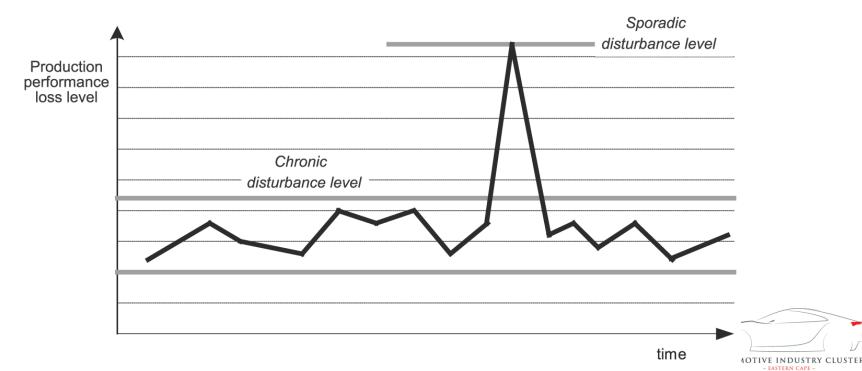


AUTOMOTIVE INDUSTRY CLUSTER TPM TRAINING MATERIAL KOBETSU KAIZEN Step 0 - 1

15th November 2012

<u>GM</u>

Kobetsu Kaizen is a Japanese word for focused improvement, which means prioritising the most important losses and eliminating them. These are individual improvements and focus on losses, which when eliminated, gives significant improvement in terms of:


Focused Ir	nprovement	Business
Maximize OEE	Eliminate EE losses through continuous improvements and sustained gains	Performance Business Customer
Reduce Transformation Cost	Improve Productivity Reduce Process Waste	Objectives Requirements

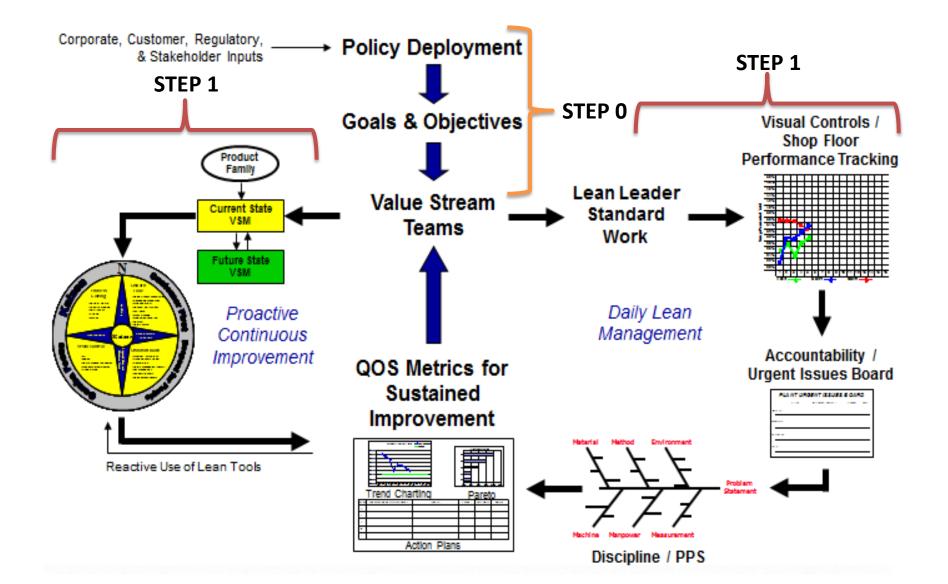
Loss is identified as wastage of material, money, time and energy. Some of the reasons for the wastage is:

- Whenever an operation exceeds its standard timing
- Whenever an operator is intercepted
- Whenever a non-value adding operation is performed
- Whenever a machine is idle when it should have given the rated output
- When a machine and or man do not give the rated output
- Consuming additional time, money and energy than the specified norms.

- Low level of concern in the manufacturing sector
- Effort for failure analysis are in sufficient
- The maintenance system and its operation are unsatisfactory BG
- Predictive maintenance efforts are weak

STEP 1: Understand and Categorise the potential losses

that could occur	r
------------------	---


	LOSSES	CATEGORY
1	Failure losses - Breakdown loss	
2	Setup/adjustment losses	
3	Cutting blade loss	
4	Start up loss	Losses that impede equipment efficiency
5	Minor stoppage / idling loss	Losses that impede equipment enterency
6	Speed loss - operating at low speeds	
7	Defect / rework loss	
8	Scheduled downtime loss	
9	Management loss	
10	Operating motion loss	
11	Line organisation loss	Losses that impede human work efficiency
12	Logistic loss	
13	Measurement and adjustment loss	
14	Energy loss	
15	Die, jig and tool breakage loss	Losses that impede effective use of production resources
16	Yield Loss	

7 STEPS FOR KOBETSU KAIZEN ACTIVITIES

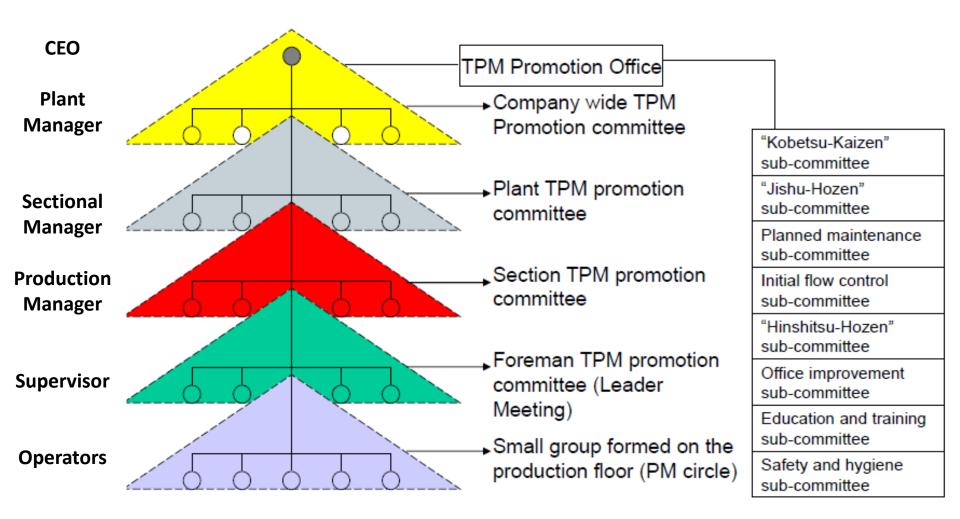
Step	Details	Activity	
Step 0	Select the improvement	1. Select and register the topic	
	topic	2. Form project teams	
		3. Plan activities	Todays
Step 1	Understand the situation	1. Identify the bottleneck process	discussion
		2. Measure failures, defects and losses	
		3. Use baselines to set targets	
Step 2	Expose and eliminate	1. Thoroughly study and expose abnormalities	
	abnormalities	2. Restore deterioration and correct minor flaws	
		3. Establish the basic equipment condition	
Step 3	Analyse causes	1. Stratify and analyse causes (Ishikawa and FMEA)	
		2. Apply analytical techniques (why-why)	
		3. Conduct experiments, apply specific technology,	
		fabricate prototypes	
Step 4	Plan improvements	1. Make improvement proposals	
		2. Compare cost effectiveness of alternate proposals	
		Check for possible adverse effects and advantages	
		(Design FMEA)	
Step 5	Implement Improvements	1. Carry out improvement plan	
		2. Perform tests, trial runs	
		Provide instructions to work on improved equipment,	
		operating conditions	
Step 6	Check results	1. Evaluate results over a set period (SPC)	
		2. Check whether targets have been achieved	
STEP 7	Consolidate gains	1. Prepare inspection and work standards	
		2. Make drawings and feed information to management	AUTOMOTIVE INDUSTRY CLUSTER - EASTERN CAPE -

KOBETSU KAIZEN JOURNEY

STEP 0 SELECT **IMPROVEMENT** TOPIC

- A senior level person is nominated as the chairman of the pillar
 - Exposure to plant process activities and equipment
- Members that make up a crossfunctional team of the subcommittee include:
 - MD/CEO
 - Production
 - Production Engineering
 - Maintenance
 - System Engineering
 - Quality Assurance
 - Design and development
 - Operators

- A Kaizen team is generally made up of six to eight members not including the leader and co-leader.
- Be clear about whom you need on the team.
- Include people who operate the work process being improved, both experienced and new employees.
- Be certain that the proposed team has people who are knowledgeable about the machines and systems.



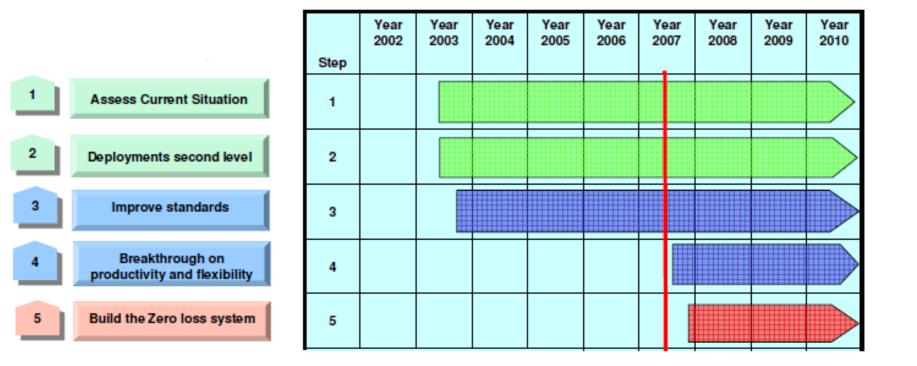
- A representative of every organisation should be directly involved in the problem
- Include a customer representative when the event may have an immediate impact on the customer
- Similarly, include a supplier representative when the event may affect products or services requested from the supplier.

-

Automotive Industry Development Centre

Kaizen Planning: Facilities

- Pre and post event:
 - Need a quiet area for team discussions/strategizing
- Hands-on event:
 - A quiet area for team discussions/strategizing near the work area
 - A training area may be required at various times during the event
 - An area designated for breaks
 - Supply drinks and snacks if possible
 - An area for the closing presentations

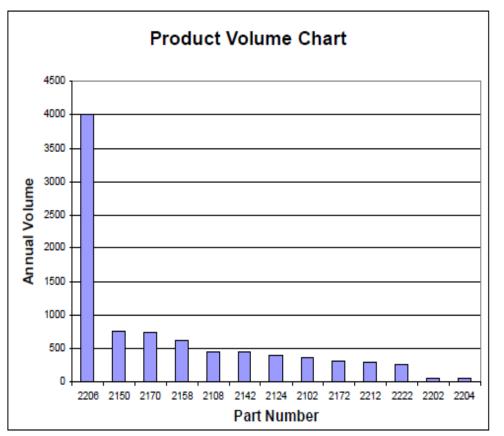

- Once the 16 losses identified the team will need to focus on the major losses and analyse the current processes that are critical
- Once the major losses have been identified the team will need to agree on a developed master plan in order to successfully manage the Kobetsu Kaizen activities.

STEP 0 ACTIVITY 3- METHODOLOGY AND MASTER PLAN FOR KOBETSU KAIZEN

Task Name	Duration Start			Qtr 4	2013	Qtr 1	2013	Qtr 2	2013	3 Qtr 3	3	2013 (Qtr 4	
					Nov Dec	Nov Dec Jan I		r Apr I	/lay Jur	n Jul	Aug	Sep	Oct N	ov Dec
STEP 0 - Select improvement topic	40 days	Mon 12/11/26	Fri 13/01/18											
Select and register topic	20 days	Mon 12/11/26	Fri 12/12/21											
Form project teams	10 days	Mon 12/12/24	Fri 13/01/04	2		h								
Plan Activities	10 days	Mon 13/01/07	Fri 13/01/18	3		۵,								
STEP 1 - Understand situations	60 days	Mon 13/01/21	Fri 13/04/12	1		₩,		•						
Identify bottleneck process	20 days	Mon 13/01/21	Fri 13/02/15	4		Č								
Measure failures, defect and other losses	30 days	Mon 13/02/18	Fri 13/03/29	6				h						
Use baselines (Bench mark) to set targets	10 days	Mon 13/04/01	Fri 13/04/12	7				۵,						
STEP 2 - Expose and eliminate abnormalities	70 days	Mon 13/04/15	Fri 13/07/19	5				—			1			
Thoroughly study and expose abnormalities	40 days	Mon 13/04/15	Fri 13/06/07	8										
Restore deterioration and correct minor flaws	15 days	Mon 13/06/10	Fri 13/06/28	10					Č	h				
Establish basic equipment condition	15 days	Mon 13/07/01	Fri 13/07/19	11						Č.				
STEP 3 - Implement Improvement	120 days	Mon 13/07/22	Fri 14/01/03	9							,		_	_
Stratify and analyse the causes	20 days	Mon 13/07/22	Fri 13/08/16	12						t				
Apply analytical techniques	40 days	Mon 13/08/19	Fri 13/10/11	14							ť		h	
Conduct experiments, apply specific technology, fabricate prototypes	60 days	Mon 13/10/14	Fri 14/01/03	15										

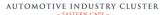
AUTOMOTIVE INDUSTRY CLUSTER

STEP 1 UNDERSTAND SITUATION

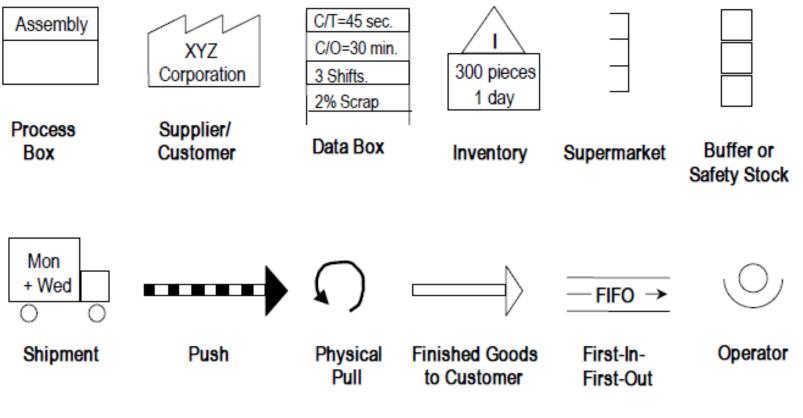

- Understand the shop floor
- Understand the detailed processes
- Use data collection tools and techniques such as:
 - VSM based on the critical area identified by the KK team
 - Capacity and Line Balancing Studies
 - Time and Motion Studies
 - SMED Analysis

STEP 1 ACTIVITY 1- IDENTIFY THE BOTTLENECK PROCESS

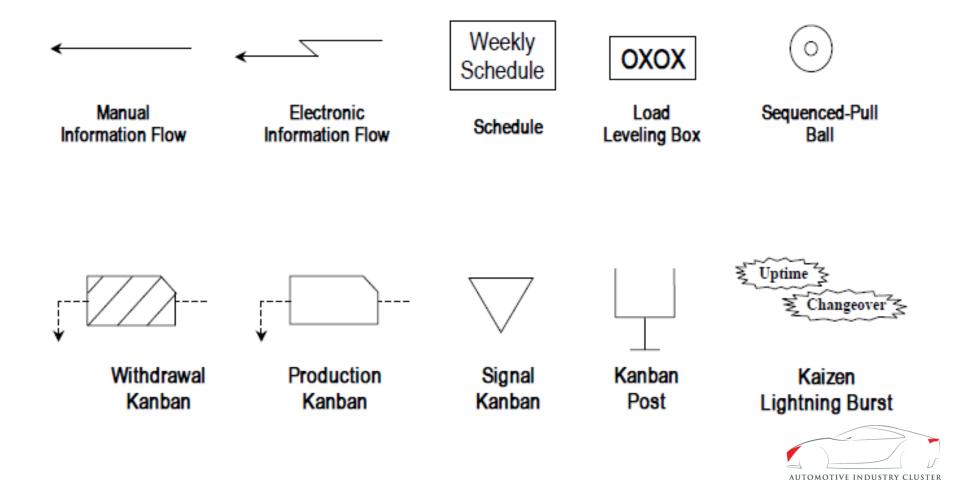
- Identify product categories
- Prioritise volume numbers based on sales value
- Conduct the studies

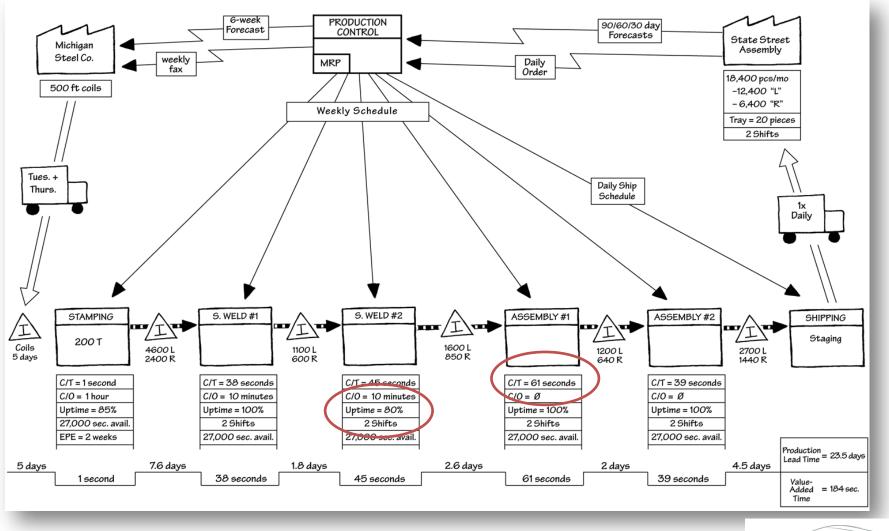

STEP 1 ACTIVITY 1- IDENTIFY THE BOTTLENECK PROCESS

Automotive Industry Development Centre


This study should typically take between 1 - 2 hours depending on the duration of the process

Supplier:			Part Name:		Part No.:			Annual Volume:			
Operation	Description	Cycle Time(min)	Change over (min)	Available Minutes per day	Batch size	Vendor	Location	Distance from plant (Kilo- metres)	Method of Transport	Lead time (days)	
6666	Total cycle time	0									
0000	Total change overtime		0								
Automotive Industry Development Centre	Total available minutes Total lead time									0	
				- ÷, I							


Material Flow Icons


Information Flow Icons

STEP 1 ACTIVITY 1- IDENTIFY THE BOTTLENECK PROCESS

Automotive Industry Development Centre

AUTOMOTIVE INDUSTRY CLUSTER

STEP 1 ACTIVITY 1- IDENTIFY THE BOTTLENECK PROCESS

	MANUFACT	JRING	WASTES I	DENTIF	ICATIO	N SHE	ET			
Automo	otive Industry Development Centre	Scrap/Rework	Over (Under) Production	Inventory	Motion	Processing	Transportation	Waiting	Underutilised People	55
)							
		1								

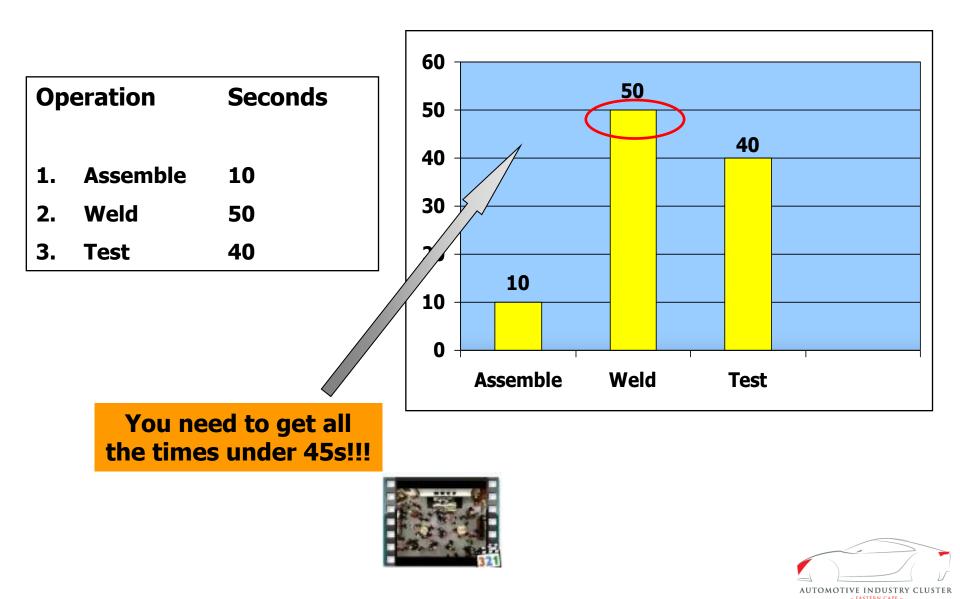
Method 1 : You balance your line to TAKT time

This means that work is balanced to customer demand – so you provide the customer with what he wants, not more and not less

Method 2 : You balance the work between the operators

This means that work is balanced amongst operators – the work has been equally spread out

TAKT TIME


WORKING TIME

CUSTOMER DEMAND

Working time = time in a day less breaks and planned downtime only

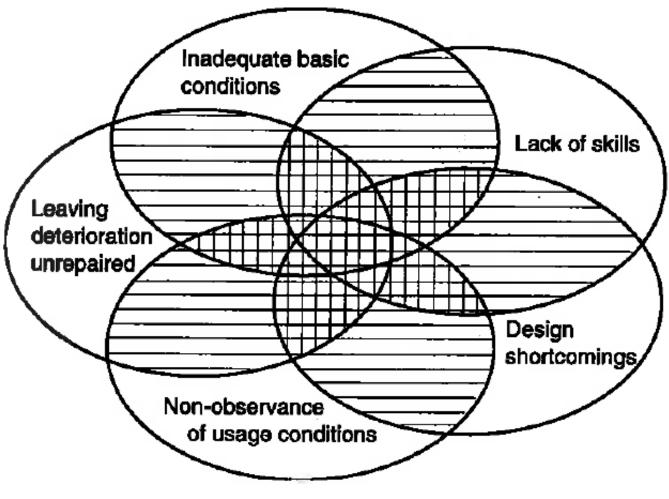
STEP 1 ACTIVITY 1- IDENTIFY THE BOTTLENECK PROCESS

AIM:

- An important part of failure reduction is to <u>eliminate simple failures</u> <u>identified by the bottleneck</u> <u>process.</u>
- Difficult to remedy usually include <u>breaking of gears</u> and <u>breakdowns</u> <u>of a control system</u> due to unknown causes.
- Simple breakdowns usually include <u>sensor dislocation and line</u> <u>breakages.</u>
- About 70% of the total failures are simple and the remaining 30% are difficult failures

How To Enable A Change Process?

Objective:


- To highlight weaknesses of equipment
- To highlight weaknesses of plant management
- To clarify priorities on countermeasures
- To learn tasks that support Jishu-Hozen (training, execution and detection)

Responsibility	Locations where failures occur	Causes of failures				
	Detector/sensor	Basic conditions are not kept				
	Driving system					
	Lubricating system					
Failures that	Bolts and nuts	Leaving deterioration unattended				
can be	Pneumatics					
prevented	Jigs/tools	Shortage of skills				
through Jishu-	Electric systems					
Hozen (70%)	Electric/ electronic equipment	Non observance of use conditions				
Failures that						
cannot be	Electric/ electronic equipment	Leaving deterioration unrectified				
solved except						
through	Driving system	Inherent design shortcomings				
maintenance	Hydraulic systems					
and		Shortage of skills				
Production	Lubricating system					
engineering						
Departments		Basic and operating conditions				
(30%)	Electric and air pressure systems	are not kept				
	Detectors/jigs/ tools					

Refer to page 75 Kobetsu Kaizen – Loss Sheet

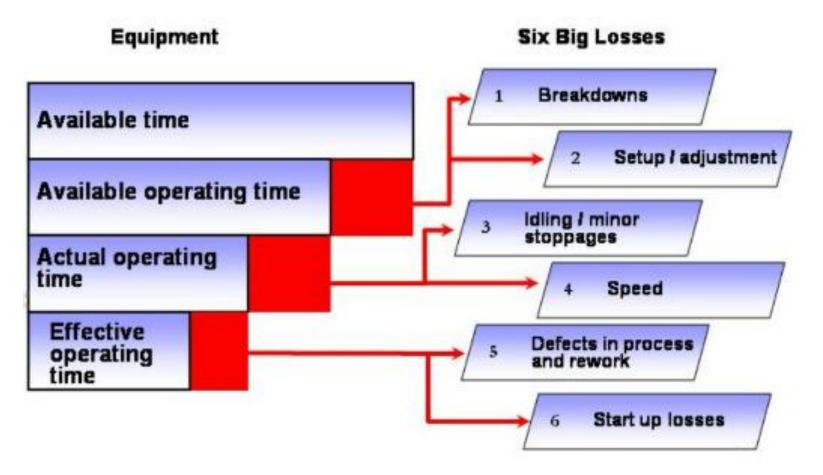
CLASSIFICATION OF FAILURES MEASURE

Automotive Industry Development Centre

• The type of prioritisation is certain to change as the level of Jishu-Hozen improves.

Table 3.1 Matters to Be Controlled in Jishu-Hozen

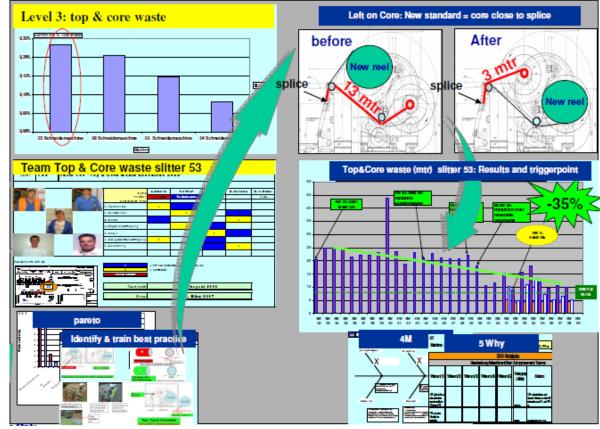
Element	s Insufficiency of basic	c conditions				
	Non-observance of u	use conditions				
	Leaving deterioratio	n unattended				
	Skill shortage					
	Inherent design sho	rt comings				
Causes	Bolts and nuts	G		G	М	L
	Driving systems	G	G	G	Μ	L
	Lubricating systems	G	М	G	Μ	
	Hydraulic systems	G	М	G	Μ	
	Pneumatic systems	G	М	G	Μ	L
	Electric equipment	G	L	G	Μ	
	Controls	G		L	М	
	Detectors	G	L	G	М	L
	Jigs/tools	G	М	G	М	


G: Great importance: M Medium-level importance; L: Little importance

CLASSIFICATION OF FAILURES

Automotive Industry Development Centre

WHEN MEASURING ALWAYS REMEMBER...

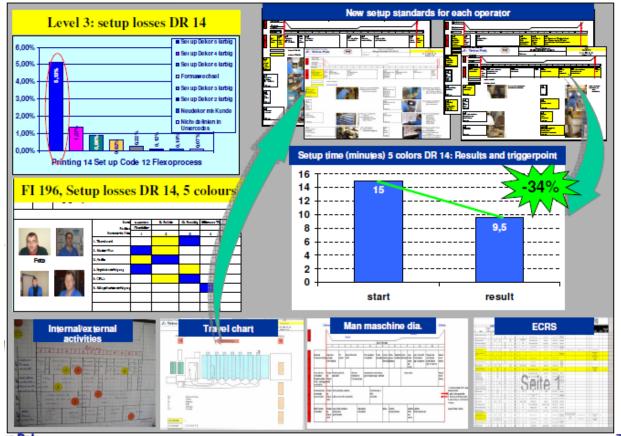

STEP 1 ACTIVITY 2- MEASURE FAILURES, DEFECTS AND OTHER LOSSES

Automotive Industry Development Centre

Equipment Failure

Eliminating unplanned downtime is critical to improve OEE. Other OEE factors cannot be addressed if the process is down. It is not only important to know how much down time your process is experiencing but also source or reason for the loss. Reflect to loss sheet on KK p. 75

Refer to pages 12 & 13 Kobetsu Kaizen – Equipment Failure Losses

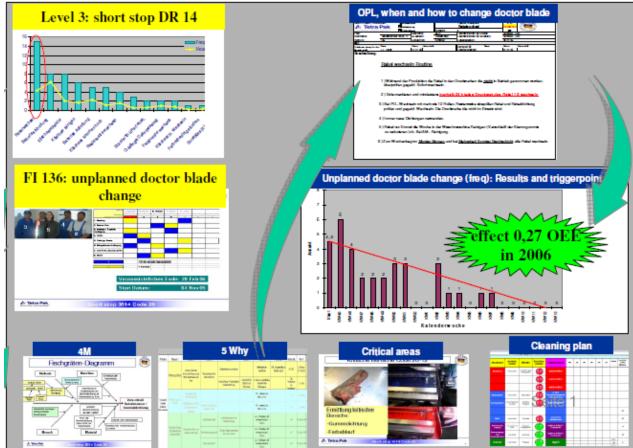

STEP 1 ACTIVITY 2- MEASURE FAILURES, DEFECTS AND OTHER LOSSES

Automotive Industry Development Centre

Setup and Adjustment Losses

Setup and adjustment time is generally measured as the time between the last good parts produced before setup to the first good parts produced after setup. This often includes substantial adjustment and/or warm-up time in order to consistently produce parts that meet quality standards.

Refer to pages 15 - 23 Kobetsu Kaizen – Setup and Adjustment Losses


STEP 1 ACTIVITY 2- MEASURE FAILURES, DEFECTS AND OTHER LOSSES

Automotive Industry Development Centre

Minor Stops and Reduced Speed Loss

Minor stops and reduced speed are the most difficult of the six big losses to monitor and record. Cycle time analysis should be utilised to pinpoint these loss types. By comparing all completed cycles to the idle cycle time filtering the data through a 'minor stop threshold' and 'reduced speed threshold' the current cycles can be automatically categorised for analysis.

Refer to pages 30 - 36 Kobetsu Kaizen – Minor stoppages and speed loss

AUTOMOTIVE INDUSTRY CLUSTER

Start-up Rejects and Production Rejects

Start-up rejects and production rejects are differentiated, since often the root causes are different between start-up and steady-state production. Parts that require rework of any kind should be considered rejects. Tracking when rejects occur during a shift/job run can help pinpoint potential causes, and in many cases patterns will be discovered.

Refer to pages 39 - 41 Kobetsu Kaizen – Defect and rework loss

How are Baselines Established

1. By an available and reliable existing data source

A previous implementer or government agency might have the data you require

2. Through collecting data

When no data exists, you may have to collect it prior to the project implementation

3. By starting at zero

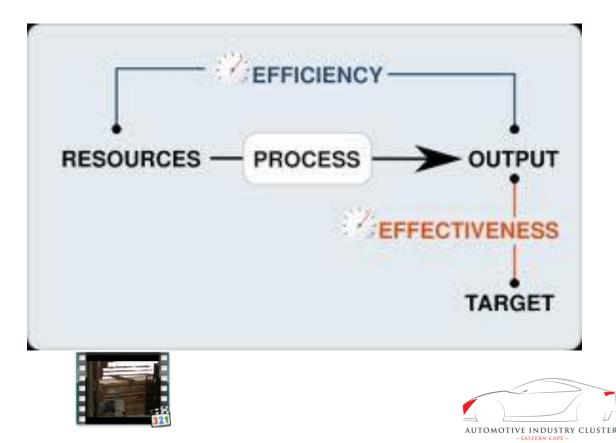
If this is a new project or if your indicator is related to a specific project activity, your baseline could start at zero

STEP 1 ACTIVITY 3- USE BASELINES TO SET TARGETS

Automotive Industry Development Centre

~ EASTERN CAPE ~

		Performance indicator s	heet Reference Sheet	:1	
Result: Obj.:					
Indicator 1:					
				Auto	omotive Industry Development Centre
		Descri	ption		
Precise Definition					
Unit of measure					
Disaggregated by:					
Justification/ Manag	gement Utility				
		Plan for a	cquisition		
Data collection met	hod :		·		
Data Source(s)					
Frequency / Timing	of acquisition				
Estimated cost of ac	•				
Responsible individ					
		Data Qua	lity Items		
Known data limitati	ons and significance:		,		
Reporting of data	0				
Notes: Baselines an	d Targets Other				
		PERFORMANCE IN	DICATOR TARGETS		
В	alance		Tar	gets	
Year	Actual	2013	2014	2015	2016
Total		Ì		Ì	
		THIS SHEET LAST U	PDATED ON : DATE		
					AUTOMOTIVE INDUSTRY CLUSTER



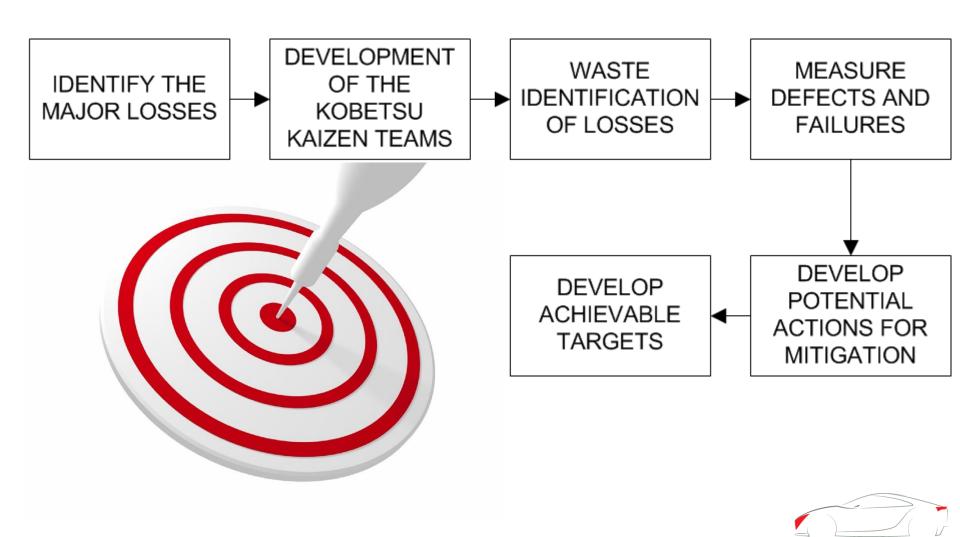
PERFORMANCE TARGETS:

- Can be expressed in quantity, quality or efficiency
- May be determined by setting final target first, then interim targets
- Can be adjusted over time

TARGETS SHOULD BE:

- Motivational,
- Ambitious,
- Realistic,
- Achievable.

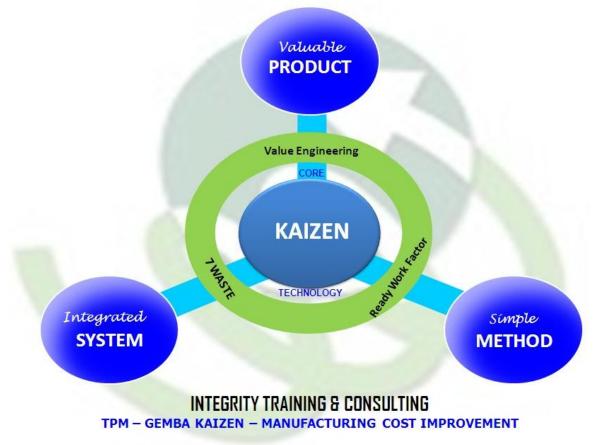
STEP 1 ACTIVITY 3- USE BASELINES TO SET TARGETS



		A 02	A 03	A 04	A 05	A 06	Quarter 1/07	T 07	T 08	T 09	T 10
OEE	Printer EE (%)	33,4	38,4	42,1	44,6	52,9	59,5	51,8	53,7	56,1	58
Maximize C	Laminator EE (%)	62,5	62,9	67,7	68,8	69,9	72,9	70,5	72,4	73,5	74,3
Mao	Slitter EE (%)	17,4	17,4	18,6	18,3	17,9	18,9	18,4	18,9	19,3	19,6
Reduce Transform. costs	Productivity (packs / FTE)	1149	1317	1344	1453	1437	1535	1369	1490	1510	1530
Red Trans co	Process Waste (%)	4,61	4,35	4,1	3,92	3,87	3,49	3,49	3,3	3,23	3,17

AUTOMOTIVE INDUSTRY CLUSTER

ACTIVITY	TIMING
Declaration to all staff – Internal newsletter, boards, reception are TPM journey	Immediate
Identification of the big losses	November 2012
Sub-committee development based on the losses identified	November 2012
Calibration Exercise	November, December & January
Plan for KK steps 0 and 1	November 2012
Step 0	December 2012/January 2013
Step 1 – Activity 1 & 2	January 2013
Next Review	29 January 2012



WAY FORWARD

Automotive Industry Development Centre

The Key to Focused Improvement is to Keep the Approach Simple

