Automation and Robotics

TESTBED PROGRAMING

[A

/

%

oy

Ll s
ROBOTC for
VEX Corter

¢ File Edit View Robot Window Help

FE@

Data inthe Function Library s not

available untl user program has
|been compiled. 1t is cumently empty.

ROBOTC 3.0 introduces a new and improved way of managing your ROBOTC software, designed to simplify the process of
__ keeping all of your software up-to-date while minimizing the number of downloads and installations you must perform!
he instructions on adding additio R C plat

Need help activating ROBOTC using a Building License? Click h

To all ROBOTC for CORTEX and PIC users:

If you are currently using a 2.x version of ROBOTC for CORTEX and PIC, please remember that an upgrade to ROBOTC for CORTEX and
PIC 3.x is FREE! Just use your existing License ID and Password in the new software. If you have any questions, please email us at
support@robotc.net.

Latest News: 6558

New Robot Virtual World: Operation Reset!
Posted on Friday, November 30th, 2012

The Robot Virtual World team is thrilled to announce their latest level pack: Robots to the Rescue —
Operation Reset.

Robots to the Rescue - Operation Reset is the third version of our virtual world set in a crystal mining colony
on Planet H99. An intergalactic storm has knocked out all of the systems in the colony, and it's up to you to

Latest Version
54 - Nov

Driver Files:

64-bit

rial Cable FAQ

Resource Links:

ET UP ROBOT

X PIC

PLATFORM TYPE

First you select the platform type so that you

can use Natural Language
.go'ab

File Edit View | Robot | Window Help

Compile and Download Program FS [‘ H S P @, Motorand
Open File Save Fix Formatting 3
#- ~Control Structur(¥ Compile Program £ ,j\ [~] I' /ﬁ ﬁ") Sensor Setup
+- Display - -
& Math VEX Cortex Communication Mode P | Prachicedc
ama 1f1 2 el, "GIT Testbed")
L. Mot Cosiges Target ’ ‘:‘m'a ‘cortzg(StardisrdMod 1 G . es’_ Ae i. :
*11!Code automatically generated by 'ROBOTC' configuration wiz
+- Natural Language
& Sensors Debugger Windows ’ T
3 S?uf‘d Advanced Tools }
+- Timing Rk - s
- VEX Remote Cont| Platform Type P || o] vex20 cortex
Motors and Sensors Setup VEXIQ
7
Download Firmware ’ VEX Robotics) | q VEX 2.0 Cortex
i 11 VEXIQ
12] Natural Language PLTW
13 Natural Language 2.0 speed) ;
14
15
16 if(SensorValue (bumpSwitch)==1)
17 {
ig startMotor (leftMotoxr, 100);
19 stopMotor (rightMotor):;
20)
21
-~ e ICamaneotya T 1T sones = Cora = rodn) s |

VEX CORTEX COMMUNICATION MODE

Choose USB only

File Edit View VRobot‘l Window Help
i | Compile and Download Program F5 [— e H = w ¥ _—
@#)- Display
- Math l VEX Cortex Communication Mode } ‘ VEXnet or USB
2 n I‘T b dll A
@) Motors Compiler Target ’ . USB Only JiMOdEI ud'l‘b’fesf : -..J
¥ Yy generate y 'ROBOTIC'
#)- Natural Language — = , } Competition (VEXnet)
%) Sensors Debugger Windows L g
5 S d it speed;
T s Advanced Tools }
#- Timing 1sk main()
#- VEX Remote Cont Platform Type }
Motors and Sensors Setup
repeat (forever)
Download Firmware ’ ¢
S 11 speed= (SensorValue (potentiometer) /32);
12
13 startMotor (rightMotor, speed):
14
15
16 if(SensorValue (bumpSwitch)==1)
17 {
8 startMotor (leftMotoxr, 100);
19 stopMotor (rightMotor) ;

DOWNLOAD FIRMWARE

The first time we connect to our cortex we need
to make sure they have the updated firmware.
This is a two step process. Step 1

RO =

File Edit View : Robot [Window Help

[7] Compile and Download Program Fs | | il l;gl_' [e ¥ = @ Motor and T | oy
#- ~Control Structur| 8 Compile Program 7 - petle ' /. Fix Foanatting w " ') Sensor Setup ! W Oownload | =V Po
4 Display ———— — —— — -

+ Math VEX Cortex Communication Mode] Lo

gma ¢ 5 - - -] "GT Test o

+ Motors Compiler Target | 2 i -»,,.:Or“._‘fi_s:?fdf’?_éﬂfé:fiﬁ_:T.. ez, SR L o

+ Natural Language ey GENSRATEE DY -y, CROEanEaeon G

+ Sensors Debugger Windows ’ F——

¥ wand Advanced Tools p

#- Timing Lok -maini

4. VEX Remote Cont| Platform Type ’

Motors and Sensors Setup
d L nr o merme)
Download Firmware Automatically Update VEX Cortex i
o 11 Automatically Update VEXnet Joystick ifrl /32):

fa Manually Update Firmware P | ROBOTC Firmware |
;4 Master CPU Firmware ’ Standard File (CORTEX_V4_25.BIN)
15 VEXnet Joystick Firmware ’ Last File Downloaded (CORTEX_V4_25.BIN)
16 if(SensorValue (bumpSwitch)==1] — w
17 f
ig startMotor (leftMotor, 100)
19 stopMotor (rightMotor)
20)
-~

DOWNLOAD FIRMWARE

The first time we connect to our cortex we need
to make sure they have the updated firmware.
This is a two step process. Step 2

ROBO — e -
File Edit View | Robot | Window Help
| = ¥ \ 1 r 2 |1 | [[
Compile and Download Program F5 - R | |k * @ Motor and | § Femware =,
: o 3 Open Fie H Save ||), FxFomatting . | =
31 ~Control Structur| @' Compile Program E7 | - ! | * ") Sensor Setup | | I Download . Vv
+- Display actice2.c® | Disassembly
4 Math VEX Cortex Communication Mode ’ PRciceLc DR
bragma config(Stan Model, "GIT Testbed"
Motors Compiler Target } = R o df’?d‘ @ iy g s * ya
“!!1Code automatically generated by 'ROBOIC' configuration wizard ')
- Natural Language
. Sensors Debugger Window ’
S d it speed;
T ‘.’"7‘ Advanced Tools)
g Timing 15k main|()
+1 VEX Remote Cont! Platform Type ’
Motors and Sensors Setup
. | = wanasr { favaraw)
Download Firmware ’ | Automatically Update VEX Cortex
~ris 11 g | Automatically Update VEXnet Joystick [*X) /32) :
= ¢ . N EOR _—— e x ‘
f‘; Manually Update Firmware ’ ROBOTC Firmware ’ Standard File (VEX_Cortex_1032.hex) |
;,3 ' g =1 Master CPU Firmware ’
1 VEXnet Joystick Firmware ’
16 if(SensorValue (bumpSwitch)==1, S ——
17
i8 startMotor (leftMotoxr, 100)
19 stopMotor (rightMotor) :|
N !

OPEN SAMPLE PROGRAM

You need to locate PLTWtemplate - go to open
SAMPLE program.

Immediately Save As “hame” to your AR folder

'G"Open '.) - ' ' -
va « SamplePrograms » VEX2 » PLTW v | vy | l Search PLTW
Organize v Newfolder S =« O (
. Downloads * Name ’ Date modified Type

(& Dropbox (Mac)

l | PLTWtemplate - Backup.c 5/20/1512:18 PM C File
| Recent Places . .
__ PLTWtemplate.c 5/20/1512:18 PM C File
%# Dropbox
4 Libraries =

5| Documents

fJW Music

R RS s e

PLTW TEMPLATE

Testbed.c | PLTWtemplate.c |

1

Wwom =] o oo L R

N N R R ey
o T

oy -

%]
s V)

| L N
L ka2

Top comment section for

Iiect Title: students to fill their

Team Ngmbers: personal information, as
Date: well as program planning
Section

Task Description:

work.

Beginning and end
of a multi-line
comment

Pzeudocode -

&

task maini()

S Program begins

Section between curly braces is
designated for the actual program.

Top
comment
section for
student
information

After
task main ()
IS the code.

Use orange USB cable to connect your cortex to
the computer.

Turn up the sound and make sure you get “the
bonk” when you plug it in. Make sure it is off
when you connect It.

Then turn cortex on.

CHEC

» Check your wiring guide to make sure all your
Sensors tsno s

. Line Follower

H Potentiometer
arein - | |
" 4 \
the right O
places. —
—— . Claw Motor
. Limit Switch . . Right Motor
+_Bump Switch ’ . Left Motor._ .
b ¢ : ‘
s f 3
/ .
/ !
¥ en .
L ; { - ——
=X |
- [
« Green LED A" _—
Aee

WL s

MOTORS

All our motors are VEX
393 two-wire motors

Two-wire motors can be
plugged directly into
MOTOR ports 1 or 10 on
the Cortex

2-9 need a Motor
Controller wire

126 is full speed - 63 is
half speed

CHECK AND DOUBLE CHECK...

Motors and Sensors Setup -

[

Standard Models | Motors | VEX 2.0 Analog Sensors 1-8 | VEX 20 Digtal Sensors 1-12]
Standard Robot Model Corfiguration
f GTT Testbed -

uration

Model Image

Model Description
Sensor Ports:

inl = lineFollower
in2 potentiometer
dgtll limitSwitch
dgtl2 = bumpSwitch

dgtli2 = green LED

Motor Ports:

portl = clawMotor
port2 = rightMotor
port3 = leftMotor

Motors and Sensors Setup

Serial Ports | Motors | VEX 2.0 Analog Sensors 1-3 ‘VEXQGDigita\ Sensors 1-12

Port Name Type

|I\HEF0H0WET [Lme Follower

|Pulemiumemer [Putenhcmeter

[Nc Sensor

[No Sensor

[No Sensor

[Nc Sensor

|
|
|
| [Nc Sensor
|
|

[Nc Sensor

Motars and Sensors Setup

Standard Models | Motors | VEX 2.0 Analog Sensors 1-8| VEX 2.0 Digital Sensors 112 | 12C Sensors

Port Name Type
dgtl [mitSwich] Touch =
dgti2 |pumpswitch Touch =
dgi3 No Sensor -
dgii4 No Sensor -
dgtis No Sensor -
dgtls No Sensor -

[
[
[
[
a7 | [Nosensr]
[
[
[
[

dgti3 No Sensor -
dgtis No Sensor -
dgi10 No Sensor -
dgti1i No Sensor -

dgt12 [areen VEXLED -

Go to - Robot; Motors and
Sensors Set Up; Standard
Modules; select GTT Testbed

Motors and Sensors Setup

Seiial Ports | Motors | VEX 2.0 Analog Sensors 1-8 | VEX 2.0 Digital Sensors 112

Port Name Type Reversed

portl |Claw Motor equipped M
port2 |R\gh(Mmov Motor equipped A
port3 |LeﬁMulur Motor equipped M

port4 No motor -
ports No motor A
porté No motor -

OOoOoCOoOOocOoOOoOoOoO

|
|
|
por7 | No motor -
|
|
|

portd No motor -
pord No motor -
port10 No motor v

The names of your motors and sensors follow
some basic rules

Must be all one word (leftMotor, frontLight, etc.)

Cannot contain any special characters (%, *, #,
etc.)

Cannot already be a ROBOTC “Reserved Word
(while, motor, task, left, right, etc.)

Check all your motor and sensor names to
make sure they are OK.

ROBOTC HELP

Help is extremely useful if you get stuck!

Search by topic or command - faster than
waiting for your teacher to get to you!

E o ah o d .
Window m B B
| ROBOTC Help F1 |
Show StartPage File Edit View Go Help

Built-in Yariables H:

Getting Started
ROBOTC Homepage
Deactivate ROBOTC
About ROBOTC

| SPECial nc

R <
B <
+®
,_:_,[:[j_rl

@ Installation Help

Contents Igdexl Search

Getting Started
ROBOTC Interface
ROBOTC Debugger
ROBOTC Functions

% Battery and Power
% Control Structures
% Debug

% Dizplay

% IF1 Competition Control
£] Math

% Mizcellaneous

% Motors

EEI--@ Remote Control
EEI--@ SEN=0rs

@ ROBOTC for VEX Cortex and PIC - Display

The IFI VEX controller supports a serial LCD panel (2 lines, 16 characters per lir

ROBOTC has functions for outputting data to this LCD panel

clearlCDLine (nLine) ;!

Clears the indicated line of the VEX LCD to blanks.
Example:

clearLCDLine(1); Jf/Clears the second line of the LCD Som

dizplayLCDCenteredString(nLine, sString) :

[—

STOP HERE
AND DO THE
FIRST SET OF STEPS!

A behavior is anything your robot does:
turning on a single motor, moving forward, tracking a, navigating a maze

Three main types of behaviors:

basic behaviors - single commands to the robot (turn on a motor)

simple behaviors - simple task performed by the robot (move forward,
track a line)

and complex behaviors - robot performs a complex task (solve the
maze)

Complex behaviors can always be broken down into
simple behaviors, which are then broken down into
basic behaviors

BEHAVIORS CONT.

If | want my robot to run
this labyrinth | need to
identify the different
behaviors.

Complex - go from start
to the goal

Simple - forward, turn
left, forward turn right,
forward, turn right

7722
/li/

Basic - Start motor at
63 for 2 seconds, Stop
motor, start motor, point
turn left, stop motor...

PSEUDOCODE

Pseudocode is a regular
language of what you
plan to have the robot
do.

Almost code, but not
quite...

Your lines of Pseudocode
should be listed in the
same order as they will
appear in the Program

16
17
18
15
20
21
22
23
24
25
26
27
28

30
31

Pseudocode:

Start motor, full speed
On for 3 seconds

Sstop motor

off for 10 seconds
Start motor, 1/2 speed
On for 3 seconds

Stop motor

off for 2 seconds
Reverse motor, 1/2 speed
On for 3 seconds

Stop motor

* [/

- NATURAL LANGUAGE

File Edit View Robot Window Help

asEa - I

v ¥

7 pl D!
‘ VEX Start Page | TestBed.c
e 1
SO - 2 /" =
— I Allows you to drag and
N:atural Language 4 Team Members:
[=- Robot Motion ‘ 5 Date:
- arcadeControl(verticalloystick, horizontalloystick 6 Sectichs d ro p CO d e rat h e r th a n
- backward(speed); 7 7
‘ -forward(speed); 8 - L
- lineTrackForRotations(rotations, threshold, leftSe| 9 Task Description: typ I n g It a | I yo u rse |f
.. lineTrackForTime(trackTime, threshold, leftSensc| 10 -
- moveStraightForRotations(rotations, rightEncode| 11
- moveStraightForTime(seconds, rightEncoderPori 12 Pseudocode:
. pointTurn(direction, speed); i3 CO m m O n CO m m a n d S
stopo; 14 hat'
- swingTurn(direction, speed); 15

. SEt:;nkControl(righﬂo)’stick, leftloystick, threshold) 31{‘; fask main() St O r e d | n Fu n Ctl O n Ll b r a ry

8
(=]

| .. robotType(type); | 8

=- Movement = 20 L 3
s Saves time, and is a lot
- startMotor(motorPort, speed); 22 ' y
. stopMotor(moterPort); 23

easier than remembering

- turnFlashlightOn(flashlightPort, brightness);
- turnLEDOff(digitalPort); " .
s all the rules for writing
=- Until

- untilBump(senserPort, delayTimeMS);
.. untilButtonPress(button); C O d e
.. untilDark(threshold, sensorPort); = - .
- untilEncoderCounts(distance, sensorPort);
- untilLight(threshold, sensorPort); ‘ - =
- untilPotentiometerGreaterThan(position, sensorf-

- untilPotentiometerLessThan(position, senscrPori
- untilRelease(sensorPort);

File "TestBed.c" compi

... untilRotations(rotations, sensorPort);
.. untilSonarGreaterThan(distance, sensorPort);
.. untilSonarLessThan(distance, sensorPort);

MOVEMENT

Commands that allow

{5 -

you to control individual

= Natural Language

m Oto rS -- Robot Motion

- Setup

|_=_| Movement

setServo(servoPort, position);
startfotor{motorPort, speed);
stopMotor{motorPort);

- Special

- Until

- Wait

SPECIAL

ctun Library * 0 X
o Commands that control

EI Matural Language

& Robot Motion the more unlque VEX

- Setup

-- Movement i
l_f_|--S:peciaI Hardwa re 1 LED S
i turnFlashlightOff(flashlightPort);
é----turnFIashIighth{fIashlightF‘urt, brightness);
- turnLEDOFf(digitalPort);

.. turnLEDOn(digitalPort);

- Until

- Wait

UNTIL

Commands that allow you
to create behaviors where
the robot acts “until” a
certain event

DON’T use Button Press

NTIL touch-sends a 1
Nen sensor pressed in

U

W

UNTIL bump-sends a 1
when sensor Is pressed in
AND released.

{5 -
=¥ _C Constructs
El Matural Language
-- Robot Motion
-- Setup
-- Movement
-- Special
- Until
- untilBurnp(senscrPort);
- untilButtonPress(button):
. untilDarkithreshold, sensarPort):
- untilEncoderCounts(distance, sensorPort);
- untilLight{threshold, sensarPort);
- untilPotentiometerGreaterThan(position, sensorPort);
- untilPotenticrneterl essThan(position, sensorPort);
- untilReleaze(senzorPort);
- until5onarGreaterThan(distance, sensorPort):
- until5onarLessThan(distance, sensorPort);

-~ untilTouch({sensarPaort):
- Wait

WAIT

Function Library

{3 -

1]

El Matural Language

-- Robot Motion

-- Setup

-- Movement

-- Special

- Unil

= Wait
wartiwaitTime]);
waitinMilliseconds{waitTime);:

Commands that wait for an
elapsed amount of time in
seconds or milliseconds

Start motor at speed 63
then put in a wait for 3
seconds to run the motor for
3 seconds

RIGHT MOTOR FOR 5 SECONDS

Starts right motor and ~ ©2s* mainll

runs it at %2 speed T

™) startMotor (rightMotor, 63):
Motor on for 5 (il __> Wwait(5.0):
seconds = E— -, StopMotor (rightMotor) ;
Stops right motor—=" 1

Task main() says “I'm
Programing now”

Code between{ and }
Everything goes in order top down.
Drag and drop - customize - run

DOWNLOAD TO ROBOT

Go to Robot; Compile and Download Program
Your code is how on your robot.

Motor and ! Fimware =" Compile ! Downloadto
Sensor Setup | | WM Download =~ Program A Robot

STOP HERE
AND DO YOUR FIRST PROGRAM
TEST BED 1

J Turn on the right motor and run it for 5 seconds at
half speed (63) then turn it off.

DIRECTION OF MOTORS

You can make motors go in reverse by going to
Robot; Motors and Sensors Set Up; then
selecting reverse for one motor.

Or you can simply type the speed as a negative
number...

Port Name ~ Type 24
port1 | |EETNIIERT [VEX29Motor w] [25 task main()
port2 |ightMotor [VEX263 Motor w | 26 -
port3 leftMotor [VEX269Motor | v 27 startMotor (rightMotor, -63):
port4 | [No motor v } 2 wait(5):;

29 stopMotor (rightMotor);

STOP HERE
SAVE AS TEST BED 2

Turn on the right motor and run it forward for 5
seconds at %2 speed (63) then turn it off.

Turn on the left motor and run it in reverse at %4
speed (94.5) for 2.5 seconds then turn it off.

Turn on both motors and run at full power (126), in
the same direction, for 7.25 seconds then turn them
Off.

TOUCH SENSORS

Plugged into Digital ports only
Pressed = 1(on) Released = O(off)

_imit Switches
Bump Switches

SWITCH PROGRAMING

You can add an UntilTouch to make the testbed
wait to start until you press the bump switch.

UntilBump will do this too, but not

UntilButtonPress

You can also add an UntilTouch to make the
testbed run until you press the limit switch

25
26
27
28
29
30
31

task main|()

untilTouch (bumpSwitch) ;
startMotor (rightMotor, -63):;
antilTouch(limitSwitch) ;
stopMotor (richtMotor):;

VEX LED

The VEX LED’s all work the same, no matter the
color.

You may name them as you like in the Digital
section of your set up

Make sure they are plugged into the extender

correctly (metal to metal) or you will short them
out =

dgtl11 [No Sensor vJ

dgti12 foreen [1] VEX LED v

STOP HERE
AND DO
TEST BED 3

Add an UntilTouch for the bump switch to turn on the
right motor forward at ¥2 speed and the LED on

Then add an UntilTouch for the limit switch to turn off
the motor and LED

POTENTIOMETER

Potentiometers are
analog sensors

They measure rotation
of a shaft between O
and ~4095

Internal mechanical
stops prevent the
potentiometer from

turning a full revolution.

Caution: Excess torque against the
internal mechanical stops (can be
caused by hand or by a VEX motor)
will cause them to wear away. The
potentiometer will continue to
function, but will have a “dead
zone” where the mechanical stops
were, where no new values are
sent.

Switching the direction the
potentiometer is facing will also
switch the direction it “counts”. For
example: counter-clockwise turns
will count O to 4095 on one side;
on the other counter-clockwise
turns will count 4095 - O.

PROGRAMING A POTENTIOMETER.,..

Use UntilPotentiometerGreaterThan to set the
positive value you want

Use UntilPotentiometerLessThan to set the
negative value you want

25 task main/()

26 {

27 tarnLEDOn (green) ;

28 untilPotentiometerGreaterThan (2048, potentiometer);
29 tarnLEDOLf (green) ;

30 startMotor(leftMotoxr, &3);

31 untilPotentiometerlessThan (2048, potentiometer):;

32 stopMotor (leftMotor) ;

STOP HERE
AND DO
TEST BED 4

J Turn on the green LED until the potentiometer value is
greater than 2048. Then the green LED should turn off,
and the left Motor should turn on until the
potentiometer is less than 2048.

LINE TRACKING "7

“Active” Analog Light Sensor

Sends out a IR beam, and measure how much
light is reflected back

Each reads values between O and 4095

Usually mounted as a set of 3 ¥4 to 1/8 inches
off what it is measuring '

You have to calculate a
threshold that allows it to
distinguish light from dark.

THRESHOLDS

Ind

A threshold is a value (usually halfway) between
two extremes (light/dark)

Open Sensor Debug Window - make sure that
the refresh rate is set to Once

Place a white surface above the line tracker
and record the value displayed in the window.

e Sensor Type Value

ini ineFollowerRIGHT Line Follower 3020
ind lineFollowerCENTER Line Follower 3017
in3 lineFollowerLEFT Line Follower 3021

ind

ind Mo Sensor 255

THRESHOLDS CONT...

Place a black surface above the line tracker
and record the value displayed in the window.

Add these two values and divide by 2
(Light value + Dark value) + 2 = treshold

Use UntilDark for no
light and UntilLight
for light

Note that your threshold will be
differentthan the example!

25
26
27
28
29
30
31
32
33
34
35

task main|)

untilDark (1510, lineFollower):;
startMotor(clawMotoxr, 20);
waitInMilliseconds (500) ;
stopMotor (clawMotor) ;
untilLight (1510, lineFollower):
startMotor (clawMotor, -20);
waitInMilliseconds (500) ;
stopMotor (clawMotor) ;

STOP HERE
AND DO
TEST BED 5

1 Open and close the claw by covering and uncovering
the line follower.

WHILE LOOPS

A while loop Is a structure that allows a section
of code to be repeated while a condition is true
or not true.

While loops check to see if the “condition” is
true. If it Is it repeats the loop. When the
condition is not true it goes to the next step
after the loop.

A loop that would last forever would be
while(1==1) since 1 is always equal to 1.

CONDITIONS

ROBOTC . i

Symbol Meaning Sample comparison Result

50 == 50 frue

”iS eqU{]lTD” ED == lCICI fﬂlSE

100 == 50 false

| 50 '= 50 false

IS ﬂ?*f—‘ﬂ”“' 50 !'= 100 true

o)

100 !'= 50 true

50 < 50 false

“is less than” 50 < 100 frue

100 < 50 false

. 50 <= 50 true

is less ’rhurJ 50 <= 100 true
or equal to

50 <= 0 false

_ 50 > 50 false

Is greater 50 > 100 false

than”

100 > 50 true

50 >= 50 tfrue

Greater than 50 >= 100 false
or equal to

100 >= 50 true

PROGRAMING A WHILE LOOP

Put the while loop after the task main() command

Make sure you make an { after the while then a } at
the end

Two opens = two closes

25 task main|)

26 {

27 while(l==1)

28 {

29 untilPotentiometerGreaterThan (2048, potentiometer):;
30 startMotor (rightMotoxr, 63):;

31 untilPotentiometerLessThan (2048, potentiometer):;

32 stopMotor (rightMotor);

33]

STOP HERE
AND DO
TEST BED 6

J Add a continuous while loop (1==1) to

J UntilTouch for the bump switch to turn on the right
motor forward at ¥2 speed and the LED on

d Then an UntilTouch for the limit switch to turn off the

motor and LED

IF STATEMENTS - ADVANCED

When the robot reaches an IF statement in the
orogram, it evaluates the “condition” contained
oetween the ()

f the “condition is true, any commands
petween the braces are run

f the “condition” is false, those same
commands are ignored

Similar to a While loop, but the code does NOT
repeat.

IF-ELSE STATEMENT

This is an expansion of the |F statement.

The IF section still runs the commands inside
the ()

The ELSE allows for specific code to run only
when the condition is false

IF or ELSE is always run...

STOP HERE
AND DO THE
EIGHTH TEST!

d Add an IF statement to turn of the LED if the bump
switch is pressed and leave it off if it’s released.
Loop it forever (While...)

J Now try converting the IF to an IF-ELSE statement
that runs the right motor if the bump is pressed, Else
the light is on and no motor runs...

MULTIPLE IF-ELSE STATEMENTS

Be careful when using two separate if-else

statements, particularly when they are used to
control the same mechanism.

One branch of each if-else statement is always

run, SO you may create a scenario where the
two sets “fight” each other.

MULTIPLE CONT...

In this example, if one
of the touch sensors is
pressed, the rightMotor
will be turned on in one
If-else statement, and
Immediately turned off
In the other.

while(l == 1)

{

h

if (SensorValue [bumper]

{

startMotor (rightMotor, €3);
h
else
{
stopMotor (rightMotor) ;
h
if(SensorvValue[limit] == 1)
{
startMotor (rightMotor, -63);

h

else

{
stopMotor (rightMotor) ;

b

MULTIPLE FIX...

while(l == 1)

{
if (SensorvValue [bumper] == 1)
i

i

StaItMGtGIErightMGEQEf”ﬁjj}

i
else
{ &
if(SensorvValue[limit] == 1)
{
startMotor (rightMotor, -63);
h
else
{
stopMotor (rightMotor) ;
h

h
! &=

This can be
corrected by
embedding the
second if-else within
the else branch of
the first, so that it
only runs if the first
condition is false.

|IF-ELSE SHORTHAND

An embedded if-else can also be represented as an
else if:

while(l == 1)
{
if (SensorValue [bumper] == 1)
{
startMotor (rightMotor, &3);
h
else i1f(Sensorvalue[limit] == 1)
{
startMotor (rightMotor, —-63);
h
else
{
stopMotor (rightMotor) ;
h
h

STOP HERE
AND DO THE
NINTH TEST!

J Use this information to write a multiple If-Else
statement.

