
TESTBED PROGRAMING

Automation and Robotics

SET UP ROBOTC

PLATFORM TYPE

 First you select the platform type so that you

can use Natural Language

VEX CORTEX COMMUNICATION MODE

 Choose USB only

DOWNLOAD FIRMWARE

 The first time we connect to our cortex we need

to make sure they have the updated firmware.

This is a two step process. Step 1

DOWNLOAD FIRMWARE

 The first time we connect to our cortex we need

to make sure they have the updated firmware.

This is a two step process. Step 2

OPEN SAMPLE PROGRAM

 You need to locate PLTWtemplate – go to open

SAMPLE program.

 Immediately Save As “name” to your AR folder

PLTW TEMPLATE

Top comment section for

students to fill their

personal information, as

well as program planning

work.

Section between curly braces is

designated for the actual program.

Beginning and end

of a multi-line

comment

 Top

comment

section for

student

information

 After

task main ()

is the code.

CONNECT CORTEX

 Use orange USB cable to connect your cortex to

the computer.

 Turn up the sound and make sure you get “the

bonk” when you plug it in. Make sure it is off

when you connect it.

 Then turn cortex on.

CHECK THE WIRING GUIDE

 Check your wiring guide to make sure all your

sensors

are in

the right

places.

MOTORS

 All our motors are VEX

393 two-wire motors

 Two-wire motors can be

plugged directly into

MOTOR ports 1 or 10 on

the Cortex

 2-9 need a Motor

Controller wire

 126 is full speed – 63 is

half speed

CHECK AND DOUBLE CHECK…

 Go to - Robot; Motors and

Sensors Set Up; Standard

Modules; select GTT Testbed

NAMING CONVENTIONS…

 The names of your motors and sensors follow

some basic rules

 Must be all one word (leftMotor, frontLight, etc.)

 Cannot contain any special characters (%, ^, #,

etc.)

 Cannot already be a ROBOTC “Reserved Word

(while, motor, task, left, right, etc.)

 Check all your motor and sensor names to

make sure they are OK.

ROBOTC HELP

 Help is extremely useful if you get stuck!

 Search by topic or command – faster than

waiting for your teacher to get to you!

STOP HERE

AND DO THE

FIRST SET OF STEPS!

BEHAVIOR BASED PROGRAMING

 A behavior is anything your robot does:
 turning on a single motor, moving forward, tracking a, navigating a maze

 Three main types of behaviors:
 basic behaviors – single commands to the robot (turn on a motor)

 simple behaviors – simple task performed by the robot (move forward,

track a line)

 and complex behaviors – robot performs a complex task (solve the

maze)

 Complex behaviors can always be broken down into

simple behaviors, which are then broken down into

basic behaviors

BEHAVIORS CONT.

 If I want my robot to run

this labyrinth I need to

identify the different

behaviors.

 Complex – go from start

to the goal

 Simple – forward, turn

left, forward turn right,

forward, turn right

 Basic – Start motor at

63 for 2 seconds, Stop

motor, start motor, point

turn left, stop motor…

PSEUDOCODE

 Pseudocode is a regular

language of what you

plan to have the robot

do.

 Almost code, but not

quite…

 Your lines of Pseudocode

should be listed in the

same order as they will

appear in the Program

NATURAL LANGUAGE

 Allows you to drag and

drop code, rather than

typing it all yourself.

 Common commands

stored in Function Library

 Saves time, and is a lot

easier than remembering

all the rules for writing

code.

MOVEMENT

 Commands that allow

you to control individual

motors

SPECIAL

 Commands that control

the more unique VEX

Hardware – LED’s

UNTIL

 Commands that allow you

to create behaviors where

the robot acts “until” a

certain event

 DON’T use Button Press

 UNTIL touch-sends a 1

when sensor pressed in

 UNTIL bump-sends a 1

when sensor is pressed in

AND released.

WAIT

 Commands that wait for an

elapsed amount of time in

seconds or milliseconds

 Start motor at speed 63

then put in a wait for 3

seconds to run the motor for

3 seconds

RIGHT MOTOR FOR 5 SECONDS

 Starts right motor and

runs it at ½ speed

 Motor on for 5

seconds

 Stops right motor

 Task main() says “I’m

Programing now”

 Code between{ and }

 Everything goes in order top down.

 Drag and drop – customize - run

DOWNLOAD TO ROBOT

 Go to Robot; Compile and Download Program

 Your code is now on your robot.

STOP HERE

AND DO YOUR FIRST PROGRAM

TEST BED 1

 Turn on the right motor and run it for 5 seconds at

half speed (63) then turn it off.

DIRECTION OF MOTORS

 You can make motors go in reverse by going to

Robot; Motors and Sensors Set Up; then

selecting reverse for one motor.

 Or you can simply type the speed as a negative

number…

STOP HERE

SAVE AS TEST BED 2

Turn on the right motor and run it forward for 5

seconds at ½ speed (63) then turn it off.

Turn on the left motor and run it in reverse at ¾

speed (94.5) for 2.5 seconds then turn it off.

Turn on both motors and run at full power (126), in

the same direction, for 7.25 seconds then turn them

off.

TOUCH SENSORS

 Plugged into Digital ports only

 Pressed = 1(on) Released = 0(off)

 Limit Switches

 Bump Switches

SWITCH PROGRAMING

 You can add an UntilTouch to make the testbed

wait to start until you press the bump switch.

 UntilBump will do this too, but not

UntilButtonPress

 You can also add an UntilTouch to make the

testbed run until you press the limit switch

VEX LED

 The VEX LED’s all work the same, no matter the

color.

 You may name them as you like in the Digital

section of your set up

 Make sure they are plugged into the extender

correctly (metal to metal) or you will short them

out

STOP HERE

AND DO

TEST BED 3

Add an UntilTouch for the bump switch to turn on the

right motor forward at ½ speed and the LED on

Then add an UntilTouch for the limit switch to turn off

the motor and LED

POTENTIOMETER

 Caution: Excess torque against the
internal mechanical stops (can be
caused by hand or by a VEX motor)
will cause them to wear away. The
potentiometer will continue to
function, but will have a “dead
zone” where the mechanical stops
were, where no new values are
sent.

 Switching the direction the
potentiometer is facing will also
switch the direction it “counts”. For
example: counter-clockwise turns
will count 0 to 4095 on one side;
on the other counter-clockwise
turns will count 4095 – 0.

PROGRAMING A POTENTIOMETER…

 Use UntilPotentiometerGreaterThan to set the

positive value you want

 Use UntilPotentiometerLessThan to set the

negative value you want

STOP HERE

AND DO

TEST BED 4

 Turn on the green LED until the potentiometer value is

greater than 2048. Then the green LED should turn off,

and the left Motor should turn on until the

potentiometer is less than 2048.

LINE TRACKING

 “Active” Analog Light Sensor

 Sends out a IR beam, and measure how much

light is reflected back

 Each reads values between 0 and 4095

 Usually mounted as a set of 3 ¼ to 1/8 inches

off what it is measuring

 You have to calculate a

threshold that allows it to

distinguish light from dark.

THRESHOLDS

 A threshold is a value (usually halfway) between

two extremes (light/dark)

 Open Sensor Debug Window – make sure that

the refresh rate is set to Once

 Place a white surface above the line tracker

and record the value displayed in the window.

THRESHOLDS CONT…

STOP HERE

AND DO

TEST BED 5

 Open and close the claw by covering and uncovering

the line follower.

WHILE LOOPS

 A while loop is a structure that allows a section

of code to be repeated while a condition is true

or not true.

 While loops check to see if the “condition” is

true. If it is it repeats the loop. When the

condition is not true it goes to the next step

after the loop.

 A loop that would last forever would be

while(1==1) since 1 is always equal to 1.

CONDITIONS

PROGRAMING A WHILE LOOP

 Put the while loop after the task main() command

 Make sure you make an { after the while then a } at

the end

 Two opens = two closes

STOP HERE

AND DO

TEST BED 6

 Add a continuous while loop (1==1) to

 UntilTouch for the bump switch to turn on the right

motor forward at ½ speed and the LED on

 Then an UntilTouch for the limit switch to turn off the

motor and LED

IF STATEMENTS – ADVANCED

 When the robot reaches an IF statement in the

program, it evaluates the “condition” contained

between the ()

 If the “condition is true, any commands

between the braces are run

 If the “condition” is false, those same

commands are ignored

 Similar to a While loop, but the code does NOT

repeat.

IF-ELSE STATEMENT

 This is an expansion of the IF statement.

 The IF section still runs the commands inside

the ()

 The ELSE allows for specific code to run only

when the condition is false

 IF or ELSE is always run…

STOP HERE

AND DO THE

EIGHTH TEST!

 Add an IF statement to turn of the LED if the bump

switch is pressed and leave it off if it’s released.

Loop it forever (While…)

 Now try converting the IF to an IF-ELSE statement

that runs the right motor if the bump is pressed, Else

the light is on and no motor runs…

MULTIPLE IF-ELSE STATEMENTS

 Be careful when using two separate if-else

statements, particularly when they are used to

control the same mechanism.

 One branch of each if-else statement is always

run, so you may create a scenario where the

two sets “fight” each other.

MULTIPLE CONT…

 In this example, if one

of the touch sensors is

pressed, the rightMotor

will be turned on in one

if-else statement, and

immediately turned off

in the other.

MULTIPLE FIX…

 This can be

corrected by

embedding the

second if-else within

the else branch of

the first, so that it

only runs if the first

condition is false.

IF-ELSE SHORTHAND

 An embedded if-else can also be represented as an

else if:

STOP HERE

AND DO THE

NINTH TEST!

 Use this information to write a multiple If-Else

statement.

