Bernd Schröder

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

1. A differential equation of the form y' = F(y) is autonomous.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

- 1. A differential equation of the form y' = F(y) is autonomous.
- 2. That is, if the right side does not depend on *x*, the equation is autonomous.

Bernd Schröder

- 1. A differential equation of the form y' = F(y) is autonomous.
- 2. That is, if the right side does not depend on *x*, the equation is autonomous.
- 3. Autonomous equations are separable, but ugly integrals and expressions that cannot be solved for *y* make qualitative analysis sensible.

- 1. A differential equation of the form y' = F(y) is autonomous.
- 2. That is, if the right side does not depend on *x*, the equation is autonomous.
- 3. Autonomous equations are separable, but ugly integrals and expressions that cannot be solved for *y* make qualitative analysis sensible.
- 4. The slopes in the direction field will only depend on *y*.

- 1. A differential equation of the form y' = F(y) is autonomous.
- 2. That is, if the right side does not depend on *x*, the equation is autonomous.
- 3. Autonomous equations are separable, but ugly integrals and expressions that cannot be solved for *y* make qualitative analysis sensible.
- 4. The slopes in the direction field will only depend on *y*.
- 5. Solutions are invariant under horizontal translations.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

1. Values y_0 with $F(y_0) = 0$ give rise to constant solutions $y(x) = y_0$.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

1. Values y_0 with $F(y_0) = 0$ give rise to constant solutions $y(x) = y_0$. These solutions are called **equilibrium** solutions.

Bernd Schröder

- 1. Values y_0 with $F(y_0) = 0$ give rise to constant solutions $y(x) = y_0$. These solutions are called **equilibrium** solutions.
- 2. Equilibrium solutions $y(x) = y_0$ are called **stable** if and only if solutions near them converge to $y(x) = y_0$.

- 1. Values y_0 with $F(y_0) = 0$ give rise to constant solutions $y(x) = y_0$. These solutions are called **equilibrium** solutions.
- 2. Equilibrium solutions $y(x) = y_0$ are called **stable** if and only if solutions near them converge to $y(x) = y_0$. Otherwise they are called **unstable**.

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

0

Find and Classify the Equilibrium Solutions of $y' = \frac{1}{2}y(y-2)^2(y-4)$

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Bernd Schröder

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Bernd Schröder

Find and Classify the Equilibrium Solutions of $y' = \frac{1}{2}y(y-2)^2(y-4)$ $\begin{array}{c} 4 \\ y' < 0, \text{ decreasing} \\ \text{for } 2 < y < 4 \\ 2 \\ y' < 0, \text{ decreasing} \\ \text{for } 0 < y < 2 \\ 0 \\ y' > 0, \text{ increasing} \\ \text{for } y < 0 \end{array}$

Bernd Schröder

Find and Classify the Equilibrium Solutions of
$$y' = \frac{1}{2}y(y-2)^2(y-4)$$

4 + $y' < 0$, decreasing
for $2 < y < 4$
2 + $y' < 0$, decreasing
for $0 < y < 2$
0 + $y' > 0$, increasing
for $y < 0$

Find and Classify the Equilibrium Solutions of $y' = \frac{1}{2}y(y-2)^2(y-4)$ y' > 0, increasing for y > 4 $4 + y' < 0, \text{ decreasing} \\ \downarrow \text{ for } 2 < y < 4$ 2 + y' < 0, \text{ decreasing} \\ \downarrow \text{ for } 0 < y < 2 0 + y' > 0, increasing \\ \downarrow \text{ for } y < 0

Bernd Schröder

Find and Classify the Equilibrium Solutions of $y' = \frac{1}{2}y(y-2)^2(y-4)$ y' > 0, increasing for y > 44 - y' < 0, decreasing 4 - y' < 0, decreasing

Bernd Schröder

Find and Classify the Equilibrium Solutions of $y' = \frac{1}{2}y(y-2)^2(y-4)$ y' > 0, increasing for y > 44 - y' < 0, decreasing y' < 0, decreasing for 2 < y < 4 2 - y' < 0, decreasing for 0 < y < 2 y' > 0, increasing for y < 0

Bernd Schröder

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Bernd Schröder

Bernd Schröder

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Bernd Schröder

Louisiana Tech University, College of Engineering and Science

Bernd Schröder

Bernd Schröder

Bernd Schröder

Bernd Schröder

Bernd Schröder

Bernd Schröder

Louisiana Tech University, College of Engineering and Science