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THE DRASTIC PRICE REDUC-
tion in variable renewable energy, 
such as wind and solar, coupled with 
the ease of use of smart technolo-
gies at the consumer level, is driving 
dramatic changes to the power sys-
tem that will significantly transform 
how power is made, delivered, and 
used. Distributed energy resources 
(DERs)—which can include solar 
photovoltaic (PV), fuel cells, micro-
turbines, gensets, distributed energy 
storage (e.g., batteries and ice storage), and new loads [e.g., 
electric vehicles (EVs), LED lighting, smart appliances, and 
electric heat pumps]—are being added to electric grids and 
causing bidirectional power flows and voltage fluctuations 
that can impact optimal control and system operation. Resi-
dential solar installations are expected to increase approxi-

mately 8% annually through 2050. Customer battery sys-
tems are anticipated to reach almost 1.9 GW by 2024, and 
current forecasts project that approximately 18.7 million 
EVs will be on U.S. roads in 2030. With numbers like these, 
it is not unreasonable to imagine a residential electricity 
customer having at least five controllable DERs.  In future 
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electric grids, as more DERs are integrated, the number of 
active control points will be too much for current control 
approaches to effectively manage.

Imagine, for example, the San Francisco Bay Area, which 
has a large distribution system with approximately 4.5 mil-
lion customers. Figure 1 illustrates synthetic distribution 
systems of the Bay Area made from actual data that have 
been created to replicate properties of the actual systems, 
including various voltage levels and both wye and delta con-
nected circuits. What if each customer had a PV system, a 
battery energy storage system, an EV, a smart thermostat, 
and controllable lighting loads? This would amount to 
approximately 10–20 million controllable devices capable 
of producing, storing, and consuming electricity. Currently, 
there are no control systems capable of ingesting 20 million 
data streams and making real-time operation decisions.

In current large-scale grids, such as the Eastern Intercon-
nection in the United States, central station power plants pro-
vide power to loads and have on the order of 10,000 points 
of control. Current control systems work well when there are 
a limited number of active control points in the system, but 
to deal with the massive amounts of new DER technologies 
and the availability of grid measurements, a new control 
framework needs to be developed. The framework needs to 

monitor, control, and optimize large-scale grids with sig-
ni�cantly high penetration levels of variable generation and 
DERs; it needs to process the deluge of data from pervasive 
metering; and it needs to implement a variety of new mar-
ket mechanisms, including multilevel ancillary services. To 
handle this highly distributed energy future, we propose the 
concept of autonomous energy grids (AEGs).

Autonomous Energy Grids: The Concept
AEGs are multilayer, or hierarchical, cellular-structured 
electric grid and control systems that enable resilient, reli-
able, and economic optimization. Supported by a scalable, 
reconfigurable, and self-organizing information and con-
trol infrastructure, AEGs are extremely secure and resil-
ient, and they can operate in real time to ensure economic 
and reliable performance while systematically integrating 
energy in all forms. AEGs rely on cellular building blocks 
that can both self-optimize when isolated from a larger grid 
and participate in optimal operation when interconnected 
to a larger grid. Figure 2 shows how a scalable approach to 
control can be built from the lowest level of individual con-
trollable technologies (renewable energy, conventional gen-
eration, EVs, storage, and loads) and used to control hun-
dreds of millions of devices through hierarchical cells. In 
the figure, the bottom level consists of individual technolo-
gies that are aggregated into small cells. Then, each upper 
level represents a collection of cells until the entire grid is 
covered. Within each layer, distributed controls are used to 
optimize energy production and meet system requirements. 
There is minimal information passed between layers, and 
this hierarchical approach enables the control of hundreds 
of millions of devices. 

To make this idea a reality, control algorithms for AEGs 
will need to be developed and implemented with the follow-
ing characteristics:

✔ Operate in real time: Control algorithms must op-
erate fast enough to ensure real-time operations in 
electric grids that balance load and generation every 
second.

✔ Handle asynchronous data and control actions: 
Data need to be used from a variety of asynchro-
nous measurements and sources, whereas distribut-
ed decision making leads to asynchronous control 
actions.

✔ Robustness: This covers both reliability and resilience, 
where reliability is fault tolerance, and resilience is the 
ability to come back from a failed state. These control 
systems also must be robust to communications fail-
ures, prolonged communications outages, and large-
scale disturbances.

✔ Scalable: Control algorithms must operate in a scal-
able fashion to ensure control of hundreds of millions 
of devices.

We will discuss these characteristics in detail in the fol-
lowing sections.
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figure 1. This is the San Francisco Bay Area synthetic 
distribution system, developed under the ARPA-E GRID 
DATA program. Line configurations are mostly wye with 
a small amount of delta. (Source: grid data: NREL; map: 
OpenStreetMap.org.)
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Operate in Real Time
One key challenge with AEGs is the development and imple-
mentation of real-time optimization and control methods. 
We use the term real time to indicate that power set points of 
the DERs are updated within each cell on a second or subsec-
ond timescale. Electric grids must maintain energy balance 
at every time instance. This is required to maximize the 
operational and economic objectives while coping with the 
variability of ambient conditions and noncontrollable energy 
assets and achieving intercell coordination to ensure reliable 
systemwide operation. Solving optimization problems to con-
vergence every second or every few seconds, however, has 
been impractical because of the following challenges:

✔ Complexity and convergence analysis. For large-
scale grids, the computat ional complexity of a 
centrally defined system could prevent the solution of 
optimization problems at the required timescales. When 
an optimization problem is solved in a distributed and/or 
hierarchical fashion (e.g., with device-to-device or cell-
to-cell communications as well as intracellular message 
passing), multiple communications rounds are necessary 
to converge to (possibly opti-
mal) solutions. Note that the 
optimization tasks related to 
AEGs are markedly different 
from traditional settings in 
which energy systems are op-
timized at the wholesale level 
using economic- and mar-
ket-based objectives. In the 
traditional operation of bulk 
systems, a few large-scale 
generators are dispatched, 
and the noncontrollable net 
load varies slowly. Such op-
eration is incompatible with 
AEGs that include a massive 
integration of DERs or whose 
optimization models require 
accurate representations of 
ac power flows within the 
DERs’ controllability region. 
In traditional bulk systems, 
optimization problems are 
nonconvex, nondeterministic, 
and polynomial-time hard 
(NP-hard); therefore, they 
may be infeasible to solve 
at the envisioned timescale 
with hundreds of millions 
of control points. To address 
these challenges and facilitate 
the development of provably 
stable and optimal distributed 
solution methods for AEGs, a 

first step is to develop convex relaxations and linear ap-
proximations of pertinent nonconvex problems.

✔ Model inaccuracy. Approximate linear models or 
convex relaxation methods might be leveraged to de-
rive convex problems that facilitate the design of com-
putationally affordable solutions. However, approxi-
mate/relaxed convex problems might involve only 
an approximate representation of a system’s physics 
and constraints; therefore, the optimal solutions of the 
convex problem might not be feasible for the original 
problem. To begin to address this issue, distributed 
optimization algorithms have been developed to use 
measurement information directly, which is known 
as online optimization with feedback. Measurement-
based (or feedback-based) algorithms address the fea-
sibility issue, and they can be distributed or central-
ized. The design of a distributed version is certainly 
more challenging than the centralized one, but the dis-
tributed version can be implemented on a more flex-
ible communications architecture, which can enhance 
cyber robustness.
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figure 2. The AEGs form a distributed hierarchical control system that integrates 
individual technologies in a cellular structure to the bulk power system. The scale 
on the side indicates the number of controllable technologies seen along the bottom 
level. The lowest level depicts the locations of various generation, storage, and loads.
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✔ Pervasive metering. Solving optimization problems 
using relaxations/linearizations of the ac optimal 
power flow (OPF) requires pervasive metering to col-
lect measurements of the noncontrollable loads at all 
locations in real time, which might be impractical. One 
way to address this problem in the large-scale grid of 
the future is to develop and implement distributed state 
estimation algorithms that can provide insight into the 
state of the system without having to explicitly mea-
sure every point of interest.

To address these challenges within the AEG cells, a real-time 
optimization framework has been developed at the National 
Renewable Energy Laboratory (NREL) under the Network 
Optimized Distributed Energy Systems (NODES) pro-
gram within the U.S. Department of Energy’s Advanced 
Research Project Agency-Energy (ARPA-E). The framework 
can model well-de�ned objectives and constraints of DERs 
located within each cell as well as consistency constraints for 
electrical quantities that pertain to the cell-to-cell connections. 
By using measurements in the system as a feedback mechanism 
and tracking optimal solution trajectories, the resultant feed-
back-based online optimization methods can cope with inac-
curacies in the representation of the ac power §ow and avoid 
having to measure all the noncontrollable resources. Figure 3
demonstrates how voltage and current measurements are used 
as feedback to better track the optimal trajectory of a large-scale 
system by sending a price signal that embeds cost functions, 
reliability functions, and system constraints.

The algorithm enables DERs to track given performance 
objectives while adjusting their power [the real power (P) 

and reactive power (Q) set points] to respond to services 
requested by grid operators and maintain electrical quantities 
within engineering limits. The design of the algorithm lever-
ages primal-dual gradient methods that improve the conver-
gence rate of the optimization problem, allowing the algo-
rithms to take advantage of the structure of the problem and 
be solved in real time. The gradient governs which direction 
and how fast to search for the next iteration in the optimiza-
tion, and it can be suitably modi�ed to accommodate appro-
priate measurements from the distribution network and the 
DERs. Primal-dual gradient methods can be implemented in 
real time because every gradient iteration is computationally 
cheap (very fast to compute); however, this method usually 
has a fast convergence rate when referred to the number of 
iterations required for the algorithm to converge. The result-
ing algorithm can cope with inaccuracies in the distribution 
system modeling; moreover, it avoids pervasive metering to 
gather the state of noncontrollable resources, and it naturally 
lends itself to a distributed implementation. Analytic stabil-
ity and the convergence of optimally tracking the solutions of 
the formulated time-varying optimization problem is estab-
lished. Figure 4 depicts how the real-time algorithm uses 
active and reactive power set points for a single DER (blue 
line) to track an optimal trajectory (red line).

Hierarchical Communications 
and Asynchronous Data
To enable the real-time optimization of AEGs with mil-
lions of controllable devices, a hierarchical communications 
architecture that includes cell-to-cell and cell-to-customer 

message passing can be formu-
lated to manage these devices. 
Mathematically, to obtain consis-
tency among cells, constraints are 
added to the optimization problem 
to ensure that adjacent cells agree 
on the power flows from one cell 
to another. This is known as con-
sensus-based optimization. Over-
all, the resultant feedback-based 
online optimization methods need 
to provably track the solution of 
the convex optimization problems 
by modeling well-defined objec-
tives and constraints for each 
cell as well as the consistency 
constraints for electrical quanti-
ties that pertain to the cell-to-cell 
connections. The feedback-based 
method also works for nonconvex 
problems; however, analytic proof 
of convergence for the feedback-
based method is very tricky and 
not well established. These cell 
connections can be geographically 
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figure 3. These measurements are used as a feedback mechanism for DER 
control. Real (P) and reactive (Q) power are used to optimize conditions on the 
distribution circuit.
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colocated or based on aggregators, such as smart-home 
aggregators. In this sense, it is worth emphasizing that the 
design of the distributed algorithm as well as the overall 
communications strategy will depend on the types of actors 
participating in the real-time optimization process (e.g., end 
customers, cell controllers, or aggregators).

In addition to the in§ux of DERs, the installation of new 
sensing and measurement technologies (e.g., smart meters 
and distribution-level phasor measurement units) will dras-
tically improve the observability of grid conditions at the 
distribution level. To take advantage of all the available 
measurements, algorithms must be able to operate in an 
asynchronous way to account for different communications 
latencies and for devices that can be controlled at different 
timescales (e.g., inverter-interfaced devices are controlled at 
fast timescales, whereas thermostatically controlled loads 
are controlled every few minutes). Analytic proof of conver-
gence can be tedious, but it is widely accepted that gradient-
based algorithms can be implemented asynchronously.

Robustness
In the context of AEGs, robustness includes both reliabil-
ity and resilience. Reliability is the property to be tolerant 
to faults, and resilience is the ability to come back from a 
failure to an operational state. For reliable operation, stabil-
ity analysis can be used at multiple timescales. Resilience to 
communications drops and asynchronous operation should 
be analytically established through pertinent input-to-state 
stability and tracking results. In other words, the AEGs 
should be able to continue operating even in the presence 
of these faults/errors. Mathematically, iterative optimization 

algorithms have been developed to operate with errors in 
their estimated parameters, such as gradients. In fact, it can 
be shown that a packet loss leads to the computation of pri-
mal or dual gradient steps with outdated information. Thus, 
cells that can switch from an islanded mode to a larger grid-
connected mode may continue operating amid faults and/or 
threats to the grid. These properties can be modeled as time-
varying constraints in the underlying optimization problem. 
Similarly, flexible operation, in which a cell (or a portion of 
a cell) switches to an autonomous control setting during a 
prolonged communications outage, should be enabled.

Scalability
Figure 5 illustrates an architecture in which communications 
among cells occur when performing distributed and/or hier-
archical control. As mentioned previously, distributed and 
hierarchical control algorithms are scalable and allow for 
the control of millions of devices in real time. When using 
distributed/hierarchical controls, the problem is broken up 
into smaller “cells,” and the interactions among cells can be 
reconciled using consensus to ensure consistency constraints 
for electrical quantities that pertain to the cell-to-cell con-
nections. For example, adjacent cells must agree on the real 
and reactive power exchanges at the points of interconnec-
tion or overlap.

Real and reactive power set points from the optimiza-
tion are sent between levels in the hierarchy. Intracellular 
communications (on the same level) can be used to ensure 
that the set points of the DERs are computed to maximize 
the given operational objectives while ensuring that electri-
cal limits are satis�ed within the cell. Communications also 
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take place between a cell-level control platform and indi-
vidual customers; these are necessary to optimize customer-
level objectives while respecting electrical limits within a 
cell. Message passing among cells to optimize the �ow of 
power is based on economic and reliability targets. These 
levels of hierarchy allow for scalable distributed optimiza-
tion algorithms to be designed and implemented in AEGs.

Figure 5 presents three levels of hierarchy. The top level, 
level 3, aggregates neighborhoods to achieve an optimiza-
tion objective, such as voltage regulation or power balancing. 
This level communicates to level 2 (e.g., a single neighbor-
hood) about the aggregated power designated for that neigh-
borhood. This information is passed from the neighborhood 
level down to the homeowner, level 1, as a power set point 
to track. The homeowners might accordingly coordinate 
their own distributed wind or solar, smart-home devices, 
and EVs to optimally balance the grid needs and their own 
usage preferences. Communications run in both directions, 
as indicated in Figure 5. For example, if homeowners are 
unable to meet their power set points, information is passed 
back up to level 2 (e.g., via monitoring the aggregate power 
of the neighborhood) to indicate this, and the optimization 
is repeated until each agent in the cell has reached a feasible 
solution that achieves the global objective as well as indi-
vidual satisfaction.

After demonstrating that distributed control concepts 
can work on a single distribution circuit, the goal is to 
implement a hierarchical control scheme that would allow 
true scalability. This work considered a potentially large 
distribution network controlled cooperatively by several 
networked AEGs. Figure 6 is an illustration of this work. 
A regional coordinator communicates with all the dis-
patchable nodes within each AEG cell, and a central coor-
dinator communicates with all the regional coordinators. 
Each regional coordinator knows only the topology and 
line parameters of the cell that it controls, and the central 
coordinator knows only the topology and line parameters 
of the reduced network, which treats each cell as a node 
and connects all the cells. Given such information avail-
ability, we explored the topological structure of the linear-
ized power �ow model to derive a hierarchical, distributed 
implementation of the primal-dual gradient optimization 
algorithm that solves an OPF problem. The OPF problem 
minimizes the total cost of all the controllable DERs and a 
cost associated with the total network load subject to volt-
age regulation constraints. The proposed implementation 
signi�cantly reduced the computational burden compared 
with the centrally coordinated implementation of the pri-
mal-dual algorithm, which requires a central coordinator 
for the whole network.
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figure 5. The communications architecture for distributed and real-time optimization of AEGs. In the figure, Level 1 
would be at a home or business, Level 2 would be at a neighborhood, and Level 3 would be multiple neighborhoods,  
all on a single distribution circuit.
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In this example, a three-phase, unbalanced, 11,000-node 
test feeder was constructed by connecting the IEEE 8,500-
node test feeder with a modified Electric Power Research 
Institute (EPRI) Circuit 7. In this example, a node is an 
electrical node where all voltages are equivalent. Figure 6
depicts the single-line diagram of the feeder, where the line 
width is proportional to the nominal power flow on it, so 
a thicker blue line has more power §owing through it. The 
primary side of the feeder was modeled in detail, whereas 
the loads on the secondary side (which is an aggregation of 
several loads in this system) are lumped into corresponding 
distribution transformers, resulting in a 4,521-node network 
with 1,335 aggregated loads. We grouped the nodes into four 
large cells (dotted circles) that were physically colocated and 
into a collection of other scattered nodes not inside these 
cells, as illustrated in Figure 6. Cell 1 contains 357 nodes 
with controllable loads, cell 2 contains 222, cell 3 contains 
310, and cell 4 contains 154. Cell 4 represents the EPRI test 
circuit. We fixed the remaining loads on all 292 nodes not 
included in the four large cells.

To evaluate how well voltage regulation was enabled by the 
control algorithms, the three-phase, nonlinear power flow model 
was simulated using OpenDSS, a power §ow solver. Figure 7
illustrates the output of the simulations under different volt-
age controls (voltage without control in blue, voltage with a 
default local controller in orange, and voltage with the OPF con-
troller in green). The voltage without control (blue) demonstrates 
a large variation in voltage control 
between 0.8 and 1.0 p.u. The local 
controller (orange) demonstrated sev-
eral locations of undervoltage (lower 
than 0.95 p.u.). In contrast, the OPF 
control (green) was able to maintain 
the voltage magnitudes of all the 
nodes within the bound from 0.95 
to 1.05 p.u. by incorporating global 
information. In contrast, the default 
control of the regulators and capacitors 
could not guarantee that all the volt-
ages were within this bound. Of note 
in Figure 7 are the nodes located on the 
right, which present a tight grouping 
for comparison. These points repre-
sent the EPRI circuit and did not have 
signi�cant voltage changes because 
their initial conditions were within the 
normal operating parameters.

The simulation results showed 
that an improvement of  more 
than 10-fold in the speed of con-
vergence can be achieved by the 
hierarchical distributed method 
compared with the centrally coordi-
nated implementation, without los-
ing any optimality. This signi�cant 

improvement in convergence speed makes real-time grid 
optimization and control, as well as fast recovery from black-
out conditions, possible for large distribution systems.

These results demonstrate how the hierarchical distrib-
uted implementation of the primal-dual gradient algorithm 
to solve an OPF problem achieves the objective to minimize 
both the total cost over all the controllable DERs and the 
cost associated with the total network load, subject to volt-
age regulation constraints. The proposed implementation is 
scalable to large distribution feeders comprising networked 
devices, and it reduces the computational burden compared 
with the centrally coordinated primal-dual algorithm by 
using the information structure of the AEGs. To the best 
of our knowledge, this simulation demonstrates the largest 
optimization-based control of a power system to date, but we 
are working on even larger simulations.

Large-Scale Simulations
There is a significant challenge to integrate multiple tech-
nologies into seamless and resilient operating energy systems 
with large numbers ( )108  of controllable devices. One of the 
biggest obstacles to understanding how these systems will 
function at scale is to create and test a computational frame-
work that enables the design and analysis of optimization and 
control approaches for these highly distributed energy sys-
tems. To enable this vision of AEGs of the future, advanced 
computational techniques—such as artificial intelligence, 
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figure 6. The 11,000-node test feeder constructed from the IEEE 8,500-node test 
feeder and a modified EPRI Circuit 7 (Cell 4). Four AEG cells were formed for this 
experiment. The higher level cell controller (CC) passes information (purple lines) to 
the regional cell (RC) controller and to individual nodes that are not located within 
a cell. The blue lines illustrate the physical layout of the distribution feeder, and the 
thickness of the line indicates the amount of power flowing through the line.
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machine learning, scalable simulations, and data analytics—
are being employed to develop and evaluate these new control 
and optimization algorithms at large scales to operate mil-
lions to hundreds of millions of controllable devices on the 
grid in real time.

Innovative, secure, scalable, hierarchical, real-time con-
trol strategies that are autonomous and make the best use 
of big and real-time streaming data will be explored to 
ensure that these complex systems function properly under 
a wide range of possible conditions. Evaluating deployments 
through coordinated simulations of 108  devices, including 
high-�delity models of the system, each component (e.g., resi-
dential/commercial buildings, autonomous EVs, solar, wind), 
and autonomous controllers in both normal and abnormal 

operations will be carried out to characterize and validate 
these approaches.

Currently, it takes approximately 1.5 h to run a simulation 
of feeders with 12,000 DER devices and optimization-based 
distributed controllers, including high-�delity solutions of ac 
power §ows for evaluating 24 h at 1-min resolution. This 
equates to about 23 days of simulation to run an entire year. 
Scaling to tens of millions of devices will require much 
more for an annual simulation. In many cases, simulations 
of critical days and weeks are suf�cient; however, this high-
lights the need for advanced computational resources to 
fully evaluate these control and optimization approaches 
for the AEGs of the future. Luckily, in the future, once the 
algorithms are developed and veri�ed, simulations of their 
outcomes will not be needed to run in real time on the grid.

Evaluations in the NREL Energy 
Systems Integration Facility
To evaluate if the software algorithms would work when 
integrating many real controllable devices, we set up a large 
experiment at NREL’s Energy Systems Integration Facil-
ity. NREL’s work on the ARPA-E NODES program helped 
develop the first implementation of the algorithms in hard-
ware and successfully demonstrate the real-time optimiza-
tion of a single AEG cell. The experiment included simula-
tion of a real distribution feeder from California with 366 
single-phase connection points, more than 100 controllable 
assets at power (inverters, EVs, and batteries; see Figures 8
and 9), and hundreds of simulated devices. The distributed 
algorithms were implemented in cost-effective microcon-
trollers that self-optimize and communicate to the central 
coordinator to attain systemwide goals (voltage regulation 
and frequency response).

figure 8. A fleet of EVs under distributed control in the 
NODES experiment at NREL’s Energy Systems Integration 
Facility. (Source: NREL; used with permission.)
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Real-World Applications
We have now started to move out of the laboratory to dem-
onstrate the deployment of AEGs in the real world. The team 
has been working with Holy Cross Energy (HCE), a utility 
cooperative near Aspen, Colorado, to deploy the AEG technol-
ogy in a group of smart homes in Basalt, Colorado. The smart 
homes in Basalt Vista (Figure 10) are a pilot for an altogether 
new approach to the grid. These homes optimize energy for 
residents and their neighbors, but the principles behind Basalt 
Vista go much further. Within homes, each new connected 
device or energy resource, such as a residential battery, water 
heater, or solar PV system, can be controlled for unprecedented 
energy efficiency. At a larger scale, entire communities could 
rapidly share power, creating reliable energy for everyone.

HCE had been searching for a solution to managing new 
devices on its system. This has included a mix of customer 
energy technologies and bulk generation resources since the 
decreasing costs of connected customer-owned devices have 
made these systems much more affordable. HCE’s grid has 
seen 10–15 rooftop solar installations per week, and it has 
been increasing its solar base for years, planning for a 150-MW 
summer peaking system through 2030.

In another real-world experiment, we used our real-time 
optimization algorithms to coordinate assets in the Stone 
Edge Farm Estate Vineyards & Winery in Sonoma Valley, 
California (Figure 11). The winery is a microgrid with tens 
of DERs, including PV systems, batteries, a hydrogen elec-
trolyzer, a gas turbine, and controllable loads. The experi-
ment, conducted in collaboration with the Massachusetts 
Institute of Technology-born startup company Heila Tech-
nologies, showed how our approach can help self-optimize a 
cell within the future AEG vision, achieving voltage regula-
tion and allowing the microgrid to become a virtual power 
plant that can provide services to the distribution system.

Conclusion
AEGs of the future will need to control and optimize mil-
lions of controllable devices in real time. A traditional central 
optimization approach to this problem is infeasible because 
of the computational cost. Therefore, robust, scalable, and 
predictive hierarchical and distributed control algorithms 
with provable convergence are needed to optimize the grid 
in real time. NREL has developed these scalable algorithms 
to enable the proliferation of DERs on a massive scale.

A fundamental underpinning of AEGs is the ability to accu-
rately model the cellular building blocks and their interactions 
with the rest of the systems so that control, optimization, and 
forecasting methods might be applied in operation. NREL is 
also building computational tools that can cosimulate multiple 
technologies on the grid to design and evaluate these scalable, 
distributed control and optimization algorithms using high-per-
formance computing. In addition, NREL has taken the prelimi-
nary steps of demonstrating these algorithms in real time for 
real-world devices in the laboratory and now in smart homes. 
Additional work will be needed in controls, optimization, data 

analytics, complex systems, and cybersecurity to implement the 
AEG across the entire U.S. grid.

Building on the distributed optimization techniques that 
have been developed, additional thought needs to be given to the 
design of future market mechanisms to systematically account 
for payment/rewards to exchange energy and the provision of 
ancillary services among autonomous cells and devices. The 
ideas of transactive energy will need to be considerably 

figure 9. The inverters under test in the ARPA-E NODES 
experiment. (Source: NREL; used with permission.)

figure 10. The smart homes in Basalt, Colorado. (Source: 
NREL; used with permission.)
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broadened to accommodate the proposed architecture with 
millions of controllable devices on the system and to enable rig-
orous mathematical analysis of system stability and optimality.
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figure 11. The Stone Edge Farm microgrid, Sonoma Valley, California. (Source: 
Stone Edge Farm; used with permission.)




