. Meraki is a network management
platform available in the cloud [19]. It is property of CISCO. The necessity
of developing the Meraki menu was proposed for three different reasons:

• Even though all operations can be done in the online Meraki Dash-
board, if write permissions are given to an individual, that individual
can perform ALL write operations and that’s dangerous in terms of
security.

• Some operations need to be done massively and doing them manually
in the online Meraki Dashboard is extremely slow, specially because
the pages render very slowly.

• Gathering certain information is only possible by querying multiple
times the API and processing the obtained data. The online Meraki
Dashboard does not directly give some information that the company
considers useful.

Before the development of the scripts, an extensive investigation was made
on how the API works and which were the appropriate calls to obtain the
desired results for each script. The API is RESTful and uses API keys as
authentication. The API key value needs to be put inside a “X-Cisco-Meraki-
API-Key” request header to authenticate the calls. Each API key is linked to

39



a user and has access to the organizations that user has access. The requests
Python module was used to create all the requests needed in the scripts.

The Meraki Menu consists of 7 different scripts:

• Get the radiated SSIDs in a network

This script returns a list with the SSIDs that are being currently radi-
ated in a certain network. The input of the script is the name of the
network in Meraki.

To retrieve the desired information, two HTTP requests need to be sent
to the API. One is a HTTP GET to:

https://dashboard.meraki.com/api/v0/organizations/[meraki_

org]/networks

This call retrieves all the networks in the organization. Then searching
the name of the network given in the input form in all of the returned
records, the ID for that network is obtained.

With that ID then the call to get the radiated SSIDs is done. The base
URL for that call is:

https://dashboard.meraki.com/api/v0/networks/[network_id]

/ssids

The returning data is formatted, stored in a dictionary and presented
in the frontend.

• Get the clients information in a network

This script returns the information of all the clients in a network. IP,
MAC, device information and network usage data is retrieved among
other information from this script. The name of the network in Meraki
is needed as input.

Three calls are needed to retrieve this information. First, by doing the
same procedure as the one stated in the SSIDs script, the ID of the
network is retrieved. After getting the ID, a call to get the list of serial
numbers is sent. The base URL for that call is:

https://dashboard.meraki.com/api/v0/networks/[network_id]

/devices

Then for each serial number, a call needs to be made to get the clients
of that device and its information. The base URL for that call is:

40

https://dashboard.meraki.com/api/v0/organizations/[meraki_org]/networks
https://dashboard.meraki.com/api/v0/organizations/[meraki_org]/networks
https://dashboard.meraki.com/api/v0/networks/[network_id]/ssids
https://dashboard.meraki.com/api/v0/networks/[network_id]/ssids
https://dashboard.meraki.com/api/v0/networks/[network_id]/devices
https://dashboard.meraki.com/api/v0/networks/[network_id]/devices


https://dashboard.meraki.com/api/v0/devices/[serial_number]

/clients?timespan=180

The timespan value is in seconds and ensures that the clients returned
by the call were seen in the time interval between now and 180 seconds
ago. All the clients information is stored in a dictionary and directly
sent to the frontend.

• Unbind a device from a network

This script allows the unbinding of a device from a network. There are
two main use cases for this script, one is when the device stops working
and needs to be removed or when the device wants to be moved to
another network. To perform this operation, the serial number of the
device is needed.

Only two calls are needed to perform this operation. The call to get
the network ID and a POST call to:

https://dashboard.meraki.com/api/v0/networks/[network_id]

/devices/[serial_number]/remove

Depending on the response of this last call, the result of the operation
is notified in the frontend.

• Bind a device to a network

This script allows the binding of a device to a network and then binds
it to a switch profile if the device is a switch. In Meraki, the switches
need a switch profile to retrieve the specific configuration of each of its
ports. To perform these two operations, the serial number of the device
and the ID of the switch profile are needed as inputs.

For a switch, the script sends three calls, the one to get the network
ID, a POST call to:

https://dashboard.meraki.com/api/v0/networks/[network_id]

/devices/claim

And another POST call to:

https://dashboard.meraki.com/api/v0/networks/[network_id]

/devices/[serial_number]

For the claim call, the serial number needs to be sent in the body of
the call and for the last call, switch profile ID needs to be in the body
of the call to bind the switch to a specific switch profile.

41

https://dashboard.meraki.com/api/v0/devices/[serial_number]/clients?timespan=180
https://dashboard.meraki.com/api/v0/devices/[serial_number]/clients?timespan=180
https://dashboard.meraki.com/api/v0/networks/[network_id]/devices/[serial_number]/remove
https://dashboard.meraki.com/api/v0/networks/[network_id]/devices/[serial_number]/remove
https://dashboard.meraki.com/api/v0/networks/[network_id]/devices/claim
https://dashboard.meraki.com/api/v0/networks/[network_id]/devices/claim
https://dashboard.meraki.com/api/v0/networks/[network_id]/devices/[serial_number]
https://dashboard.meraki.com/api/v0/networks/[network_id]/devices/[serial_number]


• Create networks

This script allows to massively create networks in Meraki, making the
creation process a lot faster than doing it manually in the online Meraki
Dashboard. A list of network names is needed as input. The following
POST call is the one used to create a network:

https://dashboard.meraki.com/api/v0/organizations/[org_

name]/networks

The organization name must be specified in the URL and some pa-
rameters must be specified in the body of the call, like the name of
the network and the network type. A dictionary is updated for each
network specifying if the network was created successfully or not de-
pending on the response of each POST call.

• Reset the port of a switch

This script allows the reset of a specific port in a Meraki switch. The
serial number of the switch and the port number are needed as inputs.
Two POST calls are needed to perform the reset, one to bring down
the port and another to bring it back up. The two calls use the same
URL which is:

https://dashboard.meraki.com/api/v0/devices/[serial_number]

/switchPorts/[port_number]

In one call, the body has the enabled parameter as “False” and in the
other the body has the enabled parameter as “True”. Depending on
the response of these two calls, a dictionary is updated indicating the
result of the reset operation and send to the frontend to notify the user.

• Get the number of tunnels created in an organization

The Meraki MX devices which act as firewalls in Meraki have a limited
maximum number of tunnels that can be active at the same time. If
the connections are configured to be tunneled then for each AP and
SSID, a tunnel is created. This script sends the minimum number of
calls needed to count the total number of tunnels active in the present
moment. This is useful information because when the total number
of active concurrent tunnels is near the MX tunnel limit, then actions
must be taken.

The script first sends a GET call to get all the network:

https://dashboard.meraki.com/api/v0/organizations/[org_id]

/networks

42

https://dashboard.meraki.com/api/v0/organizations/[org_name]/networks
https://dashboard.meraki.com/api/v0/organizations/[org_name]/networks
https://dashboard.meraki.com/api/v0/devices/[serial_number]/switchPorts/[port_number]
https://dashboard.meraki.com/api/v0/devices/[serial_number]/switchPorts/[port_number]
https://dashboard.meraki.com/api/v0/organizations/[org_id]/networks
https://dashboard.meraki.com/api/v0/organizations/[org_id]/networks


For each network, if the network has a template with SSIDs that create
a tunnel, then the ID of the network is added in a list. Then the
networks in this list are queried with the GET call:

https://dashboard.meraki.com/api/v0/networks/[serial_number]

/devices

From this call the number of APs for each network is extracted. Since
each AP creates a tunnel towards the MX, each AP increments a
counter. At the end of the script execution, the value of this counter is
retrieved and sent to the frontend.

An execution for the create networks script can be seen in Figure 4.10

Figure 4.10: Execution results for the Meraki create networks script.

4.10 ACL Config

4.10.1 Inputs

• The list of IPs of the switches where the configuration will be applied

• The list of IPs to add in the ACL of the device and the credentials to
log into the devices

4.10.2 Outputs

• A dictionary that contains for each IP the status of the configuration
which can be “Could not connect to the device”, “Timeout mid execu-
tion of the commands” or “Configuration applied correctly”

43

https://dashboard.meraki.com/api/v0/networks/[serial_number]/devices
https://dashboard.meraki.com/api/v0/networks/[serial_number]/devices


An update of the Access Control List (ACL) of a lot of CISCO switches
was needed. The bash script to configure CISCO switches that the LAN &
WiFi engineering team had was not good enough for this task because the
configuration that needed to be deployed was dependent on the properties of
the ACL of each switch, so the creation of a new script was needed.

The script logs into sequentially into all of the CISCO switches and for
each of them sends the command “show run | i ACCES-SSH”. The response
to this command determines if the ACL is of type standard or extended.
Once the type is determined, the appropriate configuration commands are
sent. If there is no error mid execution and there are no timeouts then a
dictionary updated with status “Configuration applied correctly”, otherwise
depending on what happened, the dictionary is updated with the appropriate
status. Once the script has executed in all of the IPs, the completely updated
dictionary is returned and shown in the frontend in a table, reporting how
the configuration went for each switch (Fig. 4.11)

Figure 4.11: Execution results for the ACL config script when there is no
ACL configured in the switch.

4.11 Backup of CISCO switches

4.11.1 Inputs

• The hostname of the device which can be selected from a dropdown
that has all the devices

44



4.11.2 Outputs

• A button that allows the export of the configuration of the device

To easily and quickly retrieve the backup of any CISCO switch, two scripts
were developed. One of the scripts runs in a Command Run On (CRON)
and is the script that logs into all of the CISCO switches which are specified
in a .txt file. This script logs into the devices using the pexpect module,
sends some show commands including “show run”, appends the results of
those commands in a list and writes the results in a .txt file. The script upon
its daily execution, checks if there is any change in the configuration with
respect to the previous execution and if so, overwrites the file. The overwrite
for a switch is not made if the script cannot connect or an exception rises
midway execution. The other script, the one that runs when ordered via
the web portal, reads the content of the specific configuration .txt file and
allows the user to download the file. An example of an exported backup file
is shown in Figure 4.12.

Figure 4.12: An example of an exported backup generated by the backup
script.

45



4.12 Check CUCM server

4.12.1 Inputs

• Proxy credentials to be able to access the server were the Cisco Unified
Communications Manager is deployed

• The credentials to query the CUCM API

• An identifier to compare results with previous executions

4.12.2 Outputs

• A dictionary that contains for each phone if its status is “Registered”
or “Unregistered”. If the execution uses an identifier previously used
in another execution then the results are compared, and the status can
either be “Changed” or “Unchanged”

Similar to the scenario with the “Check Session Border Controller SIP Agents
State & Statistics” script, the voice & media engineering team wanted with
this script to quickly know after an operation that changes firewall settings
in the network, if any CISCO phone had changed state.

The script queries the Cisco Unified Communications Manager API which
is a SOAP API. The CUCM is a Call Manager that provides reliable, se-
cure, scalable, and manageable call control and session management [20].
An HTTP POST request with a well formatted XML in the body of the
request is needed to retrieve the desired information. The requests Python
module was used to create this request. Proxy configuration code was needed
to contact the server. The SOAP API uses Basic Auth in conjunction with
the CUCM credentials.

If the script is executed with the same identifier as the first execution,
the results of the database are compared with the results of the second ex-
ecution and the dictionary is updated with the comparison results. The
comparison dictionary has for each phone one of two statuses, “Changed” or
“Unchanged”. This can be seen in Figure 4.13.

4.13 Check VCS phone status

4.13.1 Inputs

• A list of IPs where the CISCO Video Communication Servers (VCS)
are located

46



Figure 4.13: Comparison of the phone statuses done by the CUCM script.

• The credentials to log into the servers

• An identifier to compare results with previous executions

4.13.2 Outputs

• A dictionary containing the CISCO phones found in the VCS and all
the information of each phone. This information is the IP, the IP of
the server where it was found, the protocol that uses (SIP or H323)
and the telephone number.

Like previous scripts, this script allows to compare the results between
two executions with the same identifier. The purpose of this script is to see
after firewall changes, if any CISCO phone is missing from the Video Com-
munication Servers (VCS). A VCS performs the functions of a Call Manager
like the CUCM but for telepresence devices [21].

The script sequentially logs into the VCS’s with the pexpect module and
sends the “xstatus registrations” command to every single one of them. The
response of the command is a string and is concatenated for each VCS. After
that, parsing is done with some regular expressions and the information of all
the found devices is stored in a dictionary. If it’s the first execution for the
given identifier, the dictionary is directly sent to the frontend and displayed
in a table. Otherwise the second execution dictionary is compared with the
first one which is stored in database. The comparison dictionary contains the

47



phones that are missing in the second execution and its details. An execution
example showing the missing devices and its details is shown in Figure 4.14.

Figure 4.14: Comparison showing the missing phones in each VCS server.

4.14 Check OCCAS status & EOM status

4.14.1 Inputs

• The credentials to authenticate in the proxy that connects to the OC-
CAS & EOM servers

• The API key of the EOM server

4.14.2 Outputs

• A dictionary showing the status of the OCCAS server and the EOM
server.

The purpose of this script is to quickly determine the status of two criti-
cal servers, the Oracle Communications Converged Application Server (OC-
CAS) and the Oracle Enterprise Operations Monitor (EOM). This task is
done manually by the voice & media engineering team every single day and
automating the process saves some time in the long run.

The script first sends a SOAP call to the OCCAS API. The body of the
SOAP call is filled with an XML that orders the OCCAS server to initiate
a call from one phone to another phone. Depending on the response of
the SOAP call, the status of the OCCAS server can be determined and the
dictionary with the results is properly updated.

48



If the call between the two phones is done, the script waits a fixed amount
of time to ensure that the call is registered in the EOM server. Then to check
if the EOM is working properly, a call to the RESTful API of the EOM is
sent. The API demands the API key sent as a header for authorization
purposes. The body of the call contains some filters, specifically the source
and destination phone numbers and a starting timestamp. If the response to
this API call with the filter returns a record, the status of the EOM server
can be considered OK.

If the OCCAS server did not trigger the call between the two phones then
the status of the EOM server is set as “TBD” as it could not be determined.
Finally, the dictionary is updated with the results and sent to the frontend
in which is displayed as a table (Figure 4.15)

Figure 4.15: Execution results for the Check OCCAS status & EOM status
script.

4.15 Wireless Client Isolation

4.15.1 Inputs

• A list containing Virtual Controllers or Wireless LAN Controllers

• The credentials to log into them

• A textbox to specify whether the list contains VCs or WLCs

4.15.2 Outputs

• A list of dictionaries. Each dictionary contains the IP of the VC or
WLC and the status which can be “Success” or “Fail”.

49



For security reasons the deployment of wireless client isolation configura-
tion among the Aruba Virtual Controllers and Wireless LAN Controllers was
needed for an urgent project and since this configuration was not applied in
the initial configuration, a script was developed to quickly configure them.
Wireless client isolation configuration ensures that other users cannot see or
send traffic between them, i.e. they are isolated between them.

The script first checks whether the IPs inside the list of IPs correspond
to VCs or WLCs. The configuration commands differ in each scenario. Then
it logs into every single IP in the list and sends a command to retrieve the
list of radiated SSIDs. If it’s a VC, the sent command is “show summary”,
if it’s a WLC, it is “show profile-list wlan virtual-ap”. The list of SSIDs is
needed since the wireless client isolation configuration needs to be applied at
global level and also at SSID level.

After retrieving the list, the appropriate configuration commands are sent.
Finally, the dictionary for that device is updated with the resulting configu-
ration status, if the connection was possible and no timeouts occurred then
the status becomes “Success”, otherwise its “Fail”. After configuring all the
devices, the dictionary with the status of all devices is sent to the frontend
and displayed in a table. In Figure 4.16 an example showing the commands
sent for the configuration of a VC can be seen.

4.16 Techspec of CISCO switches

4.16.1 Inputs

• A list of IPs of CISCO switches

• The credentials to log into them

4.16.2 Outputs

• A dictionary with as many keys as IPs in the list. The value of each
key is a string detailing the security issues found in the configuration
of the device.

The company specifies some security minimums that the configuration
of all the CISCO switches must satisfy. For example, any local user with
privilege 15 must have a MD5 encrypted password. Since the configuration
of the CISCO switches is not standardized and thus not homogeneous among
all devices, some devices do not comply with the security standards. The
necessity of developing this script came from the LAN & WiFi engineering

50



Figure 4.16: Wireless Client Isolation configuration commands for a VC

team. They wanted to know which CISCO switches do not comply and why
they don’t. The script sequentially logs into the CISCO switches and sends
the “show run” command. The response is then processed through some
logic and regular expressions to determine the security issues found in the
configuration. The script checks that:

• The AAA configuration is correct

• The local users with privilege 15 and privilege 0 have a MD5 encrypted
password with a minimum length.

• If the configured SNMP is not SNMPv3, then the SNMP community
string must include numbers, letters, special characters and should be
14 or more characters long.

• Telnet is disabled

• All line configurations use password and are related to the AAA con-
figuration.

51



• An Access Control List exists for the device and has at least an IP.

• Some form of DDoS protection is enabled.

• A banner indicating the prosecution of anyone that does wrong things
to the device is configured.

The dictionary is updated with the security issues found for that switch.
After cycling through all switches, the dictionary is returned to the frontend
and displayed in a table (Figure 4.17).

Figure 4.17: Execution results for the Techspec of CISCO switches script.

4.17 Morning Check LAN & WiFi

4.17.1 Inputs

• No user inputs are required for this script.

4.17.2 Outputs

• A dictionary that contains for each server/device its status and latency

Every day the LAN & WiFi engineering team checks the status of a list
of servers/devices which are critical. They want to know if they are up and
their latency. This script was created to automate this status check process.
The script sends pings to the servers/devices in the list. If the pings don’t
timeout then the server/device is responding, and the dictionary is updated
with an “OK” for that server/device. The dictionary is also updated with
the observed latency in the ping. If there is a timeout, then its updated
with a “KO”. This is done for all the IPs in the list and once finished, the

52



resultant dictionary is sent to the frontend and displayed in a table (Figure
4.18).

Figure 4.18: Execution results for the Morning Check script.

4.18 Check CISCO devices models & versions

4.18.1 Inputs

• A list of CISCO switches

• The credentials needed to log into them.

• Depending on the script, a specific model or software version must be
given to filter the obtained results.

53



4.18.2 Outputs

• A dictionary with as many keys as IPs of servers/devices. The value
of each key is a list of two elements. The first element is the status of
the server/device which can be “OK” or “KO”. The second element is
the average latency shown when pinging the server/device.

The LAN & WiFi engineering team wanted to know the models and
software versions of a big list of CISCO switches to update their inventory
and to check which switches are or will be soon out of support. A script
was developed to gather the model and software version of a list of CISCO
devices and process the information in five different ways to fulfill the needs
of the client. The script allows to:

• Retrieve and show the software version of a list of IPs of CISCO
switches.

• Retrieve and show the model of a list of IPs of CISCO switches.

• Retrieve the models of switches of a given software version.

• Retrieve the software versions of switches of a given model.

• Show the switches of a given model that have a lower software version
than the one given.

The user can choose which results to see depending on the selected view
in the frontend. Depending on the view, the user has to input the software
version or/and the switch model.

The output of the scripts is dependent on the particular script but its
always a dictionary containing either the model, the software version or both
for each CISCO switch. The scripts send the “show version” command and
parse the response of the command. The parsing is different for each CISCO
OS firmware and the logic considers the known response formats to retrieve
the version and model from the response string. The obtained model and/or
software version updates a dictionary which is send to the frontend to display
the data to the user.

An example execution that returns the IPs of the devices that have a
different model than the one that the user submitted in the input form, is
shown in Figure 4.19

54



Figure 4.19: Retrieving the IPs of the devices that have a different model
than the one specified by the user in the input form.

55



Chapter 5

Conclusions

In this project, the most important results are the scripts themselves that
run beneath the automation portal. Those scripts are the big part of this
project since without them, the automation portal would be useless. The
scripts contain the logic behind the specific configuration of commercial net-
working devices and are the ones that provide the main utility. Besides the
automation scripts themselves, the reports section and the ”Architect” are
the big functionalities of this project, while not being the base of the portal,
they provide a lot of utility. The reports section allows someone to see which
scripts are the ones that users execute more, when they were executed and
most importantly, the time saved by each script.

By observing the obtained data in the reports section, it is possible to
conclude that the development of a web portal that automates configuration
processes, results in a positive return of investment for the company when the
number of networking devices to configure is big. This is because not only
initial configuration is needed, there is also many miss-configurations and
many missing configurations in the device park. Previous to the automation
portal, the networking team were accessing manually to the devices and copy
pasting the configuration by hand, which should not be a thing in the present
days.

The ”Architect” adapts a template containing a Python script and per-
forms code substitutions to adapt the code to the platform standards. It also
creates the script instance in the database and fills it with the appropriate
input/output format. With this, the user can quickly import any Python
script inside the platform by just knowing how to fill the given template.

Its also important to mention that like the analysis pointed beforehand,
Django proved to be a great framework to quickly develop an scalable and
secure web application.

Working inside a big company proved difficult to accomplish certain tasks

56



which should be easier in less closed scenarios. There was too many unnec-
essary bureaucracy and the firewall rules in the inner network made some
tasks that at first glance seemed easy, difficult tasks.

The main problems I had with this project appeared while deploying
the automation portal to production. The installed SQLite version in the
Linux server was old and not compatible with Django, then I wasn’t able
to download the Python modules from the online PIP repository because of
firewall rules and finally the reports page was loading with errors.

To solve the SQLite issue I downgraded the Django version and adapted
part of the code to the older version. To install the Python modules I had
to manually download and install the modules and their dependencies from
PyPI which resulted in experiencing the famous ”dependency hell” [22]. Fi-
nally, the Pandas Python module had to be downgraded to be compatible
with the downgraded Django version.

5.1 Future Work

Due to a time limitation generated by the previously discussed problems,
CI/CD pipelines were not possible to implement and should be the first
addressed matter in future work. A well configured CI/CD pipeline can
provide automatic code testing and code deployment into production. When
the code is pushed to the remote repository, it is tested and if everything is
fine, it is directly deployed into production.

57



Bibliography

[1] Investing Answer. ROI - Return on Investment, 2020. https://

investinganswers.com/dictionary/r/return-investment-roi.

[2] PyPI. Find, install and publish Python packages with the Python Pack-
age Index., 2020. https://pypi.org.

[3] Eric Normand. Why do we use web frameworks?, 2020. https://

lispcast.com/why-web-frameworks.

[4] Django. Django - The web framework for perfectionists with deadlines.,
2020. https://www.djangoproject.com.

[5] Rapid7. Web Application Vulnerabilities. A look at how attackers tar-
get web apps., 2020. https://www.rapid7.com/fundamentals/web-

application-vulnerabilities.

[6] John D. Blischak, Emily R. Davenport, and Greg Wilson. A quick in-
troduction to version control with git and github. PLOS Computational
Biology, 12(1):1–18, 01 2016. doi: 10.1371/journal.pcbi.1004668. URL
https://doi.org/10.1371/journal.pcbi.1004668.

[7] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continu-
ous integration, delivery and deployment: A systematic review on ap-
proaches, tools, challenges and practices. IEEE Access, 5:3909–3943,
2017. ISSN 2169-3536. doi: 10 . 1109/access . 2017 . 2685629. URL
http://dx.doi.org/10.1109/ACCESS.2017.2685629.

[8] Flask. Flask, web development, one drop at a time., 2020. https:

//flask.palletsprojects.com/en/1.1.x/#.

[9] Pyramid. Pyramid, The Start Small, Finish Big Stay Finished Frame-
work, 2020. https://trypyramid.com.

[10] Django. Getting started with Django, 2020. https : / / www .

djangoproject.com/start.

58

https://investinganswers.com/dictionary/r/return-investment-roi
https://investinganswers.com/dictionary/r/return-investment-roi
https://pypi.org
https://lispcast.com/why-web-frameworks
https://lispcast.com/why-web-frameworks
https://www.djangoproject.com
https://www.rapid7.com/fundamentals/web-application-vulnerabilities
https://www.rapid7.com/fundamentals/web-application-vulnerabilities
https://doi.org/10.1371/journal.pcbi.1004668
http://dx.doi.org/10.1109/ACCESS.2017.2685629
https://flask.palletsprojects.com/en/1.1.x/#
https://flask.palletsprojects.com/en/1.1.x/#
https://trypyramid.com
https://www.djangoproject.com/start
https://www.djangoproject.com/start


[11] Squarespace. What is JSON?, 2020. https : / / developers .

squarespace.com/what-is-json.

[12] SQLite. What Is SQLite?, 2020. https://www.sqlite.org/index.

html.

[13] GeeksforGeeks. Python Virtual Environment — Introduction, 2020.
https://www.geeksforgeeks.org/python-virtual-environment.

[14] Atlassian. What is Jira used for, 2020. https://www.atlassian.com/

es/software/jira/guides/use-cases/what-is-jira-used-for.

[15] CISCO. Cisco Unified IP Phone Services Application Development
Notes for Cisco Unified Communications Manager and Multiplatform
Phones, 2020. https://www.cisco.com/c/en/us/td/docs/voice_

ip_comm/cuipph/all_models/xsi/9- 1- 1/CUIP_BK_P82B3B16_

00_phones-services-application-development-notes/CUIP_BK_

P82B3B16_00_phones-services-application-development-notes_

chapter_0110.html.

[16] Mitel. What is a Session Border Controller, 2020. https://www.mitel.
com / es - es / caracteristicas - y - beneficios / session - border -

controller-sbc.

[17] Aruba. Virtual Controller Overview, 2020. https : / / www .

arubanetworks . com / techdocs / Instant _ 40 _ Mobile / Advanced /

Content / UG _ files / virtual _ controller / Master _ Election _

Protocol.htm.

[18] CISCO. What Is a WLAN Controller?, 2020. https://www.cisco.

com/c/en/us/products/wireless/wireless-lan-controller/what-

is-wlan-controller.html.

[19] Jiri Brejcha. 10 Things You Need To Know About Cisco Meraki, 2020.
https://gblogs.cisco.com/uki/10-things-you-need-to-know-

about-cisco-meraki.

[20] CISCO. CUCM - Enterprise unified communications and collabora-
tion, 2020. https://www.cisco.com/c/en/us/products/unified-

communications/unified-communications-manager-callmanager/

index.html.

[21] CISCO. Cisco TelePresence Video Communication Server, 2020. https:
//www.cisco.com/c/en/us/products/unified-communications/

telepresence-video-communication-server-vcs/index.html.

59

https://developers.squarespace.com/what-is-json
https://developers.squarespace.com/what-is-json
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.geeksforgeeks.org/python-virtual-environment
https://www.atlassian.com/es/software/jira/guides/use-cases/what-is-jira-used-for
https://www.atlassian.com/es/software/jira/guides/use-cases/what-is-jira-used-for
https://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cuipph/all_models/xsi/9-1-1/CUIP_BK_P82B3B16_00_phones-services-application-development-notes/CUIP_BK_P82B3B16_00_phones-services-application-development-notes_chapter_0110.html
https://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cuipph/all_models/xsi/9-1-1/CUIP_BK_P82B3B16_00_phones-services-application-development-notes/CUIP_BK_P82B3B16_00_phones-services-application-development-notes_chapter_0110.html
https://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cuipph/all_models/xsi/9-1-1/CUIP_BK_P82B3B16_00_phones-services-application-development-notes/CUIP_BK_P82B3B16_00_phones-services-application-development-notes_chapter_0110.html
https://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cuipph/all_models/xsi/9-1-1/CUIP_BK_P82B3B16_00_phones-services-application-development-notes/CUIP_BK_P82B3B16_00_phones-services-application-development-notes_chapter_0110.html
https://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cuipph/all_models/xsi/9-1-1/CUIP_BK_P82B3B16_00_phones-services-application-development-notes/CUIP_BK_P82B3B16_00_phones-services-application-development-notes_chapter_0110.html
https://www.mitel.com/es-es/caracteristicas-y-beneficios/session-border-controller-sbc
https://www.mitel.com/es-es/caracteristicas-y-beneficios/session-border-controller-sbc
https://www.mitel.com/es-es/caracteristicas-y-beneficios/session-border-controller-sbc
https://www.arubanetworks.com/techdocs/Instant_40_Mobile/Advanced/Content/UG_files/virtual_controller/Master_Election_Protocol.htm
https://www.arubanetworks.com/techdocs/Instant_40_Mobile/Advanced/Content/UG_files/virtual_controller/Master_Election_Protocol.htm
https://www.arubanetworks.com/techdocs/Instant_40_Mobile/Advanced/Content/UG_files/virtual_controller/Master_Election_Protocol.htm
https://www.arubanetworks.com/techdocs/Instant_40_Mobile/Advanced/Content/UG_files/virtual_controller/Master_Election_Protocol.htm
https://www.cisco.com/c/en/us/products/wireless/wireless-lan-controller/what-is-wlan-controller.html
https://www.cisco.com/c/en/us/products/wireless/wireless-lan-controller/what-is-wlan-controller.html
https://www.cisco.com/c/en/us/products/wireless/wireless-lan-controller/what-is-wlan-controller.html
https://gblogs.cisco.com/uki/10-things-you-need-to-know-about-cisco-meraki
https://gblogs.cisco.com/uki/10-things-you-need-to-know-about-cisco-meraki
https://www.cisco.com/c/en/us/products/unified-communications/unified-communications-manager-callmanager/index.html
https://www.cisco.com/c/en/us/products/unified-communications/unified-communications-manager-callmanager/index.html
https://www.cisco.com/c/en/us/products/unified-communications/unified-communications-manager-callmanager/index.html
https://www.cisco.com/c/en/us/products/unified-communications/telepresence-video-communication-server-vcs/index.html
https://www.cisco.com/c/en/us/products/unified-communications/telepresence-video-communication-server-vcs/index.html
https://www.cisco.com/c/en/us/products/unified-communications/telepresence-video-communication-server-vcs/index.html


[22] KNEWTON. The Nine Circles of Python Dependency Hell, 2020.
https : / / medium . com / knerd / the - nine - circles - of - python -

dependency-hell-481d53e3e025.

60

https://medium.com/knerd/the-nine-circles-of-python-dependency-hell-481d53e3e025
https://medium.com/knerd/the-nine-circles-of-python-dependency-hell-481d53e3e025

	Abstract
	List of Figures
	Introduction
	Statement of purpose
	Requirements and specifications
	Work plan
	Project team structure & project status
	Deviations and incidents
	Problems when deploying to the production environment


	State of the art
	The evolution of web developing
	Frameworks and why are they used
	The importance of version control
	The CI/CD pipeline

	Project development
	Brainstorming of script ideas
	Programming language and framework decision
	Django
	Flask
	Pyramid

	Analysis of the pros and cons of each Python framework
	Django learning topics
	Structure of the Django Web Application
	The url.py files
	The views.py files
	The .html template files
	The database
	Workflow of the Django Web Portal
	Securing the web portal
	Logs page
	Reports page
	Making the upload of new Python scripts transparent to new developers
	Moving the web portal to the production environment
	GIT implementation
	Task tracking of the project

	Results
	Massive extraction of phone information
	Inputs
	Outputs

	Check Session Border Controller SIP agents state & statistics
	Inputs
	Outputs

	Check Alcatel SILK Phone Status
	Inputs
	Outputs

	Bandwidth Restriction
	Inputs
	Outputs

	Show Interface Status & Free Ports
	Inputs
	Outputs

	Check Bypass
	Inputs
	Outputs

	Change Bypass
	Inputs
	Outputs

	Virtual Controller Configuration
	Inputs
	Outputs

	Meraki Menu
	ACL Config
	Inputs
	Outputs

	Backup of CISCO switches
	Inputs
	Outputs

	Check CUCM server
	Inputs
	Outputs

	Check VCS phone status
	Inputs
	Outputs

	Check OCCAS status & EOM status
	Inputs
	Outputs

	Wireless Client Isolation
	Inputs
	Outputs

	Techspec of CISCO switches
	Inputs
	Outputs

	Morning Check LAN & WiFi
	Inputs
	Outputs

	Check CISCO devices models & versions
	Inputs
	Outputs


	Conclusions
	Future Work

	Bibliography

